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Synopsis

Single source reachability, shortest paths, strong connectivity, etc. are some of the most funda-

mental problems in graph algorithms. In the static setting each of these problems can be solved in

Θ(n + m) time, where n and m are respectively the number of vertices and edges in the graph.

However, most of the applications in real life deal with graphs which are prone to failures. These

failures are both small in number and transient in nature. This aspect is generally captured by

associating a parameter k with the network such that there are at most k vertices (or edges) that

are failed at any stage. Here k is much smaller than the number of vertices in the underlying graph.

Our main goal is to compute data structures that can achieve robustness by being functional even

after the occurrence of failures. The three main objectives studied in this scenario are: (i) comput-

ing a compact data structure (oracle) that can quickly answer any query for a given problem (e.g.

distance, connectivity) on occurrence of any k failures, (ii) designing a compact labeling scheme

and routing scheme in network avoiding the failed nodes/edges, and (iii) computing a sparse sub-

graph that preserves a certain property (e.g. shortest path, connectedness, etc.) of the graph even

after failures have occurred. In this thesis, we address one or more of these objectives for some of

the fundamental problems in the fault tolerant model for directed graphs.

We first consider the problem of computing a sparse subgraph that preserves the reachability

from a designated source even after the failure of any k edges or vertices. We settle this prob-

lem for any k > 1, by showing an upper bound of 2kn. We also show that this bound is tight

by proving a lower bound of Ω(2kn). For the problem of dominators, we present an alternative

construction that uses O(m log n) time and space. Next, we obtain a fault tolerant oracle for an-

swering reachability queries from a designated source on failure of any two vertices in constant

time. For the strong connectivity problem, we obtain an oracle that after any k failures can re-

port all the strongly connected components of the remaining graph in O(2kn log2 n) time. Our
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reporting time is optimal (up to logarithmic factors) for any fixed value of k. We also address

the problem of maintaining (1 + ε)-approximate shortest paths in a directed weighted graph from

a designated source in the presence of a failure of an edge or a vertex. We obtain near optimal

results for an oracle, a subgraph, a labeling scheme, and a routing scheme for this problem. Also

we show that the space used by our oracle and subgraph is optimal up to logarithmic factors by

providing a matching lower bound.
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Chapter 1

Introduction

1.1 Problem Statement

There are many problems in theoretical as well as applied computer science which are modeled in

terms of graphs. Some prominent examples include road networks, internet packet routing, social

networks, traffic scheduling, broadcasting, etc. So it is important to design efficient algorithms

for these graph problems. While we do have efficient algorithms for a lot of graph problems in

static scenario, most of the applications in real life deal with networks that are prone to failures.

Thus it is essential to come up with graph structures/algorithms that do not lose their functionality

on occurrence of failures. This motivates the research on designing fault tolerant structures for

various graph problems. In this thesis we provide fault tolerant structures for some of the important

graph problems like reachability, strong connectivity, and single source approximate shortest path.

Before proceeding to the existing work and our contribution, let us formalize the notion of the

fault tolerant model and briefly discuss our goals in this model.

Fault Tolerant Model A failure prone network is modeled as a graph where vertices (or edges)

may change their status from active to failed, and vice versa. These failures, though unpredictable,

are small in number and are transient due to some simultaneous repair process that is undertaken

in these applications. This aspect is captured by associating a parameter k with the network such

that there are at most k vertices (or edges) that are failed at any stage, where k is much smaller

than the number of vertices in the underlying graph. We assume that the failures are adversarial in
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2 Chapter 1. Introduction

nature, that is, failures occur in an arbitrary order.

Goals in a Fault Tolerant Model Fault tolerance is a broad and rich area, and there can be many

aspects to fault tolerance in a network. For example, increasing robustness of a network by adding

more links(edges), handling network congestion on occurrence of failures, or designing efficient

mechanism of transporting resources to faulty link/node for fast recovery, etc. In this thesis we

study fault tolerance from a different perspective. We focus on the design of graph structure that

preserve their functionality even after the occurrence of failures. The main objectives addressed

in this setting are:

(i) computing a data structure (oracle) that can quickly answer any query for a given problem

(e.g. distance, connectivity, etc.) after the occurrence of the failures,

(ii) designing a compact routing scheme in network avoiding the failed nodes/links,

(iii) designing a compact labeling scheme to quickly answer graph queries in the non-centralized

setting after the occurrence of failures, and

(iv) computing a sparse subgraph that preserves a certain property (e.g. shortest path, connect-

edness, etc.) of the graph after the occurrence of the failures.

