
Empirical Analysis of Architectural Primitives for
NVRAM Consistency

Arun KP, Debadatta Mishra
Indian Institute of Technology Kanpur, India

{kparun,deba}@cse.iitk.ac.in

Biswabandan Panda
Indian Institute of Technology Bombay, India

biswa@cse.iitb.ac.in

Abstract—Non-volatile memory (NVM) provides persistent
memory semantics with access latencies comparable to volatile
DRAM. The persistent nature of NVM requires the application
developers to design data consistency mechanisms for failure
recovery, without which application may end up with inconsistent
memory state after a power failure or a system crash. Most
commonly employed methods use architectural support for cache
line flushing and memory fencing to enforce ordering of writes
to NVM.

In this paper, we study the performance overhead of different
hardware primitives used to achieve NVM consistency on Intel
x86-64 and Arm64 systems using micro-benchmarks. Further,
we also empirically analyze the impact of working set size and
memory access characteristics (read-to-write ratio) of applica-
tions on different data consistency techniques. Logging based
mechanisms (e.g., redo and undo logging), commonly used for
NVM consistency, also use underlying architectural primitives
like cache flushing. We comparatively study the overheads of
redo and undo logging with different architectural primitives.
The analysis presented in this paper can be useful to improve
the software/hardware architecture, develop efficient applications
and perform better capacity planning in NVM systems.

Index Terms—Non-volatile memory, persistent barriers,
clflush, clwb, redo-undo logging

I. INTRODUCTION

Byte addressable Non-Volatile Memory (NVM1) not only

provides persistent memory semantics but also enables large

memory capacity with access latencies comparable to volatile

memory (DRAM). The persistent semantics offers an attractive

alternative to meet data persistence requirements of applica-

tions’ without relying heavily on off-the-chip persistent storage

devices (e.g., HDDs and SSDs) and complex storage manage-

ment middleware such as file systems [1]. The traditional ap-

plication programmer interfaces are already going through an

overhaul to leverage the benefits of NVM by storing the data

directly in NVM, avoiding any serialization requirements [2].

However, the transition from volatile memory to non-volatile

memory presents some unique challenges. One of the ma-

jor research challenges is to design specialized techniques

to provide consistent memory state for applications using

NVM across system restarts. Considering the intricacies of

processor-memory data path organization, traditional file sys-

tem or database techniques (e.g., journaling and transactions)

may require non-trivial adaptation. To provide consistency and

1NVM and NVRAM are used interchangeably throughout the paper

atomicity guarantees for the applications using NVM, several

techniques are proposed [3]–[6].

To leverage the full benefits of the NVM systems, appli-

cations can store and access data in the form of in-memory

data structures residing in the NVM. The root cause of

inconsistency arises in the event of a system crash where

hardware caches and other volatile micro-architectural compo-

nents lose in-flight memory modifications. There can be two

major repercussions in the above scenario—(i) the system is

left in a corrupt memory state, and (ii) the expected program

execution state is different from the non-volatile memory state.

One of the approaches used to address this inconsistency is to

allow the application developer achieve a guaranteed temporal

order for persisting the data into the persistent domain (i.e.,

NVM) [7]. With this approach, the application developer is

guaranteed to see the updated memory content even after an

abrupt system reboot caused due to software/hardware failure.

Persistent barrier is one of the techniques to achieve NVM

consistency in an efficient manner. The application program-

mer (or the NVM support library) can place persistent barriers

at appropriate places to ensure data propagation to the NVM

and achieve crash consistency. In this paper, we analyze the
performance implications of different architectural primitives
for NVM consistency. Other techniques like controlling the

data cache behavior using page table attributes (e.g., PAT in

x86) results in significant performance overheads (as we show

in Section III) and are not considered in this paper.

The primitive architectural artifacts such as cache flush

and memory fences are used to realize persistent barriers in

NVM systems [7]. Logging based techniques (similar to file

system journaling) such as redo or undo logging [5], [8]–[11]

also depend heavily on the architectural implementation of

persistent barriers. For example, the log write operations used

for redo and undo logging techniques depend on the persistent

barriers to achieve crash consistency. Persistent barriers also

play a key role in the data structures, memory allocators and

memory management schemes proposed specifically for NVM

[12]–[19]. Most instruction set architectures (ISAs) provide a

set of instructions (e.g., clflush and mfence in x86 ISA)

along with required extension of the persistent domain (e.g.,

battery powered memory controller a.k.a. Intel ADR [20])

to propagate changes to NVM in a consistent manner. We

empirically analyze the performance overhead of different data

consistency methods provided by Intel x86-64 (clflush,

172

2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC)

2640-0316/21/$31.00 ©2021 IEEE
DOI 10.1109/HiPC53243.2021.00031

clflushopt, clwb) and Arm64 (civac, cvac) ISAs [21]

[22]. Through this empirical study, we try to answer following

questions,

1) What is the performance overhead of different consistency

primitives for different ISAs (x86-64 and Arm64) with single

and multi-threaded applications?

2) How does the memory footprint and access characteristics

(read-to-write ratio) of different applications influence the

performance overhead of different data consistency methods?

3) Transaction-based consistency mechanisms like redo and

undo logging use the underlying architectural persistence

barriers to achieve atomic update semantics. In this context, an

interesting question is: What is the comparative performance

overheads for redo and undo logging schemes with different

data consistency methods?

Answering the above questions can provide guidelines for

application/middleware developers to choose the right tech-

nique and account for the resource overheads during capacity

planning. Moreover, the analysis presented in this paper can

provide directions to improve the efficiency of architectural

primitives for NVM consistency. In this paper, we have used a

set of workloads designed to operate on well known data struc-

tures and executed them on Gem5 simulation platform [23] to

analyze the performance implication and provide justifications

through different architecture layer metrics.

Some important observations from this empirical study are,

1) There is no one-size-fits-all approach to choosing consis-

tency primitives, as the performance overhead of consistency

primitives depend upon the nature of workload. For example,

we observed that linear queue incurred the highest and cuckoo

hashing the lowest performance overhead across different

consistency primitives on x86-64 and Arm64 NVM systems.

While advanced primitives like clwb (in x86-64) and cvac
(in ARM) performed better than other techniques in most

scenarios, there were workloads and setups for which the prim-

itives did not offer any benefits, sometimes caused marginal

performance degradation compared to other techniques like

clflush and civac. Moreover, there are many instances

where the fence operation becomes a significant bottleneck

independent of the cache flush method.

