Lens: Experiencing Multi-level Page Tables at Close Quarters

Arun KP Rohit Singh Debadatta Mishra Indian Institute of Technology, Kanpur

COMPUTER SCIENCE & ENGINEERING

COMPUTER SCIENCE & ENGINEERING

• OS is a building block in today's digital world.

COMPUTER SCIENCE & ENGINEERING

COMPUTER SCIENCE & ENGINEERIN

COMPUTER SCIENCE & ENGINEERIN

COMPUTER SCIENCE & ENGINEERING

COMPUTER SCIENCE & ENGINEERING

COMPUTER SCIENCE & ENGINEERING

- OS is a building block in today's digital world.
- OS helps us to perform our day-to-day digital activities better.

- OS is a building block in today's digital world.
- OS helps us to perform our day-to-day digital activities better.
- OS encompasses multiple subsystems such as File system, Virtual Memory, and the interplay between them.

The Virtual Memory Sub-system

COMPUTER SCIENCE & ENGINEERING

IIT KANF

• Virtual memory allows inter-process isolation.

COMPUTER SCIENCE & ENGINEERING

- Virtual memory allows inter-process isolation.
- Each process has an independent view of memory.

- Virtual memory allows inter-process isolation.
- Each process has an independent view of memory.
- Virtual memory makes a programmer's life easy.

- Virtual memory allows inter-process isolation.
- Each process has an independent view of memory.
- Virtual memory makes a programmer's life easy.
- Virtual memory facilitates memory access permission.

Text Books

✓ Use simple examples to explain concepts

Educational OS

Debugging Interfaces

COMPUTER SCIENCE & ENGINEERING

Text Books

- ✓ Use simple examples to explain concepts
- X Do not capture real-world complexities

Educational OS

Debugging Interfaces

Page table in Intel x86-64 processor

- 4 level paging translates
 48 bit virtual address to physical address.
- Allows translation into 4 KB, 2MB, and 1 GB pages.
- Each entry provides details about the next level page.

Ref: [Guide(2011)]

Page table entry in Intel x86-64 system

- PTE captures access permissions, access mode and other details.
- Intel software manual details page table structures and different configurations.
- Challenging for a beginner to correlate page table details with a program's virtual memory state.

63	6259	5852	51 M	M-1 12	119	8	7	6	5	4	3	2	1	0
X D	PK	AVL	Reserved (0)	Bits 12 - (M-1) of address	AVL	G	P A T	D	А	P C D	P W T	U / S	R / W	Ρ

P: Present	G: Global
R/W: Read/Write	AVL: Available
U/S: User/Supervisor	PAT: Page Attribute Table
PWT: Write-Through	M: Maximum Physical Address Bit
PCD: Cache Disable	PK: Protection Key
A: Accessed	XD: Execute Disable
D: Dirty	

Ref: [Guide(2011)]

- **Text Books**
- **Educational OS**
- ✓ Profiling the code with debug statements
- **Debugging Interfaces**

Text Books

Educational OS

- ✓ Profiling the code with debug statements
- ✗ Requires understanding the code base

Debugging Interfaces

- **Text Books**
- **Educational OS**
- **Debugging Interfaces**
- \checkmark Reading the interface for fetching predefined virtual memory details

- **Text Books**
- **Educational OS**
- **Debugging Interfaces**
- \checkmark Reading the interface for fetching predefined virtual memory details
- ✗ Gives limited information for education

VM interfaces in Linux

- */proc/pid/maps* shows currently mapped memory regions.
- */proc/pid/maps* is a pseudo file maintained under proc file system for each process.
- It is not straightforward to correlate a program variable address with information from */proc/pid/maps*.

55a4c3600000-55a4c3601000	г-хр	00000000	08:02	25958718	program_code
55a4c3800000-55a4c3801000	гр	00000000	08:02	25958718	program_code
55a4c3801000-55a4c3802000	rw-p	00001000	08:02	25958718	program_code
55a4c55fa000-55a4c561b000	rw-p	00000000	00:00		[heap]
7f4407200000-7f44073e7000	г-хр	00000000	08:02	36177205	libc-2.27.so
7f44073e7000-7f44075e7000	p	001e7666	08:02	36177205	libc-2.27.so
7f44075e7000-7f44075eb000	rp	001e7000	08:02	36177205	libc-2.27.so
7f44075eb000-7f44075ed000	rw-p	001eb000	08:02	36177205	libc-2.27.so
7f44075ed000-7f44075f1000	rw-p	00000000	00:00		
7f4407600000-7f4407629000	г-хр	00000000	08:02	36177201	ld-2.27.so
7f4407829000-7f440782a000	rp	00029666	08:02	36177201	ld-2.27.so
71440782a000-71440782b000	rw-p	0002a000	08:02	36177201	ld-2.27.so
7f440782b000-7f440782c000	rw-p	00000000	00:00		
7f4407929000-7f440792b000	rw-p	00000000	00:00		
7ffd9028a000-7ffd902ab000	rw-p	00000000	00:00		[stack]
7ffd9834b888-7ffd9834f888	rp	00000000	00:00		[vvar]
7ffd9834f666-7ffd98351666	r-xp	00000000	00:00		[vdso]
FFFFFFFFF600000-FFFFFFFF	FF601	000xp	0000000	30 60:00 6	[vsyscall]

