
Kindle: A Comprehensive Framework for Exploring
OS-Architecture Interplay in Hybrid Memory

Systems
Arun KP

Computer Science and Engineering
Indian Institute of Technology Kanpur

kparun@cse.iitk.ac.in

Debadatta Mishra
Computer Science and Engineering

Indian Institute of Technology Kanpur
deba@cse.iitk.ac.in

Abstract—Computers with hybrid memory can offer the
benefits of both DRAM and NVM technologies, where NVM
provides higher capacity and data persistence, while DRAM
offers better performance. One of the primary objectives in
hybrid memory systems is to design mechanisms and policies
to take advantage of the underlying memory technologies to
improve overall system performance and explore new usage
scenarios.

This paper introduces an open-source framework, Kindle,
based on gem5 and gemOS, to explore and prototype research
ideas in hybrid memory systems crossing the hardware-
software boundaries, and perform comprehensive empirical
evaluation. Kindle provides mechanisms to realize process
persistence in hybrid memory systems while facilitating
analysis of different design challenges and alternatives. As
an illustration, we compare two design choices to maintain
the virtual to physical address translation information (in
the page table) for achieving process persistence in Kindle.
Moreover, we demonstrate the utility of Kindle by prototyping
state-of-the-art research ideas for hybrid memory systems
to show that new insights can be derived using the facilities
provided in the proposed framework.

Index Terms—Non-volatile memory, NVM, hybrid memory,
process persistence

I. Introduction
Non-volatile memory (NVM) provides high memory capac-

ity with reduced energy cost compared to volatile memory
(DRAM). However, higher read/write latency of NVM [21]
raises performance concerns when used as a drop-in re-
placement for DRAM. Therefore, a more attractive memory
organization is a hybrid memory system with DRAM and
NVM [23], designed to complement each other to reduce
energy cost, achieve persistence, and provide improved perfor-
mance. A hybrid memory system allows placing data in NVM
and/or DRAM, enabling OS memory managers to coordinate
allocations for high memory capacity with low access latency.
For example, a typical OS policy can place frequently accessed
hot memory pages in DRAM and migrate cold pages to NVM
to increase the overall system performance. Several existing
works on hybrid memory systems propose efficient access for
large workloads by intelligently placing data across the NVM
and DRAM [24], [42]–[44], reducing energy consumption by
migrating data across the DRAM and NVM tiers [22], [32],
[34], [48]. Another usage of NVM is as an alternative to

 0

 20

 40

 60

 80

 100

 120

 140

2018 2019 2020 2021 2022 2023

C
o
u
n
t

Year

Fig. 1: Number of publications on hybrid memory systems
with NVM, listed in Google Scholar.

external storage hardware (HDD or SSD) for data persistence.
In this usage scenario, application developers or file system
designers need to incorporate consistency and durability
semantics into their design. Existing research works attempt
to address the consistency issues by designing solutions such
as persistent object stores [15], lock-based failure atomicity
for multi-threaded programs [7], [14], [47], and hardware
and/or software memory consistency mechanisms [2], [8],
[11], [18], [20], [31].

Hybrid memory provides extensive opportunities in system
design, Figure 1 shows the number of publications on hybrid
memory systems with NVM for the last six years based
on data extracted from Google Scholar [1]. The number of
publications shows an average of 120 research papers annually,
demonstrating the wide range of research opportunities in
hybrid memory systems. The nature of problems and proposed
solutions for hybrid memory systems require an infrastructure
allowing extension, validation, and evaluation of the complete
system stack.
Architecture simulators capable of full-system simulation,

such as gem5 [25], provide platforms for prototyping ideas
crossing the hardware-software boundaries. However, using
gem5-Linux full-system simulation setup to explore new ideas
in hybrid memory systems has the following shortcomings.
First, while gem5 models the NVM controller and the Linux
kernel can detect NVM on real hardware (such as Intel
DCPMM) [17], [45], their integration is non-trivial (in gem5),
especially considering constantly evolving hardware and OS
design. Second, Linux kernel is heavy with features whereby
the OS functions and services can consume a significant part of
a simulation which may not be desirable for quick prototyping

of design ideas. Third, designing proof of concepts (PoCs) in
Linux requires significant understanding and changes in the
Linux memory management subsystem, which has non-trivial
complexity.
In this paper, we propose Kindle, a comprehensive in-

frastructure for quick prototyping and evaluation of novel
mechanisms and policies crossing architecture and operating
system boundaries in hybrid memory systems. In the core
of Kindle, support for full process persistence is provided,
whereby a process can be restarted after a crash in a consistent
manner. There are several design alternatives, challenges,
and performance insights in achieving process persistence in
hybrid/persistent memory systems. As one specific illustration,
we compare two design choices for maintaining the page table
in a consistent manner across system restarts—(i) hosting
the page tables directly on NVM, (ii) hosting the page
tables in DRAM while performing periodic checkpoints into
NVM. Next, we present a complete evaluation framework for
hybrid memory systems by combining the process persistence
support with other tracing and simulation techniques where
end-to-end modelling of real-world application benchmarks
can be performed in a generic manner (Section II). Finally,
we showcase the utility of Kindle in gaining new insights
by using prototype implementations of two well-established
research ideas proposing optimizations for hybrid memory
systems in OS and/or hardware layers (Section III).
We design and implement Kindle support for full process

persistence by modifying a lightweight OS (i.e., gemOS). We
modify the gemOS system call APIs to allow user applications
to allocate memory in DRAM and/or NVM using memory
allocation API, enabling exploration of memory usage and
access behavior of standard applications on hybrid memory
systems. At a high level, Kindle consists of two components—
(i) a preparation component for transforming and extracting
required information from the application (and its interaction
with the OS) to prepare the stage for the simulation run, and,
(ii) a simulation component for running the applications in
full persistence mode with the configurations provided by the
user.
Kindle aids in quickly realizing complex design goals

and providing new insights into existing schemes, as we
show through the prototype implementations of two state-of-
the-art hardware-software hybrid memory schemes—Shadow
Sub-Paging (SSP) [31] and Hardware/Software Cooperative
Caching (HSCC) [23]. SSP handles memory consistency
requirement of NVM by using shadow sub-paging. HSCC
provides memory capacity by arranging DRAM and NVM in
a flat address space and managing DRAM as a cache to NVM
using a hardware/software cooperative caching mechanism.
These prototype implementations show the capability of
Kindle to quickly validate ideas in hybrid memory systems
and gather new insights. Through the SSP prototype, Kindle
provides new insights into the impact of consistency interval
on the performance overhead of SSP, showing that a wider
consistency interval reduces the overhead. HSCC prototype
with Kindle provides insights into the migration overhead due

memory controller

DRAM NVMgem5

memory manager

system call API

user program

DRAM NVM

gemOS

mmap()

Fig. 2: Interaction between gem5 and gemOS in Kindle

TABLE I: gem5 Memory Configuration
Parameter Used Setting

DRAM interface DDR4-2400 16x4
NVM interface PCM ‡

NVM Write buffer size 48
NVM Read buffer size 64
Memory capacity 3GB DRAM + 2GB NVM

‡PCM timing parameters based on [39]

to the OS activities, which was not shown in the original work
as the evaluation framework did not have an OS component.
The main contributions of this paper are:
• An efficient and lightweight simulation framework with

full-system simulation capability for hybrid memory
systems.

