
Lens: Experiencing Multi-level
Page Tables at Close Quarters

Arun KP Rohit Singh Debadatta Mishra

Indian Institute of Technology, Kanpur

1 / 53

Importance of Operating Systems

2 / 53

Importance of Operating Systems

• OS is a building block in today’s digital world.

3 / 53

Importance of Operating Systems

4 / 53

Importance of Operating Systems

5 / 53

Importance of Operating Systems

6 / 53

Importance of Operating Systems

7 / 53

Importance of Operating Systems

8 / 53

Importance of Operating Systems

9 / 53

Importance of Operating Systems

• OS is a building block in today’s digital
world.

• OS helps us to perform our day-to-day
digital activities better.

10 / 53

Importance of Operating Systems

• OS is a building block in today’s digital
world.

• OS helps us to perform our day-to-day
digital activities better.

• OS encompasses multiple subsystems
such as File system, Virtual Memory, and
the interplay between them.

11 / 53

The Virtual Memory Sub-system

12 / 53

Understanding the VM Sub-system

• Virtual memory allows inter-process
isolation.

13 / 53

Understanding the VM Sub-system

• Virtual memory allows inter-process
isolation.

• Each process has an independent view
of memory.

14 / 53

Understanding the VM Sub-system

• Virtual memory allows inter-process
isolation.

• Each process has an independent view
of memory.

• Virtual memory makes a programmer’s
life easy.

15 / 53

Understanding the VM Sub-system

• Virtual memory allows inter-process
isolation.

• Each process has an independent view
of memory.

• Virtual memory makes a programmer’s
life easy.

• Virtual memory facilitates memory
access permission.

16 / 53

Understanding the VM Sub-system

Text Books

3 Use simple examples to explain concepts

Educational OS

Debugging Interfaces

17 / 53

Understanding the VM Sub-system

Text Books

3 Use simple examples to explain concepts

7 Do not capture real-world complexities

Educational OS

Debugging Interfaces

18 / 53

Page table in Intel x86-64 processor

• 4 level paging translates
48 bit virtual address to
physical address.

• Allows translation into 4
KB, 2MB, and 1 GB pages.

• Each entry provides
details about the next
level page.

9 bits 9 bits 9 bits 9 bits 12 bits

Physical
Frame
(4 KB)

pgd_offset pud_offset pmd_offset pte_offset

pgd_t pud_t pmd_t pte_t
CR3

48 bit virtual address

pmd_t (h)

Huge
page
(2MB)

Huge
page
(1GB)

pud_t (h)

9 bits 9 bits 9 bits 21 bits

9 bits 9 bits 30 bits

Ref: [Guide(2011)]

19 / 53

Page table entry in Intel x86-64 system

• PTE captures access permissions,
access mode and other details.

• Intel software manual details
page table structures and
different configurations.

• Challenging for a beginner to
correlate page table details with a
program’s virtual memory state.

01234567811..9M-1 1251... M58..5262..5963

P
R
/

W

U
/
S

P
W
T

P
C
D

AD
P
A
T

GAVLBits 12 - (M-1) of
address

Reserved
(0)AVLPKX

D

P: Present
R/W: Read/Write
U/S: User/Supervisor
PWT: Write-Through
PCD: Cache Disable
A: Accessed
D: Dirty

G: Global
AVL: Available
PAT: Page Attribute Table
M: Maximum Physical Address Bit
PK: Protection Key
XD: Execute Disable

Ref: [Guide(2011)]

20 / 53

Understanding the VM Sub-system

Text Books

Educational OS

3 Profiling the code with debug statements

Debugging Interfaces

21 / 53

Understanding the VM Sub-system

Text Books

Educational OS

3 Profiling the code with debug statements

7 Requires understanding the code base

Debugging Interfaces

22 / 53

Understanding the VM Sub-system

Text Books

Educational OS

Debugging Interfaces

3 Reading the interface for fetching predefined virtual memory details

23 / 53

Understanding the VM Sub-system

Text Books

Educational OS

Debugging Interfaces

3 Reading the interface for fetching predefined virtual memory details

7 Gives limited information for education

24 / 53

VM interfaces in Linux

• /proc/pid/maps shows currently mapped
memory regions.

• /proc/pid/maps is a pseudo file
maintained under proc file system for
each process.