2) The influence of memory footprint and memory access

pattern on performance overhead of data consistency primi-

tives are found to be mostly depended on the nature of work-

load. The performance overheads of cuckoo hashing (Table

I) remained the lowest across all working set sizes while the

maximum influence of memory access characteristics (read-to-

write ratio) was observed for queue data structure. The results

also show a decrease in relative performance overheads when

the application working set does not fit in the cache hierarchy.

3) The choice of underlying architectural persistence barrier

plays a key role in the performance of logging based NVM

consistency (redo and undo). Redo logging with clwb per-

formed better than clflush and clflushopt whereas

clflush or clflushopt performs better than clwb for

some cases with undo logging which suggests that clwb is not

L2

L1 DL1 I

L2

L1 DL1 I

LLC

NVM

MC WPQ

Store (A,1)
Store (B,1)

1

1A

B

L2

L1 DL1 I

L2

L1 DL1 I

LLC

NVM

MC WPQ

1B

crash
.
.

pe
rs

is
te

nt
 d

om
ai

n

pe
rs

is
te

nt
 d

om
ai

n

(a) Without persistent barrier

L2

L1 DL1 I

L2

L1 DL1 I

LLC

NVM

MC WPQ

PBarrier()
Store (A,1)

Store (B,1)

1A

1B

L2

L1 DL1 I

L2

L1 DL1 I

LLC

NVM

MC WPQ

1A

.

.

crash

pe
rs

is
te

nt
 d

om
ai

n

pe
rs

is
te

nt
 d

om
ai

n

(b) With persistent barrier

Fig. 1: Consistency issue with non-volatile memory and so-

lution using persistent barrier (shown as PBarrier) tech-

niques. [A, B - NVM Addresses, Store(A, 1) - writes 1 to

NVM address A]

always the best while using undo logging. The performance of

redo logging varied from x86-64 to Arm64 where redo showed

performance overhead for most of the cases on Arm64 but

performed better on x86-64.

The contributions of this paper are as follows,

• We perform detailed experimental analysis of perfor-

mance overheads with different NVM consistency mech-

anisms available in x86-64 and ARM64 architectures.

• We study the performance implications with different

parameters like workload type, memory footprint and

memory access characteristics along with causal insights.

• We show comparative analysis of redo and undo logging

mechanisms on x86-64 and ARM64 systems with differ-

ent logging requirements.

II. BACKGROUND

In this section, we discuss the importance of data consis-

tency in NVM and different architectural primitives based on

cache flush instructions and memory barriers available on x86-

64 and Arm64 ISAs. We also explain the working of undo and

redo logging techniques to achieve failure atomicity in NVM

systems.

A. Importance of Data Consistency in NVM

Modern systems have multiple levels of caches with a last-

level cache (LLC) shared across cores (Figure 1). CPU caches

offer significant performance improvements by leveraging both

temporal and spatial locality of memory accesses and help to

173

2. PBarrier(A)
3. store(B,1)

1. store (A,1) 2a. fence
2b. flush(A)
2c. fence

Fig. 2: Flush + Fence persistent barrier primitive

bridge the memory wall problem to a large extent. However,

the volatile nature of caches pose new challenges when NVM

is accessed using LOAD and STORE instructions as caches

lose data in the event of a power failure or a crash. At the

core, the challenge is the possible inconsistency between the

execution state (program counter, register values etc.) and the

memory state in the event of a system crash.

In Figure 1a, we show an example of inconsistency while

using two store instructions to NVM addresses A and B
without any persistent barrier. There can be two consistency

issues if the system crashes before the cache line containing

the updated value of A is written back to the non-volatile

memory and the program counter (PC) is pointed to the

address of the instruction following Store B. First, at the

time of application restart, assuming the PC is restarted to

an instruction after the store instructions, the application will
not see the updated value of A. Second, if the cache line

corresponding to B is written back before A, at the time of

restart, the application will find that B is updated while A
is not. This is a more serious issue as it makes any smart

recovery process non-deterministic; the recovery process can

not determine where to resume analyzing the memory content

at the time of application restart. With a persistent barrier

(Figure 1b), the cache line corresponding to store address (A in

the example) is written back till the persistent domain such that

the data is guaranteed to be in NVM in the event of a system

crash. The persistent domain includes a specialized memory

controller with persistent write queues (Write Pending Queue

(WPQ) in Figure 1) to ensure data persistence once the write-

back request is queued. Implementation of persistent barrier

depends on the ISA as we discuss in the next subsection. Note

that, one of the solutions to the consistency issues can be

persistent caches [20] which is not in the scope of this paper.

B. Data Consistency Methods using Flush and Fence

Persistent barrier implemented by combining flush and

fence instructions is shown in Figure 2. In both Intel x86-64

and Arm64, the persistent barrier is realized through different

combination of instructions as we discuss in this subsection.

1) Intel x86-64: Intel x86-64 provides three cache flush

instructions—clflush, clflushopt and clwb, with sub-

tle differences in their implementation. clflush invalidates

the cache line containing the linear address from all the

levels of cache hierarchy and performs write back of the dirty

cache lines to the memory, if required. clflushopt is an

optimized variant of clflush, as it allows concurrency while

flushing multiple cache lines [20]. On the other hand, clwb
writes back the modified cache line and retains the cache line

in a clean state. As a result, clwb is beneficial for the cases

where future accesses to the data are expected. clflush,

begin_tx

end_tx

memory area

log area

Time

store(A,1) address(A), 0

memory area

A

3

2

10

1A

(a) Undo logging

begin_tx

end_tx

memory area

log area

Time

store(A,1) address(A), 1

memory area
3

2

10A

A 1

(b) Redo logging

Fig. 3: Working example of undo and redo logging approaches

for NVM consistency. (1) shows initial value of A, (2) shows

logged information [Address of A, value], and (3) shows

modified value of A.

clflushopt and clwb are ordered by store-fence (mfence
and sfence) instructions. The persistent barrier in Figure 2

can be optimized in x86-64 systems by removing fence at

line 2a because of the following reasons. clflush instruction

orders with respect to writes and other clflush instructions.

Similarly, the clflushopt and clwb instructions order with

respect to older writes to the cache-line being invalidated [21].

