
LDT: Lightweight Dirty Tracking of Memory Pages
for x86 Systems

Rohit Singh, Arun KP, Debadatta Mishra
Department of Computer Science and Engineering

Indian Institute of Technology Kanpur, India
{rsingh, kparun, deba}@cse.iitk.ac.in

Abstract—Incremental memory checkpointing is a crucial
primitive required by applications such as live migration, cloning,
debugging etc. In many implementations of incremental check-
pointing, the memory modifications are tracked by restricting
write access to memory pages using the support provided in the
memory management unit (MMU) hardware. Disabling write
access impacts the performance of applications because of the
page faults induced in the form of permission violation on
memory store operations by the applications.

In this paper, we propose LDT, a light-weight memory write
monitoring mechanism to support efficient incremental check-
pointing. LDT is designed to work in systems with MMU support
for page dirty indicators (such as dirty-bit in x86 systems) by
enabling polymorphic use of the indicators such that no other
subsystem is impacted because of LDT. We design and implement
LDT in the Linux kernel as an alternate to the existing write-
restriction based technique. We establish the correctness and
comparative efficiency of LDT through extensive experimental
analysis. The results show that under write-heavy workloads,
LDT outperforms write-restriction based technique by a factor of
2x in execution time. For real-world workload benchmarks such
as Redis, LDT results in 2% to 8% throughput improvement
compared to the state-of-the-art dirty tracking technique.

Index Terms—operating system, memory management, page
modification monitoring

I. INTRODUCTION

Incremental checkpointing [1]–[3] of the execution state of
applications encapsulated as processes, containers or Virtual
Machines (VMs) is shown to be very useful. Live migration of
containers and VMs [4], [5], fault tolerance and high availabil-
ity [1], [6], application debugging using record and replay [7],
fast initialization [8], and memory rejuvenation [9] are some
example solutions built using the incremental checkpointing
mechanisms as the primary enabler. Furthermore, with non-
volatile memory (NVM) systems, the requirement for periodic
checkpointing becomes more crucial to support application/OS
level checkpointing and crash recovery [10], [11]. Incremental
checkpointing involves capturing and saving the state changes
of an execution entity (process, container or VM) across mul-
tiple checkpoint intervals such that the checkpoint size is mini-
mized resulting in efficient checkpointing-based solutions. For
example, live migration of containers/VMs with incremental
checkpointing reduces the data transfer overheads, providing
efficient migration capabilities whereas reduced checkpoint
size in an NVM system reduces the periodic-saving overhead
of the execution state to the NVM.

Tracking changes to the memory state of an application
(a.k.a. dirty tracking) across consecutive checkpoint intervals
is one of the significant operations to support incremental
checkpointing. As opposed to copy overheads at the end of any
checkpoint or tracking interval, dirty tracking interferes with
the application execution in a continuous manner for the whole
duration. For example, write fault based dirty tracking for any
application, when enabled, would introduce additional page
faults resulting in degraded application performance (Sec-
tion II). Furthermore, the copy overhead can be significantly
reduced by the usage of fast persistent storage devices (e.g.,
NVMs) increasing the emphasis on availability of efficient
dirty tracking techniques. The objective of this paper is to pro-
pose an efficient technique to reduce the overheads associated
with state-of-the-art incremental dirty tracking techniques.

For tracking changes to the memory state of an application,
conventional systems allow tracking at page-level granularity,
leveraging the access permission feature available in the mem-
ory management unit (MMU) hardware. One such common
approach is forcing a page-fault on the first write to a page by
removing write permission from the translation entry (e.g., the
page table entry or PTE in x86) [12]. A typical incremental
memory dirty tracking technique removes the write permission
bit in the page table at the start of the checkpoint interval
for the tracked memory areas. This results in a page-fault on
first write to any address in the tracked memory area during
the interval; an associated tracking mechanism can record the
corresponding pages as dirty. The overheads due to the page-
faults introduced because of dirty tracking is significant as we
show in Section II-C. Two potential factors contributing to
the performance degradation of a tracked application are—(i)
page-fault handling overheads, and (ii) TLB misses due TLB
invalidation while changing access permissions of dirty tracked
pages. There are also additional overheads at the start of the
checkpoint (to walk the page table to change the permissions)
and while consuming the dirty tracked information from the
user space at the end of checkpoint interval. For example,
write-fault based dirty tracking with SoftDirty feature in
the Linux OS [13] requires the tracker application to read and
process the pagemap file to find the dirtied pages at the end
of a checkpoint interval.

A possible approach to track the memory modifications
at a page granularity could be using the dirty-bit set by

the MMU hardware during address translation. On write to
a virtual address, the page-table walker hardware (part of
MMU) sets the dirty bit in the corresponding page table
entry (PTE), if the dirty-bit is not set already. A dirty-bit
based tracking mechanism can clear the dirty-bit in PTEs at
the start of a tracking interval and inspect the dirty bit at
the end to record dirtied pages. Compared to the write-fault
based tracking, the dirty-bit based mechanism could result
in significant performance advantage by avoiding page-faults
on first writes. However, designing a dirty-bit based dirty
tracking mechanism in conventional operating system such
as Linux presents some non-trivial challenges. First, different
OS subsystems such as the file system, page swapper etc.
may depend on the dirty-bit in PTE to ensure their correct
functioning. Therefore, out-of-turn clearing of the dirty-bit
by a dirty-bit based tracker may impact the correctness of
these subsystems. For example, if the dirty bit is cleared for a
disk-backed page by the dirty tracker at the beginning of the
checkpoint interval without notifying the correct subsystem,
the page write-back subsystem may never write the page to
the disk. Second, the correctness of the dirty tracker can also
be impacted by other subsystems. In the above example, if
during a checkpoint interval, the page write back subsystem
clears the dirty bit (after performing write-back to the disk
for example), correctness of dirty tracking is also impacted. A
similar and related challenge is when the virtual to physical
mapping is changed because of features such as physical page
migration and swapping. In short, access to dirty-bit from the
tracker and other subsystems must be carefully (re)designed
to ensure correctness.

