Empirical Analysis of Architectural
Primitives for NVRAM Consistency

HiPC 2021

Arun KP' Debadatta Mishra' Biswabandan Panda?®

"Indian Institute of Technology, Kanpur

2Indian Institute of Technology, Bombay

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Non-volatile Memory (NVM)

+ Persistence of data with better
read/write latency.

+ Access through load/store interface.

* Provides high memory capacity.

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Data Consistency in NVM

) L11/L1n| |L1it1o
store(A, 1) L2 L2
: ! !
store(B, 1) LLC
oo S =
] Mc [wPQ| |g:
' f S
: | =¥
! I
: NVM 5
5!
g

Initial memory state

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Data Consistency in NVM

L11/ L1 D L11/ L1 D

L2 L2
Store (A1) i ;
Store (B,1)
ST A e
I R T =
\ MC [WPQ 1 |§€ !
! S
: 1 =1
2.
BL1] NvMm 2
3

After store to B

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Data Consistency in NVM

L1Lio| |L11L1p L11Lio| |L11L1D
L2 L2 L2 L2
Store (A1) i ; Store (A1) 1 ;
Store (B, 1) Store (B, 1) Efih
ST A Le ST A Le
I R T = I R T =
\ MC [WPQ 1 |§€ ! \ MCc [wPQl |£:
f S f 3
: 1 =1 : 1 =1
2. 2.
BL1] NvMm 2 BLT] NvM 2.
g g1
At crash

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Data Consistency in NVM

L1L1D| |LiiLiD))
L2 L2 L2 L2
Store (A1)
Store By ! 3 E?ih 3 I
- ACT] LLC LLC
I i S g . oo =
\ MC [WPQ |g: i MC [WPQ] |E |
1 S : f S
' ; £ : D I,
o [oonssoncy <
BL1] NvMm @ :]B NVM @ .
g : (S|

After restart

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Data Consistency With Persistent Barrier

L11L1D] |L11tip
L2 L2
Store (A,1) i i
PBarrier() B[T] LLC
Store (B,1)_L
: P =
\ Mc rweall |£:
1 S
| =
2
ACL] NVM 2.
4

After store to B

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Persistent Barrier

1. store (A1) .-
2. PBarrier(A)
3.store(B,1)

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

B4

RN

2a. fence
2b. flush(A)
2c. fence

Data Consistency With Persistent Barrier

L11L1D L11L1D L1101 [L1D L11//L1D
L2 L2 L2 L2
Store (A,1) i i] {
PBarrier()
Store (B,1)_L Bm""tc _______________ LLC
:] € gpeseeeeeeeeees i— -------------- e
o T
| Me owEay| €| | MC (WPl |E
o | § S
| I i =
2. c
AT VM g ACT] NVM &
g e
""""""""""""""""" Qo

After restart

COMPUTER SCIENCE & ENGINEERING

IIT KANPU

Data Consistency using Logging

* Provide atomicity of a code segment

+ Using begin_tx & end_tx semantics

Redo and undo logging are commonly used

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

! |begin_tx
store(A,1)

end_tx

v
Time

Undo Logging: Example

o
H - memory area
1 |begin_tx
i |store(A,1)
i log area
; end_tx
! memory area
v
Time

TT

Memory has A's initial value

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Undo Logging: Example

: o i o
- memory area - memory area
1 |begin_tx 1 |begin_tx
! |store(A,1) ! |store(A,1)=—> address(A), 0| @
H log area H log area
i end_tx : end_tx
: memory area ! memory area
v v
Time Time

T

Log has A's initial value

COMPUTER SCIENCE & ENGINEERING

IIT KANPUI

Undo Logging: Example

| o | | ° | °
H - memory area 1 - memory area H - memory area
1 |begin_tx 1 |begin_tx 1 |begin_tx
store(A,1) store(A,1)—> address(A), 0 Q store(A,1)—> address(A), 0 9
H log area H log area H log area
i end_tx : end_tx : 0
: memory area ! memory area 1 lend_tx memory area
v v v

Time Time Time

fr

Memory has A's new value

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Redo Logging: Example

0

: memory area

1 |begin_tx

i |store(A,1)