2) Arm64: Arm Cortex-A provides mechanisms to invali-
date or clean a cache line. civac and cvac are two such

operations provided by Arm64 to perform invalidate or clean
on data caches. The civac performs both clean and invalidate
of a virtual address to the point of coherency and cvac
performs clean of a virtual address to point of coherency;

more information about Point of Coherency (PoC) is given

below.

Invalidation of a cache line clears the valid bit; cleaning
writes the content of cache line to next level of cache or to

main memory if the line is marked as dirty. Cleaning clears

the dirty bit and makes the content of a cache line consistent

with the next level of cache or memory. The invalidate or

clean operation takes either the virtual address, or set and way

of the cache-line. In case of virtual address, Arm64 allows

invalidation and clean operations at two points—(i) Point of

Coherency (PoC) and (ii) Point of Unification (PoU). PoC

is the point at which all observers see the same copy of a

memory location and PoU for a core is the point at which

all operations of the core see the same copy of a memory

location. Both civac and cvac operates at PoC [22].

For the implementation of persistent barrier (Figure 2) on

Arm64, we used data memory barrier to the inner shareable

domain (DSB ISH) as fence [22] along with civac and

cvac operations.

C. NVM Consistency using Logging

Logging based NVM consistency techniques provide trans-

action semantics with atomicity guarantees [7]. Figure 3 shows

the working of a failure-atomic update transaction (marked be-

tween begin_tx and end_tx) using log based mechanisms.

The undo log mechanism stores the old value (in a log area

in the NVM) prior to the modification and discards the log if

operations in atomic block complete successfully (Figure 3a).

174

TABLE I: Micro-benchmarks used in the experiments

Benchmarks Description
BST Binary Search Tree
BST P Parallel Binary Search Tree
CUH Cuckoo Hashing Table [26]
QUE Linear Queue
RBT Red-black Tree [27]

A recovery mechanism uses the value in the undo log to revert

back changes in case of a failure. Read operations inside an

atomic block accesses the values directly from the correspond-

ing memory addresses as the memory contains the updated

values. In the example shown in Figure 3a, store(A,1)
creates an undo log entry containing the address and the old

value of A. Application is allowed to modify the value of A
inside the atomic block after persisting the undo log entry

(using a persistent barrier) as shown in Figure 3a.

With redo log technique, the updated values are stored in the

log during the transaction and the application read requests to

modified variables are served from the log area (Figure 3b).

The log entries are written to the memory locations during

the transaction commit which is known as synchronous redo

logging. The application can also apply log entries to memory

locations in an asynchronous manner after committing the

atomic block. The recovery mechanism re-performs the opera-

tions in the redo log entries during recovery (after a failure). In

the redo logging example shown in Figure 3b, store(A,1)
creates a redo log entry containing the address and the updated

value of A. Application updates the value of A during commit

operation after persisting the redo log as shown in Figure 3b.

Transaction commit is faster with undo logging compared

to redo logging since the data structure is modified in place

for undo logging whereas redo logging requires applying

the changes during commit. Failed transaction recovery is

faster for redo since the data structure is not modified until

transaction commits whereas undo requires applying the log

entries during recovery. There is also a difference in the

number of persistent barriers required for undo and redo

logging techniques—undo requires a fence for each log write

while redo requires only one fence for all log entries during

the commit [24]. Undo logging performs better for workloads

with more reads and it is more sensitive to read-write ratio as

observed by Hu et. al [25]. The redo logging incurs additional

overhead of redirecting reads to the log area for getting

updated value.

III. SETUP AND METHODOLOGY

A. Benchmarks and Parameters

We have used micro-benchmarks using different well known

data structures (Table I) to study the performance overhead of

different data consistency methods.

BST benchmark performs insert, delete and search oper-

ations on a binary search tree. One of the data consistency

methods (passed as a parameter to the benchmark) is used

after each insert and delete operation to push changes into the

persistence domain. BST P is a parallel implementation of

TABLE II: Working set sizes used for experiments

Type Size Description Inserts Deletes Searches*
Tiny 0.90 x L1-D Size 460 400 600
Small 0.90 x L2 Size 7370 4000 6000
Medium 0.90 x LLC Size 29490 4000 6000
Large 4 x LLC Size 131070 4000 6000
*Queue does not support search operations

binary search tree using POSIX threads to parallelize search

and update operations where a read-write lock is used for

synchronization across the three operations.

CUH benchmark uses cuckoo hashing [26], a dictionary

data structure with constant worst case lookup time. Cuckoo

hashing uses two hash tables, with two hash functions hash1
and hash2, respectively. Every key x is stored in the cell

hash1(x) of the 1st table or the cell hash2(x) of the 2nd

table. During insertion of any key x, if the cell hash1(x)
is free, then key is inserted there. Otherwise, the previous

occupant of the cell hash1(x) becomes “nestless” after x
is inserted in that position. The nestless key is inserted into

the 2nd table by following the same procedure until a free slot

or “MaxLoop” count is reached. Reaching “MaxLoop” count

results in resizing of the hash table. Note that, an insertion may

cause multiple keys to become “nestless”. We use different

data consistency methods every time any cell in either of the

the hash tables is updated.

QUE benchmark is based on linear queue with a head

and a tail pointer providing enqueue and dequeue operations.

Enqueue operation adds a new element at the rear end and

updates the tail pointer. The enqueue operation ensures that

both tail pointer and newly added item reach persistence do-

main by using one of the data consistency methods. Dequeue

operation removes an item from the front and updates the head

pointer while ensuring that the head pointer updation reach the

persistent domain.

RBT benchmark performs different operations on a height

balanced binary search tree (red-black tree) with red-black
properties—(i) each node is either red or black, (ii) both

children of a red node are black, (iii) path from a node to

descendant leaves have same number of black nodes, and,

(iv) root and leave nodes are black. An insert or delete

operation may violate the red-black property, thus requiring

change of color for multiple nodes or rotation operations to

restore the red-black properties. RBT uses one of the data

consistency methods when the RB tree is updated to ensure

data persistence.

To study the performance implications with different cache

working set size, we have used four variants— tiny, small,
medium and large (Table II), as parameters for the exper-

iments. Table II shows the number of insert, delete and

search operations performed under each working set size

variant; insert and delete operations maintain the working

set size (mentioned under the size description) of the micro-

benchmarks. For example, in case of tiny working set, size

of micro-benchmarks always fits into L1 data cache (L1-D)

while performing insert and delete operations.