In this paper, we propose LDT, a light-weight dirty tracking
mechanism based on dirty-bit in PTE. Apart from the dirty-bit
support from MMU, LDT assumes availability of two unused
bits in the PTE to ensure correctness. LDT addresses the
challenges mentioned above by maintaining extra meta-data
in PTEs to ensure API-level equivalence for dirty-bit query
and manipulation. For example, even if the dirty bit for a given
PTE is cleared by LDT at the start of the interval, the dirty-bit
checking API invoked by the rest of the subsystems in the OS
will still return true for that PTE. The equivalence between a
system with and without LDT is achieved by maintaining extra
information in the PTEs to allow temporal state of the dirty-bit
across checkpoint intervals. LDT also proposes a light-weight
mechanism for making the dirty information available for user
space consumption.

We design and implement LDT in the Linux OS (kernel
version 5.5.10) in 64-bit Intel x86 system, and compare its
performance against the state-of-the-art SoftDirty tech-
nique in the Linux OS. With write-heavy workloads, LDT
outperforms SoftDirty by a factor of 2x in terms of the
impact on the tracked application. For real-world workload
benchmarks such as Redis [14], LDT provided an average
∼6% throughput improvement compared to the SoftDirty
approach.

This paper makes the following contributions,
• Motivate a light-weight dirty tracking mechanism and

checkpoint
start

checkpoint
start

prepare
for dirty
tracking

consume
tracked

info

preform
dirty

tracking

checkpoint
memory

state

checkpoint
end

checkpoint
end

Fig. 1: Events during an incremental checkpoint of memory
state of an application.

present the challenges in designing memory dirty tracking
solution using the dirty-bit support from the hardware.

• Design and implement LDT, a light-weight memory
modification tracking mechanism in the Linux kernel for
Intel x86-64 systems leveraging the hardware support for
dirty-bits.

• Compare performance of existing write-fault based dirty
tracking mechanism with LDT using a set of benchmarks.

II. BACKGROUND AND MOTIVATION

Typical applications using memory checkpointing use an it-
erative scheme where the initial checkpoint saves the complete
memory state of the application(s)/VMs. In the subsequent
iterations, the changes to the memory state are tracked such
that the memory state of the application can be correctly re-
built, when required. From the usage view, there are two
entities involved in memory dirty tracking—the dirty tracker
process (referred to as tracker) and the execution entity (pro-
cess or VM) for which the memory dirty tracking is performed
(referred to as trackee).

A. Iterative Memory Checkpointing

Figure 1 shows the tracker activities during an intermediate
checkpoint interval for incremental dirty tracking. At the
start of the interval (referred to as checkpoint start), the
tracker performs preparation for tracking the dirty memory.
Depending on the support for dirty tracking, the tracker may
notify the system software such as the OS or hypervisor to
mark the starting of the dirty tracking interval. After this point,
the system software enables tracking memory modifications
performed by the trackee. At the end of checkpoint interval,
the tracker collects the dirty memory information from the
system software using specified APIs. Depending on the
usage scenario, the tracker may decide the start of the next
checkpoint interval where the steps shown in Figure 1 are
repeated.

A real-world implementation and usage of incremental
checkpoint can be found in the Linux OS. Linux OS ex-
poses the SoftDirty and Pagemap interfaces to perform
memory dirty tracking of any process from the user space.
One of popular users of the Linux OS incremental memory
dirty tracking feature is Checkpoint/Restore In Userspace
(CRIU) [15]. CRIU is used to checkpoint and restore any
process and is extensively used for container migration and

D W P
016

unused
11:9

unused
58:52 234578M-1:1251:M62:5963

Fig. 2: Page Table Entry in Intel x86-64

cloning [5], [16]. When CRIU is used as the tracker, after
capturing the initial memory state of a (trackee) process,
CRIU uses the SoftDirty interface to notify the Linux
kernel regarding start of a tracking interval for a given trackee
process. CRIU collects the memory dirty information of the
trackee process through the Pagemap interface at the end of
checkpoint interval. To capture the memory state of the trackee
in an incremental manner (e.g., during iterative migration of
containers), CRIU may repeat the above steps a configurable
number of times.

B. Page Dirty Tracking using Fault-on-write

Conventional systems provide mechanisms to track memory
changes at page granularity using access restriction features of
the memory management unit (MMU). Tracking dirty pages
with a fault-on-write strategy works as follows. The system
software can track changes to memory state at page-level
granularity by forcing a page-fault on first write to any address
within a page. One of the ways to achieve this is by write
protecting the memory addresses by manipulating the access
permission bits in the virtual to physical translation meta-data.

Figure 2 shows the page table entry (PTE) structure used
to translate a 4KB page in the Intel x86-64 systems. Write
access to an address in the range of a 4KB page is allowed
only if the ‘W’ bit shown in the PTE structure is set to one. For
dirty tracking of any given page, the OS can clear the write
permission bit in the corresponding PTE, thereby causing a
page fault on any write to the page [12]. The OS can note down
the dirtied page address and allow subsequent writes to the
page till the end of the interval. A process-level dirty tracking
feature can be designed using the above strategy where at the
start of the checkpoint interval for a given trackee process, the
OS will remove write permission for the entire process address
space. During the tracking interval, the OS can accumulate
information regarding the dirtied pages and share it with the
user space when required at the end of the tracking interval.
SoftDirty support in the Linux OS for x86-64 systems

is an implementation of the fault-on-write mechanism. When
requested by the user space (through the procfs), the Linux
kernel clears the write permission bit (and the soft-dirty bit
as explained below) in the PTEs of all mapped addresses
by walking the page table of the trackee process. When the
trackee process modifies any page for the first time during the
tracking interval, the kernel handles the page fault and sets
the soft-dirty bit in the corresponding PTE. The soft-dirty bit
in PTE is one of unused bits as shown in Figure 2 which is
cleared at the start of a dirty tracking interval. When the user
space tracker wants to capture the dirty information, it can read
the pagemap file present in the procfs. The read handler
in the kernel walks through the page table of the process to
collect the PTEs for the complete address space and formats

 0.1

 1

 10

 100

 1000

128MB 256MB 512MB 1GB 2GB

T
i
m
e

t
a
k
e
n
(
m
s
)

Memory Size

No dirty tracking
Dirty tracking with write faults

Fig. 3: Time taken (in milliseconds) to write 1 byte in each
page of memory whose size is represented in X-axis in
baseline case (no dirty tracking) vs write fault (dirty tracking)
case. Y-axis is in log scale.

them into the user space buffer before returning from the read
system call. The pagemap feature is not tailor-made for dirty
tracking and therefore returns the PTEs irrespective of their
dirty status.