H log area

: end_tx

v memory area
Time

TT

Memory has A's initial value

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Redo Logging: Example

s o a o

memory area memory area

1 |begin_tx 1 |begin_tx

i |store(a,1) i |store(A, 1)——> ‘address(A), 1 @

H log area H log area

: end_tx : end_tx

v memory area v memory area
Time Time

T

Log has A's new value

COMPUTER SCIENCE & ENGINEERING

IIT KANPUI

Redo Logging: Example

| o || o | °

memory area memory area memory area

1 |begin_tx 1 |begin_tx 1 |begin_tx

i |store(a,1) i |store(A, 1)—> address(A), 1 @ i |store(a,1) address(A), 1 @

H log area H log area H log area

: end_tx : end_tx : end_tx

: : : A |©

v memory area v memory area v memory area
Time Time Time

fr

Memory has A's new value

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Persistent Barrier: Architecture Primitives

« X86-64
- clflush <

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Persistent Barrier: Architecture Primitives

+ X86-64
- clflush

- clflushopt <=

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Persistent Barrier: Architecture Primitives

+ X86-64
- clflush
- clflushopt

- clwb <=

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Persistent Barrier: Architecture Primitives

+ X86-64
- clflush
- clflushopt

- clwb

+ ARM64

- civac <=

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Persistent Barrier: Architecture Primitives

+ X86-64
- clflush

- clflushopt

- clwb

+ ARM64

- civac

- ovac <=

clflush, clflushopt, clwb are ordered by store-fence instructions.
civac, cvac use data memory barrier to the inner shareable domain (DSB ISH) as fence.

COMPUTER SCIENCE & ENGINEERING | (

IIT KANPUR

Questions

+ Performance overhead of different architecture primitives for
X86-64 and ARM64.

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Questions

+ Performance overhead of different architecture primitives for
X86-64 and ARM64.

+ Application memory footprint, read-to-write ratio influence on
performance.

COMPUTER SCIENCE & ENGINEERING | (

IIT KANPUR

Questions

+ Performance overhead of different architecture primitives for
X86-64 and ARM64.

+ Application memory footprint, read-to-write ratio influence on
performance.

* Redo, Undo logging performance with different architecture
primitives.

COMPUTER SCIENCE & ENGINEERING

IIT KANP!

Performance Overhead of Architecture
Primitives for X86-64 and ARM64

COMPUTER SCIENCE & ENGINEERING
IIT KANP!

Gemp5 configuration

CcPU Out-of-order CPU

L1-D/1 32 KiB/core (8 way)

L2 512KiB/core (16 way)

L3 2 MiB/core shared (16 way)
MSHRs 16, 32, 32/core at L1-D, L2, L3

Cache data access latency

2,9, 15 cycles at L1-D, L2, L3

Cache line size

64BinlL1, L2 L3

Replacement policy

LRU

L1 prefetcher

StridePrefetcher with degree=4

Memory controller

Nvmain*'

Memory

PCM with configuration®

Memory capacity

10 GB (20GB for X86-64 redo/undo result)

*Gem5 NVM Interface for X86-64 redo/undo result

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Micro-benchmarks

Benchmarks Description

BST Binary Search Tree

BST_P Parallel Binary Search Tree
CUH Cuckoo Hashing Table
QUE Linear Queue

RBT Red-black Tree

COMPUTER SCIENCE & ENGINEERING

IIT KANPUI

Performance with X86-64

3
clflush
—_ 2 - 7l
|
B §
21 o
5
e #
80 K
[0}
£ BSTBST_PCUH QUE RBT BSTBST_PCUH QUE RBT
< Tiny Small
3
2
S
= 2
o
Dy
BSTBST PCUH QUE RBT BSTBST_| PCUH QUE RBT
Medium Large
| Tiny [0.90 x L1-D Size l Small l 0.90 x L2 Size Medium l 0.90 x LLC Size l Large l 4xLLC Size

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Performance with X86-64

Slowdown (X times noflush)

COMPUTER SCIENCE & ENGINEERING

3

& clflush —
5 3 clﬂushopt L
== clwb
1
o]
BSTBST_| PCUH QUE RBT BSTBST PCUH QUE RBT
Tiny Small
3
2 | Bl
o
8
i
K
g
g
0 i