We now elaborate on these further by taking examples from the static setting.

Oracle. Consider the problem of answering distance queries on a graph in an on-line fashion.

The simplest solution of this problem is to compute all-pairs shortest path in O(mn log n) time

and store all distances in n×n distance matrix. Using this matrix any distance query can be easily

answered inO(1) time. However, a major drawback of this solution is that most networks are very

large in size, so it is not practical to store the complete n × n matrix. Thorup and Zwick [TZ05]

studied this problem and showed that if we are willing to settle for approximation, then we can

get better results for undirected graphs. For instance, they showed that we can compute a graph

structure of just O(n3/2) size, which can report distances stretched by a factor of at most 3 in

constant time. Such a graph data structure is called an oracle and the objective here is to achieve

both compactness and fast query time.
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When a network is prone to failures, the aim is to compute a data structure that can answer

a given query (which here is reporting approximate distance between pair of vertices), not in the

input graphG but in the graphG\F , where F is the set of failed links/nodes. Such a data structure

that is functional even after failures is commonly referred as fault tolerant oracle.

Routing Scheme. In very large networks (like LAN/Internet) there is no centralized process-

ing system, and nodes communicate with each other by passing messages. In such a scenario, each

node has its own local processor and in order to facilitate communication it has a small routing ta-

ble that decides where a message should be forwarded/sent. Thorup and Zwick [TZ01] considered

the problem of computing a routing scheme that stores at each node a small routing table and is

able to route message from any source node to any destination node over paths stretched by small

factor. They showed that for any parameter t, we can construct a routing scheme where nodes

have a routing table of Õ(n1/t) size and route packets over paths that are stretched by a factor of

at most 2t− 1. The header attached to the packets in this scheme is of o(log2 n)-bits.

In a faulty network, the aim is to design routing protocol that, for any given set F of failures,

is able to route messages between any pair of nodes in graph G \ F efficiently.

Labeling Scheme. For a given graph problem, labeling scheme assigns each vertex u a

small label L(u) such that given any query over some vertices, say v1, . . . , vt, it can be answered

efficiently by only processing the labels L(v1), . . . , L(vt). For answering distance queries in undi-

rected graphs, Alstrup et al. [AGHP16a] designed a labeling scheme with labels of
( log 3

2 n+o(n)
)
-

bits that given the labels of any two vertices reports the distance between them in constant time.

There also exist labeling schemes for problems like LCA, level-ancestor, and distance queries in a

rooted tree with labels of Õ(1)-bits, see [AHL14, AGHP16b, FGNW16].

In a faulty network, the aim is to design a labeling scheme that, given the labels of the query

vertices and the failed nodes/edges, is able to quickly answer the queries associated with a given

problem.

Sparse Subgraph. Let P be any property defined over a graph. A subgraph H = (V,E0),

where E0 ⊆ E, is said to preserve property P if the property P is satisfied by subgraph H if and

Õ() hides the polylogarithmic factors.



4 Chapter 1. Introduction

only if it is satisfied by graph G. There exist interesting results for various fundamental graph

properties, e.g., every k-connected graph has a k-connected subgraph with O(nk) edges [NI92].

When it is not possible to preserve the property exactly, we may have to settle for sparse sub-

graphs which preserve a given property approximately. For example, there exist sparse subgraphs

(spanners) [PS89] that preserve all-pairs shortest paths approximately, there exist subgraphs with

O(n log n) edges that approximates every cut [BK15].

In a failure prone graph our aim is to compute a sparse subgraphH preserving propertyP even

after occurrence of failures. Precisely, for any set F of failures, H \ F should preserve property

P either exactly or approximately with respect to graph G \ F .

In the last decade, many elegant fault tolerant data structures have been designed for various

graph problems such as connectivity [PT07, DP10], shortest paths [BK13, CLPR12, DTCR08],

spanners [BCPS15, CLPR10], etc. We discuss these in detail in the next section.

