
LDT: Lightweight Dirty Tracking of
Memory Pages for x86 Systems

Rohit Singh Arun KP Debadatta Mishra
IIT Kanpur IIT Kanpur IIT Kanpur

IRS 2023

Process Migration

2

Source Destination

Ref: google images

Process Migration

3

Source Destination

Ref: google images

Process Migration

4

Source Destination

Ref: google images

Process Migration

5

Source Destination

Ref: google images

Iteration 1

Process Migration

6

Source Destination

Ref: google images

Process Migration

7

Source Destination

Ref: google images

Iteration 2

Process Migration

8

Source Destination

Ref: google images

Incremental Checkpointing

Checkpoint
end

Checkpoint
start

9

Incremental Checkpointing

Checkpoint
start

Prepare
for dirty
tracking

10

Incremental Checkpointing

Checkpoint
start

Prepare
for dirty
tracking

Perform
dirty

tracking

11

Incremental Checkpointing

Checkpoint
start

Checkpoint
end

Prepare
for dirty
tracking

Perform
dirty

tracking

12

Incremental Checkpointing

Checkpoint
start

Checkpoint
end

Prepare
for dirty
tracking

Consume
tracked

info

Perform
dirty

tracking

13

Incremental Checkpointing

Checkpoint
start

Checkpoint
end

Prepare
for dirty
tracking

Consume
tracked

info

Perform
dirty

tracking

Checkpoint
memory

state

14

Incremental Checkpointing

Checkpoint
start

Checkpoint
end

Prepare
for dirty
tracking

Consume
tracked

info

Perform
dirty

tracking

Checkpoint
memory

state

15

State of the Art: Dirty Tracking with write faults

Translation Table

16Ref: google images

State of the Art: Dirty Tracking with write faults

Translation Table

17

Remove write
permission

Ref: google images

State of the Art: Dirty Tracking with write faults

18

X = 10

Ref: google images

State of the Art: Dirty Tracking with write faults

19

X = 10 Fault

Ref: google images

State of the Art: Dirty Tracking with write faults

20

X = 10 Fault

Translation Table

Set dirty indicator

Ref: google images

State of the Art: Dirty Tracking with write faults

21

X = 10 Fault

Translation Table

Set dirty indicator

Linux uses soft-dirty bit (bit 11) feature
as dirty indicator in x86-64 system

Ref: google images

Dirty Tracking with write faults overhead

● Workload with
different working set
sizes where 1 byte of
each page is written

22

Dirty Tracking with write faults overhead

2.5ms vs 96.9 ms

● Workload with
different working set
sizes where 1 byte of
each page is written

● Time taken to write
for each working set
size is many times
more in case of dirty
tracking with write
faults

23

Can we use an alternative approach with less
 overhead for dirty tracking?

24

Alternative: Dirty Tracking with Dirty Bit (x86)

Translation Table

25

dirtybit=1

Dirty bit is set by hardware if a memory page is modified.

Alternative: Dirty Tracking with Dirty Bit (x86)

Translation Table

26

dirtybit=1clear dirty bit

At dirty tracking start, clear dirty bit in translation table.

Alternative: Dirty Tracking with Dirty Bit (x86)

Translation Table

27

dirtybit=0

Alternative: Dirty Tracking with Dirty Bit (x86)

28

X = 10

Translation Table

dirtybit=1

Hardware sets dirty-bit

Alternative: Dirty Tracking with Dirty Bit (x86)

29

Translation Table

dirtybit=1

Interface to
read dirty

info

At dirty tracking end, inspect dirty bit in translation table to check page
modification.

What are the challenges?