VM interfaces in Linux

- */proc/pid/pagemap* shows virtual to physical page mapping.
- It requires calculating the file offset corresponding to a program variable in the pagemap file to get its physical page.
- Only gives information in the last level of a page table (PTE).

3	62	61	6057	56	55	54 53		4	3	2	10
٦	s	мт	0	Е	SD	Page Frame	Page Frame Number				
						SD: Soft Dirty E: Exclusively Mapped Page MT: Mapping Type (file-mapped page or a shared anonymous page) S: Page is in swap space R: Page is in RAM					

Tool for Learning Virtual Memory

COMPUTER SCIENCE & ENGINEERING

• Augments concept learning with practical exposure.

COMPUTER SCIENCE & ENGINEERING

- Augments concept learning with practical exposure.
- Provides details from a real system without missing actual complexities.

- Augments concept learning with practical exposure.
- Provides details from a real system without missing actual complexities.
- Presents an interface that is easy-to-use.

- Augments concept learning with practical exposure.
- Provides details from a real system without missing actual complexities.
- Presents an interface that is easy-to-use.
- Expects only basic C programming knowledge from learners.

- Augments concept learning with practical exposure.
- Provides details from a real system without missing actual complexities.
- Presents an interface that is easy-to-use.
- Expects only basic C programming knowledge from learners.
- Allows learners to correlate program execution with memory state.

- Augments concept learning with practical exposure.
- Provides details from a real system without missing actual complexities.
- Presents an interface that is easy-to-use.
- Expects only basic C programming knowledge from learners.
- Allows learners to correlate program execution with memory state.
- Visualizes details for easy understanding by learners.

- Augments concept learning with practical exposure.
- Provides details from a real system without missing actual complexities.
- Presents an interface that is easy-to-use.
- Expects only basic C programming knowledge from learners.
- Allows learners to correlate program execution with memory state.
- Visualizes details for easy understanding by learners.
- Shows changes in real-time by updating visualization in sync with program changes.

Lens: An Education Tool for VM

COMPUTER SCIENCE & ENGINEERING

• Provides a practical exposure to virtual memory in Linux.

COMPUTER SCIENCE & ENGINEERING

- Provides a practical exposure to virtual memory in Linux.
- Provides an interface to
 - Write C programs.

	Lens	• • • •
V N	Lens is an educational tool for virtual memory study in Linux Intel x86-64 systems.	
<pre>#include <stdii.b. #include <stdii.b. int main(){ int size = 16; char *ptr = mallc printf('virtual a printf('virtual a free(ptr); return 0; }</stdii.b. </stdii.b. </pre>	> c(size * sizeof(char)); ddr of size variable: tp/m*, 6size); ddr of malic(* denery: tp/m*, ptr); ddr of main() function: tp/m*, main);	
line number	enter line number containing variable,eg 1,2 etc.	
variable address	enter address of the variables, eg: &a, ptr etc.	
Number of entries	enter number of pages table entries to show, eg: 1, 4 etc.	
Clear	Run Mapping Exit	

- Provides a practical exposure to virtual memory in Linux.
- Provides an interface to
 - Write C programs.
 - Correlate program execution with memory state.

- Provides a practical exposure to virtual memory in Linux.
- Provides an interface to
 - Write C programs.
 - Correlate program execution with memory state.
 - Visualize virtual to physical address translation.

					Lens					e e e
	Virtual to Physical Mapping									
Dirty(D), Accessed(A),	User(U)/Sup	pervisor(S)	, Read(R)/	Write(W),	Maps 4KB	Page(M),2	2MB Page	H)[PMD], 3	LGB Page(G)[PUD]
	virtual_addr	pgd_entry	pgd_flags	pud_entry	pud_flags	pmd_entr	pmd_flag	pte_entry	pte_flags	
1	7fffe1d3a000	3f6e8	AUW	27d1c	M_AUW	3f602	M_AUW	46cbd	DAUW	
rows	x 9 columns									💽 💽 🔍 🤍

- Provides a practical exposure to virtual memory in Linux.
- Provides an interface to
 - Write C programs.
 - Correlate program execution with memory state.
 - Visualize virtual to physical address translation.
- Covers underlying hardware-OS complexities.