C. Motivation

Fault-on-write based approaches of dirty page tracking rely
on the page-fault events generated by the hardware. This
is required to provide the OS a point of intervention to
enable tracking of the dirtied pages during a given interval.
Introduction of page faults can have implications on the
performance of the trackee. To study the extent of impact, we
perform an experiment using the SoftDirty feature in an
Intel i7 x86-64 system configured with the Linux OS. In this
experiment, we execute a micro-benchmark which writes one
byte to each page of the allocated memory of different sizes
and captures the total time taken for all writes to complete.
For dirty tracking, the benchmark invokes the SoftDirty
interfaces after allocation and initialization of the memory area
of the configured size.

Figure 3 shows the time taken to perform the write opera-
tions for two scenarios (dirty tracking enabled and disabled)
with different sizes of allocated memory. When SoftDirty
based dirty tracking is enabled, significant overheads can
be observed. Compared to the case when dirty tracking is
disabled, we observe that performance slowdown increases
with increase in memory size. For example, the write time
overheads with dirty tracking increases from ∼10x to more
than 40x compared to the baseline (no dirty tracking) when
memory size increases from 128MB to 2GB. The page fault
overhead is non-trivial in case of SoftDirty which can
impact the application performance during the checkpoint
intervals. This observation clearly establishes the requirement
of alternate solutions for efficient dirty tracking and motivates
the design of LDT.

Fig. 4: Illustration of potential issues with dirty tracking solutions based on hardware dirty-bit support.

III. DESIGN OF LDT

A dirty tracking mechanism using the hardware support for
PTE dirty-bits can meet the dirty-tracking requirements of
the tools/programs at the upper layers in an efficient manner
because dirty-bit based solutions do not incur overheads due to
page-faults. However, there are some non-trivial challenges in
designing such a solution. In the rest of the paper, we assume
an underlying architecture with hardware support for dirty-bits.

A. Challenges

One of the primary challenges in design of LDT is ensuring
correctness when dirty-bit is used simultaneously by many
other subsystems in an OS. In an iterative dirty-tracking
scenario (Figure 1), the OS is required to clear the dirty-bit
at each checkpoint start and collect the dirty information at
checkpoint end. This scheme works nicely when the dirty-bit
in the PTE is manipulated only from the dirty-tracker. If other
subsystems in the OS manipulate the dirty-bit out of turn,
the correctness of dirty tracking is impacted. More seriously,
manipulation of dirty-bit from the tracker may impact the
correctness of other subsystems in the OS leading to system
crashes. Therefore, design of LDT should address the above
concerns, not only for correct dirty tracking, but also to ensure
correctness of the entire OS.

Figure 4 highlights the integration issues involved in de-
signing dirty tracking solution based on the hardware support
for dirty bits where other OS subsystems consume and/or
manipulate the PTE dirty bits. We show the actions on a single
page (Figure 4 shows the corresponding PTE within the box
representing the page) during one checkpoint interval between
checkpoint A and checkpoint B. Consider that at 1 , dirty-bit
of the PTE is set by the hardware because the trackee process
writes to an address within the page for the first time. When
the dirty tracker initiates the checkpoint, dirty-bit for the page
is cleared in step 2 . Any other subsystem in the OS observes
correct dirty status for the page till checkpoint A and gets the
wrong dirty bit indicator afterwards. Consider in step 3 the
process performs write to the page setting the dirty-bit again

(from the hardware). Now, in step 4 , some OS subsystem
clears the dirty-bit from the PTE which results in collection
of wrong dirty information by the dirty tracker for the page
when the end checkpoint event (step 5) is triggered. In this
case, the dirty tracker marks the page as clean (not dirty) even
though the page is modified during the checkpoint interval (in
3). Note that, there are other interleavings resulting in either

or both types of incorrectness.

B. Design Approach

The design of LDT makes following assumptions apart
from the dirty-bit support from the MMU hardware. First,
we assume at least two unused bits in the PTE for a valid
mapping and one unused bit in the PTE of a swapped-out
page. Most of the architectures leave some unused bits in
the PTE for software use. For example x86, ARM, risc-v
all have at least 2 bits reserved in the PTE for software use.
Number of unused bits in the PTE for swapped-out page is
dependent on the OS swapping implementation. Second, we
assume all subsystems in the OS access/manipulate the dirty
bit information in the PTE through a set of functions and do
not access/manipulate the dirty bit from/in the PTE directly.
This is a standard software engineering practice, especially for
OSes written for variety of underlying architectures.

We use two unused bits (referred to as U1 and U2) in the
following manner. U1 is used to maintain a backup of the
dirty information cleared by LDT such that any other OS
subsystem checking the dirty-bit status can be served with
the correct information. For the example scenario shown in
Figure 4, any subsystem checking the status of the dirty bit for
the PTE after checkpoint A, will be returned true because U1

is used to maintain a backup of the dirty-bit status for the page
while clearing the dirty-bit. U2 is used to maintain a back-up
dirty information for LDT in case some other OS subsystem
clears the PTE dirty-bit. The erroneous conclusion by the
dirty tracker can be corrected if U2 is set when some other
subsystem clears the dirty-bit (step 4 in Figure 4), and later
used by the dirty tracker to interpret the page as dirty. Role of

the unused bit in the PTE for swapped out page (referred to
as US) is to maintain the dirty information across swap-in and
swap-out. If a page is already dirtied during a tracking interval
and the OS wants to swap-out the page, the dirty information
is maintained in the unused bit to avoid correctness issues as
the structure of a PTE changes for swapped out pages.