BSTBST_PCUH QUE RBT
Medium

BSTBST | PCUH QUE RET
Large

Performance overheads vary between 1X - 2.5X

IIT KANPUR

29/62

Performance with X86-64

QUE RBT

BSTBST_PCUH QUE RBT
Small

3
ool cIqush

2
Ky
[%2]
21
o
c
30
(o]
£ BSTBST_PCUH
< Tiny
c 3
ES
o
LY
K}
.|

BSTBST_PCUH

]

XXHXXXX

oL

£

XXX

QUE RBT

Medium

BSTBST PCUH QUE RBT
Large

clwb performed better by 1X - 1.3X

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Performance with X86-64

3
=xxd - clflush
EE clﬂushopt

n
T

clwb

o

BSTBST_PCUH QUE RBT
Tiny

BSTBST_PCUH QUE RBT
Small

w

Slowdown (X times noflush)
n

BSTBST_PCUH QUE RBT
Medium

BSTBST_PCUH QUE RBT
Large

QUE resulted in highest performance overhead

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Performance with X86-64

Slowdown (X times noflush)

3

n

o

w

n

=xxd - clflush
3 clﬂushopt
== clwb

BSTBST_| PCUH QUE RBT
Tiny

BSTBST PCUH QUE RBT
Small

T
XXX]

T
XHHXHXXX

£

XXX

BSTBST_PCUH QUE RBT
Medium

BSTBST | PCUH QUE RET
Large

Write ordering contribute significantly to the slowdown

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Performance with X86-64

#commit stalls at ROB
noflush 6 34 6
clflush 798,423 | 3,348,775 | 536,286
clflushopt | 532,284 | 2,232,528 | 270,146
clwb 532,284 | 2,232,528 | 270,146

The highest number of commit stalls at ROB head is for clflush.

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

ith ARM64

Performance w

BSTBST_PCUH QUE RBT
Small

BSTBST_PCUH QUE RBT
Large

Tiny

BSTBST_PCUH QUE RBT

BSTBST_PCUH QUE RBT

[sp}
(ysnjou sawi} X) UMOPMO|S

Medium

-64

Performance trends are similar to X86

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

ith ARM64

Performance w

BSTBST_PCUH QUE RBT
Small

BSTBST_PCUH QUE RBT
Large

Tiny

BSTBST_PCUH QUE RBT

BSTBST_PCUH QUE RBT

o — o (2}

(ysnjou sawi} X) UMOPMO|S

Medium

cvac performed better than civac

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

ith ARM64

Performance w

BSTBST_PCUH QUE RBT
Small

BSTBST_PCUH QUE RBT
Large

Tiny

BSTBST_PCUH QUE RBT

BSTBST_PCUH QUE RBT

o — o (2}

(ysnjou sawi} X) UMOPMO|S

Medium

cvac is functionally equivalent to clwb

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Memory Footprint, Read-to-Write Ratio
Influence on Performance.

COMPUTER SCIENCE & ENGINEERING
IIT KANP!

Influence of Read-to-Write Ratio

Performance slowdown

o Memory access pattern = Read % Benchmark ‘ Read-light ‘Ci\lj::d-balanced ‘ Read-heavy
influence on performance. BsT 167 178 1.89
BST_P 1.54 1.64 1.97
QUE 2.47 2.34 222
RBT 1.66 1.71 1.82
cvac
BST 55 1.63 1.83
BST_P 1.45 1.48 1.88
QUE 2.08 1.98 1.88
RBT 1.48 1.51 1.61

For medium working set size

Read-light read:write ratio as 10:90 Read-balanced read:write ratio as 50:50 Read-heavy read:write ratio as 90:10]

COMPUTER SCIENCE & ENGINEERING

IIT KANPUI

38/62

Influence of Read-to-Write Ratio

Performance slowdown

. Benchmark | Read-light | Read-balanced | Read-heavy
Memory access pattern = Read % | ‘dvac |
influence on performance. st 167 178 1.89
BST_P 1.54 1.64 1.97
QUE 2.47 2.34 2.22
* RBTread % T = performance | = = = —
same with BST as well. cvac
BST 1.53 1.63 1.83
BST_P 1.45 1.48 1.88
QUE 2.08 1.98 1.88
RBT 1.48 1.51 1.61

For medium working set size

Read-light read:write ratio as 10:90 Read-balanced read:write ratio as 50:50 Read-heavy read:write ratio as 90:10]

