
Empirical Analysis of Architectural
Primitives for NVRAM Consistency

HiPC 2021

Arun KP1 Debadatta Mishra 1 Biswabandan Panda2

1Indian Institute of Technology, Kanpur

2Indian Institute of Technology, Bombay

1 / 62

Non-volatile Memory (NVM)

• Persistence of data with better
read/write latency.

• Access through load/store interface.

• Provides high memory capacity.

2 / 62

Data Consistency in NVM

.

.
store(A, 1)
.
store(B, 1)
.
.

L2

L1 DL1 I

L2

L1 DL1 I

LLC

NVM

MC WPQ

pe
rs

is
te

nt
 d

om
ai

n

Initial memory state

3 / 62

Data Consistency in NVM

L2

L1 DL1 I

L2

L1 DL1 I

LLC

NVM

MC WPQ

Store (A,1)
Store (B,1)

1

1A

B

.

.

pe
rs

is
te

nt
 d

om
ai

n

After store to B

4 / 62

Data Consistency in NVM

L2

L1 DL1 I

L2

L1 DL1 I

LLC

NVM

MC WPQ

Store (A,1)
Store (B,1)

1

1A

B

.

.

pe
rs

is
te

nt
 d

om
ai

n

L2

L1 DL1 I

L2

L1 DL1 I

LLC

NVM

MC WPQ

Store (A,1)
Store (B,1)

1

1A

B

crash
.
.

pe
rs

is
te

nt
 d

om
ai

n

⇑
At crash

5 / 62

Data Consistency in NVM

L2

L1 DL1 I

L2

L1 DL1 I

LLC

NVM

MC WPQ

Store (A,1)
Store (B,1)

1

1A

B

crash
.
.

pe
rs

is
te

nt
 d

om
ai

n

L2

L1 DL1 I

L2

L1 DL1 I

LLC

NVM

MC WPQ

1B

pe
rs

is
te

nt
 d

om
ai

n

Inconsistency

⇑
After restart

6 / 62

Data Consistency With Persistent Barrier

L2

L1 DL1 I

L2

L1 DL1 I

LLC

NVM

MC WPQ

PBarrier()
Store (A,1)

Store (B,1)

1A

1B
.
.

pe
rs

is
te

nt
 d

om
ai

n

After store to B

7 / 62

Persistent Barrier

2. PBarrier(A)
3. store(B,1)

1. store (A,1) 2a. fence
2b. flush(A)
2c. fence

8 / 62

Data Consistency With Persistent Barrier

L2

L1 DL1 I

L2

L1 DL1 I

LLC

NVM

MC WPQ

PBarrier()
Store (A,1)

Store (B,1)

1A

1B
.
.

crash

pe
rs

is
te

nt
 d

om
ai

n

L2

L1 DL1 I

L2

L1 DL1 I

LLC

NVM

MC WPQ

1A

pe
rs

is
te

nt
 d

om
ai

n

⇑
After restart

9 / 62

Data Consistency using Logging

• Provide atomicity of a code segment

• Using begin_tx & end_tx semantics

Redo and undo logging are commonly used

begin_tx

end_tx

Time

store(A,1)

10 / 62

Undo Logging: Example

begin_tx

end_tx

memory area

log area

Time

store(A,1)

memory area

A 10

⇑
Memory has A’s initial value

11 / 62

Undo Logging: Example

begin_tx

end_tx

memory area

log area

Time

store(A,1)

memory area

A 10

begin_tx

end_tx

memory area

log area

Time

store(A,1) address(A), 0

memory area

A

2

10

⇑
Log has A’s initial value

12 / 62

Undo Logging: Example

begin_tx

end_tx

memory area

log area

Time

store(A,1)

memory area

A 10

begin_tx

end_tx

memory area

log area

Time

store(A,1) address(A), 0

memory area

A

2

10

begin_tx

end_tx

memory area

log area

Time

store(A,1) address(A), 0

memory area

A

2

10

A 1 3

⇑
Memory has A’s new value

13 / 62

Redo Logging: Example

begin_tx

end_tx

memory area

log area

Time

store(A,1)