• It is not straightforward to correlate a
program variable address with
information from /proc/pid/maps.

25 / 53

VM interfaces in Linux

• /proc/pid/pagemap shows virtual to
physical page mapping.

• It requires calculating the file offset
corresponding to a program variable in
the pagemap file to get its physical page.

• Only gives information in the last level of
a page table (PTE).

01354 5360..576263

SD: Soft Dirty

...................................

Page Frame Number

555661

0 SDEMTSR

24

E: Exclusively Mapped Page
MT: Mapping Type

 (file-mapped page or a
 shared anonymous page)

S: Page is in swap space
R: Page is in RAM

26 / 53

Tool for Learning Virtual Memory

27 / 53

Features of an educational tool for VM

• Augments concept learning with practical exposure.

28 / 53

Features of an educational tool for VM

• Augments concept learning with practical exposure.

• Provides details from a real system without missing actual
complexities.

29 / 53

Features of an educational tool for VM

• Augments concept learning with practical exposure.

• Provides details from a real system without missing actual
complexities.

• Presents an interface that is easy-to-use.

30 / 53

Features of an educational tool for VM

• Augments concept learning with practical exposure.

• Provides details from a real system without missing actual
complexities.

• Presents an interface that is easy-to-use.

• Expects only basic C programming knowledge from learners.

31 / 53

Features of an educational tool for VM

• Augments concept learning with practical exposure.

• Provides details from a real system without missing actual
complexities.

• Presents an interface that is easy-to-use.

• Expects only basic C programming knowledge from learners.

• Allows learners to correlate program execution with memory state.

32 / 53

Features of an educational tool for VM

• Augments concept learning with practical exposure.

• Provides details from a real system without missing actual
complexities.

• Presents an interface that is easy-to-use.

• Expects only basic C programming knowledge from learners.

• Allows learners to correlate program execution with memory state.

• Visualizes details for easy understanding by learners.

33 / 53

Features of an educational tool for VM

• Augments concept learning with practical exposure.

• Provides details from a real system without missing actual
complexities.

• Presents an interface that is easy-to-use.

• Expects only basic C programming knowledge from learners.

• Allows learners to correlate program execution with memory state.

• Visualizes details for easy understanding by learners.

• Shows changes in real-time by updating visualization in sync with
program changes.

34 / 53

Lens: An Education Tool for VM

35 / 53

What does Lens offer?

• Provides a practical exposure to virtual memory in Linux.

36 / 53

What does Lens offer?

• Provides a practical exposure
to virtual memory in Linux.

• Provides an interface to
– Write C programs.

37 / 53

What does Lens offer?

• Provides a practical exposure
to virtual memory in Linux.

• Provides an interface to
– Write C programs.
– Correlate program execution with
memory state.

38 / 53

What does Lens offer?

• Provides a practical exposure
to virtual memory in Linux.

• Provides an interface to
– Write C programs.
– Correlate program execution with
memory state.

– Visualize virtual to physical
address translation.

Start Video

39 / 53

What does Lens offer?

• Provides a practical exposure to virtual memory in Linux.
• Provides an interface to
– Write C programs.
– Correlate program execution with memory state.
– Visualize virtual to physical address translation.

• Covers underlying hardware-OS complexities.

40 / 53

What does Lens offer?

• Provides a practical exposure to virtual memory in Linux.
• Provides an interface to
– Write C programs.
– Correlate program execution with memory state.
– Visualize virtual to physical address translation.

• Covers underlying hardware-OS complexities.

• Shows address translation table with latest updates in program.

41 / 53

High level view of Lens

• Student interacts with
graphical interface.

• ATT handles underlying
hardware-OS complexities.

Lens user
interface

 Address
translation

tracer (ATT)

student

C progam

Input
parameters

Translation
details

Multi-level
translation table

User space

Kernel space

42 / 53

Example use cases with Lens

• Lazy page allocation in Linux.

• Linux allocates physical pages on first access.