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

39/62

Influence of Read-to-Write Ratio

Performance slowdown

o Memory access pattern = Read % Benchmark ‘ Read-light ‘ Read-balanced ‘ Read-heavy
civac
influence on performance. BsT 167 178 1.89
BST_P 1.54 1.64 1.97
QUE 2.47 234 222
. 0
RBT read % 1 = performance | = o o e
same with BST as well. cvac
BST 1.53 1.63 1.83
BST_P 1.45 1.48 1.88
. 0, —
QUE read % T = performance 7. U 5 o o
RBT 1.48 1.51 1.61

For medium working set size

Read-light read:write ratio as 10:90 Read-balanced read:write ratio as 50:50 Read-heavy read:write ratio as 90:10]

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Redo, Undo Logging Performance for
X86-64 and ARM64

COMPUTER SCIENCE & ENGINEERING
IIT KANPUR

Heavy Logging Performance (X86-64)

31 2
E -
> &2 clflus
a4 4 clflushopt
GE) clwb
x
= - - N
3 EN7EN
E BN BN
3 BN BN
Bos EINIZERSN

S ¢ S ¢°

% % \\ % A *

e £ Ay & & &
N Q
Redo Log Undo Log
Log Heavy No Logging:Logging ratio 10:90 Log Medium No Logging:Logging ratio 50:50 Log Light No Logging:Logging ratio 90:10

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Heavy Logging Performance (X86-64)

[N

)
B 7
: o
“E’H 2222 oiwb. ot
X
= 7
s 5 7 BN
L il
Do N /RN
,0‘& S & §b ,o§\ ,o§\ §©
& & % & & 7
Redo Log Undo Log

Undo log showed performance overhead for all modifications types.

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Heavy Logging Performance (X86-64)

[N

)
g 7
: NN °|¥|“Sh t
g1 =t
£
X
=
s 1
o
°
Ll
°
90.9
0&% N Q{\é\b
g &
& ©
Redo Log Undo Log

clflush, clflushopt showed better performance than clwb with undo.

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Heavy Logging Performance (X86-64)

[N

)
.% =
g &2 clflush
214 clflushopt
8 zzz2 clwb
x
£ A BV
N
g N
°
L5
Do 3
S & © §°
QQSI’ ‘@fb X A
Redo Log Undo Log

Redo showed benefit with clwb.

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Heavy Logging Performance (X86-64)

[N

)
.% =
g &2 clflush
214 clflushopt
8 zzz2 clwb
x
£ A BV
N
g N
°
L5
Do 3
S & © §°
QQSI’ ‘@fb X A
Redo Log Undo Log

Redo+clwb provided cache benefits.

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Heavy Logging Performance (X86-64)

Methods ‘ Data-only ’ Meta-only ‘ Hybrid
Log Heavy

vanilla 20.46 20.43 20.27

redo 18.44 18.52 17.76

undo 20.23 20.27 20.17

With redo+clwb L1-D miss rates are lower, and also L1-D cache write-backs are
reduced between 31% to 5%.

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Heavy Logging Performance (X86-64)

[N

Slowdown (X times vanilla)

o
©

Redo Log Undo Log

Cache prefetching plays an important role in redo performance, with redo 37% 1 in
issued L1D prefetch requests for Hybrid.

COMPUTER SCIENCE & ENGINEERING

IIT KANPU

-64)

O
(00)
<
~—
D]
=
m
S
e
= S
S | =
% o
Yo -
(o G %, S
o . @a@ o
7277,
000000 0,
.......... s,
e
o At - i
- - o

(e||luBA SBWI X) UMOPMOIS

Medium Logg

The performance trends are similar to heavy logging.

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Light Logging Performance (X86-64)

[N

%3
tetetd

X

.
a%%

R

X

&4
5%
&4
oot

R

. B

X

Slowdown (X times vanilla)

o
©

%

Redo Log Undo Log

5

%,
%

The clflush, clflushopt continued showing better performance than clwb with undo.