LDT changes the dirty-bit query and manipulation interfaces
such that it always provides a correct status to the rest of
the OS. The dirty-bit status check for any PTE returns true
if either the dirty-bit is set or U1 is set. On the other hand,
the dirty-bit clear for any PTE performs clears both dirty-bit
and U1, and sets the U2 bit in the PTE. Similar manipulation
of the APIs used for swapped-out PTEs are incorporated as
part of LDT design. To exchange the page dirty information
efficiently with the user space, LDT proposes a streamlined
data exchange mechanism where the dirty information is
provided in a compact manner.

C. Implementation Overview

We implement the proposed LDT scheme in the Linux
kernel version 5.5.10 for Intel x86-64 systems by extending
the SoftDirty framework. The implementation consists
of around 200 lines of kernel code. SoftDirty provides
user space interfaces to control the dirty tracking process as
explained in Section II. We extended the interface to provide
a new command to enable the user space to perform dirty-
tracking using LDT. We also provide an alternate procfs
API for the user space to collect page dirty information more
efficiently.

We piggy-back the prototype implementation of LDT in
on the existing SoftDirty implementation because of the
following reasons. First, handling addition, removal or resizing
of the address space areas (vm_area list in the PCB) is
already implemented for the SoftDirty framework. Second,
even when a process is not tracked, the kernel implementation
of file mapped areas (with MAP_SHARED) for a process gen-
erate page faults on write which is used by the SoftDirty
logic to track dirty pages. We do not want to disturb the file
map functionality of the kernel. Third, SoftDirty already
handles swapping and page migration using the designated bits
in swapped PTEs. Reusing the same bit in the swapped PTEs,
LDT avoids using additional bits in the swapped PTEs.

Set of high-level procedures presented in Algorithm 1 shows
the working of LDT. The RestartTrack procedure in the
kernel is invoked when any user space tracker initiates or
restarts the tracking for a process (app in Algorithm 1). For
every page mapped to a physical frame, if the dirty-bit is set,
we remove the dirty bit and set the backup U1 bit. We also
remove the page dirty indicators such as SoftDirty and U2

bits to clear the residual history from previous tracking, if any.
The SoftDirty bit may be set in the previous interval because
of the reasons explained above (for file mapped pages). If the
page is swapped out, we clear the dirty-bit indicator from the
swapped PTE (US in line#15). Finally, a full TLB flush is
performed to remove stale entries from the TLB.

Algorithm 1: LDT implementation in the Linux kernel
Input:
app: Process to be tracked
buf : User buffer for collecting page dirty information
pte: Page table entry

1 Function RestartTrack(app):
2 Page P
3 PTE pte
4 foreach Page P in app.AddressSpace do
5 pte = getpte(app, P)
6 if (pte.Present) then
7 if (pte.Dirty) then
8 pte.Dirty = 0
9 pte.U1 = 1

10 end
11 pte.SoftDirty = 0
12 pte.U2 = 0
13 end
14 if (pte.Swapped) then
15 pte.US = 0;
16 end
17 end
18 tlb_flush(app)
19 return
20 End Function
21 Function CollectDirty(app, buf):
22 bool Dirty = false
23 Page P
24 PTE pte
25 foreach Page P in app.AddressSpace do
26 Dirty = false;
27 pte = getpte(app, P)
28 if pte.Present then
29 if (pte.Dirty or pte.U2 or pte.SoftDirty) then
30 Dirty = true
31 end
32 end
33 if pte.Swapped and pte.US then
34 Dirty = true;
35 end
36 if Dirty then
37 add_dirty_entry(P , buf)
38 end
39 end
40 End Function
41 Function CheckDirty(PTE pte):
42 return (pte.Dirty or pte.U1)
43 End Function
44 Function ClearDirty(PTE pte):
45 if (pte.Dirty) then
46 pte.U2 = 1
47 end
48 pte.Dirty = 0
49 pte.U1 = 0
50 End Function

During the tracking interval, any query to check the dirty
status of the PTE of a page dirtied in the past using the
modified CheckDirty API will return true until some kernel
subsystem invokes the modified ClearDirty call. On a
ClearDirty call, we clear both the dirty-bit and the U1

bit, and set the U2 bit in the PTE only if the dirty-bit is set
(line #46 in Algorithm 1) because a set dirty-bit implies that
the page is dirtied during the current tracking interval.

When the user space tracker collects the page dirty informa-
tion, we walk through all the mapped pages and return the dirty
page addresses back to the user space (using the buf argument
in the CollectDirty procedure). A page is classified as
dirty if at least one of the four indicators—the dirty-bit, the
U2 bit, the SoftDirty bit and the US bit—is set. The page is
also classified as dirty if the page belongs to a newly added

TABLE I: Micro-benchmark categories used in experiments

Benchmark Description
Write-Only Perform sequential writes to memory area
Read-Write Perform fixed % of read and write to memory area
Write-Rate Perform fixed number of writes per second to memory area

TABLE II: System Parameters

CPU Intel i7-4770 CPU @ 3.40GHz
L1-D/I 32 KB (8 way)
L2 256 KB (8 way)
L3 8 MB (16 way)
DRAM 16 GB
OS Ubuntu 18.04.3 LTS
Linux Kernel 5.5.10

virtual memory segment (not shown in Algorithm 1). There are
many subtle integration issues, especially with swap and page
migration logic, where the LDT dirty indicators are required
to be transformed which is not shown in the Algorithm. Note
that, the existing pagemap API in the Linux kernel collects
dirty page information of all pages, irrespective of their dirty
status. LDT CollectDirty procedure returns only the dirty
pages saving the number of system calls and amount of data
exchange between the user space and the kernel. The current
prototype of LDT works only for 4KB pages.

D. Testing and Correctness

To validate LDT, we perform an extensive set of exper-
iments with micro-benchmarks, stress tests, real applications
and use cases. We create a set of micro-benchmarks to control
the page modification and test the correctness of LDT by
comparing the page dirty information against SoftDirty.
Overnight tests with real-world applications such as Redis [14]
with aggressive tracking (with one second tracking interval) is
performed to make sure that LDT is not introducing any kernel
issues (assert failures, crashes etc.). Further, the size of the
Redis in-memory data store is pushed beyond the memory size
to introduce swapping while LDT tracking is enabled to ensure
correctness in extreme memory pressure scenarios. Finally, we
perform iterative migration of an application container hosting
Redis with a workload pushing the memory limits of the
container. We observe that the Docker container is restored
correctly and starts serving requests normally after restore.

