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Multi-threaded Program Stack Tracing

• Stack captures the state of a program.
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SniP Design

• OS extension (Monitor) captures
thread’s stack range information.
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SniP Design

• OS extension (Monitor) captures
thread’s stack range information.

• Pin tool uses this stack range
info and records only stack
accesses in trace file.

• Driver program coordinates &
manages tracing.
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Benefits of SniP in Multi-threaded
Program Stack Tracing
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Trace File Size

• Reduces file size for long running
applications. —∼ 98% reduction
for TD.

• Marginal reduction (∼ 6% for MS)
in file size for short running,
heavy stack usage applications.
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Tracing Time

• SniP benefits long running
applications. —∼ 96% reduction
in time for TD.

• Marginal benefit (∼ 2% reduction
for MS) for short running, heavy
stack usage applications.
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Example Use Cases of SniP
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Tracing ML Classification Algorithms

• Studied stack read-write access
pattern of popular ML
algorithms.

• As an example, in Decision Tree
Classifier, reads dominated
writes.
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Detecting Uninitialized Memory in Stack

• Analysed program with uninitialized
memory bug.

• Identified instances where read from
stack happened before write.






{

    "0x7fffffffe2d8": [
        "0x7ffff7ac8a0c"
    ],
    "0x7fffffffe2f8": [
        "0x7ffff7ac8913"
    ],
    "0x7fffffffe308": [
        "0x7ffff7ac8927"
    ],
    "0x7fffffffe310": [
        "0x7ffff7ac8928"
    ],
    "0x7fffffffe318": [
        "0x7ffff7ac8929"
    ],

Parser output of uninitialized
memory bug
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Conclusion

• Program stack tracing is key in gaining insights, exposing security
loopholes in applications.

• We introduced SniP, an efficient stack tracing framework for run-time
tracing of multi-threaded application stack.

• SniP combines Intel’s Pin with an intelligent OS extension, reducing
trace file size and tracing time.

• SniP can be easily adapted for vast variety of use cases.
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For more details contact:
Arun KP

kparun@cse.iitk.ac.in
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