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Performance (ARM64)

Heavy Logging

o
3§
2>
oo o
o
-
BRI Yy, 8
ofetotetotetotetotetetetotetotel o,mu c
\®\$ =)
P e
BB o,
%
pe)
.QO
,,,,,,,,,,,,,,,,,,,,,,,,,, %
j=2}
o
-
%, B
o,mn o)
\%@ o
et U,
112626262620 % %% %Y 0,0
)
o At - i
— — =]

(e||luBA SBWI X) UMOPMOIS

Performance trends are similar to X86-64

COMPUTER SCIENCE & ENGINEERING

IIT KANPUI

Performance (ARM64)

Heavy Logging

N - - @
— — o
(e||luBA SBWI X) UMOPMOIS

o
K
=S
oo
mm et /)
IR Y,
BN Yo,
%
XXX T,
RIS
R oo,mv
%
RIS A
T D
Se3odniririotstotaielotototnirtelstodainiedototoleiel .«0&\
=2 %
B "0,
%
et U,
R ",
%

ity of cases.

In - major

cvac performed better with redo, undo

COMPUTER SCIENCE & ENGINEERING

IIT KANPUI

Heavy Logging Performance (ARM64)

Methods ‘ Data-only ’ Meta-only ‘ Hybrid
Log Heavy

vanilla 21.41 21.47 21.39

redo 19.15 18.99 18.43

undo 21.16 21.22 21.12

With redo+cvac L1-D miss rates are lower.

COMPUTER SCIENCE & ENGINEERING | (

IIT KANPUR

R ERRRTTRLT
BRI
ratetetatetotetetetatetetat

(=2
o
QQ o
e b7 I
T
QO SRR o,
nnu vauu
(av] IS %
R %o,
m %
e)
s 12
[B 0,

PR TER
S
BRI

ing

RREEEHRXRRRIRRR
XXX

N - - @
— — o
(e||luBA SBWI X) UMOPMOIS

Medium Logg

The performance trends are similar to heavy logging.

COMPUTER SCIENCE & ENGINEERING

IIT KANPUI

Light Logging Performance (ARM64)

—12
<
5
@ i
$14 5
ks
1S g
= 5%
g
X 5 5%
K B
ks 505%
S 17 5% g s o]
H 52 5 5 kel
5% is%s8| %% 8|
S 5 5 5 K
%% # q
H 5 ke & Bl
2 B 55 s g
Dog | S
S ¢ S ¢
S S S S
& 5@ D & 5% &
Q‘Zr @' O’D Q'
Redo Log Undo Log

cvac continued performing better with redo, undo in majority of cases.

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Key Takeaways

« X86 and ARM64 showed similar data consistency performance
overhead trends.

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Key Takeaways

« X86 and ARM64 showed similar data consistency performance
overhead trends.

* clwb, cvac benefited applications with temporal and spatial locality.

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

Key Takeaways

« X86 and ARM64 showed similar data consistency performance
overhead trends.

* clwb, cvac benefited applications with temporal and spatial locality.

* Fences contributed significantly to the persistent barrier overhead.

COMPUTER SCIENCE & ENGINEERING | (

IIT KANPUR

Key Takeaways

« X86 and ARM64 showed similar data consistency performance
overhead trends.

* clwb, cvac benefited applications with temporal and spatial locality.
* Fences contributed significantly to the persistent barrier overhead.

* Application’s memory access pattern decide influence of read % on
persistent barrier overhead.

COMPUTER SCIENCE & ENGINEERING

IIT KANP!

Key Takeaways

« X86 and ARM64 showed similar data consistency performance
overhead trends.

* clwb, cvac benefited applications with temporal and spatial locality.
* Fences contributed significantly to the persistent barrier overhead.

* Application’s memory access pattern decide influence of read % on
persistent barrier overhead.

Nature of logging requirement decide choice of cache-line flush.

COMPUTER SCIENCE & ENGINEERING | (

IIT KANPUR

Conclusion

We studied the performance overhead of data consistency methods on
X86-64 and ARM64. We found that —

+ Selection of data consistency methods should be based upon the
workload characteristics.

* Serialization operations to enforce order of writes to NVM impact
performance.

As a future direction, study the influence of data consistency methods
on co-running applications in a memory and cache congested scenario.

COMPUTER SCIENCE & ENGINEERING

IIT KANP!

For more details contact:
Arun KP
kparun@cse.iitk.ac.in

COMPUTER SCIENCE & ENGINEERING

IIT KANPUI

	Introduction
	Data Consistency in NVM
	Data Consistency using Logging