43 / 53

Inspecting lazy page allocation

1 #define TWOMB 2097152
2 i n t main (i n t argc , char* argv []) {
3 char * ptr = (char*)mmap(NULL , TWOMB, PROT_READ|PROT_WRITE , MAP_PRIVATE|

MAP_ANONYMOUS,0 , 0) ;
4 ptr [0] = 'A ' ;
5 pr in t f (” ptr :%p\n” , ptr) ;
6 ptr [4096] = 'B ' ;
7 mprotect (&ptr [4096] ,4096 ,PROT_READ) ;
8 munmap(ptr , TWOMB) ;
9 return 0 ; }

Inspecting at line number 4

44 / 53

Inspecting lazy page allocation

1 #define TWOMB 2097152
2 i n t main (i n t argc , char* argv []) {
3 char * ptr = (char*)mmap(NULL , TWOMB, PROT_READ|PROT_WRITE , MAP_PRIVATE|

MAP_ANONYMOUS,0 , 0) ;
4 ptr [0] = 'A ' ;
5 pr in t f (” ptr :%p\n” , ptr) ;
6 ptr [4096] = 'B ' ;
7 mprotect (&ptr [4096] ,4096 ,PROT_READ) ;
8 munmap(ptr , TWOMB) ;
9 return 0 ; }

Inspecting at line number 4
pud_entry pud_flags pmd_entry pmd_flags pte_entry pte_flags

36d4b M_AUW ffa2 M_AUW 1c8e4 DAUW

36d4b M_AUW ffa2 M_AUW 0 ____

45 / 53

Example use cases with Lens

• Lazy page allocation in Linux.

• Linux allocates physical pages on first access.

• Changing memory access permission.

• Linux providesmprotect sys call to change access protection of pages.

46 / 53

Changing memory access permission

1 #define TWOMB 2097152
2 i n t main (i n t argc , char* argv []) {
3 char * ptr = (char*)mmap(NULL , TWOMB, PROT_READ|PROT_WRITE , MAP_PRIVATE|

MAP_ANONYMOUS,0 , 0) ;
4 ptr [0] = 'A ' ;
5 pr in t f (” ptr :%p\n” , ptr) ;
6 ptr [4096] = 'B ' ;
7 mprotect (&ptr [4096] ,4096 ,PROT_READ) ;
8 munmap(ptr , TWOMB) ;
9 return 0 ; }

Inspecting at line number 7

47 / 53

Changing memory access permission

1 #define TWOMB 2097152
2 i n t main (i n t argc , char* argv []) {
3 char * ptr = (char*)mmap(NULL , TWOMB, PROT_READ|PROT_WRITE , MAP_PRIVATE|

MAP_ANONYMOUS,0 , 0) ;
4 ptr [0] = 'A ' ;
5 pr in t f (” ptr :%p\n” , ptr) ;
6 ptr [4096] = 'B ' ;
7 mprotect (&ptr [4096] ,4096 ,PROT_READ) ;
8 munmap(ptr , TWOMB) ;
9 return 0 ; }

Inspecting at line number 7
pud_entry pud_flags pmd_entry pmd_flags pte_entry pte_flags

36d4b M_AUW ffa2 M_AUW 1c8e5 DAUR

48 / 53

Example use cases with Lens

• Lazy page allocation in Linux.

• Linux allocates physical pages on first access.

• Changing memory access permission.

• Linux providesmprotect sys call to change access protection of pages.

• Lens can also provide insights to other virtual memory concepts like
hugepages.

49 / 53

Future Directions

• Use Lens in an OS course for collecting feedback.

• Show address translation table as a radix tree and make the interface
interactive for students to zoom-in.

• Visualize more virtual memory changes such addition, deletion and
merging of VM areas, stack/heap growth and shrink with changes in
program.

• Visualize more OS activities related to virtual memory, like page
faults.

50 / 53

Conclusion

• Practical understanding of virtual to physical address translation is
essential in learning virtual memory.

• Students require hands-on experience with virtual memory concepts
to enhance their learning.

• Lens provides an easy interface for students to write C code and
correlate program state with changes in virtual memory.

• Lens helps students in gaining practical exposure to virtual memory
concepts.

• Lens is available at https://github.com/arunkp1986/Lens.git

51 / 53

https://github.com/arunkp1986/Lens.git

Thank You!

Questions?

Arun KP
kparun@cse.iitk.ac.in

52 / 53

References
Part Guide.
Intel® 64 and ia-32 architectures software developer’s manual.
Volume 3B: System programming Guide, Part, 2:5, 2011.

53 / 53

	Introduction