memory area

10A

⇑
Memory has A’s initial value

14 / 62

Redo Logging: Example

begin_tx

end_tx

memory area

log area

Time

store(A,1)

memory area

10A

begin_tx

end_tx

memory area

log area

Time

store(A,1) address(A), 1

memory area

2

10A

⇑
Log has A’s new value

15 / 62

Redo Logging: Example

begin_tx

end_tx

memory area

log area

Time

store(A,1)

memory area

10A

begin_tx

end_tx

memory area

log area

Time

store(A,1) address(A), 1

memory area

2

10A

begin_tx

end_tx

memory area

log area

Time

store(A,1) address(A), 1

memory area
3

2

10A

A 1

⇑
Memory has A’s new value

16 / 62

Persistent Barrier: Architecture Primitives
• X86-64
– clflush⇐

17 / 62

Persistent Barrier: Architecture Primitives
• X86-64
– clflush

– clflushopt⇐

18 / 62

Persistent Barrier: Architecture Primitives
• X86-64
– clflush

– clflushopt

– clwb⇐

19 / 62

Persistent Barrier: Architecture Primitives
• X86-64
– clflush

– clflushopt

– clwb

• ARM64
– civac⇐

20 / 62

Persistent Barrier: Architecture Primitives
• X86-64
– clflush

– clflushopt

– clwb

• ARM64
– civac

– cvac⇐
clflush, clflushopt, clwb are ordered by store-fence instructions.
civac, cvac use data memory barrier to the inner shareable domain (DSB ISH) as fence.

21 / 62

Questions

• Performance overhead of different architecture primitives for
X86-64 and ARM64.

22 / 62

Questions

• Performance overhead of different architecture primitives for
X86-64 and ARM64.

• Application memory footprint, read-to-write ratio influence on
performance.

23 / 62

Questions

• Performance overhead of different architecture primitives for
X86-64 and ARM64.

• Application memory footprint, read-to-write ratio influence on
performance.

• Redo, Undo logging performance with different architecture
primitives.

24 / 62

Performance Overhead of Architecture
Primitives for X86-64 and ARM64

25 / 62

Gem5 configuration

CPU Out-of-order CPU

L1-D/I 32 KiB/core (8 way)

L2 512KiB/core (16 way)

L3 2 MiB/core shared (16 way)

MSHRs 16, 32, 32/core at L1-D, L2, L3

Cache data access latency 2, 9, 15 cycles at L1-D, L2, L3

Cache line size 64 B in L1, L2, L3

Replacement policy LRU

L1 prefetcher StridePrefetcher with degree=4

Memory controller Nvmain*1

Memory PCM with configuration2

Memory capacity 10 GB (20GB for X86-64 redo/undo result)

*Gem5 NVM Interface for X86-64 redo/undo result

1
Poremba et al.“Nvmain 2.0: A user-friendly memory simulatorto model (non-) volatile memory systems

2
Song et al. Improving phase change memory performance with data content aware access

26 / 62

Micro-benchmarks
Benchmarks Description

BST Binary Search Tree

BST_P Parallel Binary Search Tree

CUH Cuckoo Hashing Table

QUE Linear Queue

RBT Red-black Tree

27 / 62

Performance with X86-64

 0

 1

 2

 3

BST BST_PCUH QUE RBT

Tiny

clflush
clflushopt
clwb

BST BST_PCUH QUE RBT

Small

 0

 1

 2

 3

BST BST_PCUH QUE RBT

S
lo

w
d

o
w

n
 (

X
 t

im
e

s
 n

o
fl
u

s
h

)

Medium
BST BST_PCUH QUE RBT

Large

Tiny 0.90 x L1-D Size Small 0.90 x L2 Size Medium 0.90 x LLC Size Large 4 x LLC Size

28 / 62

Performance with X86-64

 0

 1

 2

 3

BST BST_PCUH QUE RBT

Tiny

clflush
clflushopt
clwb

BST BST_PCUH QUE RBT

Small

 0

 1

 2

 3

BST BST_PCUH QUE RBT

S
lo

w
d

o
w

n
 (

X
 t

im
e

s
 n

o
fl
u

s
h

)

