
SniP: An Efficient Stack Tracing Framework for
Multi-threaded Programs

MSR 2022

Arun KP1 Saurabh Kumar 1 Debadatta Mishra 1 Biswabandan Panda2

1Indian Institute of Technology, Kanpur

2Indian Institute of Technology, Bombay

1 / 16

Multi-threaded Program Stack Tracing

• Stack captures the state of a program.

2 / 16

Multi-threaded Program Stack Tracing

• Stack captures the state of a program.

• Trace and analysis approach for stack
– Requires dynamic run-time techniques to
trace stack.

– Needs to know stack range to filter stack
specific accesses for analysis.

3 / 16

Multi-threaded Program Stack Tracing

• Stack captures the state of a program.

• Trace and analysis approach for stack
– Requires dynamic run-time techniques to
trace stack.

– Needs to know stack range to filter stack
specific accesses for analysis.

• Challenge for multi-threaded program
– Identifying thread’s stack range.

4 / 16

Multi-threaded Program Stack Tracing

• Stack captures the state of a program.

• Trace and analysis approach for stack
– Requires dynamic run-time techniques to
trace stack.

– Needs to know stack range to filter stack
specific accesses for analysis.

• Challenge for multi-threaded program
– Identifying thread’s stack range.

stack

heap

T1 stack

T2 stack

bss

text
data

stack

heap
bss

text
data

stack

heap
bss

text
data

T1T2

5 / 16

SniP Design

• OS extension (Monitor) captures
thread’s stack range information.

Driver Monitordriver pid

Metadata
Region

stack range

6 / 16

SniP Design

• OS extension (Monitor) captures
thread’s stack range information.

• Pin tool uses this stack range
info and records only stack
accesses in trace file.

Driver

Pin

Monitordriver pid

Metadata
Region

stack range

stack range

create & manage

7 / 16

SniP Design

• OS extension (Monitor) captures
thread’s stack range information.

• Pin tool uses this stack range
info and records only stack
accesses in trace file.

• Driver program coordinates &
manages tracing.

Driver

Application Pin

create & manage

trace using application pid

Monitordriver pid

Metadata
Region

stack range

stack range

create & manage

8 / 16

Benefits of SniP in Multi-threaded
Program Stack Tracing

9 / 16

Trace File Size

• Reduces file size for long running
applications. —∼ 98% reduction
for TD.

• Marginal reduction (∼ 6% for MS)
in file size for short running,
heavy stack usage applications.

 1

 10

 100

 1000

 10000

 100000

MS HS DT BD CD TD G500

F
ile

 s
iz

e
 (

M
B

)

Workloads

SniP
Pin

[MS: Merge-Sort, HS: Python3 Http Server,
DT: Decision Tree Classifier, BD: BabyDBM,
CD: CacheDBM, TD: TinyDBM, G500: Graph500 BFS]
Y-axis is in log scale

10 / 16

Tracing Time

• SniP benefits long running
applications. —∼ 96% reduction
in time for TD.

• Marginal benefit (∼ 2% reduction
for MS) for short running, heavy
stack usage applications.

 0.1

 1

 10

 100

 1000

 10000

 100000

MS HS DT BD CD TD G500

T
im

e
 t

a
k
e

n
 (

s
e

c
)

Workloads

SniP
Pin

[MS: Merge-Sort, HS: Python3 Http Server,
DT: Decision Tree Classifier, BD: BabyDBM,
CD: CacheDBM, TD: TinyDBM, G500: Graph500 BFS]
Y-axis is in log scale

11 / 16

Example Use Cases of SniP

12 / 16

Tracing ML Classification Algorithms

• Studied stack read-write access
pattern of popular ML
algorithms.

• As an example, in Decision Tree
Classifier, reads dominated
writes.

 0

 20

 40

 60

 80

 100

0 10 20 30 40 50 60 70 80

%
 o

f
to

ta
l
b

y
te

s

Time (1min interval)

read bytes write byte

% of read - write accesses to stack in Decision Tree
Classifier

13 / 16

Detecting Uninitialized Memory in Stack

• Analysed program with uninitialized
memory bug.

• Identified instances where read from
stack happened before write.

{

 "0x7fffffffe2d8": [
 "0x7ffff7ac8a0c"
],
 "0x7fffffffe2f8": [
 "0x7ffff7ac8913"
],
 "0x7fffffffe308": [
 "0x7ffff7ac8927"
],
 "0x7fffffffe310": [
 "0x7ffff7ac8928"
],
 "0x7fffffffe318": [
 "0x7ffff7ac8929"
],

Parser output of uninitialized
memory bug

14 / 16

Conclusion

• Program stack tracing is key in gaining insights, exposing security
loopholes in applications.

• We introduced SniP, an efficient stack tracing framework for run-time
tracing of multi-threaded application stack.

• SniP combines Intel’s Pin with an intelligent OS extension, reducing
trace file size and tracing time.

• SniP can be easily adapted for vast variety of use cases.

15 / 16

For more details contact:
Arun KP

kparun@cse.iitk.ac.in

16 / 16

	Introduction
	usecases