1.2 Existing Work

We now provide a brief summary of some of the existing work in the area of fault tolerant data

structures for undirected and directed graphs.

1.2.1 Undirected Graphs

(i) Sparse subgraph preserving all-pairs approximate distances (a.k.a. Spanners)

Given an undirected graph G = (V,E), a subgraph H = (V,E′), where E′ ⊆ E, is said to be an

α-spanner ofG if for any u, v ∈ V , distH(u, v) ≤ α·distG(u, v). The notion of spanners was first

introduced by Peleg and Schäffer [PS89] and Peleg and Ullman [PU89a]. Spanners are known to

have applications in routing [PU89b, TZ01], distance oracle [TZ05], distance preservers [BCE05],

etc. There is vast literature on construction of spanners, see [EP04, BS07, BKMP10, Che13b]. It

is known that for every t ≥ 1, there exist spanners of stretch of (2t − 1) which have size at most

O(n1+1/t) [ADD+93]. It is also conjectured that this size-stretch trade-off is tight. In a failure

prone network, it is natural to ask if we can compute a fault tolerant spanner, that is, can we

compute a subgraph H such that for any subset F of k edges and/or vertices, the subgraph H \ F
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is an α-spanner of G \ F .

Chechik et al. [CLPR10] were the first to show the existence of sparse fault tolerant span-

ners for general undirected weighted graphs. For edge failures, they give construction of k-

edge fault tolerant (2t − 1)-spanner of size O(kn1+1/t). For vertex failures, they give construc-

tion of k-vertex fault tolerant (2t − 1)-spanners of size O(k3tk+1n1+1/t log1−1/t n). Dinitz and

Krauthgamer [DK11] showed that for any t ≥ 2, there exists a simple transformation that can

convert a (2t − 1)-spanner construction with at most f(n) edges into a k-vertex fault tolerant

(2t − 1)-spanner construction with at most O
(
k3 log n f(2n/k)

)
edges. Applying this transfor-

mation to the construction given by [ADD+93] leads to a k-vertex fault tolerant (2t− 1)-spanner

with O(k(2−1/t)n1+1/t log n) edges, thereby improving the bound of [CLPR10] for vertex fail-

ures. For the work on fault tolerant additive spanners, see [BCPS15, BGG+15].

Result Stretch Faults Edges/
vertices

Size Graph type

[CLPR10] (2t− 1) k edges O(kn1+1/t) weighted

[CLPR10] (2t− 1) k vertices O(k3tk+1n1+1/t log1−1/t n) weighted

[DK11] (2t− 1) k vertices O(k(2−1/t)n1+1/t log n) weighted

Table 1.1: Sparse fault tolerant multiplicative spanners for undirected graphs.

(ii) Oracle for all-pairs approximate distance queries

For all-pairs approximate distances, Baswana and Khanna [BK13] showed that for any positive

integer t, an unweighted undirected graph can be processed to compute an oracle that can report

(2t − 1)(1 + ε)-approximate distances between any two nodes upon failure of a vertex in O(t)

time. The size of their data structure is O
(
t5n1+1/t(1/ε4) log3 n

)
.

For multiple edge failures in weighted graphs, Chechik et al. [CLPR12] showed that if W is

the ratio of the heaviest and the lightest weight edge in the graph, then we can compute an oracle

of O
(
k · tn1+1/t log(nW )

)
size that after any k failures can report (8t − 2)(k + 1)-stretched

distances in Õ(k log logW ) time. Later Chechik et al. [CCFK17] improved this result to obtain

(1 + ε)-approximation at the expense of bigger data structure, for any arbitrary ε. The size of their

data structure is O
(
kn2 logW (log n/ε)k

)
and the query time is Õ(k5 log logW ).
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Result Stretch Query
Time

Faults Edges/
vertices

Oracle
Size

Graph
Type

[BK13] (2t-1)(1 + ε) O(t) one vertex O
(
t5n1+1/t

(1/ε4) log3 n
) unweighted

[CLPR12] (8t-2)(k + 1)
Õ(k

log logW )
k edges O

(
k · tn1+1/t

log(nW )
) weighted

[CCFK17] (1 + ε)
Õ(k5

log logW )
k edges O

(
kn2 logW

(log n/ε)k
) weighted

Table 1.2: All-pairs approximate distance oracles for undirected graphs.