30

Challenge: Interaction with OS subsystems

31

Dirty
tracker

H/W Dirty
Indicator

Other OS
subsystem

Dirty Information

Challenge: Interaction with OS subsystems

32

Dirty
tracker

H/W Dirty
Indicator

set

Other OS
subsystem

consume and clear

Dirty Information

Scenario : 1

Challenge: Interaction with OS subsystems

33

Dirty
tracker

H/W Dirty
Indicator

clean

Other OS
subsystem

Dirty Information

Scenario : 1

Challenge: Interaction with OS subsystems

34

Dirty
tracker

H/W Dirty
Indicator

clean

Other OS
subsystem

Dirty Information

consume and clear

Scenario : 1

Challenge: Interaction with OS subsystems

35

Dirty
tracker

H/W Dirty
Indicator

set

Other OS
subsystem

consume and clear

Dirty Information

Scenario : 2

Challenge: Interaction with OS subsystems

36

Dirty
tracker

H/W Dirty
Indicator

clean

Other OS
subsystem

Dirty Information

Scenario : 2

Challenge: Interaction with OS subsystems

37

Dirty
tracker

H/W Dirty
Indicator

clean

Other OS
subsystem

Dirty Information

consume and clear

Scenario : 2

How to overcome the challenges?

38

LDT: Idea to overcome the challenge

● Translation table entry has unused bits for the software to use.

39

LDT: Idea to overcome the challenge

● Translation table entry has unused bits for the software to use.

● x86-64 has ~10 unused bits in translation table entry.

40

LDT: Idea to overcome the challenge

● Translation table entry has unused bits for the software to use.

● x86-64 has ~10 unused bits in translation table entry.

● Use 2 unused bits in x86-64 to coordinate with other OS subsystem.

○ Use 1st unused bit to maintain backup of dirty bit information for other
OS subsystems in case LDT consume and clears.

41

LDT: Idea to overcome the challenge

● Translation table entry has unused bits for the software to use.

● x86-64 has ~10 unused bits in translation table entry.

● Use 2 unused bits in x86-64 to coordinate with other OS subsystem.

○ Use 1st unused bit to maintain backup of dirty bit information for other
OS subsystems in case LDT consume and clears.

○ Use 2nd unused bit to maintain backup of dirty bit information for LDT
in case other subsystem consume and clears.

42

LDT: Handle interaction with OS subsystems

43

Dirty
tracker

H/W Dirty
Indicator

set

Other OS
subsystem

consume and clear

Dirty Information

Scenario : 1

LDT: Handle interaction with OS subsystems

44

Dirty
tracker

H/W Dirty
Indicator

clean

Other OS
subsystem

Dirty Information

Scenario : 1

Unused bit-1
set

LDT: Handle interaction with OS subsystems

45

Dirty
tracker

H/W Dirty
Indicator

clean

Other OS
subsystem

Dirty Information

consume and clear

Scenario : 1

Unused bit-1
set

LDT: Handle interaction with OS subsystems

46

Dirty
tracker

H/W Dirty
Indicator

set

Other OS
subsystem

consume and clear

Dirty Information

Scenario : 2

LDT: Handle interaction with OS subsystems

47

Dirty
tracker

H/W Dirty
Indicator

clean

Other OS
subsystem

Dirty Information

Scenario : 2

Unused bit-2
set

LDT: Handle interaction with OS subsystems

48

Dirty
tracker

H/W Dirty
Indicator

clean

Other OS
subsystem

Dirty Information

Scenario : 2

Unused bit-2
set

Soft-dirty bit

LDT: Interface to read dirty track information

● Existing dirty tracking interface passes whole translation table entries to
userspace.

● LDT dirty tracking interface passes only modified virtual address
information to userspace.

We implemented LDT in linux kernel version 5.5.10

49

LDT Results

50

LDT: Correctness checking

● Using micro-benchmarks compared page dirty information given by LDT
interface with soft-dirty interface.

● Performed overnight tests with Redis to confirm that LDT is not introducing
any kernel issues (assert failures, crashes etc).

● Extreme memory pressure scenarios created using Redis to introduce
swapping.

● Performed iterative migration of a container hosting Redis. Docker
container is restored correctly and starts serving requests normally after
restore.