IV. EVALUATION

We compared the performance of LDT with no dirty track-
ing (Baseline) and conventional dirty tracking mechanism
in Linux (SoftDirty). We evaluated LDT on a system
with configuration mentioned in Table II using list of micro-
benchmark categories mentioned in Table I.

A. Dirty tracking performance

LDT avoids initial write faults to dirty tracked pages and
provides performance benefits for write intensive applications.
We performed an experiment with different write footprints
by changing the size of the memory mapped area of the
application where every byte of the memory mapped region
is written. Figure 5 shows the performance of dirty memory

 0

 200

 400

 600

 800

 1000

 1200

128MB 256MB 512MB 1GB 2GB 4GB

W
r
i
t
e

T
i
m
e

(
m
s
)

Memory size

Baseline
Soft Dirty

LDT

Fig. 5: Comparison of dirty tracking performance with write-
only scenario. X-axis shows modified memory area size, Y-
axis shows time taken to perform write.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

128MB 256MB 512MB 1GB 2GB 4GB

P
a
g
e
f
a
u
l
t
s

(
x
1
0
6
)

Memory size

Baseline
Soft Dirty

LDT

Fig. 6: Comparison of page-faults with different dirty tracking
mechanisms in write-only scenario. X-axis shows modified
memory area size, Y-axis shows number of page-faults.

tracking with LDT under a write-heavy scenario by using
write-only benchmark (Table I). We measured the time taken
to perform writes with LDT and SoftDirty mechanisms
where the baseline is with no dirty tracking. The benefit of
using LDT in comparison with SoftDirty increases with
increase in memory size. We observed more than 3x increase
in time taken for writing 4GB memory with SoftDirty
compared to LDT as shown in Figure 5. As shown in Figure 6,
no additional page faults are introduced by LDT which leads
to improved performance compared to SoftDirty where the
first write to a tracked page results in a page fault.

As LDT avoids page fault on the first write to dirty tracked
pages, its comparative benefit with SoftDirty increases
with the number of writes during the tracking interval. We
studied the application performance benefit of LDT with
workloads consisting of different read to write ratios. Figure 7
shows the application throughput while being dirty tracked us-
ing LDT under different read-write percentages in a checkpoint
interval. LDT resulted in similar throughput as of baseline in
the initial phase of execution. The throughput gap between
SoftDirty and LDT at the starting of a checkpoint interval
widened with increase in write percentage. For example, we
observe ∼2.4x throughput in LDT compared to SoftDirty
while performing 25% reads and 75% writes at the start of
the tracking interval.

The SoftDirty throughput converges with baseline after-

 0

 2

 4

 6

 8

 10

 12

 14

 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

T
h
r
o
u
g
h
p
u
t

(
G
B
p
s
)

Time (msec)

Baseline
Soft Dirty

LDT

(a) Performed 25% read and 75% write in dirty tracking interval.

 0

 2

 4

 6

 8

 10

 12

 14

 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

T
h
r
o
u
g
h
p
u
t

(
G
B
p
s
)

Time (msec)

Baseline
Soft Dirty

LDT

(b) Performed 50% read and 50% write in dirty tracking interval.

 0

 2

 4

 6

 8

 10

 12

 14

 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

T
h
r
o
u
g
h
p
u
t

(
G
B
p
s
)

Time (msec)

Baseline
Soft Dirty

LDT

(c) Performed 75% read and 25% write in dirty tracking interval.

Fig. 7: Comparison of LDT tracking performance with dif-
ferent read-write intensity. X-axis shows the time intervals in
milliseconds, Y-axis shows application throughput with dirty
tracking and no dirty tracking baseline.

wards because the page faults occur only on first write to dirty
tracked pages. Subsequent writes from all three modes are
equivalent; hence the performance is similar. Figure 7 clearly
shows the benefit of LDT under all combinations of read-write
percentages in an application where the benefits increase with
more writes. The benefit of LDT can be attributed to avoidance
of page-faults during the initial phases of the tracking interval
as shown in Figure 8 . SoftDirty resulted in significantly
higher number of page faults (Figure 8) at the starting of the
checkpoint interval.

Applications may write to memory at different rates in a
given checkpoint interval. The rate of writing decides the
amount of page-faults in SoftDirty which will result in
high CPU overheads near the start of checkpoint. Another
parameter impacting the number of page faults is the writable
working set size of an application. For a given rate of write, the
number of page faults is expected to be higher for applications
with larger working set sizes. To analyze the tracking perfor-
mance of applications with different rates of write and writable

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

100 200 300 400 500 600 700 800 900 1000 1100

P
a
g
e
f
a
u
l
t
s

Time (ms)

Baseline
Soft Dirty

LDT

Fig. 8: Number of page-faults with 25% read and 75% write
during the dirty tracking interval.

working set size, we performed the following experiment. We
collected CPU utilization (in cycles every 100ms using the
perf utility) for different combinations of writable working
set size, write rate and dirty tracking technique using a param-
eterized micro-benchmark. LDT and Soft Dirty resulted
in comparatively higher CPU utilization during the start of
the experiment, and ultimately converged to the baseline CPU
usage after some time.

Figure 9 shows the time taken to converge (Y1 axis, bar
plots) with baseline CPU utilization while using LDT and
Soft Dirty. We calculate the time of convergence for LDT
and SoftDirty by using a difference threshold (from the
median of the baseline) in the CPU utilization. For example,
with write rate of 100K/sec and writable working set size
of 1G, we calculate the median of the baseline CPU usage.
We processed the CPU utilization samples of LDT for the
same workload till we encounter a sample with CPU usage
within a threshold of the calculated median value of the
baseline to derive the time to convergence. The execution time
while using dirty tracking converges quicker with increase in
write frequency, i.e. with 128MB mapped memory area size,
SoftDirty converged at 5200 µsec with 50K (Figure 9a),
2400 µsec with 100K (Figure 9b)and 600 µsec with 200K
writes per second (Figure 9b). LDT performed better than
SoftDirty for all write rates by converging earlier with
the baseline execution time, thus attaining baseline application
performance quicker.