(iii) Sparse subgraph preserving distances from single source

Parter and Peleg [PP13] addressed the problem of computing a sparse subgraph that preserves the

distances from a designated source s on failure of a single vertex or edge. In particular, they show

that for any given unweighted undirected graph G we can compute a subgraph H with O(n3/2)

edges such that for any vertex v and any failure x, the distance of v from s in the graph H \ {x} is

the same as that inG\{x}. They also showed that this bound is tight. Parter [Par15] extended this

result to dual edge failure by showing an upper bound of O(n5/3). She also proved a matching

lower bound. While the construction for handling single failure is simple, the construction for two

failure is relatively complicated.

Baswana and Khanna [BK13] showed that if one is willing to settle for an approximation

then there is a subgraph with O(n log n + n/ε3) edges that preserves the distances from s up to

a multiplicative stretch of (1 + ε) upon failure of a single vertex. Bilò et al. [BGLP14] showed

that the result of [BK13] can be sparsified to obtain a subgraph of O(n/ε3) edges that preserves

distances up to a stretch of (1+ε) upon an edge failure. For weighted graphs, Bilò et al. [BGLP14]

showed that we can compute a subgraph with O(n log n/ε2) edges that preserves (1 + ε)-shortest

path after failure of an edge as well as a vertex, for any arbitrarily small ε.

In [BGLP16b], Bilò et al. showed that we can compute sparse fault tolerant subgraph that can

handle multiple edge failures. They showed that for any k ≥ 1, we can compute a subgraph of

O(kn) size that after failure of any k edge preserves distance from s up to a multiplicative stretch

of (2k + 1).
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Result Stretch Faults Edges/vertices Size Graph type

[PP13] exact one both O(n3/2) unweighted

[Par15] exact two edge O(n5/3) unweighted

[BK13] (1 + ε) one vertex O(n log n+ n/ε3) unweighted

[BK13] &
[BGLP14]

(1 + ε) one edge O(n/ε3) unweighted

[BGLP14] (1 + ε) one both O(n log n/ε2) weighted

[BGLP16b] (2k + 1) k edges O(kn) weighted

Table 1.3: Sparse subgraphs preserving distances from single source in undirected graphs.

Result Stretch Faults Edges/
vertices

Size Graph type

[PP13] exact one both Ω(n3/2) unweighted

[Par15] exact k edges Ω(n2−1/(k+1)) unweighted

Table 1.4: Lower bounds for sparse subgraphs preserving distances from single source.

(iv) Single source distance oracle

Baswana and Khanna [BK13] showed that an unweighted undirected graph can be preprocessed

to build an oracle of O(n log n + n/ε3) size which for any two vertices v, x, reports in O(1)

time a (1 + ε)-approximate distance from s to v in the graph G \ {x}. For weighted graphs,

they showed construction of an O(n log n) size oracle computable in O(m log n+ n log2 n) time

which can report 3-approximate distance from the source s in O(1) time. For edge failures, Bilò

et al. [BGLP16a] showed that we can construct an oracle of O(n) size which is able to report 2-

approximate distances from the source inO(1) time. They also showed that for any 0 < ε < 1, we

can compute an oracle having size O
(
ε−1n log(1/ε)

)
that can report (1 + ε)-stretched distances

in O
(
ε−1 log n log(1/ε)

)
time.

All the results stated above are for single edge or single vertex failure only. For multiple edge

failures, Bilò et al. [BGLP16b] showed that that we can compute a data structure of O(kn log2 n)

size that after any k edge failures is able to report the (2k + 1)-stretched distance from s in

O(k2 log2 n) time.
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Result Stretch Query
Time

Faults Edges/
vertices

Oracle
Size

Graph
Type

[BK13] (1 + ε) O(1) one vertex O
(
n log n+
n/ε3

) unweighted

[BK13] 3 O(1) one vertex O(n log n) weighted

[BGLP16a] 2 O(1) one edge O(n) weighted

[BGLP16a] (1 + ε) O
( log n

ε
log

1

ε

)
one edge O

(n
ε

log
1

ε

)
weighted

[BGLP16b] (2k + 1) O(k2 log2 n) k edges O(kn log2 n) weighted

Table 1.5: Single source distance oracles for undirected graphs.