• Propose an end-to-end design to achieve process persis-
tence in a hybrid memory system and compare design
approaches for page-table maintenance.

• Prototype implementation of two state-of-the-art propos-
als followed by an experimental evaluation to establish
new insights and conclusions.

II. Design and Implementation
Kindle provides a hybrid memory system, allowing appli-

cations to allocate memory from NVM and DRAM. Figure 2
shows the interactions between gem5 and gemOS in Kindle
to provision memory based on the application requirements.
Kindle partitions the physical memory address range between
NVM and DRAM, and inserts corresponding entries in the
gem5 BIOS implementation of e280 (BIOS memory map). We
configure the NVM memory controller interface in gem5 with
specifications mentioned in Table I. Kindle provides a hybrid
memory system in flat address mode, allowing the OS to
expose DRAM and NVM to applications.

The modified gemOS for Kindle exposes DRAM and NVM
to user-space applications through an extended mmap system
call API. An application differentiates memory requests for
NVM from DRAM by passing an additional flag MAP_NVM in
mmap() system call as shown in the sample code Listing 1.

i n t main () {
char ∗ p t r 1 = (char ∗)mmap(NULL , 4 0 9 6 , PROT_WRITE ,MAP_NVM) ;

/ / a l l o c a t i o n in NVM
char ∗ p t r 2 = (char ∗)mmap(NULL , 4 0 9 6 , PROT_WRITE , 0) ; / /

a l l o c a t i o n in DRAM
p t r 1 [0] = 'A ' ; / / s t o r e to NVM
p t r 2 [0] = 'B ' ; / / s t o r e to DRAM
/ /munmap a l l o c a t i o n s
r e t u r n 0 ;

}

Listing 1: Sample mmap() code to allocate in NVM

Additionally, the virtual memory area (VMA) layout in vanilla
gemOS is modified to tag each VMA to be classified as either
DRAM or NVM depending on the value of MAP_NVM flag
passed in the mmap() invocations from the user space. The
physical memory allocation to the page frames of NVM or
DRAM is performed based on this memory type tag.

A. Process Persistence

Process persistence requires saving the state of a process
that consists of CPU registers and memory state encompassing
the code, heap and stack areas. Process persistence also
requires saving the OS meta-data (e.g., address space layout,
process relations etc.) to resume execution from a consistent
state after a system crash.
We implemented a consistency scheme based on periodic

checkpointing of process contexts in the modified gemOS.
We maintain per-process saved state in NVM, containing two
copies of the execution context—one as a consistent copy
and another as a working copy. We use redo log (stored in
NVM) to capture all modifications to the OS-level process
meta-data. As part of the saved state, we also maintain a list
of virtual page to NVM physical page frame mappings. At
the end of each checkpoint interval, we first log the CPU
state and update the consistent copy using all logged entries
in that interval. We consider only the consistency of the CPU
state and OS-level meta-data, and assume that all heap/stack
data pages are consistently maintained in NVM using some
existing memory consistency techniques [3], [6], [8], [18],
[20], [46]. The list containing the virtual to NVM physical
page mapping is maintained to preserve the association from
any virtual to physical page, as it is useful for scenarios
where we need to rebuild the virtual memory mapping of
a process in page table after reboot. We also modify the
physical page allocation mechanism in gemOS to persist the
page allocation meta-data to ensure correctness after crash
and reboot scenarios.
At the end of a checkpoint interval, the saved state of a

context is updated to reflect changes in the interval, which
includes modifying the virtual to NVM physical page mapping
list by traversing the page table of the process, getting the
working copy of context and applying changes in the redo
log. After applying all changes in the redo log, mark the
updated context as the latest consistent copy of the context
in the saved state. The resume procedure reconstructs the
execution context using the latest consistent copy of context
in the saved state after a crash and reboot. The recovery
procedure scans through the list of saved states and creates a

Driver Application

Pin

VM Layout

Trace

Code/Image
Generator

Template
code gemOS

Disk Image gem5

1

2preparation part simulation part

Fig. 3: Schematic diagram of Kindle

new execution context for each saved state. For each process,
we copy the latest consistent copy of the context and recreate
the virtual memory layout as part of the recovery procedure.
Finally, the recovery process sets up the page table mapping
for the virtual address space and marks the process state as
ready for execution.

B. Kindle Framework

Figure 3 shows the complete Kindle framework and interac-
tion between its different components. Kindle consists of two
major components—a simulation sub-system and a preparation
sub-system. The simulation part holds cycle-accurate archi-
tecture simulator gem5 [5], [25] and the extended lightweight
operating system gemOS [27], specialized for running on
gem5.
The preparation component creates the disk image for

gem5 and the benchmark template code for gemOS. The
vanilla gemOS can not run standard workloads as it is
primarily designed for OS education and has limited user-
space libraries. The preparation component overcomes this
limitation by setting up an environment for tracing and
replaying the memory operations on gemOS for running
standard applications. The preparation sub-system consists
of a driver program (1) to trace the instructions executed
by the application of interest using Intel’s dynamic binary
instrumentation tool Pin [26]. The driver program (using fork
and exec) coordinates an application’s execution and memory
access tracing with Pin while saving the virtual memory
layout by reading the /proc/pid/maps pseudo file exposed
by the Linux kernel. In case of multi-threaded applications,
Kindle can use SniP [19] along with the maps file to capture
address layout of application. SniP is a framework capable of
capturing the stack area of threads. The trace generated by
Pin contains the type of memory access (read/write), address
and size of memory access, and time of access.