175

TABLE III: Gem5 configuration (used for Section IV)

CPU Out-of-order CPU
L1-D/I 32 KiB/core (8 way)
L2 512KiB/core (16 way)
L3 2 MiB/core shared (16 way)
MSHRs 16, 32, 32/core at L1-D, L2, L3
Cache data access latency 2, 9, 15 cycles at L1-D, L2, L3
Cache line size 64 B in L1, L2, L3
Replacement policy LRU
L1 prefetcher StridePrefetcher with degree=4
Memory controller Nvmain* [28]
Memory PCM with configuration based on [29]
Memory capacity 10 GB (20GB for section IV-B1)
*Gem5 NVM Interface [30] used for results in section IV-B1

TABLE IV: System Parameters (used for Section III-C)

CPU Xeon(R) 3.20GHz
L1-D/I 32KB (8 way)
L2 1MB (16 way)
L3 8MB (11 way)
OS Ubuntu 18.04.3 LTS
Kernel 4.19.13

B. Redo and Undo Logging

As discussed in Section II-C, undo logging techniques

record old values and discard them on success whereas redo

logging techniques record new values and applies them on

success. To study the influence of different data consistency

primitives with redo and undo logging schemes, we used a

micro-benchmark that maintains the LRU order of data items

in presence of different access patterns. The LRU micro-

benchmark consists of a linked list of items where the recently

accessed item is maintained at the head of the list. The

implementation consists of a hash-table to speed up the access

where an entry in the hash-table corresponds to an item in

linked list. The hash-table entry indexes into the linked list and

the item moves to the head position after the access. To ensures

failure atomicity, undo or redo logging is implemented as a

linked list of entries with each entry consisting of a <address,

value> pair, where the value is a pointer to a memory address

of configurable size to support different data items. In our redo

implementation, read access is implemented by looking up the

item in the LRU data structure. Our study differs from Wan et

al. [25] as we have compared the performance with different

persistent barrier primitives while Wan et al. [25] used redo

and undo logging with Intel PMDK framework.

We have configured Gem5 [23] with the configuration

parameters shown in Table III for the experimental evaluation.

C. Why do we focus on flush based data consistency methods?

Even though cache line flushing is the most commonly used

approach to ensure data consistency in NVM, other alternative

mechanisms can be designed using cache bypassing, write-

through caches or non-temporal stores [31]. To understand the

behavior of these alternatives, we compared the performance

overhead with uncacheable (UC) and write-through (WT) [21]

memory against different cache line flush based data consis-

tency methods. We used a set of micro-benchmarks (Table

 0.1

 1

 10

 100

BST CUH QUE RBT

S
lo

w
do

w
n

(X
 ti

m
es

 n
of

lu
sh

)

Micro-benchmarks

clflush
clflushopt
clwb
uc
wt

Fig. 4: Performance overhead of data consistency methods. Y-

axis values are slowdown with respect to not using any data

consistency method (lower the better).

I), with LLC thrashing working set size, on an Intel x86-64

system with configuration mentioned in Table IV.

We have used Page Attribute Table (PAT) of x86-64 systems

to set the memory type as UC or WT. We augmented the

mmap system call in the Linux kernel (v4.19.13) to introduce

a special flag (MAP_SENSITIVE) to allow the user space

to control the caching behavior. Depending on the value of

the flag passed from the user space, any given virtual address

range is mapped as UC or WT by configuring the page table

entry with appropriate PAT value [21]. Figure 4 shows the

performance overhead of different data consistency methods

normalized to noflush. The performance overheads with UC

and WT is significantly higher (between 5X - 31X) compared

to the cache line flush based data consistency methods. The

results clearly demonstrates the benefits of cache flushing

based techniques and therefore, we focus on studying different

cache line flushing based data consistency methods in this

paper.

IV. EXPERIMENTAL EVALUATION

A. Performance overhead of data consistency methods

In this subsection, we study the performance overhead of

different data consistency methods with x86-64 and Arm64

systems (simulated using Gem5) using the micro-benchmarks

mentioned in Table I. To analyze the performance implication

of working set size with different levels of cache occupancy,

we varied the working set size by configuring the benchmark

parameters as mentioned in Table II.

1) Performance with x86-64: Figure 5 shows the perfor-

mance slowdown of different micro-benchmarks with different

data consistency methods. The slowdown is the ratio of

completion time with different data consistency methods and

noflush (i.e., not using any data consistency method). We

can observe that clflush and clflushopt resulted in

similar slowdown across all working set sizes with all work-

loads. This is primarily due to the inevitable requirement of

ordering the flushes to ensure NVM consistency which negates

176

 0

 1

 2

 3

BST BST_PCUH QUE RBT

Tiny

clflush
clflushopt
clwb

BST BST_PCUH QUE RBT

Small

 0

 1

 2

 3

BST BST_PCUH QUE RBT

S
lo

w
do

w
n

(X
 ti

m
es

 n
of

lu
sh

)

Medium
BST BST_PCUH QUE RBT

Large

Fig. 5: Performance slowdown with different data consistency

methods in x86-64 systems. Y-axis values are slowdown

normalized to noflush (lower the better)

the optimizations (i.e., concurrency of flush operations) pro-

vided by clflushopt (Refer Section II for details). With

clwb, the performance overheads are lower (by 1X-1.3X)

compared to both clflush and clflushopt depending

on the benchmark and working set size. The performance

overheads of different flush methods vary between (1X-2.5X)

compared to noflush, where QUE benchmark resulted in

the highest performance overhead for all working set sizes

and CUH has the lowest for all working set sizes.

For QUE micro-benchmark, with clflush and

clflushopt, each insert results in two additional cache

misses—(i) cache miss while updating the next pointer of

the previously inserted element and (ii) cache miss while

updating tail pointer. The delete operation also results in

additional cache misses while updating the head pointer.

