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State of the Art: Dirty Tracking with write faults 
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Dirty Tracking with write faults overhead 

● Workload with 
different working set 
sizes where 1 byte of 
each page is written
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Dirty Tracking with write faults overhead

2.5ms vs 96.9 ms

● Workload with 
different working set 
sizes where 1 byte of 
each page is written

● Time taken to write 
for each working set 
size is many times 
more in case of dirty 
tracking with write 
faults
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Can we use an alternative approach with less
 overhead for dirty tracking?
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Alternative: Dirty Tracking with Dirty Bit (x86) 

Translation Table
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Alternative: Dirty Tracking with Dirty Bit (x86)
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modification. 



What are the challenges?
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Challenge: Interaction with OS subsystems
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How to overcome the challenges?
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LDT: Idea to overcome the challenge

● Translation table entry has unused bits for the software to use.
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OS subsystems in case LDT consume and clears.

41



LDT: Idea to overcome the challenge

● Translation table entry has unused bits for the software to use.

● x86-64 has ~10 unused bits in translation table entry.

● Use 2 unused bits in x86-64 to coordinate with other OS subsystem.

○ Use 1st unused bit to maintain backup of dirty bit information for other 
OS subsystems in case LDT consume and clears.

○ Use 2nd unused bit to maintain backup of dirty bit information for LDT 
in case other subsystem consume and clears.
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LDT: Handle interaction with OS subsystems
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LDT: Handle interaction with OS subsystems
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LDT: Interface to read dirty track information 

● Existing dirty tracking interface passes whole translation table entries to 
userspace.

● LDT dirty tracking interface passes only modified virtual address 
information to userspace.

We implemented LDT in linux kernel version 5.5.10
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LDT Results

50



LDT: Correctness checking

● Using micro-benchmarks compared page dirty information given by LDT 
interface with soft-dirty interface.

● Performed overnight tests with Redis to confirm that LDT is not introducing 
any kernel issues (assert failures, crashes etc).

● Extreme memory pressure scenarios created using Redis to introduce 
swapping.

● Performed iterative migration of a container hosting Redis. Docker 
container is restored correctly and starts serving requests normally after 
restore.
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Evaluation: System Specifications

CPU Intel i7-4770 CPU @ 3.40GHz

L1-D/I 32 KB (8 way)

L2 256 KB (8 way)

L3 8 MB (16 way)

DRAM 16 GB

Distribution Ubuntu 18.04.3 LTS

Linux Kernel 5.5.10
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Evaluation: Write only scenario

● Workload with different 
working set sizes where 
4096 bytes of each page are 
written
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● Workload with different 
working set sizes where 
4096 bytes of each page are 
written

● Soft Dirty approach takes 
largest amount of time to 
complete the write operation

Evaluation: Write only scenario

~350 ms vs ~1112 ms
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● Workload with different 
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largest amount of time to 
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● Workload with different 
working set sizes where 
4096 bytes of each page are 
written

● Soft Dirty approach takes 
largest amount of time to 
complete the write operation

● Bad performance of soft 
dirty approach can be 
attributed to page faults

Evaluation: Write only scenario

0 vs 1048576
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● Under 25% read, 75% 
write workload, throughput 
every 100ms

Evaluation: Throughput under read-write intensity
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● Under 25% read, 75% 
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● Under 25% read, 75% 
write workload, throughput 
every 100ms

●  During every read/write 
operation, 4096 bytes are 
consumed/written

● LDT and Baseline 
throughput is around ~3x 
more than soft dirty during 
initial stage of experiment
due to page faults

Evaluation: Throughput under read-write intensity

5.3 vs 11.3 GBps
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● Under 25% read, 75% 
write workload, throughput 
every 100ms

●  During every read/write 
operation, 4096 bytes are 
consumed/written

● LDT and Baseline 
throughput is around ~3x 
more than soft dirty during 
initial stage of experiment
due to page faults

Evaluation: Throughput under read-write intensity

0 vs 63990
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Evaluation: Dirty tracking with Redis benchmark

● We ran redis server and then 
we ran YCSB to perform 
read/write operations on this 
redis server 
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● We ran redis server and then 
we ran YCSB to perform 
read/write operations on this 
redis server

● Dirty tracking occurs every ‘x‘ 
seconds (1,5,10 seconds) 

● Baseline gives best 
throughput, LDT throughput 
is close to baseline. Soft dirty 
incurs worse throughput

Evaluation: Dirty tracking with Redis benchmark

67960 vs 73964
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Evaluation: Time to read dirtied page information

● In this experiment, we 
write to x% (10%, 20%, .. 
100%) of a 1GB mmapped 
region 
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Evaluation: Time to read dirtied page information

● In this experiment, we 
write to x% (10%, 20%, .. 
100%) of a 1GB mmapped 
region 

● After that, soft dirty 
interface/LDT interface is 
called to read the info 
about dirtied pages 

● Soft dirty takes more time 
because it reports dirty 
status for entire address 
space

107 vs 785 ms
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Conclusion

● LDT enables efficient process migration through lightweight memory dirty 
tracking.
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Conclusion

● LDT enables efficient process migration through lightweight memory dirty 
tracking.

● LDT provided ~8% throughput improvement over state of the art dirty 
tracking for Redis.

● LDT showed ~2.4x improvement over state of the art dirty tracking for a 
workload with 75% writes.
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Questions?
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