The code/image generator component (2) makes the disk
image required by gem5 in the simulation part of Kindle. It
processes the trace file to generate a tuple containing (period,
offset, operation, size, area) for each memory access. The period
shows the time of memory access, offset shows the address of
memory access within a heap/stack area, operation indicates
the type of memory access, whether it is a read/write and
size denotes size of memory read/write and area denotes
name of the memory area, i.e., which heap and stack area is

TABLE II: Benchmark Details
Benchmark Total Ops read % write %
Gapbs_pr [4] 10,000,000 77 23
G500_sssp [29] 10,000,000 68 32
Ycsb_mem [10] 10,000,000 71 29

read/written. The image generator labels each memory area in
the virtual memory layout information captured using maps
pseudo file and then associates memory accesses in trace to
an area name by checking whether access lies within the
address range of that area. The prepared disk image contains
(period, offset, operation, size, area) information of all memory
accesses in the trace. The code generator prepares a template
gemOS code containing heap and stack allocations matching
the number and size of allocations in the application. The
generated code also contains routines to access (period, offset,
operation, size, area) tuple from the disk image for mimicking
the memory access in the application. Users of the Kindle
framework can update this template code to include additional
functionality before launching the init process (the first user
process in gemOS) with required arguments [27].

III. Empirical Evaluation
In this section, we show a consistency scheme based

on checkpointing for execution context to achieve process
persistence. We study trade-offs in checkpoint performance
while using two different approaches to keep the page table
consistent. We also demonstrate the capability of Kindle in
performing an initial evaluation of existing or new ideas on a
hybrid memory system. To demonstrate the utility of Kindle
in hybrid memory research, we implemented two research
ideas—(i) shadow sub-paging (SSP) [31] to ensure consistent
memory state of an application in NVM by employing
shadow paging [9], [31] at sub-page cache line granularity,
(ii) a hardware-software co-operative caching mechanism,
HSCC [23], for managing DRAM as cache to NVM. In these
two studies, we used standard applications in Table II and
configured gem5 with Intel 64-bit in-order CPU at 3GHz with
32KB L1, 512KB L2 and 2MB/core LLC.

A. Process Persistence

As the end-to-end performance of checkpointing the execu-
tion context depends upon virtual address space management,
we studied the performance trade-offs of maintaining the
page table using two approaches—(i) rebuild the page table
on reboot from virtual to NVM page mapping maintained in
the saved state (rebuild scheme). (ii) maintain the complete
page table in NVM and wrap page table modifications inside
NVM consistency mechanism [2], this only requires setting the
PTBR (Page Table Base Register) to point to the first level of
page table after a reboot (persistent scheme). While the rebuild
scheme allows hosting page table in DRAM it may suffer
from checkpoint overheads due to additional maintenance of
virtual to physical mapping information. On the other hand,
while the persistent scheme simplifies the checkpoint process,

10
0

10
1

10
2

10
3

10
4

10
5

64MB 128MB 256MB 512MB

E
x
e
c
u
t
i
o
n

T
i
m
e
(
m
s
e
c
)

Memory Allocation Size

Persistent

Rebuild

(a) sequential access (log scale)

 0

 100

 200

 300

 400

 500

 600

 700

 800

1GB 2MB 4KB

E
x
e
c
u
t
i
o
n

T
i
m
e
(
m
s
e
c
)

Memory Access Stride

Persistent

Rebuild

(b) stride access

Fig. 4: Influence of memory access size and stride length on
execution time with periodic checkpointing for context while
using different page table consistency schemes.

it adds additional overheads to host and maintain the page
table in NVM in a consistent manner.
We looked into the impact of address space size and

page table size on the end-to-end performance of periodic
checkpointing of execution context while using rebuild and
persistent schemes for page table consistency. Figure 4 shows
the end-to-end execution time (in msec) for consistently
maintaining context using periodic checkpointing under
rebuild and persistent page table maintenance schemes. The
periodic checkpoint interval is fixed to 10 msec (based on
Aurora [40]).

In the sequential memory allocation and access experiment
(Figure 4a), using a micro-benchmark we allocate virtual
memory of different sizes using mmap system call with
MAP_NVM flag and sequentially access all pages in the allocated
space. In the stride access experiment (Figure 4b), micro-
benchmark performs a fixed number of 4KB page allocations
with a predefined gap (1GB, 2MB or 4KB) in the virtual
address space to ensure different page table levels are mapped
to result in larger page table size. For example, with 1GB
gap, the micro-benchmark allocates ten 4KB pages at a gap of
1GB to make entries at page-directory-pointer-table (Level-3),
page-directory-table (Level-2), and page-table (Level-1) in Intel
x86-64 system page table [13].

In the sequential access experiment (Figure 4a), rebuild
scheme resulted in higher execution time for all allocation
sizes with overhead ranging from ∼2.4× (64MB) to ∼74.2×
(512MB) compared to persistent scheme. The overhead in

TABLE III: Execution time with periodic checkpointing of
execution context for different VMA modification size

Alloc/Free Size Persistent (msec) Rebuild (msec)
64MB 325 19377
128MB 389 23438
256MB 517 29376

rebuild scheme comes from the need to maintain a list
containing virtual to NVM physical page mapping for re-
constructing the page table after reboot, and the overhead to
maintain this list increases with increase in mapped virtual
memory area size, ∼44× increase in execution time from
64MB allocation size to 512MB. On the other hand, for stride
access experiment (Figure 4b), persistent scheme resulted
in slightly more execution time compared to rebuild for
1GB and 2MB access stride scenarios, as more page table
levels are updated for 1GB and 2MB. For the 4KB case,
page table modifications are minimal, and persistent scheme
performed better than the rebuild scheme. The overhead in
rebuild scheme can be attributed to maintaining virtual to
NVM physical page mapping, similar to memory allocation
size experiment. In short, persistent scheme results in more
overhead if the virtual address space is sparsely populated.
However, the presistent scheme performs better than rebuild
for scenarios with minimum page table modifications as
shown in the memory allocation size experiment where page
table is updated only on the first access.

Next, we looked into a scenario with more page table updates
using a sequence of mmap and munmap operations. The
micro-benchmark allocates a virtual address space of 512MB
and writes to all pages in 512MB to create valid page table
entries. The benchmark then frees a fixed size memory (i.e.,
256MB, 128MB, and 64MB) from the start of 512MB space by
calling munmap and reallocated the same fixed size memory
by calling mmap. Similarly, munmap and mmap of the same
fixed size are performed on 512MB space for one more time.
The newly allocated fixed size regions are then accessed for
reading, and finally, the entire area is unallocated by called
munmap. Table III shows end-to-end execution time with
execution context checkpointing and maintaining page table
using persistent or rebuild method. The table shows execution
time while performing munmap and mmap sequences of
different allocation/free fixed sizes. The persistent scheme
overhead increases with an increase in allocation/free size as
more page table changes are required with increased munmap
and mmap size, showing ∼1.6× increase in execution time
from 64MB to 256MB. The execution overhead increases for
rebuild scheme as well since the virtual to NVM physical
page mapping maintained for page table rebuilding requires
constant change due to changes in virtual memory area,
showing ∼1.5× increase in execution time from 64MB to
256MB.
Finally, we looked into the scenario which shows the

benefit of keeping the page table in DRAM. Page table is
accessed in two cases, to update mapping entries as a result of