By taking large working set size as an example, we can

see the impact on the cache miss at L1-D for QUE with

clflush and clflushopt compared to other benchmarks

(Table V). QUE also resulted in highest MPKI2 (based on

demand misses for CPU data) at LLC for clflush and

clflushopt as shown in Table V. It is interesting to

note that, QUE with clwb resulted in significant slowdown

(Figure 5) even though the MPKI at LLC was lower compared

to other techniques (Table V). This can be explained by

analyzing the delay in committing the reorder buffer (ROB)

head. The total number of times ROB commit has to stall

due to non-speculative instruction reaching head of the ROB

is high for clwb and all other data consistency methods in

comparison with noflush as shown in Table V. Therefore,

the presence of memory fences to order flushes contributes

significantly towards the overall performance overhead.

The highest number of commit stalls at ROB head is for

clflush and decreases by 33% to 50% with clflushopt
or clwb for all micro-benchmarks except for BST P. BST P

experiences high number of commit stalls at the ROB head

even with noflush due to usage of locks.

2misses per kilo instruction

TABLE V: Cache miss and ROB stall behavior with

large working set

Methods BST CUH QUE
LLC MPKI

noflush 1.74 1.68 5.23
clflush 1.79 1.68 20.42
clflushopt 1.79 1.67 19.27
clwb 1.69 1.66 0.69

L1-D miss rate
noflush 6.23 0.65 2.63
clflush 5.97 0.63 7.89
clflushopt 5.96 0.63 7.55
clwb 6.03 0.63 3.11

#commit stalls at ROB
noflush 6 34 6
clflush 798,423 3,348,775 536,286
clflushopt 532,284 2,232,528 270,146
clwb 532,284 2,232,528 270,146

The minimum performance overhead of CUH with different

data consistency methods can be correlated with its similar

miss rates at L1-D and similar MPKI values at LLC (Table

V). The similar cache miss behavior can be attributed to the

number of keys becoming “nestless” during inserts, which

remains same across all techniques. The L1-D miss rate and

LLC MPKI indicates that, CUH benchmark do not exhibit high

temporal locality, and therefore, the performance impacts due

to cache line flushing is negligible.

We observed a decrease in slowdown (with all flush meth-

ods) between medium and large working set sizes as shown

in Figure 5. Increase in time taken for noflush can result

in comparatively lower slowdown because we calculate the

slowdown in a relative manner (w.r.t. the noflush perfor-

mance). As the medium working set benchmark fits into the

LLC while large working set does not, noflush resulted in

better performance with medium working set by maximizing

the benefits of temporal locality of memory accesses. There-

fore, there is a decrease in the relative slowdown with large

working set size compared to that of medium working set

size. We can confirm the change in noflush performance

under medium and large working set sizes by comparing the

MPKI at LLC with noflush and clflush methods by

taking BST benchmark as an example. The MPKI values at

LLC for medium working set size were—0.22 for noflush,

1.04 for clflush, 1.04 for clflushopt and 0.22 for

clwb (not shown in Table). The MPKI at LLC for clflush
compared to noflush is 3.7X and 0.02X for medium and

large working sets, respectively, resulting in higher relative

performance overhead for medium working set.
2) Performance with Arm64: We characterized the perfor-

mance of different benchmarks (Table I) with civac and

cvac consistency primitives for ARM (Refer Section II for

details). We observed that cvac performed better and resulted

in lower slowdown compared to civac across all micro-

benchmarks and working set sizes. We can functionally equate

cvac with clwb as both of these mechanisms retain cache

line in a clean state and shows same performance trend across

different working set sizes. Like in the case of x86-64, QUE

benchmark resulted in the highest performance overhead for

177

 0

 1

 2

 3

BST BST_P CUH QUE RBT

Tiny

civac
cvac

BST BST_P CUH QUE RBT

Small

 0

 1

 2

 3

BST BST_P CUH QUE RBT

S
lo

w
do

w
n

(X
 ti

m
es

 n
of

lu
sh

)

Medium
BST BST_P CUH QUE RBT

Large

Fig. 6: Performance slowdown with different data consistency

methods in Arm64 systems. Y-axis values are slowdown

normalized to noflush (lower the better)

TABLE VI: Influence of read-to-write ratio on

performance slowdown

Benchmark read-light read-balanced read-heavy
civac

BST 1.67 1.78 1.89
BST P 1.54 1.64 1.97
QUE 2.47 2.34 2.22
RBT 1.66 1.71 1.82

cvac
BST 1.53 1.63 1.83
BST P 1.45 1.48 1.88
QUE 2.08 1.98 1.88
RBT 1.48 1.51 1.61

all working set sizes and CUH has the lowest for all working

set sizes. We observed that the performance overhead of QUE

is associated with the cost of ordering clean operations because

MPKI at LLC for QUE is lower for cvac than for noflush
and total number of times commit has to stall is higher for

cvac than noflush due to usage of memory fence to order

writes to NVM.

To study the impact of application memory access behavior,

we performed an experiment where the ratio between read and

write operations is used as a parameter. For this experiment,

we used three variants for each benchmark—(i) read-light with

read:write ratio as 10:90 (ii) read-balanced with read:write

ratio as 50:50 and (iii) read-heavy with read:write ratio as

90:10. Note that, the write operations comprise of both insert

and delete operations. All benchmarks with different working

set sizes resulted in similar slowdown across the three variants

(i.e., read-heavy, read-balance and read-light) except for the

medium working set (shown in Table VI). With increase in

percentage of read operations, the performance overhead in-

creased for all benchmarks except for QUE. With read-heavy,

BST P resulted in 1.27X performance degradation compared

to read-light. Interestingly, QUE resulted in comparatively less

overheads with increasing number of read operations—with

read-heavy, QUE resulted in �10% less overhead compared

to read-light; the L1-D miss rate is reduced by �5% with

read-heavy as compared with read-light for QUE.

 0.9

 1

 1.1

 1.2

Dat
a-

on
ly

M
et

a-
on

ly

Hyb
rid

S
lo

w
do

w
n

(X
 ti

m
es

 v
an

ill
a)

Redo Log

clflush
clflushopt
clwb

Dat
a-

on
ly

M
et

a-
on

ly

Hyb
rid

Undo Log

(a) Log Heavy (No Logging:Logging ratio 10:90)

 0.9

 1

 1.1

 1.2

Dat
a-

on
ly

M
et

a-
on

ly

Hyb
rid

S
lo

w
do

w
n

(X
 ti

m
es

 v
an

ill
a)

Redo Log
Dat

a-
on

ly

M
et

a-
on

ly

Hyb
rid

Undo Log

(b) Log Medium (No Logging:Logging ratio 50:50)

 0.9

 1

 1.1

 1.2

Dat
a-

on
ly

M
et

a-
on

ly

Hyb
rid

S
lo

w
do

w
n

(X
 ti

m
es

 v
an

ill
a)

Redo Log
Dat

a-
on

ly

M
et

a-
on

ly

Hyb
rid

Undo Log

(c) Log Light (No Logging:Logging ratio 90:10)

Fig. 7: Influence of data consistency methods based on nature

of update operations for different logging requirements in x86-

64. Y-axis values are speedup w.r.t. vanilla case of no logging

(lower the better).