Medium
BST BST_PCUH QUE RBT

Large

Performance overheads vary between 1X - 2.5X

29 / 62

Performance with X86-64

 0

 1

 2

 3

BST BST_PCUH QUE RBT

Tiny

clflush
clflushopt
clwb

BST BST_PCUH QUE RBT

Small

 0

 1

 2

 3

BST BST_PCUH QUE RBT

S
lo

w
d

o
w

n
 (

X
 t

im
e

s
 n

o
fl
u

s
h

)

Medium
BST BST_PCUH QUE RBT

Large

clwb performed better by 1X - 1.3X

30 / 62

Performance with X86-64

 0

 1

 2

 3

BST BST_PCUH QUE RBT

Tiny

clflush
clflushopt
clwb

BST BST_PCUH QUE RBT

Small

 0

 1

 2

 3

BST BST_PCUH QUE RBT

S
lo

w
d

o
w

n
 (

X
 t

im
e

s
 n

o
fl
u

s
h

)

Medium
BST BST_PCUH QUE RBT

Large

QUE resulted in highest performance overhead

31 / 62

Performance with X86-64

 0

 1

 2

 3

BST BST_PCUH QUE RBT

Tiny

clflush
clflushopt
clwb

BST BST_PCUH QUE RBT

Small

 0

 1

 2

 3

BST BST_PCUH QUE RBT

S
lo

w
d

o
w

n
 (

X
 t

im
e

s
 n

o
fl
u

s
h

)

Medium
BST BST_PCUH QUE RBT

Large

Write ordering contribute significantly to the slowdown

32 / 62

Performance with X86-64
#commit stalls at ROB

noflush 6 34 6

clflush 798,423 3,348,775 536,286

clflushopt 532,284 2,232,528 270,146

clwb 532,284 2,232,528 270,146

The highest number of commit stalls at ROB head is for clflush.

33 / 62

Performance with ARM64

 0

 1

 2

 3

BST BST_P CUH QUE RBT

Tiny

civac
cvac

BST BST_P CUH QUE RBT

Small

 0

 1

 2

 3

BST BST_P CUH QUE RBT

S
lo

w
d
o
w

n
 (

X
 t
im

e
s
 n

o
fl
u
s
h
)

Medium
BST BST_P CUH QUE RBT

Large

Performance trends are similar to X86-64

34 / 62

Performance with ARM64

 0

 1

 2

 3

BST BST_P CUH QUE RBT

Tiny

civac
cvac

BST BST_P CUH QUE RBT

Small

 0

 1

 2

 3

BST BST_P CUH QUE RBT

S
lo

w
d
o
w

n
 (

X
 t
im

e
s
 n

o
fl
u
s
h
)

Medium
BST BST_P CUH QUE RBT

Large

cvac performed better than civac

35 / 62

Performance with ARM64

 0

 1

 2

 3

BST BST_P CUH QUE RBT

Tiny

civac
cvac

BST BST_P CUH QUE RBT

Small

 0

 1

 2

 3

BST BST_P CUH QUE RBT

S
lo

w
d
o
w

n
 (

X
 t
im

e
s
 n

o
fl
u
s
h
)

Medium
BST BST_P CUH QUE RBT

Large

cvac is functionally equivalent to clwb

36 / 62

Memory Footprint, Read-to-Write Ratio
Influence on Performance.

37 / 62

Influence of Read-to-Write Ratio

• Memory access pattern ⇒ Read %
influence on performance.

Performance slowdown
Benchmark Read-light Read-balanced Read-heavy

civac

BST 1.67 1.78 1.89

BST_P 1.54 1.64 1.97

QUE 2.47 2.34 2.22

RBT 1.66 1.71 1.82

cvac

BST 1.53 1.63 1.83

BST_P 1.45 1.48 1.88

QUE 2.08 1.98 1.88

RBT 1.48 1.51 1.61

For medium working set size

Read-light read:write ratio as 10:90 Read-balanced read:write ratio as 50:50 Read-heavy read:write ratio as 90:10

38 / 62

Influence of Read-to-Write Ratio

• Memory access pattern ⇒ Read %
influence on performance.