(v) Connectivity oracle

In the last decade several researchers studied fault tolerant connectivity in undirected graphs.

Pǎtraşcu and Thorup [PT07] presented a data structure of O(m) size that can handle any k edge

failures in O(k log2 n log log n) time to subsequently answer connectivity queries between any

two vertices in O(log log n) time. For small values of k, Duan and Pettie [DP10] improved the

update time of [PT07] to O(k2 log logn) by presenting a data structure of Õ(m) size.

For handling vertex failures, Duan and Pettie [DP17] showed that there exists a data structure

of O(mk log n) size with O(k3 log3 n) update time and O(k) query time. They also presented

a Monte-Carlo algorithm which has a better update time of O(k2 log5 n) and can answer con-

nectivity queries correctly with high probability in O(k) time. The size of their data structure is

O(m log4 n).

Result Time for handling
k failures

Query
Time

Faults Edges/
vertices

Oracle
Size

[PT07] O(k log2 n log logn) O(log log n) k edges O(m)

[DP10] O(k2 log log n) O(log log n) k edges Õ(m)

[DP17] O(k3 log3 n) O(k) k vertices O(mk log n)

[DP17] O(k2 log5 n) O(k) k vertices O(m log4 n)

Table 1.6: Connectivity oracles for undirected graphs.
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(vi) Fault tolerant all-pairs routing

Recall that for the static case, the best currently known routing scheme for undirected weighted

graphs is due to Thorup and Zwick [TZ01], that stores at each node a routing table of Õ(n1/t) size

and routes packet over paths that are stretched by a factor of at most 2t−1. Chechik et al. [CLPR12]

gave a construction of fault tolerant routing scheme for undirected weighted graphs that for any

two vertices u, v ∈ V and any set F of at most two failed edges, routes the packet from u to v

over a path whose length is at most O(t) times the length of the shortest path in G \ F . The sum

total size of all the routing tables in this scheme is O(tn1+1/t log(nW ) log n). Chechik [Che13a]

later generalized this result to arbitrary k-edge failures. She gave the construction of a routing

scheme that after k failures, could route packets over O
(
t · k2(k + log2 n)

)
-stretched paths. Each

node v in this scheme has a label of O(log(nW ) log n)-bits and a routing table of size at most

O
(
tn1/tdeg(v) log(nW ) log2(n)

)
-bits. The scheme uses O(k log n)-bits header that is attached

to all the packets. For the case of single edge failure, Rajan [Raj12] showed that we can achieve

small stretch as well as small routing table per node. He gave construction of a routing scheme that

had a stretch ofO(t2), header ofO(t log n+log2 n)-bits, and a routing table Õ
(
n1/t+ t ·deg(v)

)
-

bits for any node v.

Result Stretch Faults Edges/
vertices

Size

[CLPR12] O(t) 2 edges Õ(tn1+1/t log(nW ))
overall

[Che13a] O
(
t · k2(k + log2 n)

)
k edges Õ

(
tn1/tdeg(v) log(nW )

)
-bits

per vertex v

[Raj12] O(t2) 1 edge Õ
(
n1/t + t · deg(v)

)
-bits

per vertex v

Table 1.7: All-pairs fault tolerant routing for weighted undirected graphs.

1.2.2 Directed Graphs

(i) All-pairs distance oracle

For the problem of reporting distances between any arbitrary pair of vertices in directed graphs,

Demetrescu et al. [DTCR08] gave a construction of O(n2 log n) size data structure that for any
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u, v ∈ V and any failed edge/vertex x reports the length of the shortest path from u to v avoiding

x in constant time. Duan and Pettie [DP09] extended the result of [DTCR08] to dual failures by

designing a data structure of O(n2 log3 n) space that can answer any distance query upon two

edge/vertex failures in O(log n) time. The authors of [DP09] comment that their techniques do

not seem to be extensible beyond two failures, and even an oracle for three failures seem too hard

to achieve.