B. Influence on Redo and Undo Logging

1) Performance with x86-64: We studied the performance

overhead of redo and undo logging with different data con-

sistency methods used to ensure consistency of the LRU

benchmark (Section III-B). The characterization uses nature

of modifications (Data-only, Meta-only, Hybrid) and logging

requirements (Log Heavy, Log Medium, Log Light) as pa-

rameters for a transaction with total 1000 operations. In the

LRU benchmark, Data-only corresponds to a write access

operation to an object in the LRU list where both the LRU

structure and object data are modified. Meta-only refers to a

read operation to an object in the LRU list where the LRU

structure is modified. Hybrid comprises of 75% of Data-only
and 25% of Meta-only accesses. The logging requirement

denotes the percentage of total operations requiring logging.

For example, Log-Heavy requires logging for 90% of total

operations performed in the LRU benchmark. All operations

178

TABLE VII: x86-64: L1-D cache miss and

replacements with logging

Methods Data-only Meta-only Hybrid
L1-D miss rate with logging

Log Heavy
vanilla 20.46 20.43 20.27
redo 18.44 18.52 17.76
undo 20.23 20.27 20.17

Log Medium
vanilla 15.60 15.59 15.51
redo 14.65 14.81 14.58
undo 14.75 15.55 14.41

Log Light
vanilla 11.27 11.33 11.26
redo 11.08 11.20 11.19
undo 10.59 11.28 11.16

% of change in L1-D replacements with redo
Log Heavy <0.1% ↓ <0.1% ↓ 21.89% ↑
Log Medium <0.4% ↑ <0.4% ↑ 12.62% ↑
Log Light <0.3% ↑ <0.3% ↑ 3.18% ↑

↑ increase ↓ decrease w.r.t. vanilla

are performed under a single transaction demarcated between

tx begin and tx end.

We observed that, using undo log caused slight performance

slowdown for all modification categories and all types of log-

ging requirements whereas, the redo log performed better for

all modification categories except for Hybrid (Figure 7). With

redo log, clwb performed marginally better than clflush
and clflushopt. We also observed that, clflush or

clflushopt performs better than clwb for some cases with

undo log which suggests that clwb is not always the best.

The benefit of using redo log can be explained by analyzing

the reduction of L1-D cache miss rate (TableVII) for redo

with clwb. We also noticed that L1-D cache write-backs are

reduced (between 31% to 5%) in comparison with vanilla
while using redo with clwb (because of log access locality).

One possible reason for comparatively higher performance

slowdown for Hybrid with redo logging can be the L1-

D cache pollution since L1-D replacements are increased

with Hybrid as shown in Table VII for clwb with respect

to vanilla. This cache pollution may be created by the

hardware prefetcher at L1-D since we noticed a 37% increase

in the number of prefetch requests issued for Hybrid compared

to vanilla.

2) Performance with Arm64: We repeated the logging ex-

periments (with same workload scenario as in Section IV-B1)

for ARM using the Gem5 simulator. We observed that both

redo and undo logging resulted in slowdown with all types

of LRU access patterns and logging requirements as shown in

Figure 8. Similar to the previous experiment, the slowdown

shown in the figure is normalized to vanilla. Cvac per-

formed better than civac with redo as cvac is functionally

equivalent to clwb. Further, cvac also performed better with

undo for most of the cases, especially with medium logging

requirement.

The benefit of cvac with redo logging can be correlated

with better cache performance since we observed lower L1-

D miss rate while using redo with cvac in comparison to

 0.9

 1

 1.1

 1.2

Dat
a-

on
ly

M
et

a-
on

ly

Hyb
rid

S
lo

w
do

w
n

(X
 ti

m
es

 v
an

ill
a)

Redo Log

civac
cvac

Dat
a-

on
ly

M
et

a-
on

ly

Hyb
rid

Undo Log

(a) Log Heavy

 0.9

 1

 1.1

 1.2

Dat
a-

on
ly

M
et

a-
on

ly

Hyb
rid

S
lo

w
do

w
n

(X
 ti

m
es

 v
an

ill
a)

Redo Log
Dat

a-
on

ly

M
et

a-
on

ly

Hyb
rid

Undo Log

(b) Log Medium

 0.9

 1

 1.1

 1.2

Dat
a-

on
ly

M
et

a-
on

ly

Hyb
rid

S
lo

w
do

w
n

(X
 ti

m
es

 v
an

ill
a)

Redo Log
Dat

a-
on

ly

M
et

a-
on

ly

Hyb
rid

Undo Log

(c) Log Light

Fig. 8: Arm64: Influence of data consistency methods based on

nature of update operations for different logging requirements.

Y-axis values are slowdown w.r.t. vanilla case of no logging

(lower the better).

vanilla as shown in Table VIII. Similar to x86-64 setup,

the higher slowdown under Hybrid set of modifications with

redo can be correlated with increase in L1-D replacements

under redo compared to vanilla. We observed an increase in

performance slowdown while using redo for meta-only mod-

ification with light logging requirements; this is because the

completion time of LRU benchmark using redo with cvac for

meta-only modifications increased by 1.18% (Log Medium),

3.4% (Log Light) as compared with data-only modifications,

whereas vanilla case decreased by 1.16% (Log Medium),

1.11% (Log Light) as compared with data-only modifications.