The CPU overhead on the Y2-axis (line plots) shows the
ratio of total CPU cycles consumed till the time of conver-
gence while using LDT or Soft Dirty to total CPU cycles
consumed in the baseline setup till the same time. As shown
in Figure 9, LDT outperformed SoftDirty mechanism as it
resulted in comparatively lower CPU overhead. This benefit of
LDT is from saving CPU cycles by avoiding write page fault
service time. LDT resulted in an average ∼14% reduction in
CPU overhead across all configurations with a maximum of
29% reduction in 200K write rate in case of 1GB mapped
memory area. The execution time of an application converges
with the baseline after the first write faults on the dirty tracked
pages are over; thus the time taken to converge execution time
depends upon the rate of write page-faults (i.e. rate of writes).

 0

 10000

 20000

 30000

 40000

 50000

 60000

128MB 256MB 512MB 1GB 2GB 4GB
 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

T
i
m
e

t
o

c
o
n
v
e
r
g
e
(
m
s
)

C
P
U

o
v
e
r
h
e
a
d

Memory Size

LDT
Soft Dirty

LDT
Soft Dirty

(a) Performed 50K writes per second.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

128MB 256MB 512MB 1GB 2GB 4GB
 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

T
i
m
e

t
o

c
o
n
v
e
r
g
e
(
m
s
)

C
P
U

o
v
e
r
h
e
a
d

Memory Size

LDT
Soft Dirty

LDT
Soft Dirty

(b) Performed 100K writes per second.

 0

 5000

 10000

 15000

 20000

 25000

128MB 256MB 512MB 1GB 2GB 4GB
 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

T
i
m
e

t
o

c
o
n
v
e
r
g
e
(
m
s
)

C
P
U

o
v
e
r
h
e
a
d

Memory Size

LDT
Soft Dirty

LDT
Soft Dirty

(c) Performed 200K writes per second.

Fig. 9: Comparison of LDT tracking performance under dif-
ferent write rates. X-axis shows mapped memory area size,
Y1-axis shows time taken to converge with baseline (no
dirty tracking) CPU usage. Y2-axis shows normalized CPU
overhead (w.r.t. baseline) till the point of convergence.

We study the influence of dirty tracking on standard appli-
cations by tracking the in-memory database Redis [14]. We
tracked Redis with LDT and SoftDirty, and performed
Get and Set operations using YCSB [17] benchmark. We
performed 90% Set (write/update) and 10% Get (read) as
one configuration, and 50% Set and 50% Get in another
configuration, to measure the influence of varying read-write
percentage on Redis performance with different dirty tracking
methods. Figure 10 shows that with LDT tracking, Redis
throughput is closer to the baseline (no dirty tracking). LDT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1sec 5sec 10secT
h
r
o
u
g
h
p
u
t
(
1
0
3
o
p
s
/
s
e
c
)

Tracking Interval

Baseline
Soft Dirty

LDT

(a) YCSB performed 50% read 50% write.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1sec 5sec 10secT
h
r
o
u
g
h
p
u
t
(
1
0
3
o
p
s
/
s
e
c
)

Tracking Interval

Baseline
Soft Dirty

LDT

(b) YCSB performed 10% read 90% write.

Fig. 10: Comparative performance of dirty tracking with
Redis benchmark for different tracking intervals. X-axis shows
variation in tracking interval, Y-axis shows Redis throughput.

Read:Write (%) Interval Baseline (µs) SoftDirty (µs) LDT (µs)

10:90
1sec 77 84 79
5sec 77 86 80

10sec 74 80 74

50:50
1sec 79 92 82
5sec 80 84 82

10sec 80 84 81

TABLE III: 99th percentile latency for write operations with
Redis.

provides ∼2% to ∼8% throughput improvement as compared
to SoftDirty . Maximum improvement of 8% is observed
in 50% get and 50% set scenario with one second tracking
interval.

Table III shows the 99th percentile latency of write opera-
tions in Redis application for checkpoint intervals of 1, 5 and
10 seconds. For both the workload scenarios, we observe that
the tail latency for SoftDirty is comparatively higher than
LDT. This happens due to the time spent on handling page
faults while servicing the write requests.

We also studied the overhead of dirty bit access and manip-
ulation from other OS subsystems due to the introduction of
extra reserved bits (U1 and U2) in case of LDT. We called the
checkDirty and clearDirty methods (Algorithm 1) 5
million times from a kernel module to observe the overheads of
LDT in comparison to the baseline Linux. We observed similar
execution times in both the scenarios (LDT and unmodified
Linux) which implies usage of extra bits in the PTE does not
introduce any noticeable performance overheads.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

20 30 40 50 60 70 80 90 100T
i
m
e

t
o

r
e
a
d

(
m
s
e
c
)

% of pages dirtied

Soft Dirty
LDT

Fig. 11: Comparison of time to read dirtied page information
using LDT interface and existing linux pagemap interface. X-
axis shows percentage of pages dirtied in memory area, Y-axis
shows time to read dirty tracked page information.

B. Dirty Page Information Collection

Applications need to consume the memory dirty information
at the end of the checkpoint interval to copy the modified
pages to a persistent store (Figure 1). With the conventional
SoftDirty mechanism, applications can consume page dirty
information by reading the pagemap interface in the Linux
OS. Pagemap contains one 64-bit value for each virtual page.
This 64 bit value contains information such as the physical
address, a soft-dirty marker, swap status indicator etc. The
application can offset into the pagemap file for pages of
interest, and perform read operations to collect information
regarding the soft-dirty status of pages. Using the pagemap
interface for dirty tracking has the constant overhead of read-
ing 64 bit values for all pages in a mapped area (in the worst
case), irrespective of the actual number of pages dirtied in the
interval. For example, an application with one GB mapped
area has to read the information for all 218 pages (i.e. number
of pages in one GB mapped area) even if only one page is
modified in the tracking interval. To address this shortcoming
of pagemap interface, we expose a new interface in LDT
which allows applications to collect information regarding
pages dirtied during a checkpoint interval in the form of
a list of dirtied pages. With the LDT specialized interface,
information about only one page is returned instead of all 218

pages in one GB space in the previous example.
We performed an experiment to study the performance

benefits of LDT dirty page collection interface in comparison
with pagemap interface. In this experiment, we dirty a certain
percentage of pages of an one GB memory region and then
observe the time taken to read the page dirty information using
the pagemap interface and LDT interface. Figure 11 shows
that the LDT interface significantly reduces time taken to read
page dirty information in an interval. There is a consistent
benefit (7x to 15x) with the LDT interface over pagemap
interface, even for collecting information for high percentage
of dirty pages (Figure 11).
Summary: LDT provides significant benefits in terms of
reduced impact on the performance of the tracked applications,

especially when the tracked applications are write-intensive.
Even with moderate read scenarios, the tail latencies can be
improved by LDT which can provide better QoS guarantees.
LDT does not support tracking huge pages which we plan to
incorporate as part of the future work.

