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Non-volatile Memory (NVM)

• Persistence of data with better
read/write latency.

• Access through load/store interface.

• Provides high memory capacity.

2 / 62



Data Consistency in NVM
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Data Consistency in NVM
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Data Consistency With Persistent Barrier
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Persistent Barrier

2. PBarrier(A )
3. store(B,1)

1. store (A,1) 2a. fence
2b. flush(A)
2c. fence
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Data Consistency With Persistent Barrier
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Data Consistency using Logging

• Provide atomicity of a code segment

• Using begin_tx & end_tx semantics

Redo and undo logging are commonly used
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Undo Logging: Example
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Undo Logging: Example
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Undo Logging: Example
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Redo Logging: Example
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Persistent Barrier: Architecture Primitives
• X86-64
– clflush⇐
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Persistent Barrier: Architecture Primitives
• X86-64
– clflush

– clflushopt

– clwb

• ARM64
– civac

– cvac⇐
clflush, clflushopt, clwb are ordered by store-fence instructions.
civac, cvac use data memory barrier to the inner shareable domain (DSB ISH) as fence.
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Questions

• Performance overhead of different architecture primitives for
X86-64 and ARM64.
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• Performance overhead of different architecture primitives for
X86-64 and ARM64.

• Application memory footprint, read-to-write ratio influence on
performance.
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Questions

• Performance overhead of different architecture primitives for
X86-64 and ARM64.

• Application memory footprint, read-to-write ratio influence on
performance.

• Redo, Undo logging performance with different architecture
primitives.
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Performance Overhead of Architecture
Primitives for X86-64 and ARM64
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Gem5 configuration

CPU Out-of-order CPU

L1-D/I 32 KiB/core (8 way)

L2 512KiB/core (16 way)

L3 2 MiB/core shared (16 way)

MSHRs 16, 32, 32/core at L1-D, L2, L3

Cache data access latency 2, 9, 15 cycles at L1-D, L2, L3

Cache line size 64 B in L1, L2, L3

Replacement policy LRU

L1 prefetcher StridePrefetcher with degree=4

Memory controller Nvmain*1

Memory PCM with configuration2

Memory capacity 10 GB (20GB for X86-64 redo/undo result)

*Gem5 NVM Interface for X86-64 redo/undo result

1
Poremba et al.“Nvmain 2.0: A user-friendly memory simulatorto model (non-) volatile memory systems

2
Song et al. Improving phase change memory performance with data content aware access
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Micro-benchmarks
Benchmarks Description

BST Binary Search Tree

BST_P Parallel Binary Search Tree

CUH Cuckoo Hashing Table

QUE Linear Queue

RBT Red-black Tree
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Performance with X86-64
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Performance with X86-64
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clwb performed better by 1X - 1.3X
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Performance with X86-64
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Performance with X86-64
#commit stalls at ROB

noflush 6 34 6

clflush 798,423 3,348,775 536,286

clflushopt 532,284 2,232,528 270,146

clwb 532,284 2,232,528 270,146

The highest number of commit stalls at ROB head is for clflush.
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Performance with ARM64
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Performance with ARM64
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cvac performed better than civac
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Performance with ARM64
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cvac is functionally equivalent to clwb
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Memory Footprint, Read-to-Write Ratio
Influence on Performance.
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Influence of Read-to-Write Ratio

• Memory access pattern ⇒ Read %
influence on performance.

Performance slowdown
Benchmark Read-light Read-balanced Read-heavy

civac

BST 1.67 1.78 1.89

BST_P 1.54 1.64 1.97

QUE 2.47 2.34 2.22

RBT 1.66 1.71 1.82

cvac

BST 1.53 1.63 1.83

BST_P 1.45 1.48 1.88

QUE 2.08 1.98 1.88

RBT 1.48 1.51 1.61

For medium working set size

Read-light read:write ratio as 10:90 Read-balanced read:write ratio as 50:50 Read-heavy read:write ratio as 90:10
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Influence of Read-to-Write Ratio

• Memory access pattern ⇒ Read %
influence on performance.

• RBT read % ↑ ⇒ performance ↓
same with BST as well.

• QUE read % ↑ ⇒ performance ↑.

Performance slowdown
Benchmark Read-light Read-balanced Read-heavy
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Redo, Undo Logging Performance for
X86-64 and ARM64
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Heavy Logging Performance (X86-64)
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Heavy Logging Performance (X86-64)
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Undo log showed performance overhead for all modifications types.
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Heavy Logging Performance (X86-64)
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Undo Log

clflush, clflushopt showed better performance than clwb with undo.
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Redo showed benefit with clwb.
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Heavy Logging Performance (X86-64)
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Undo Log

Redo+clwb provided cache benefits.
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Heavy Logging Performance (X86-64)

Methods Data-only Meta-only Hybrid

Log Heavy

vanilla 20.46 20.43 20.27

redo 18.44 18.52 17.76

undo 20.23 20.27 20.17

With redo+clwb L1-D miss rates are lower, and also L1-D cache write-backs are
reduced between 31% to 5%.
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Heavy Logging Performance (X86-64)
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Cache prefetching plays an important role in redo performance, with redo 37% ↑ in
issued L1D prefetch requests for Hybrid.
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Medium Logging Performance (X86-64)
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The performance trends are similar to heavy logging.
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Light Logging Performance (X86-64)
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Undo Log

The clflush, clflushopt continued showing better performance than clwb with undo.
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Heavy Logging Performance (ARM64)
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Heavy Logging Performance (ARM64)
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cvac performed better with redo, undo in majority of cases.
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Heavy Logging Performance (ARM64)

Methods Data-only Meta-only Hybrid

Log Heavy

vanilla 21.41 21.47 21.39

redo 19.15 18.99 18.43

undo 21.16 21.22 21.12

With redo+cvac L1-D miss rates are lower.
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Medium Logging Performance (ARM64)
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The performance trends are similar to heavy logging.

54 / 62



Light Logging Performance (ARM64)
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cvac continued performing better with redo, undo in majority of cases.
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Key Takeaways

• X86 and ARM64 showed similar data consistency performance
overhead trends.
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Key Takeaways

• X86 and ARM64 showed similar data consistency performance
overhead trends.

• clwb, cvac benefited applications with temporal and spatial locality.

• Fences contributed significantly to the persistent barrier overhead.

• Application’s memory access pattern decide influence of read % on
persistent barrier overhead.

• Nature of logging requirement decide choice of cache-line flush.
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Conclusion
We studied the performance overhead of data consistency methods on
X86-64 and ARM64. We found that —

• Selection of data consistency methods should be based upon the
workload characteristics.

• Serialization operations to enforce order of writes to NVM impact
performance.

As a future direction, study the influence of data consistency methods
on co-running applications in a memory and cache congested scenario.
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For more details contact:
Arun KP
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