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Non-volatile Memory (NVM)

+ Persistence of data with better
read/write latency.

+ Access through load/store interface.

* Provides high memory capacity.
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Data Consistency in NVM
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Data Consistency in NVM
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Data Consistency in NVM
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Data Consistency in NVM
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Data Consistency With Persistent Barrier
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Persistent Barrier

1. store (A1) .-
2. PBarrier(A )
3.store(B,1)
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Data Consistency With Persistent Barrier
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Data Consistency using Logging

* Provide atomicity of a code segment

+ Using begin_tx & end_tx semantics

Redo and undo logging are commonly used
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Undo Logging: Example
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Undo Logging: Example
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Undo Logging: Example
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Redo Logging: Example
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Redo Logging: Example

s o a o
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Redo Logging: Example
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Persistent Barrier: Architecture Primitives

« X86-64
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Persistent Barrier: Architecture Primitives

+ X86-64
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Persistent Barrier: Architecture Primitives

+ X86-64
- clflush
- clflushopt

- clwb

+ ARM64
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Persistent Barrier: Architecture Primitives

+ X86-64
- clflush

- clflushopt

- clwb

+ ARM64

- civac

- ovac <=

clflush, clflushopt, clwb are ordered by store-fence instructions.
civac, cvac use data memory barrier to the inner shareable domain (DSB ISH) as fence.
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Questions

+ Performance overhead of different architecture primitives for
X86-64 and ARM64.
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Questions

+ Performance overhead of different architecture primitives for
X86-64 and ARM64.

+ Application memory footprint, read-to-write ratio influence on
performance.
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Questions

+ Performance overhead of different architecture primitives for
X86-64 and ARM64.

+ Application memory footprint, read-to-write ratio influence on
performance.

* Redo, Undo logging performance with different architecture
primitives.
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Performance Overhead of Architecture
Primitives for X86-64 and ARM64
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Gemp5 configuration

CcPU Out-of-order CPU

L1-D/1 32 KiB/core (8 way)

L2 512KiB/core (16 way)

L3 2 MiB/core shared (16 way)
MSHRs 16, 32, 32/core at L1-D, L2, L3

Cache data access latency

2,9, 15 cycles at L1-D, L2, L3

Cache line size

64BinlL1, L2 L3

Replacement policy

LRU

L1 prefetcher

StridePrefetcher with degree=4

Memory controller

Nvmain*'

Memory

PCM with configuration®

Memory capacity

10 GB (20GB for X86-64 redo/undo result)

*Gem5 NVM Interface for X86-64 redo/undo result
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Micro-benchmarks

Benchmarks Description

BST Binary Search Tree

BST_P Parallel Binary Search Tree
CUH Cuckoo Hashing Table
QUE Linear Queue

RBT Red-black Tree
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Performance with X86-64
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Performance with X86-64

Slowdown (X times noflush)
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Performance with X86-64
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Performance with X86-64
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Performance with X86-64

Slowdown (X times noflush)
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Write ordering contribute significantly to the slowdown
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Performance with X86-64

#commit stalls at ROB
noflush 6 34 6
clflush 798,423 | 3,348,775 | 536,286
clflushopt | 532,284 | 2,232,528 | 270,146
clwb 532,284 | 2,232,528 | 270,146

The highest number of commit stalls at ROB head is for clflush.
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ith ARM64
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ith ARM64
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ith ARM64
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Memory Footprint, Read-to-Write Ratio
Influence on Performance.
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Influence of Read-to-Write Ratio

Performance slowdown

o Memory access pattern = Read % Benchmark ‘ Read-light ‘Ci\lj::d-balanced ‘ Read-heavy
influence on performance. BsT 167 178 1.89
BST_P 1.54 1.64 1.97
QUE 2.47 2.34 222
RBT 1.66 1.71 1.82
cvac
BST 55 1.63 1.83
BST_P 1.45 1.48 1.88
QUE 2.08 1.98 1.88
RBT 1.48 1.51 1.61

For medium working set size

Read-light read:write ratio as 10:90 Read-balanced read:write ratio as 50:50 Read-heavy read:write ratio as 90:10 ]
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Influence of Read-to-Write Ratio