C. Influence on co-running applications

Data consistency operations (flush+fence) may influence the

performance of co-running applications due to the presence

of shared resources such as LLC, internal buffers and inter-

connects. We studied the impact of data consistency methods

179

TABLE VIII: Arm64: L1-D miss rate with logging

using cvac

Methods Data-only Meta-only Hybrid
Log Heavy

vanilla 21.41 21.47 21.39
redo 19.15 18.99 18.43
undo 21.16 21.22 21.12

Log Medium
vanilla 16.64 16.68 16.61
redo 14.58 14.12 15.02
undo 16.57 16.58 16.54

Log Light
vanilla 12.01 12.04 12.04
redo 10.34 9.69 11.42
undo 12.06 12.03 12.03

on the performance of co-running standard applications. We

used a x86-64, 4-core GEM5 setup where core-0 executed

SPEC CPU 2017 [32] and the remaining three cores executed

a mix of different benchmarks selected from the set of

micro-benchmarks (Table I). These micro-benchmarks were

configured with large working set size. The performance of

different SPEC benchmarks co-running with a mixture of

micro-benchmarks was compared with different flush methods

against the case when micro-benchmarks did not use any

flush method. We observed that, among the SPEC benchmarks

selected, except for 544.nab r, there was no significant impact

of the flush operations on the co-running application. There

was a 5% slowdown for nab with clwb compared to the

noflush scenario (because of LLC contention). We conclude

that, the intermittent data consistency operations have neg-

ligible influence on the co-running applications because the

persistent barrier operations do not significantly affect LLC

and memory resource sharing aspects. However, it will be

interesting to study a memory and cache congested scenario

to analyze the extent of the performance implications which

we leave as a future work.

Summary: Performance trends are similar across x86-64 and

Arm64 ISAs. For applications exhibiting temporal locality,

clwb (x86-64) and cvac (Arm64) primitives are compara-

tively better than others (clflush, civac etc.). We also

observed memory barriers required for ordering contribute

significantly to the overall performance overhead.

V. RELATED WORK

Recent research in NVM systems proposed changes at

different layers of the computing stack—system software, lan-

guage runtimes, and application layer data structure design—

to efficiently realize the advantages of NVM. Most of the

proposed techniques use the underlying persistent primitives

to address failure atomicity concerns in NVMs.

Application and runtime systems: Many existing works pro-

posed changes to programming libraries and data structures to

make them suitable for non-volatile memory by incorporating

failure atomicity characteristics. These include memory alloca-

tors [15] [16], programming models [33] [20] and data struc-

ture modifications [12]–[14]. Schwalb et al. have proposed a

user mode memory allocator for NVM with support from the

underlying NVM aware file system [15]. Intel’s PMDK [20]

provides a set of libraries and tools for persistent memory

programming. Similarly, NVthreads [33] and Atlas [9] provide

programming models for multi-threaded NVM programs by

inferring failure atomic section using synchronization points

and tracking changes at OS page granularity. All of the above

frameworks use architectural persistent barriers as the basic

support technique for NVM consistency.

NoveLSM [13] uses mutable persistent memtables (stored

on NVM) and provides optimistic parallel reads to multiple

levels of LSM. NoveLSM uses an extended version of Lev-

elDB to implement persistent memtables which in turn uses

persistent barriers for crash consistency. Similarly, Zuo et al.

[14] have proposed a write optimized hash indexing scheme

for non-volatile memory using cache flushing.

Logging: Logging and versioning based techniques provide

failure atomicity enabling a set of operations to complete

or fail in an atomic manner. Venkataraman et al. [34] used

versioning to enable failure recovery for single level store

based consistent and durable data structures. Software based

redo/undo logging mechanisms cause cache pollution because

of additional memory operations. JUSTDO logging [8] min-

imized log size by each thread storing only the most recent

store instruction executed within the failure atomic section.

After failure, execution resumes at the last store instruction

and executes the failed atomic section to completion. Most

logging and versioning techniques use underlying architectural

persistent barriers in their implementation. Wan Hu, et al.

[25] compared the performance of redo and undo logging in

persistent memory using PMDK. In this paper, we present

a comprehensive comparison across different architectural

alternatives with architectural insights and root-cause analysis.

Hardware and system software: Twizzler [2], an operating

system designed for NVM, uses a data centric approach where

memory objects reside in global object space and pointers

are interpreted based on objects of residence as opposed to

classical virtual addressing techniques. Kannan et al. [17]

extended the OS virtual memory subsystem and exposed NVM

as a memory node. In this scheme, each persistent object

mapped to NVM pages is identified by an object identifier and

logging is used to ensure consistency of OS data structures,

objects and object meta-data.

All software based failure atomic solutions invariably incur

the flush+fence overheads. Joshi et al. [5] have proposed

hardware based undo logging by extending the cache controller

to enforce write ordering. Zhao et al. [35] enabled in-place

update to data structures without logging by ensuring order of

writes to NVM using intelligent cache flush operations at the

hardware level. Another requirement for recovery correctness

after a failure is to reason about the order of writes to persistent

memory. Steven et al. [36] proposed a memory persistence

model to reason about the persist order after a failure. The

authors have equated the order viewed by a recovery observer

as a constraint on the persist order. The persist order can be

relaxed in the same way as memory consistency model for

better performance [37]. We believe, the comparative analysis

180

presented in this paper will be useful in future research striving

for efficient data consistency mechanisms for NVM systems.

VI. CONCLUSION

Application state recovery in a consistent manner with NVM

systems requires data consistency mechanisms supported by

underlying architectural primitives like flush and fence. In

this paper, we empirically analyzed the performance overhead

of data consistency methods on x86-64 and Arm64. The study

shows that the performance overhead of methods depends

upon the nature of workload, proportion of read-to-write

operations and working set size. The study also reaffirms

that the usage of serializations operations such as sfence
to enforce order of writes to NVM contributes significantly

to the performance overhead for all data consistency methods.

We observed that while clwb benefits applications with cache

locality, it may not be always advantageous to use clwb over

clflushopt for better performance. For example, clwb
benefits redo log schemes while clflush or clflushopt
performs better than clwb for some cases with undo log. The

study concludes that, the selection of data consistency methods

should be decided on a case-by-case basis depending on the

workload characteristics.

REFERENCES

[1] (2020) The intel® optane™ persistent memory website. [Online].
Available: https://www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html

[2] D. Bittman, P. Alvaro, P. Mehra, D. D. E. Long, and E. L.
Miller, “Twizzler: a data-centric OS for non-volatile memory,”
in 2020 USENIX Annual Technical Conference (USENIX ATC
20). USENIX Association, 2020, pp. 65–80. [Online]. Available:
https://www.usenix.org/conference/atc20/presentation/bittman

[3] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Dhtm: durable
hardware transactional memory,” in 2018 ACM/IEEE 45th ISCA. IEEE,
2018, pp. 452–465.