TABLE IV: Influence of checkpoint interval on execution time
for periodic checkpointing of execution context

Alloc/Free Size Interval Persistent
(msec)

Rebuild
(msec)

64MB
10 msec 445 55270
100 msec 445 10580
1 sec 444 430

128MB
10 msec 534 68078
100 msec 532 13103
1 sec 532 515

256MB
10 msec 710 88193
100 msec 708 15775
1 sec 708 685

virtual memory area changes due to mmap, munmap, mremap,
mprotect calls or to translate virtual address by page table
walker hardware after missing in TLBs and other intermediate
caches. Keeping the page table in DRAM benefits with an
increase in page table accesses as DRAM provides better read
and write latency than NVM. We used a micro-benchmark
similar to the previous case to study the benefit of keeping
page table in DRAM. Micro-benchmark allocates a virtual
address space of 512MB and accesses pages to make page table
entries and then frees a fixed size memory (i.e., 256MB, 128MB,
and 64MB) from the start of 512MB space by calling munmap
and reallocated the same fixed size memory by calling mmap.
After allocation, all pages in the virtual memory area are
accessed multiple times to cause TLB misses. The benchmark
does one more round of deallocation and allocation of the
same fixed size and multiple rounds of accesses to allocated
space. Finally, the entire area is unallocated by called munmap.

Table IV shows the end-to-end execution time to checkpoint
process context with different checkpoint intervals while using
persistent and rebuild schemes for page table maintenance. The
execution time for persistent scheme remains similar across
different checkpoint intervals for a virtual memory area size of
alloc/free operations. This is because the overhead of persistent
scheme comes from the NVM consistency mechanism and
the number of page table modifications remains the same
for a virtual memory area modification size irrespective of
checkpoint intervals. Whereas, the execution time for rebuild
scheme increases with the frequency of checkpoints. This
is because of the overhead to check and update virtual to
physical address mapping during each checkpoint. Table IV
shows that increasing the checkpoint interval from 10 to 100
milliseconds reduces execution time by ∼5× on average for
the rebuild scheme across all virtual memory area size of
alloc/free operations. When we further increase the interval
to one second, beyond the execution time of benchmark, the
benefit of keeping the page table in DRAM appears for the
rebuild scheme as the execution time is lower than persistent
scheme, highlighting the reason for performance overhead in
rebuild scheme as maintenance of virtual to physical address
mapping. In summary, keeping the page table in NVM with
persistent scheme is beneficial for applications with minimal

virtual address modifications. Access to page table entries
for address translation gets the benefit of multiple levels of
TLBs and intermediate caches, thus hiding NVM read latency
while accessing page table entries for address translation in
persistent scheme.
In the next two sections, we show the prototype imple-

mentation of two research ideas to demonstrate the benefit
of using Kindle in exploring ideas and providing the initial
results below.

B. SSP using Kindle

Shadow Sub-Paging (SSP) [31] provides memory consis-
tency in NVM. It ensures consistency of memory modifications
by maintaining a copy of unmodified data at cache line
granularity. SSP allocates two physical pages for each virtual
page and uses a remapping scheme at the cache controller
hardware to route modifications at cache line granularity
to alternate physical pages. SSP also extends the TLB by
adding extra fields per entry to capture the supplementary
physical page mapping and bitmaps (updated, current) to track
the page containing the latest modification. SSP proposes a
background OS thread to consolidate two physical pages but
leaves out the detailed implementation and evaluation of the
the consolidation aspects in the paper.
In Kindle, we allocate the additional physical page in the

page allocation routine call in gemOS. The original and the
extra page addresses and the bitmap values (commit, current)
are recorded in a metadata area (i.e., SSP cache). We extend
the page table walker hardware in gem5 to fill fields in the
TLB during an address translation on TLB miss. TLB may
contain translations for DRAM and NVM pages in a hybrid
memory system, and the memory consistency requirement
applies only to NVM pages. Therefore, in the prototype design,
we use Model Specific Registers (MSRs) to communicate the
virtual address range corresponding to NVM allocation to
hardware. We also use MSR to pass the base address of SSP
cache to translation hardware in gem5. The address translation
hardware checks the address range and sets the corresponding
bit in the updated bitmap in TLB if a write happens to the
NVM address range. The translation hardware generates a
memory request to modify metadata in SSP cache when a
consistency interval ends, or a TLB entry eviction happens.
We mark the entry as TLB evicted in the SSP cache.

We use a programming model in which the user
demarcates the failure atomic section (FASE) in code
using checkpoint_start and checkpoint_end calls.
checkpoint_start enables custom hardware components
in the address translation and cache controller hardware in
gem5. A consistency interval of choice is set in gemOS. For
example, setting consistency intervals as 5 msec ensures that
at every 5 msec interval ends, and activities associated with
checkpoint_end are performed, i.e., gemOS kernel instructs
the address translation hardware to initiate a memory request
to send all modified bitmap in TLBs to the metadata region.
The gemOS kernel then calls clwb write back instructions to
flush all data and metadata updates in hardware caches to

 0
 1
 2
 3
 4
 5
 6
 7

Gapbs_pr G500_sssp Ycsb_memE
x
e
c
u
t
i
o
n

T
i
m
e

(
N
o
r
m
a
l
i
z
e
d
)

Benchmarks

1ms
5ms
10ms

Fig. 5: Influence of memory consistency interval on per-
formance. Y-axis shows normalized execution time with no
memory consistency.

NVM. Physical page consolidation happens asynchronously; a
thread periodically calls page consolidation routine to merge
pages corresponding to evicted TLB entries by inspecting the
SSP cache entries in gemOS.

Figure 5 shows the overhead introduced by SSP in making
the memory state of applications consistent. This study
used consistency intervals of 1, 5, and 10 msec. The page
consolidation thread interval is fixed to 1 msec as a lower
interval would result in higher consolidation overhead. Fig-
ure 5 shows the execution time of applications normalized
to the execution time with no memory consistency applied.
Having a wider consistency interval (10 msec) reduces the
consistency overhead as the number of metadata inspections
and clwb calls to writeback cache lines reduce with a wider
consistency interval. All applications in Figure 5 show an
average ∼3× reduction in memory consistency overhead with
10 ms compared to a 1 ms consistency interval.

Kindle provides an easy way to extend studies such as
the influence of consistency interval on the application
performance, and it also allows carrying out additional studies
on the influence of page consolidation thread invocation
frequency on an application by varying the thread time
interval, which is not explored in original SSP proposal.