V. RELATED WORK

Incremental checkpointing Berkeley Labs Checkpoint
Restart (BLCR) [1] is a checkpoint and restore mechanism
for applications. It supports incremental checkpointing. Aurora
Operating System [10] is a single level store that enables
the persistence and manipulation of execution state. It uses
CoW scheme to handle sharing of pages, objects. Speculative
Memory Checkpointing (SMC) [18] is a technique that aims to
achieve high frequency checkpointing by eagerly copying the
hot pages while lazily tracing cold pages. Hardware assisted
page modification tracking such as Intel PML [19] is lim-
ited to tracking memory modifications in virtualized systems.
Lightweight Memory Check pointing (LMC), [20] a new user-
level memory checkpointing technique that relies on compiler-
based instrumentation to shadow the entire memory address
space of the running program and incrementally checkpoint
modified memory bytes in a LMC-maintained shadow state.
Checkpointing solutions can use the light-weight dirty tracking
support provided by LDT to realize efficient incremental
checkpointing in a transparent manner.

Solutions leveraging MMU features: Usage of permis-
sion bits and unused bits in the PTE to realize different
features and/or implement tools is not new. Apart from
Softdirty, memory deduplication using Kernel same-page
merging (KSM) [21], [22] uses a fault-on-write strategy.
BadgerTrap [23] and DiME [24] modify the PTE access
permissions to cause fault-on-access to build tools to capture
TLB misses and emulate disaggregated memory, respectively.
LDT only uses unused bits in the PTE without modifying
access permissions.
Usage of incremental checkpointing: Checkpoint of ap-
plication memory state has wide range of use cases such
as software reliability [25], [26], debugging [27], container
migration [28]–[30] and system consistency with non-volatile
memory [31]. Most of the above applications use some form of
fault-on-write mechanism to implement dirty tracking similar
to the Linux SoftDirty. CRIU [32] freezes the processes
at particular time, checkpoints them to persistent storage in an
iterative manner, and then restores the processes from the point
they were frozen using SoftDirty. Record/replay systems
[33] [34] [35] record inputs to an application and replay the
execution if required, such as for debugging purposes. These
systems generate huge amounts of data unless incremental
checkpointing is incorporated. Live migration of GPU [36] is
an interesting use case of software page dirty tracking where
GPU live migration can be achieved with low application
down time. LDT provides an efficient alternative incremental
checkpointing technique which can be used by many of the
above usage scenarios.

VI. CONCLUSION

In this paper, we proposed LDT, a light-weight memory
write monitoring mechanism to support efficient incremental
checkpointing. Existing fault-on-write based approaches such
as the Linux SoftDirty technique impacts the performance
of monitored applications because of the additional overheads
due to the introduction of page faults for the tracking purposes.
LDT uses dirty bit and some unused bits in the PTE to
identify the pages being written in a given interval. We
implemented LDT in the Linux kernel for x86-64 architecture
and performed correctness tests using real-world use cases
such as container migration using CRIU. We evaluated the
performance of LDT using a set of micro-benchmarks and
real-world workloads such as Redis. Our evaluation thoroughly
demonstrates the performance benefits of LDT compared to
the state-of-the-art SoftDirty approach in the Linux OS.
We observed performance improvement of write-intensive ap-
plications when monitored by LDT compared to SoftDirty
monitoring. For example, LDT resulted in ∼2.4x improvement
over SoftDirty for a workload with 75% write and 25%
read operations. Our experiments with Redis key-value store
when dirty tracking is enabled shows that LDT resulted in
up to ∼8% throughput improvement over SoftDirty. LDT
also provides a custom light-weight user interface to collect
the memory dirty information in an efficient manner.

REFERENCES

[1] M. Vasavada, F. Mueller, and P. H. Hargrove, “Comparing different
approaches for incremental checkpointing : The showdown,” in Pro-
ceedings of OLS, 2011.

[2] D. Vogt, C. Giuffrida, H. Bos, and A. S. Tanenbaum, “Lightweight
memory checkpointing,” 2015 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pp. 474–484, 2015.

[3] B. Guler and Ö. Özkasap, “Efficient incremental checkpoint algorithm
for primary-backup replication,” 2017 25th Signal Processing and Com-
munications Applications Conference (SIU), pp. 1–4, 2017.

[4] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings
of the 2nd Conference on Symposium on Networked Systems Design and
Implementation - Volume 2, ser. NSDI’05. USA: USENIX Association,
2005, p. 273–286.

[5] C. Prakash, D. Mishra, P. Kulkarni, and U. Bellur, “Portkey: Hypervisor-
assisted container migration in nested cloud environments,” in Proceed-
ings of Virtual Execution Environments, ser. VEE 2022. New York,
NY, USA: Association for Computing Machinery, 2022, p. 3–17.

[6] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield, “Remus: High availability via asynchronous virtual machine
replication,” in USENIX Symposium on Networked Systems Design and
Implementation (NSDI 08), 2008.

[7] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou, “Flash-
back: A lightweight extension for rollback and deterministic replay for
software debugging,” in Proceedings of the USENIX Annual Technical
Conference, 2004.

[8] E. Bugnion, V. Chipounov, and G. Candea, “Lightweight snapshots and
system-level backtracking,” in HotOS, 2013.