[4] R. M. Krishnan, J. Kim, A. Mathew, X. Fu, A. Demeri, C. Min, and
S. Kannan, “Durable transactional memory can scale with timestone,”
in Proceedings of ASPLOS, 2020, pp. 335–349.

[5] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “Atom: Atomic
durability in non-volatile memory through hardware logging,” in 2017
IEEE International Symposium on HPCA. IEEE, 2017, pp. 361–372.

[6] (2020) The persistent memory development kit website. [Online].
Available: https://pmem.io/pmdk/

[7] (2020) Persistent memory programming website. [Online]. Available:
https://pmem.io/book/

[8] J. Izraelevitz, T. Kelly, and A. Kolli, “Failure-atomic persistent memory
updates via justdo logging,” ACM SIGARCH Computer Architecture
News, vol. 44, no. 2, pp. 427–442, 2016.

[9] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging
locks for non-volatile memory consistency,” ACM SIGPLAN Notices,
vol. 49, no. 10, pp. 433–452, 2014.

[10] N. Cohen, D. T. Aksun, H. Avni, and J. R. Larus, “Fine-grain check-
pointing with in-cache-line logging,” in Proceedings of ASPLOS. ACM,
2019, pp. 441–454.

[11] T. Nguyen and D. Wentzlaff, “Picl: A software-transparent, persistent
cache log for nonvolatile main memory,” in 51st Annual IEEE/ACM
MICRO. IEEE, 2018, pp. 507–519.

[12] R. Xiao, D. Feng, Y. Hu, F. Wang, X. Wei, X. Zou, and M. Lei,
“Write-optimized and consistent skiplists for non-volatile memory,”
IEEE Access, 2021.

[13] S. Kannan, N. Bhat, A. Gavrilovska, A. Arpaci-Dusseau, and R. Arpaci-
Dusseau, “Redesigning lsms for nonvolatile memory with novelsm,” in
USENIX Annual Technical Conference, 2018, pp. 993–1005.

[14] P. Zuo, Y. Hua, and J. Wu, “Write-optimized and high-performance
hashing index scheme for persistent memory,” in USENIX OSDI, 2018,
pp. 461–476.

[15] D. Schwalb, T. Berning, M. Faust, M. Dreseler, and H. Plattner, “nvm
malloc: Memory allocation for nvram.” ADMS@ VLDB, vol. 15, pp.
61–72, 2015.

[16] S. Yu, N. Xiao, M. Deng, F. Liu, and W. Chen, “Redesign the memory
allocator for non-volatile main memory,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 13, no. 3, pp. 1–26,
2017.

[17] S. Kannan, A. Gavrilovska, and K. Schwan, “pvm: Persistent virtual
memory for efficient capacity scaling and object storage,” in Proceedings
of the EuroSys, 2016, pp. 1–16.

[18] M. Cai and H. Huang, “A survey of operating system support for
persistent memory,” Frontiers of Computer Science, vol. 15, no. 4, pp.
1–20, 2021.

[19] I. El Hajj, A. Merritt, G. Zellweger, D. Milojicic, R. Achermann,
P. Faraboschi, W.-m. Hwu, T. Roscoe, and K. Schwan, “Spacejmp:
programming with multiple virtual address spaces,” ACM SIGPLAN
Notices, vol. 51, no. 4, pp. 353–368, 2016.

[20] A. Rudoff, “Persistent memory programming,” Login: The Usenix Mag-
azine, vol. 42, pp. 34–40, 2017.

[21] P. Guide, “Intel® 64 and ia-32 architectures software developer’s man-
ual,” Volume 3B: System programming Guide, Part, vol. 2, p. 5, 2011.

[22] (2020) Arm cortex-a series programmer’s
guide for armv8-a website. [Online]. Available:
https://developer.arm.com/documentation/den0024/a/preface

[23] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[24] A. Baldassin, J. a. Barreto, D. Castro, and P. Romano, “Persistent
memory: A survey of programming support and implementations,”
vol. 54, no. 7, 2021.

[25] H. Wan, Y. Lu, Y. Xu, and J. Shu, “Empirical study of redo and
undo logging in persistent memory,” in 2016 5th Non-Volatile Memory
Systems and Applications Symposium (NVMSA). IEEE, 2016, pp. 1–6.

[26] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms,
vol. 51, no. 2, pp. 122–144, 2004.

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

[28] M. Poremba, T. Zhang, and Y. Xie, “Nvmain 2.0: A user-friendly
memory simulator to model (non-) volatile memory systems,” IEEE
Computer Architecture Letters, vol. 14, no. 2, pp. 140–143, 2015.

[29] S. Song, A. Das, O. Mutlu, and N. Kandasamy, “Improving phase change
memory performance with data content aware access,” arXiv preprint
arXiv:2005.04753, 2020.

[30] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharad-
waj et al., “The gem5 simulator: Version 20.0+,” arXiv preprint
arXiv:2007.03152, 2020.

[31] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm, “Implications of
cpu caching on byte-addressable non-volatile memory programming,”
Hewlett-Packard, Tech. Rep. HPL-2012-236, 2012.

[32] J. Bucek, K.-D. Lange, and J. v. Kistowski, “Spec cpu2017: Next-
generation compute benchmark,” in Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, ser. ICPE ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
41–42.

[33] T. C.-H. Hsu, H. Brügner, I. Roy, K. Keeton, and P. Eugster, “Nvthreads:
Practical persistence for multi-threaded applications,” in Proceedings of
EuroSys, 2017, pp. 468–482.

[34] S. Venkataraman, N. Tolia, P. Ranganathan, R. H. Campbell et al.,
“Consistent and durable data structures for non-volatile byte-addressable
memory.” in FAST, vol. 11, 2011, pp. 61–75.

[35] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: Closing the
performance gap between systems with and without persistence support,”
in 46th Annual IEEE/ACM MICRO, 2013, pp. 421–432.

[36] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” in ACM
SIGARCH Computer Architecture News, vol. 42, no. 3. IEEE Press,
2014, pp. 265–276.

[37] V. Gogte, W. Wang, S. Diestelhorst, P. M. Chen, S. Narayanasamy, and
T. F. Wenisch, “Relaxed persist ordering using strand persistency,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2020, pp. 652–665.

181