C. HSCC using Kindle
Hardware/Software Cooperative Caching (HSCC) [23] aims

to utilize high NVM capacity in a hybrid memory system for
improved system performance. HSCC maintains NVM and
DRAM in a flat address space and uses DRAM as a cache
managed by OS in a hardware/software cooperative manner.
HSCC tracks access count of NVM pages to select candidate
pages for migration to DRAM and maintains an NVM-to-
DRAM page mapping after migration. HSCC extends the
page table and TLB for handling NVM to DRAM remapping
and tracking the access count of NVM pages. NVM pages
with an access count exceeding a specific fetch threshold
value in a migration interval are selected for migrating to
DRAM.

HSCC extends page table entry (PTE) to record DRAM and
NVM page frame numbers, using 96 bits (12 bytes) for PTE
as opposed to 64 bits in conventional x86-64 systems. In this
case, the last level page table in HSCC can only map 341 pages
(i.e., 4KB/12B), leaving 171 pages unmapped in a 2MB address
region. In our implementation, we have designed NVM to
DRAM mapping in a lookup table to avoid the previously

TABLE V: Number of Pages Migrated
Benchmark Th-5 Th-25 Th-50
Gapbs_pr 354 273 132
G500_sssp 4489 1475 1346
Ycsb_mem 23093 1661 221

 0

 0.5

 1

 1.5

 2

Gapbs_pr G500_sssp Ycsb_memE
x
e
c
u
t
i
o
n

T
i
m
e

(
N
o
r
m
a
l
i
z
e
d
)

Benchmarks

Th-5
Th-25
Th-50

Fig. 6: Influence of OS migration activities on application
performance under DRAM fetch threshold 5, 25, and 50.

mentioned PTE size issue. The mapping table entries can be
looked up using both DRAM and NVM page frame numbers as
an offset. We also maintain a pool of DRAM pages (512 pages),
categorized as lists of free, clean, and dirty pages, updated at
the start of each migration interval of 31.25 msec (equivalent
to 108 cycles mentioned in the HSCC paper). The migration
activity inspects the page access count maintained in PTEs
corresponding to NVM pages and migrates the pages to DRAM
cache if the count exceeds the fetch threshold. The page access
count is also maintained in TLB and is incremented if the data
access misses in the LLC. The access count in TLB is written
out to PTE on TLB eviction or once during the translation in
a migration interval. We have not incorporated dynamic fetch
threshold adjustment in our implementation and have fixed
the threshold to static values. The page access count in PTEs
is reset in each migration interval to ensure that NVM pages
from the most recent interval are considered for migration.

We investigated the migration-related processing overheads
in the OS-mode and its impact on the execution time of
applications. The candidate pages for migration are identified
by inspecting the page access count maintained in the PTEs (by
performing a software page table walk) corresponding to the
pages mapped to NVM. Migrating a page to DRAM consists of
two steps—(i) page selection, selecting the destination DRAM
page, and (ii) page copy, copying the page from NVM to DRAM.
Page selection includes allocating the destination DRAM page
from the free pool or from the clean or dirty list of DRAM
pages. If any page is selected from the dirty list, then we copy
back the page from DRAM to NVM before use. Page copy step
includes flushing cache lines corresponding to the NVM page
under migration before copying data from NVM to DRAM
and then copying data to DRAM. The corresponding PTE
entry is updated with DRAM page address, access count in
PTE is reset and the corresponding TLB entry is invalidated.
The page access count in all PTEs is reset, and corresponding
TLB entries are invalidated in a migration activity to ensure
that page accesses for the most recent interval are considered
for migrations.
Figure 6 shows the overhead of migration activities per-

formed by OS. The figure shows the execution time of

TABLE VI: Percentage of execution time spent for page
selection and page copy in OS migration activity.

Benchmark Fetch
Threshold

Page
Selection (%)

Page
Copy (%)

Gapbs_pr
Th-5 1.74 98.26
Th-25 1.92 98.08
Th-50 2.06 97.94

G500_sssp
Th-5 37.35 62.65
Th-25 1.37 98.63
Th-50 1.39 98.61

Ycsb_mem
Th-5 21.71 78.29
Th-25 19.16 80.84
Th-50 1.86 98.14

applications with migration (i.e., performing hardware and
OS migration activities) normalized to the execution time
without OS migration activities (i.e., performing only hardware
migration activities) under different fetch thresholds; the fetch
threshold decides the number of candidate NVM pages for
migration. Two important factors influencing the execution
time of an application with migration are—the overhead of
activities performed by OS as part of the migration and the
benefit in memory access time after migrating pages to DRAM.
All applications in Figure 6 show migration overhead due to
OS activities, and a higher value indicates that the overhead of
activities performed by OS as part of the migration overshad-
ows the benefit in memory access time after migrating pages
to DRAM. Gapbs_pr shows the minimum overhead, indicating
that Gapbs_pr has the maximum benefit in memory access
time after migrating pages to DRAM. For all applications,
the migration overhead reduces with an increase in the fetch
threshold as the number of candidate pages migrated reduces
with an increase in the threshold as shown in Table V; hence,
the overhead of OS activity reduces. For example, Ycsb_mem
showed ∼13× and ∼101× reduction in the number of pages
migrated for Th-25 and Th-50 compared to Th-5 respectively.

Table VI shows the percentage of execution time spent for
activities associated with selecting a destination DRAM page
(referred to as Page Selection) and copying the page from NVM
to DRAM (referred to as Page Copy) as part of OS migration
activity. Two factors contributing to page the selection time
are—(i) number of pages migrated, and (ii) availability of
pages in free and clean list of pages. The second component
is relevant because, if the page is not available in the free list,
selecting a dirty page requires copying back data to NVM
before using that page. In case of Gapbs_pr, page selection
time is less than ∼2% across all DRAM fetch thresholds as
the number of pages migrated for Gapbs_pr (Table V) is
lower than total number of pages in the DRAM pool. Thus,
majority of requests for pages are satisfied from the free
or clean list of pages, requiring no copying from DRAM to
NVM before use. G500_sssp with fetch threshold five spends
∼37% of execution time in for page selection, owing to large
number of pages migrated with fetch threshold five (Table V),
similar is the case with Ycsb_mem with fetch threshold five.
Even when relatively less number of pages migrated, page

selection can consume significant portion of execution time
in OS migration activities due to lack of free or clean pages.
For example, Ycsb_mem with fetch threshold 25 takes ∼19%
of time in page selection even with 1475 pages migrated (refer
Table V). Across all benchmarks and fetch thresholds, page
copy occupies a significant portion of execution time with
contribution varying from 98.63% to 62.65% of execution time
in OS migration activities.
HSCC in original work used ZSim [37], a user-level

simulator, and Zsim does not support OS-level simulation [23];
hence, it can not account for the overhead of OS migration
activities, such as copying pages from NVM to DRAM. As
Kindle provides a full-system simulation, it allows studying
the overhead of OS activities on page migration, the influence
of other OS activities such as context switches, and the effect
of cache pollution due to OS activities on migration. on the
contrary, user-level simulators like ZSim miss out on such
insights about OS interactions in hybrid memory systems.
Kindle also allows separately investigating performance
overhead due to hardware and OS activities, as shown in
Figure 6 for OS migration activities.