51

Evaluation: System Specifications

CPU Intel i7-4770 CPU @ 3.40GHz

L1-D/I 32 KB (8 way)

L2 256 KB (8 way)

L3 8 MB (16 way)

DRAM 16 GB

Distribution Ubuntu 18.04.3 LTS

Linux Kernel 5.5.10

52

Evaluation: Write only scenario

● Workload with different
working set sizes where
4096 bytes of each page are
written

53

● Workload with different
working set sizes where
4096 bytes of each page are
written

● Soft Dirty approach takes
largest amount of time to
complete the write operation

Evaluation: Write only scenario

~350 ms vs ~1112 ms

54

● Workload with different
working set sizes where
4096 bytes of each page are
written

● Soft Dirty approach takes
largest amount of time to
complete the write operation

● Bad performance of soft
dirty approach can be
attributed to page faults

Evaluation: Write only scenario

55

● Workload with different
working set sizes where
4096 bytes of each page are
written

● Soft Dirty approach takes
largest amount of time to
complete the write operation

● Bad performance of soft
dirty approach can be
attributed to page faults

Evaluation: Write only scenario

0 vs 1048576

56

● Under 25% read, 75%
write workload, throughput
every 100ms

Evaluation: Throughput under read-write intensity

57

● Under 25% read, 75%
write workload, throughput
every 100ms

● During every read/write
operation, 4096 bytes are
consumed/written

Evaluation: Throughput under read-write intensity

58

● Under 25% read, 75%
write workload, throughput
every 100ms

● During every read/write
operation, 4096 bytes are
consumed/written

● LDT and Baseline
throughput is around ~3x
more than soft dirty during
initial stage of experiment
due to page faults

Evaluation: Throughput under read-write intensity

5.3 vs 11.3 GBps

59

● Under 25% read, 75%
write workload, throughput
every 100ms

● During every read/write
operation, 4096 bytes are
consumed/written

● LDT and Baseline
throughput is around ~3x
more than soft dirty during
initial stage of experiment
due to page faults

Evaluation: Throughput under read-write intensity

0 vs 63990

60

Evaluation: Dirty tracking with Redis benchmark

● We ran redis server and then
we ran YCSB to perform
read/write operations on this
redis server

61

● We ran redis server and then
we ran YCSB to perform
read/write operations on this
redis server

● Dirty tracking occurs every ‘x‘
seconds (1,5,10 seconds)

Evaluation: Dirty tracking with Redis benchmark

62

● We ran redis server and then
we ran YCSB to perform
read/write operations on this
redis server

● Dirty tracking occurs every ‘x‘
seconds (1,5,10 seconds)

● Baseline gives best
throughput, LDT throughput
is close to baseline. Soft dirty
incurs worse throughput

Evaluation: Dirty tracking with Redis benchmark

67960 vs 73964

63

Evaluation: Time to read dirtied page information

● In this experiment, we
write to x% (10%, 20%, ..
100%) of a 1GB mmapped
region

64

Evaluation: Time to read dirtied page information

● In this experiment, we
write to x% (10%, 20%, ..
100%) of a 1GB mmapped
region

● After that, soft dirty
interface/LDT interface is
called to read the info
about dirtied pages

65

Evaluation: Time to read dirtied page information

● In this experiment, we
write to x% (10%, 20%, ..
100%) of a 1GB mmapped
region

● After that, soft dirty
interface/LDT interface is
called to read the info
about dirtied pages

● Soft dirty takes more time
because it reports dirty
status for entire address
space

107 vs 785 ms

66

Conclusion

● LDT enables efficient process migration through lightweight memory dirty
tracking.

67

Conclusion

● LDT enables efficient process migration through lightweight memory dirty
tracking.

● LDT provided ~8% throughput improvement over state of the art dirty
tracking for Redis.

68

Conclusion

● LDT enables efficient process migration through lightweight memory dirty
tracking.

● LDT provided ~8% throughput improvement over state of the art dirty
tracking for Redis.

● LDT showed ~2.4x improvement over state of the art dirty tracking for a
workload with 75% writes.

69

Questions?

70