[9] Y.-M. Wang, Y. Huang, K.-P. Vo, P.-Y. Chung, and C. M. R. Kintala,
“Checkpointing and its applications,” Twenty-Fifth International Sympo-
sium on Fault-Tolerant Computing. Digest of Papers, pp. 22–31, 1995.

[10] E. Tsalapatis, R. Hancock, T. Barnes, and A. J. Mashtizadeh, “The aurora
single level store operating system,” in Proceedings of the ACM SIGOPS
Symposium on Operating Systems Principles, ser. SOSP ’21, 2021, p.
788–803.

[11] D. Bittman, P. Alvaro, P. Mehra, D. D. E. Long, and E. L. Miller,
“Twizzler: a Data-Centric OS for Non-Volatile memory,” in Proceedings
of the USENIX Annual Technical Conference. USENIX Association,
Jul. 2020, pp. 65–80.

[12] P. Guide, “Intel® 64 and ia-32 architectures software developer’s man-
ual,” Volume 3B: System programming Guide, Part, vol. 2, no. 11, 2011.

[13] S. D. Bit, https://www.kernel.org/doc/html/v5.4/admin-guide/mm/
soft-dirty.html.

[14] Redis, https://redis.io/.
[15] CRIU, https://en.wikipedia.org/wiki/CRIU.
[16] R. S. Venkatesh, T. Smejkal, D. S. Milojicic, and A. Gavrilovska, “Fast

in-memory criu for docker containers,” Proceedings of the International
Symposium on Memory Systems, 2019.

[17] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing, 2010, pp. 143–154.

[18] D. Vogt, A. Miraglia, G. Portokalidis, H. Bos, A. Tanenbaum, and
C. Giuffrida, “Speculative memory checkpointing,” in Proceedings of
the Middleware Conference, ser. Middleware ’15, 2015, p. 197–209.

[19] S. Bitchebe, D. Mvondo, L. Réveillère, N. de Palma, and A. Tchana,
“Extending intel pml for hardware-assisted working set size estimation
of vms,” in Proceedings of Virtual Execution Environments, ser. VEE
2021, 2021, p. 111–124.

[20] D. Vogt, C. Giuffrida, H. Bos, and A. S. Tanenbaum, “Lightweight
memory checkpointing,” in IEEE/IFIP International Conference on
Dependable Systems and Networks, 2015, pp. 474–484.

[21] ksm, https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html.
[22] A. Garg, D. Mishra, and P. Kulkarni, “Catalyst: Gpu-assisted rapid

memory deduplication in virtualization environments,” in Proceedings
of the 13th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments. New York, NY, USA: Association for
Computing Machinery, 2017, p. 44–59.

[23] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift, “Badgertrap: A tool to
instrument x86-64 tlb misses,” SIGARCH Computer Architecture News,
vol. 42, no. 2, p. 20–23, 2014.

[24] D. Buragohain, A. Ghogare, T. Patel, M. Vutukuru, and P. Kulkarni,
“Dime: A performance emulator for disaggregated memory architec-
tures,” in Proceedings of the 8th Asia-Pacific Workshop on Systems, ser.
APSys ’17, 2017.

[25] G. Portokalidis and A. D. Keromytis, “Reassure: A self-contained
mechanism for healing software using rescue points,” in International
Workshop on Security. Springer, 2011, pp. 16–32.

[26] J. F. Ruscio, M. A. Heffner, and S. Varadarajan, “Dejavu: Transpar-
ent user-level checkpointing, migration, and recovery for distributed
systems,” in IEEE International Parallel and Distributed Processing
Symposium, 2007, pp. 1–10.

[27] D. Subhraveti and J. Nieh, “Record and transplay: partial checkpointing
for replay debugging across heterogeneous systems,” in Proceedings of
the ACM SIGMETRICS joint international conference on Measurement
and modeling of computer systems, 2011, pp. 109–120.

[28] R. Stoyanov and M. J. Kollingbaum, “Efficient live migration of linux
containers,” in International Conference on High Performance Comput-
ing. Springer, 2018, pp. 184–193.

[29] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The design and imple-
mentation of zap: A system for migrating computing environments,”
ACM SIGOPS Operating Systems Review, vol. 36, no. SI, pp. 361–376,
2002.

[30] O. Laadan and S. E. Hallyn, “Linux-cr: Transparent application
checkpoint-restart in linux,” in Linux Symposium, vol. 159. Citeseer,
2010.

[31] N. Cohen, D. T. Aksun, H. Avni, and J. R. Larus, “Fine-grain check-
pointing with in-cache-line logging,” in Proceedings of Architectural
Support for Programming Languages and Operating Systems, 2019, pp.
441–454.

[32] CRIU, https://criu.org/Main Page.
[33] Y. Chen, S. Zhang, Q. Guo, L. Li, R. Wu, and T. Chen, “Deterministic

replay: A survey,” ACM Computing Survey, vol. 48, no. 2, sep 2015.
[34] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen,

“Revirt: Enabling intrusion analysis through virtual-machine logging and
replay,” SIGOPS Operating System Review, vol. 36, no. SI, p. 211–224,
dec 2003.

[35] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen,
“Execution replay of multiprocessor virtual machines,” in Proceedings
of Virtual Execution Environments, ser. VEE ’08, 2008, p. 121–130.

[36] J. Ma, X. Zheng, Y. Dong, W. Li, Z. Qi, B. He, and H. Guan, “Gmig:
Efficient gpu live migration optimized by software dirty page for full
virtualization,” in Proceedings of Virtual Execution Environments, ser.
VEE ’18, 2018, p. 31–44.

 https://www.kernel.org/doc/html/v5.4/admin-guide/mm/soft-dirty.html
 https://www.kernel.org/doc/html/v5.4/admin-guide/mm/soft-dirty.html
https://redis.io/
https://en.wikipedia.org/wiki/CRIU
https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html
https://criu.org/Main_Page

	Introduction
	Background and Motivation
	Iterative Memory Checkpointing
	Page Dirty Tracking using Fault-on-write
	Motivation

	Design of LDT
	Challenges
	Design Approach
	Implementation Overview
	Testing and Correctness

	Evaluation
	Dirty tracking performance
	Dirty Page Information Collection

	Related Work
	Conclusion
	References