Performance slowdown

. Benchmark | Read-light | Read-balanced | Read-heavy
Memory access pattern = Read % | ‘dvac |
influence on performance. st 167 178 1.89
BST_P 1.54 1.64 1.97
QUE 2.47 2.34 2.22
* RBTread % T = performance | = = = —
same with BST as well. cvac
BST 1.53 1.63 1.83
BST_P 1.45 1.48 1.88
QUE 2.08 1.98 1.88
RBT 1.48 1.51 1.61

For medium working set size

Read-light read:write ratio as 10:90 Read-balanced read:write ratio as 50:50 Read-heavy read:write ratio as 90:10 ]

COMPUTER SCIENCE & ENGINEERING

IIT KANPUR

39/62



Influence of Read-to-Write Ratio

Performance slowdown

o Memory access pattern = Read % Benchmark ‘ Read-light ‘ Read-balanced ‘ Read-heavy
civac
influence on performance. BsT 167 178 1.89
BST_P 1.54 1.64 1.97
QUE 2.47 234 222
. 0
RBT read % 1 = performance | = o o e
same with BST as well. cvac
BST 1.53 1.63 1.83
BST_P 1.45 1.48 1.88
. 0, —
QUE read % T = performance 7. U 5 o o
RBT 1.48 1.51 1.61

For medium working set size

Read-light read:write ratio as 10:90 Read-balanced read:write ratio as 50:50 Read-heavy read:write ratio as 90:10 ]
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Redo, Undo Logging Performance for
X86-64 and ARM64
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Heavy Logging Performance (X86-64)
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Heavy Logging Performance (X86-64)
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Undo log showed performance overhead for all modifications types.
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Heavy Logging Performance (X86-64)
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clflush, clflushopt showed better performance than clwb with undo.
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Heavy Logging Performance (X86-64)
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Redo showed benefit with clwb.
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Heavy Logging Performance (X86-64)
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Redo+clwb provided cache benefits.
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Heavy Logging Performance (X86-64)

Methods ‘ Data-only ’ Meta-only ‘ Hybrid
Log Heavy

vanilla 20.46 20.43 20.27

redo 18.44 18.52 17.76

undo 20.23 20.27 20.17

With redo+clwb L1-D miss rates are lower, and also L1-D cache write-backs are
reduced between 31% to 5%.
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Heavy Logging Performance (X86-64)
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Cache prefetching plays an important role in redo performance, with redo 37% 1 in
issued L1D prefetch requests for Hybrid.
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The performance trends are similar to heavy logging.
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Light Logging Performance (X86-64)
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The clflush, clflushopt continued showing better performance than clwb with undo.
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Performance (ARM64)
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Performance trends are similar to X86-64
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Performance (ARM64)

Heavy Logging
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cvac performed better with redo, undo
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Heavy Logging Performance (ARM64)

Methods ‘ Data-only ’ Meta-only ‘ Hybrid
Log Heavy

vanilla 21.41 21.47 21.39

redo 19.15 18.99 18.43

undo 21.16 21.22 21.12

With redo+cvac L1-D miss rates are lower.
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The performance trends are similar to heavy logging.
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Light Logging Performance (ARM64)
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cvac continued performing better with redo, undo in majority of cases.
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Key Takeaways

« X86 and ARM64 showed similar data consistency performance
overhead trends.
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Key Takeaways

« X86 and ARM64 showed similar data consistency performance
overhead trends.

* clwb, cvac benefited applications with temporal and spatial locality.
* Fences contributed significantly to the persistent barrier overhead.

* Application’s memory access pattern decide influence of read % on
persistent barrier overhead.
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Key Takeaways

« X86 and ARM64 showed similar data consistency performance
overhead trends.

* clwb, cvac benefited applications with temporal and spatial locality.
* Fences contributed significantly to the persistent barrier overhead.

* Application’s memory access pattern decide influence of read % on
persistent barrier overhead.

Nature of logging requirement decide choice of cache-line flush.
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Conclusion

We studied the performance overhead of data consistency methods on
X86-64 and ARM64. We found that —

+ Selection of data consistency methods should be based upon the
workload characteristics.

* Serialization operations to enforce order of writes to NVM impact
performance.

As a future direction, study the influence of data consistency methods
on co-running applications in a memory and cache congested scenario.
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For more details contact:
Arun KP
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