• RBT read % ↑ ⇒ performance ↓
same with BST as well.

Performance slowdown
Benchmark Read-light Read-balanced Read-heavy

civac

BST 1.67 1.78 1.89

BST_P 1.54 1.64 1.97

QUE 2.47 2.34 2.22

RBT 1.66 1.71 1.82

cvac

BST 1.53 1.63 1.83

BST_P 1.45 1.48 1.88

QUE 2.08 1.98 1.88

RBT 1.48 1.51 1.61

For medium working set size

Read-light read:write ratio as 10:90 Read-balanced read:write ratio as 50:50 Read-heavy read:write ratio as 90:10

39 / 62

Influence of Read-to-Write Ratio

• Memory access pattern ⇒ Read %
influence on performance.

• RBT read % ↑ ⇒ performance ↓
same with BST as well.

• QUE read % ↑ ⇒ performance ↑.

Performance slowdown
Benchmark Read-light Read-balanced Read-heavy

civac

BST 1.67 1.78 1.89

BST_P 1.54 1.64 1.97

QUE 2.47 2.34 2.22

RBT 1.66 1.71 1.82

cvac

BST 1.53 1.63 1.83

BST_P 1.45 1.48 1.88

QUE 2.08 1.98 1.88

RBT 1.48 1.51 1.61

For medium working set size

Read-light read:write ratio as 10:90 Read-balanced read:write ratio as 50:50 Read-heavy read:write ratio as 90:10

40 / 62

Redo, Undo Logging Performance for
X86-64 and ARM64

41 / 62

Heavy Logging Performance (X86-64)

 0.9

 1

 1.1

 1.2

D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

S
lo

w
d
o
w

n
 (

X
 t
im

e
s
 v

a
n
ill

a
)

Redo Log

clflush
clflushopt
clwb

D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

Undo Log

Log Heavy No Logging:Logging ratio 10:90 Log Medium No Logging:Logging ratio 50:50 Log Light No Logging:Logging ratio 90:10

42 / 62

Heavy Logging Performance (X86-64)

 0.9

 1

 1.1

 1.2

D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

S
lo

w
d
o
w

n
 (

X
 t
im

e
s
 v

a
n
ill

a
)

Redo Log

clflush
clflushopt
clwb

D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

Undo Log

Undo log showed performance overhead for all modifications types.

43 / 62

Heavy Logging Performance (X86-64)

 0.9

 1

 1.1

 1.2

D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

S
lo

w
d
o
w

n
 (

X
 t
im

e
s
 v

a
n
ill

a
)

Redo Log

clflush
clflushopt
clwb

D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

Undo Log

clflush, clflushopt showed better performance than clwb with undo.

44 / 62

Heavy Logging Performance (X86-64)

 0.9

 1

 1.1

 1.2

D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

S
lo

w
d
o
w

n
 (

X
 t
im

e
s
 v

a
n
ill

a
)

Redo Log

clflush
clflushopt
clwb

D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

Undo Log

Redo showed benefit with clwb.

45 / 62

Heavy Logging Performance (X86-64)

 0.9

 1

 1.1

 1.2

D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

S
lo

w
d
o
w

n
 (

X
 t
im

e
s
 v

a
n
ill

a
)

Redo Log

clflush
clflushopt
clwb

D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

Undo Log

Redo+clwb provided cache benefits.

46 / 62

Heavy Logging Performance (X86-64)

Methods Data-only Meta-only Hybrid

Log Heavy

vanilla 20.46 20.43 20.27

redo 18.44 18.52 17.76

undo 20.23 20.27 20.17

With redo+clwb L1-D miss rates are lower, and also L1-D cache write-backs are
reduced between 31% to 5%.

47 / 62

Heavy Logging Performance (X86-64)

 0.9

 1

 1.1

 1.2

D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

S
lo

w
d
o
w

n
 (

X
 t
im

e
s
 v

a
n
ill

a
)

Redo Log

clflush
clflushopt
clwb

D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

Undo Log

Cache prefetching plays an important role in redo performance, with redo 37% ↑ in
issued L1D prefetch requests for Hybrid.