Kindle allows researchers to carry out quick evaluation of
ideas crossing hardware-software layers on hybrid memory
systems, as we show in the two prototype implementations.

IV. Related Work

The ever-increasing demand for data processing and the
capacity scaling limitation of DRAM [30] has motivated
new byte addressable Non-Volatile Memory technology. NVM
allows capacity expansion and data persistence at memory
access latency.
Hybrid memory for capacity: When used for capacity,
NVM complements DRAM in a hybrid memory setup to
provide better read-write latency along with capacity as NVM
demonstrates higher read-write latency than DRAM [21],
[35]. A common strategy to attain memory performance is
maintaining frequently accessed memory pages in DRAM
and others in NVM [36], [49]. For calculating page access
frequency, hardware scheme using the memory controller to
monitor access patterns and categorize pages as hot and cold
for migration [36]. For using DRAM as a cache for NVM,
DRAM and NVM are arranged in a flat address and mapped
the physical address from NVM to DRAM through page table
and TLB extension [23].
Hybrid memory for data persistence: Using NVM for
data persistence addresses challenges different from using
it for capacity. The challenges appear due to the volatile
nature of caches and the order of writebacks from caches [2].
These challenges necessitate a framework such as memory
persistency [33] that allows application developers to reason
about the order of writes to NVM and mechanisms to ensure
consistency of memory updates [2], either by enclosing
updates inside an atomic failure section (FASE) [3], [8], [28],
by using specialized memory allocation routines [38], [50],
[51] or through ISA and architecture extensions [50]. In FASE

schemes, logging is a common approach for consistency, undo,
redo logging [41], or justdo logging [16] provides required
FASE guarantees by logging either at the hardware level [8]
or at software [7].

A hybrid memory framework like Kindle allows researchers
to explore hybrid memory capacity and data persistence usage
by quick prototyping of state-of-the-art works.

V. Discussion

A. Validation of Kindle

We have validated the process persistence feature of Kindle
by crashing and restarting the application multiple times.
Validating the working of Kindle can be associated with the
fidelity of individual components such as Intel Pin and gem5.
Additionally, Kindle does not impact the simulation time of
gem5.

B. Usage of gemOS for Kindle

We use gemOS as the operating system component of Kindle
since the primary aim is to provide a framework for quick
prototyping and gemOS reduces simulation time compared to
Linux. GemOS while providing most of the POSIX-compliant
APIs, does not include most of the background processes
present in production OSes as they interfere with the
application under study and hide its actual behavior in the
statistics collected. Thus, gemOS benefits in providing cleaner
statistics.
Currently, gemOS also has limited support for user space

libraries, therefore requiring the preparation part of Kindle
to trace and simulate standard applications. Kindle can help
gain fast and accurate comparative insights across design and
policy alternatives in this research space.

C. Capabilities and limitations of Kindle

Kindle enables a hybrid memory with NVM and DRAM in
a flat addressing mode, allowing users to study the memory
behavior of applications with required hardware-software
changes. While Kindle can provide process persistence, it also
has limitations originating from the trace-based approach used
in its design to run applications, similar to any other trace-
based simulators such as ChampSim [12], as trace file only
captures the non-speculative path of application and loses
possible thread interleaving in multi-threaded applications,
etc. We targeted memory system study using Kindle and hence
focused on tracing memory operations.

D. Studying NVM memory technologies beyond PCM

We configured the NVM interface in gem5 with PCM
configuration (a widely used NVM technology) to showcase
the utility of Kindle and the process persistence feature.
However, we can use Kindle to study other NVM technologies
by changing NVM interface parameters in gem5. The scope for
such studies increases the value of Kindle in hybrid memory
research.

E. Availability of Kindle
Kindle is open-sourced and available for download at

https://github.com/arunkp1986/Kindle. Users can explore new
hardware-software designs in hybrid memory systems by
changing the simulation part, implementing software level
changes in gemOS and hardware level changes in gem5,
and then running applications of interest by following the
README documentation.

VI. Conclusion
The hybrid memory system provides the benefit of both

DRAM and NVM technology. NVM offers high capacity and
data persistence, and DRAM delivers better performance. The
existing infrastructure for hybrid memory exploration crossing
architecture-OS boundary using simulators such as gem5 is
limited by the complexity of integrating NVM support in
Linux for gem5 and the simulation overhead of Linux due to
OS services and functions running.
In this paper, we introduced an open-source framework,

Kindle, based on gem5 and gemOS for hybrid memory
exploration in architecture and operating systems. Using
Kindle, We studied end-to-end overhead in maintaining
execution context using periodic checkpointing for achieving
process persistence under two schemes to keep the page
table in a consistent manner. Kindle also provides a quick
way to study and prototype solutions for hybrid memory
systems. We showed prototype implementation of state-of-
the-art hardware-software hybrid memory schemes, SSP [31]
and HSCC [23], using Kindle to demonstrate its efficacy in
realizing complex design goals and analyzing new insights.

Acknowledgment
We thank all the anonymous reviewers for their valuable

feedback. We also thank the members of the CDOS research
group at the CSE department (IIT Kanpur) for their valuable
feedback and support. This research work was partially
supported by Research-I Foundation of IIT Kanpur.

References
[1] “Google scholar,” https://scholar.google.com/, accessed: 2024-05-30.
[2] K. Arun, D. Mishra, and B. Panda, “Empirical analysis of architectural

primitives for nvram consistency,” in Proceedings of HiPC. IEEE, 2021,
pp. 172–181.

[3] A. Baldassin, J. Barreto, D. Castro, and P. Romano, “Persistent memory: A
survey of programming support and implementations,” ACM Computing
Surveys (CSUR), vol. 54, no. 7, pp. 1–37, 2021.

[4] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

[5] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2, pp.
1–7, 2011.

[6] M. Cai, C. C. Coats, and J. Huang, “Hoop: efficient hardware-assisted
out-of-place update for non-volatile memory,” in Proceedings of ISCA.
IEEE, 2020, pp. 584–596.