- Provides a practical exposure to virtual memory in Linux.
- Provides an interface to
 - Write C programs.
 - Correlate program execution with memory state.
 - Visualize virtual to physical address translation.
- Covers underlying hardware-OS complexities.
- Shows address translation table with latest updates in program.

High level view of Lens

- Student interacts with graphical interface.
- ATT handles underlying hardware-OS complexities.

Example use cases with Lens

- Lazy page allocation in Linux.
- Linux allocates physical pages on first access.

Inspecting lazy page allocation

```
#define TWOMB 2097152
int main(int argc, char* argv[]){
    char * ptr = (char*)mmap(NULL, TWOMB, PROT_READ|PROT_WRITE, MAP_PRIVATE|
        MAP_ANONYMOUS,0,0);
    ptr[0] = 'A';
    printf("ptr:%p\n",ptr);
    ptr[4096] = 'B';
    mprotect(&ptr[4096],4096,PROT_READ);
    munmap(ptr, TWOMB);
    return 0;}
```

Inspecting at line number 4

Inspecting lazy page allocation

```
#define TWOMB 2097152
int main(int argc, char* argv[]){
    char * ptr = (char*)mmap(NULL, TWOMB, PROT_READ|PROT_WRITE, MAP_PRIVATE|
        MAP_ANONYMOUS,0,0);
    ptr[0] = 'A';
    printf("ptr:%p\n",ptr);
    ptr[4096] = 'B';
    mprotect(&ptr[4096],4096,PROT_READ);
    munmap(ptr, TWOMB);
    return 0;}
```

Inspecting at line number 4

pud_entry	pud_flags	pmd_entry	pmd_flags	pte_entry	pte_flags
36d4b	M_AUW	ffa2	M_AUW	1c8e4	DAUW
36d4b	M_AUW	ffa2	M_AUW	0	

Example use cases with Lens

- Lazy page allocation in Linux.
- Linux allocates physical pages on first access.
- Changing memory access permission.
- Linux provides *mprotect* sys call to change access protection of pages.

Changing memory access permission

```
#define TWOMB 2097152
int main(int argc, char* argv[]){
    char * ptr = (char*)mmap(NULL, TWOMB, PROT_READ|PROT_WRITE, MAP_PRIVATE|
    MAP_ANONYMOUS,0,0);
    ptr[0] = 'A';
    printf("ptr:%phn",ptr);
    ptr[4096] = 'B';
    mprotect(&ptr[4096],4096,PROT_READ);
    munmap(ptr, TWOMB);
    return 0;}
```

Inspecting at line number 7

Changing memory access permission

```
#define TWOMB 2097152
int main(int argc, char* argv[]){
    char * ptr = (char*)mmap(NULL, TWOMB, PROT_READ|PROT_WRITE, MAP_PRIVATE|
    MAP_ANONYMOUS,0,0);
    ptr[0] = 'A';
    printf("ptr:%p\n",ptr);
    ptr[4096] = 'B';
    mprotect(& ptr[4096],4096,PROT_READ);
    munmap(ptr, TWOMB);
    return 0;}
```

Inspecting at line number 7

pud_entry	pud_flags	pmd_entry	pmd_flags	pte_entry	pte_flags	
36d4b	M_AUW	ffa2	M_AUW	1c8e5	DAUR	

Example use cases with Lens

- Lazy page allocation in Linux.
- Linux allocates physical pages on first access.
- Changing memory access permission.
- Linux provides *mprotect* sys call to change access protection of pages.
- Lens can also provide insights to other virtual memory concepts like hugepages.

Future Directions

- Use Lens in an OS course for collecting feedback.
- Show address translation table as a radix tree and make the interface interactive for students to zoom-in.
- Visualize more virtual memory changes such addition, deletion and merging of VM areas, stack/heap growth and shrink with changes in program.
- Visualize more OS activities related to virtual memory, like page faults.

Conclusion

- Practical understanding of virtual to physical address translation is essential in learning virtual memory.
- Students require hands-on experience with virtual memory concepts to enhance their learning.
- Lens provides an easy interface for students to write C code and correlate program state with changes in virtual memory.
- Lens helps students in gaining practical exposure to virtual memory concepts.
- Lens is available at https://github.com/arunkp1986/Lens.git

Thank You!

Questions?

Arun KP kparun@cse.iitk.ac.in

COMPUTER SCIENCE & ENGINEERING

References

Part Guide.

Intel® 64 and ia-32 architectures software developer's manual.

Volume 3B: System programming Guide, Part, 2:5, 2011.