48 / 62

Medium Logging Performance (X86-64)

 0.9

 1

 1.1

 1.2

D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

S
lo

w
d
o
w

n
 (

X
 t
im

e
s
 v

a
n
ill

a
)

Redo Log
D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

Undo Log

The performance trends are similar to heavy logging.

49 / 62

Light Logging Performance (X86-64)

 0.9

 1

 1.1

 1.2

D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

S
lo

w
d
o
w

n
 (

X
 t
im

e
s
 v

a
n
ill

a
)

Redo Log
D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

Undo Log

The clflush, clflushopt continued showing better performance than clwb with undo.

50 / 62

Heavy Logging Performance (ARM64)

 0.9

 1

 1.1

 1.2

D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

S
lo

w
d
o
w

n
 (

X
 t
im

e
s
 v

a
n
ill

a
)

Redo Log

civac
cvac

D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

Undo Log

Performance trends are similar to X86-64

51 / 62

Heavy Logging Performance (ARM64)

 0.9

 1

 1.1

 1.2

D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

S
lo

w
d
o
w

n
 (

X
 t
im

e
s
 v

a
n
ill

a
)

Redo Log

civac
cvac

D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

Undo Log

cvac performed better with redo, undo in majority of cases.

52 / 62

Heavy Logging Performance (ARM64)

Methods Data-only Meta-only Hybrid

Log Heavy

vanilla 21.41 21.47 21.39

redo 19.15 18.99 18.43

undo 21.16 21.22 21.12

With redo+cvac L1-D miss rates are lower.

53 / 62

Medium Logging Performance (ARM64)

 0.9

 1

 1.1

 1.2

D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

S
lo

w
d
o
w

n
 (

X
 t
im

e
s
 v

a
n
ill

a
)

Redo Log
D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

Undo Log

The performance trends are similar to heavy logging.

54 / 62

Light Logging Performance (ARM64)

 0.9

 1

 1.1

 1.2

D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

S
lo

w
d
o
w

n
 (

X
 t
im

e
s
 v

a
n
ill

a
)

Redo Log
D
at

a-
on

ly

M
et

a-
on

ly

H
yb

rid

Undo Log

cvac continued performing better with redo, undo in majority of cases.

55 / 62

Key Takeaways

• X86 and ARM64 showed similar data consistency performance
overhead trends.

56 / 62

Key Takeaways

• X86 and ARM64 showed similar data consistency performance
overhead trends.

• clwb, cvac benefited applications with temporal and spatial locality.

57 / 62

Key Takeaways

• X86 and ARM64 showed similar data consistency performance
overhead trends.

• clwb, cvac benefited applications with temporal and spatial locality.

• Fences contributed significantly to the persistent barrier overhead.

58 / 62

Key Takeaways

• X86 and ARM64 showed similar data consistency performance
overhead trends.

• clwb, cvac benefited applications with temporal and spatial locality.

• Fences contributed significantly to the persistent barrier overhead.

• Application’s memory access pattern decide influence of read % on
persistent barrier overhead.

59 / 62

Key Takeaways

• X86 and ARM64 showed similar data consistency performance
overhead trends.

• clwb, cvac benefited applications with temporal and spatial locality.

• Fences contributed significantly to the persistent barrier overhead.

• Application’s memory access pattern decide influence of read % on
persistent barrier overhead.

• Nature of logging requirement decide choice of cache-line flush.

60 / 62

Conclusion
We studied the performance overhead of data consistency methods on
X86-64 and ARM64. We found that —

• Selection of data consistency methods should be based upon the
workload characteristics.

• Serialization operations to enforce order of writes to NVM impact
performance.

As a future direction, study the influence of data consistency methods
on co-running applications in a memory and cache congested scenario.

61 / 62

For more details contact:
Arun KP

kparun@cse.iitk.ac.in

62 / 62

	Introduction
	Data Consistency in NVM
	Data Consistency using Logging