[7] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging
locks for non-volatile memory consistency,” ACM SIGPLAN Notices,
vol. 49, no. 10, pp. 433–452, 2014.

[8] N. Cohen, D. T. Aksun, H. Avni, and J. R. Larus, “Fine-grain check-
pointing with in-cache-line logging,” in Proceedings of ASPLOS, 2019,
pp. 441–454.

[9] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better i/o through byte-addressable, persistent memory,”
in Proceedings of the Symposium on Operating systems principles, 2009,
pp. 133–146.

[10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing, 2010, pp. 143–154.

[11] A. Correia, P. Felber, and P. Ramalhete, “Romulus: Efficient algorithms
for persistent transactional memory,” in Proceedings of SPAA, 2018, pp.
271–282.

[12] N. Gober, G. Chacon, L. Wang, P. V. Gratz, D. A. Jimenez, E. Teran,
S. Pugsley, and J. Kim, “The championship simulator: Architectural sim-
ulation for education and competition,” arXiv preprint arXiv:2210.14324,
2022.

[13] P. Guide, “Intel® 64 and ia-32 architectures software developer’s manual,”
Volume 3B: System programming Guide, Part, vol. 2, no. 11, pp. 1–64,
2011.

[14] T. C.-H. Hsu, H. Brügner, I. Roy, K. Keeton, and P. Eugster, “Nvthreads:
Practical persistence for multi-threaded applications,” in Proceedings of
the Twelfth European Conference on Computer Systems, 2017, pp. 468–482.

[15] T. Hwang, J. Jung, and Y. Won, “Heapo: Heap-based persistent object
store,” ACM Transactions on Storage (TOS), vol. 11, no. 1, pp. 1–21, 2014.

[16] J. Izraelevitz, T. Kelly, and A. Kolli, “Failure-atomic persistent memory
updates via justdo logging,” ACM SIGARCH Computer Architecture News,
vol. 44, no. 2, pp. 427–442, 2016.

[17] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J. Soh,
Z. Wang, Y. Xu, S. R. Dulloor et al., “Basic performance measurements
of the intel optane dc persistent memory module,” arXiv preprint
arXiv:1903.05714, 2019.

[18] J. Jeong, C. H. Park, J. Huh, and S. Maeng, “Efficient hardware-assisted
logging with asynchronous and direct-update for persistent memory,” in
2018 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2018, pp. 520–532.

[19] A. KP, S. Kumar, D. Mishra, and B. Panda, “Snip: an efficient stack
tracing framework for multi-threaded programs,” in Proceedings of MSR,
2022, pp. 408–412.

[20] A. KP, D. Mishra, and B. Panda, “Prosper: Program stack persistence
in hybrid memory systems,” in 2024 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), 2024, pp. 1168–1183.

[21] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” in Proceedings of ISCA, 2009,
pp. 2–13.

[22] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. W.
Keller, “Energy management for commercial servers,” Computer, vol. 36,
no. 12, pp. 39–48, 2003.

[23] H. Liu, Y. Chen, X. Liao, H. Jin, B. He, L. Zheng, and R. Guo,
“Hardware/software cooperative caching for hybrid dram/nvm mem-
ory architectures,” in Proceedings of the International Conference on
Supercomputing, 2017, pp. 1–10.

[24] H. Liu, R. Liu, X. Liao, H. Jin, B. He, and Y. Zhang, “Object-level memory
allocation and migration in hybrid memory systems,” IEEE Transactions
on Computers, vol. 69, no. 9, pp. 1401–1413, 2020.

[25] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger, M. An-
dreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharadwaj et al.,
“The gem5 simulator: Version 20.0+,” arXiv preprint arXiv:2007.03152,
2020.

[26] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, “Pin: building customized program
analysis tools with dynamic instrumentation,” Acm sigplan notices,
vol. 40, no. 6, pp. 190–200, 2005.

[27] D. Mishra, “Gemos: Bridging the gap between architecture and operating
system in computer system education,” in Proceedings of the Workshop
on Computer Architecture Education, 2019, pp. 1–8.

[28] I. Moraru, D. G. Andersen, M. Kaminsky, N. Tolia, P. Ranganathan, and
N. Binkert, “Consistent, durable, and safe memory management for
byte-addressable non volatile main memory,” in Proceedings of Timely
Results in Operating Systems, 2013, pp. 1–17.

[29] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the graph 500,” Cray Users Group (CUG), vol. 19, pp. 45–74, 2010.

[30] O. Mutlu, “Memory scaling: A systems architecture perspective,” in
IEEE International Memory Workshop. IEEE, 2013, pp. 21–25.

[31] Y. Ni, J. Zhao, H. Litz, D. Bittman, and E. L. Miller, “Ssp: Eliminating
redundant writes in failure-atomic nvrams via shadow sub-paging,” in
Proceedings of MICRO, 2019, pp. 836–848.

[32] H. Park, S. Yoo, and S. Lee, “Power management of hybrid dram/pram-
based main memory,” in Proceedings of the 48th Design Automation
Conference, 2011, pp. 59–64.

[33] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” ACM
SIGARCH Computer Architecture News, vol. 42, no. 3, pp. 265–276, 2014.

[34] B. Peng, Y. Dong, J. Yao, F. Wu, and H. Guan, “Flexhm: A practical system
for heterogeneous memory with flexible and efficient performance
optimizations,” ACM Transactions on Architecture and Code Optimization,
vol. 20, no. 1, pp. 1–26, 2022.

[35] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high performance
main memory system using phase-change memory technology,” in
Proceedings of ISCA, 2009, pp. 24–33.

[36] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page placement in hybrid
memory systems,” in Proceedings of the international conference on
Supercomputing, 2011, pp. 85–95.

[37] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microarchitec-
tural simulation of thousand-core systems,” ACM SIGARCH Computer
architecture news, vol. 41, no. 3, pp. 475–486, 2013.

[38] D. Schwalb, T. Berning, M. Faust, M. Dreseler, and H. Plattner, “nvm
malloc: Memory allocation for nvram.” Adms@ Vldb, vol. 15, pp. 61–72,
2015.

[39] S. Song, A. Das, O. Mutlu, and N. Kandasamy, “Improving phase change
memory performance with data content aware access,” in Proceedings
of the Symposium on Memory Management, 2020, pp. 30–47.

[40] E. Tsalapatis, R. Hancock, T. Barnes, and A. J. Mashtizadeh, “The aurora
single level store operating system,” in Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, 2021, pp. 788–803.

[41] H. Wan, Y. Lu, Y. Xu, and J. Shu, “Empirical study of redo and undo
logging in persistent memory,” in Proceedings of NVMSA), 2016, pp. 1–6.

[42] B. Wang, J. Tang, R. Zhang, W. Ding, S. Liu, and D. Qi, “Energy-
efficient data caching framework for spark in hybrid dram/nvm
memory architectures,” in Proceedings of International Conference on
High Performance Computing and Communications. IEEE, 2019, pp.
305–312.

[43] X. Wang, H. Liu, X. Liao, J. Chen, H. Jin, Y. Zhang, L. Zheng, B. He,
and S. Jiang, “Supporting superpages and lightweight page migration
in hybrid memory systems,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 16, no. 2, pp. 1–26, 2019.

[44] W. Wei, D. Jiang, S. A. McKee, J. Xiong, and M. Chen, “Exploiting
program semantics to place data in hybrid memory,” in 2015 International
Conference on Parallel Architecture and Compilation (PACT). IEEE, 2015,
pp. 163–173.

[45] M. Weiland, H. Brunst, T. Quintino, N. Johnson, O. Iffrig, S. Smart,
C. Herold, A. Bonanni, A. Jackson, and M. Parsons, “An early evaluation
of intel’s optane dc persistent memory module and its impact on high-
performance scientific applications,” in Proceedings of the international
conference for high performance computing, networking, storage and
analysis, 2019, pp. 1–19.

[46] S. Wu, F. Zhou, X. Gao, H. Jin, and J. Ren, “Dual-page checkpointing:
An architectural approach to efficient data persistence for in-memory
applications,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 15, no. 4, pp. 1–27, 2019.

[47] Z. Wu, K. Lu, A. Nisbet, W. Zhang, and M. Luján, “Pmthreads: Persistent
memory threads harnessing versioned shadow copies,” in Proceedings
of PLDI, 2020, pp. 623–637.

[48] Y. Xie, “Modeling, architecture, and applications for emerging memory
technologies,” IEEE design & test of computers, vol. 28, no. 1, pp. 44–51,
2011.

[49] H. Yoon, J. Meza, R. Ausavarungnirun, R. A. Harding, and O. Mutlu,
“Row buffer locality aware caching policies for hybrid memories,” in
2012 IEEE 30th International Conference on Computer Design (ICCD).
IEEE, 2012, pp. 337–344.

[50] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: Closing
the performance gap between systems with and without persistence
support,” in Proceedings of MICRO, 2013, pp. 421–432.

[51] P. Zuo, Y. Hua, and J. Wu, “Write-optimized and high-performance
hashing index scheme for persistent memory,” in Proceedings of OSDI,
2018, pp. 461–476.

Appendix
A. Abstract
The artifact contains the full source code and other docu-

mentation of Kindle along with implementation of two design
choices to maintain the virtual to physical address translation
information (in the page table) for process persistence. Artifact
also contains two prototype implementations of state-of-the-
art research ideas for hybrid memory systems, SSP and HSCC,
to demonstrate the utility of Kindle. It includes full-system
architecture simulator (gem5), operating system (gemOS)
modifications, and scripts to run experiments and generate
outputs. The code is suitable to be executed on Linux systems.

B. Artifact check-list (meta-information)
• Program: For evaluating Kindle framework, bash scripts

to run the preparation and simulation part are provided in
framework directory. The disk images to use for process
persistence, SSP and HSCC evaluation sections are provided in
bench_diskimages directory at GitHub1.

• Compilation: Scripts for compilation are included, we use
GCC version 9.4.0.

• Binary: We have provided bash scripts in respective folders
to generate gemOS and gem5 binaries on GitHub1.

• Run-time environment: A system with Ubuntu latest ver-
sion. We provide a Docker image exported with all required
dependencies for easy setup at GitHub1.

• Hardware: Intel x86-64.
• Output: Python scripts are provided to parse gem5 statistics

files and generate output files. Bash scripts are provided to
invoke these Python scripts and format output files to generate
result plots in respective output folders for easy comparison
with expected results.

• Experiments: Manual invocation of scripts, which launch
corresponding experiments and generate outputs in designated
folders.

• How much disk space required (approximately)?: 40–50
GB of disk after compilation.

• How much time is needed to prepare workflow (approxi-
mately)?: 20-30 minutes for gem5 compilation and 1-2 minutes
for gemOS compilation.

• How much time is needed to complete experiments
(approximately)?: Each experiment with gemOS under the
“Process Persistence” subsection takes three to four hours.
Similarly, Each experiment under "SSP using Kindle" and "HSCC
using Kindle" takes three to four hours.

• Publicly available?: Yes
• Archived (provide DOI)?: Zenodo2

C. Description
1) How to access: All the source code of Kindle is available

at GitHub1 and Zenodo2.
2) Hardware dependencies: Intel x86-64 with at least 16GB

RAM.

3) Software dependencies: A Linux system that supports
Docker run time. We provide a Docker image export with all
required dependencies for easy setup. The link to download
Docker export and instructions to use the container are
available at GitHub1.

1 https://github.com/arunkp1986/Kindle.git
2 https://doi.org/10.5281/zenodo.13292083

D. Installation
Kindle framework installation consists of building two

components—gem5 simulator and operating system (gemOS).
The GitHub1 contains bash scripts to build the gem5 with
relevant modifications and compile gemOS to produce gemOS
kernels required for running on gem5. The README file in
GitHub1 details how to use these scripts to build/run gem5,
gemOS, and generate results. We also provide Python scripts
to parse and format the output files along with the expected
output files for comparison.

We also provide a Docker image export containing depen-
dencies required for building gem5, gemOS. How to set up a
Docker container using this export is provided at GitHub1.

E. Experiment workflow
We provide the source code of our implementation and

bash scripts (in GitHub1) to build and execute evaluations
corresponding to results under the “Process Persistence”
subsection (Figure 4, Table-3), results under the “SSP using
Kindle” subsection (Figure 5) and results under "HSCC using
Kindle" subsection (Figure 6, Table 4). The Workflow involves
invoking these scripts to generate outputs.
You can run bash scripts in parallel to reduce the overall

execution time of experiments as explained in the README file
in GitHub1.

F. Evaluation and expected results
We provide Python scripts to parse results generated by

gem5 in respective output folders. We use bash scripts to
invoke these Python scripts and format output files generated
by Python. We have provided "expected" results under each
output folder. Please refer to the README file in GitHub1 for
further details.

For evaluating the page table maintenance under “Process
Persistence”, the expected results are execution time with
rebuild and persistent schemes. The bash script generates plots
in the "results" folder under respective output directories.

For evaluating the “SSP using Kindle”, the expected result
is execution time normalized to execution with no memory
consistency (Figure 5) and "HSCC using Kindle", the expected
result is execution time normalized to time with no migration
(Figure 6).