Result Stretch Query
Time

Faults Edges/
vertices

Oracle
Size

Graph
Type

[DTCR08] exact O(1) one both O(n2 log n) weighted

[DP09] exact O(log n) two both O(n2 log3 n) weighted

Table 1.8: All-pairs distance oracles for directed graphs.

(ii) Sparse subgraph preserving distances from single source

Parter and Peleg [PP13] showed that for any unweighted directed graphGwith a designated source

vertex s, we can compute a subgraph with O(n3/2) edges that preserves the distances from s after

failure of any single edge or vertex.

Result Faults Edges/vertices Size Graph type

[PP13] one both O(n3/2) unweighted

Table 1.9: Single source distance preserving subgraphs for directed graphs.

(iii) Single source reachability oracle and subgraph

The work on single fault tolerant reachability follows as a by-product of the seminal work of

[LT79] on dominators. Given any directed graph G we can compute a reachability preserving

subgraph H such that subsequent to failure of any edge/vertex x the set of vertices reachable from

source s in graph H \ {x} is the same as in the graph G \ {x}. Moreover, from the concept of

dominator tree presented in [LT79] we can also obtain an O(n) size oracle that for any x, v can

answer in O(1) time if v is reachable from s in G \ {x}.
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Result Problem Faults Edges/vertices Size Graph type

[LT79] sparse
subgraph

one both 2n any

[LT79] reachability
oracle

one both O(n) any

Table 1.10: Single source reachability oracles and subgraphs for directed graphs.

(iv) Oracle for reporting strongly connected components (SCCs)

Georgiadis, Italiano and Parotsidis [GIP17] considered the problem of reporting SCCs of a graph

after failure of a single edge or vertex. They showed that it is possible to preprocessG inO(m+n)

time to obtain an O(n) size data structure that for any failed edge/vertex x computes the SCCs of

the graph G \ {x} in O(n) time. They also presented a construction of an O(n) size oracle that

can answer in O(1) time whether any two given vertices of the graph are strongly connected or

not after the failure of any given single edge or vertex.

1.2.3 Fault Tolerance: Undirected versus Directed Graphs

From the existing work it can be seen that very little research has been done in the area of fault

tolerant data structures for directed graphs. One of the major reasons behind this is that finding

small size subgraphs that preserve distance related properties or computing a compact and efficient

distance oracle is a hard task in directed graphs. This is because many of the standard tools that are

being used in undirected graphs rely on the fact that distances in undirected graphs are symmetric

which is obviously not the case in directed graphs.

In fact, in some cases efficient data structures for directed graphs are not even possible. Graph

spanners are probably the most notable example for a separation between undirected and directed

graphs. For every weighted undirected graph there is a subgraph with O(n1+1/k) edges that ap-

proximates all-pair distances with a multiplicative stretch of 2k − 1 [PS89]. It is very easy to see

that such a general result is not possible for directed graphs since no subgraph can approximate

distances between all pairs in a complete bipartite graph.

In directed graphs, there are some problems, like reachability preserving subgraph, strong

connectivity oracle, etc. for which fault tolerant data structures exist but only for single failure
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[LT79, GIP17]. So it would be interesting to see if these results can be extended to multiple

failures.

There are also problems where efficient data structures exists for undirected graphs but it is

not known if the same is possible for directed graphs. For example, for the problem of approxi-

mate shortest path from a designated source there exist results for handling both single as well as

multiple failures in undirected graphs [BK13, BGLP16a, BGLP16b], but until now no such work

has been carried out for directed graphs.

In a distributed environment, it is important to design a routing scheme that is resilient to fail-

ures in directed graphs. Specifically, the Autonomous System’s link-state database, that is used by

the Open Shortest Path First (OSPF) TCP/IP internet routing protocol, is a directed graph [Moy99].

1.3 Our Contributions

This thesis contributes the following new fault tolerant data structures for directed graphs.

• An alternative O(m log n) time algorithm for computing dominators.

• A compact single source 2-fault tolerant reachability oracle and labeling scheme.

• A sparse subgraph preserving reachability from a single source after k (≥ 1) failures.

• An oracle for reporting SCCs of a directed graph after k (≥ 1) failures.

• A sparse subgraph, an oracle, a labeling scheme, and a routing scheme for (1+ε)-approximate

distances from a single source to handle single failure.

We now elaborate these results. In the first result, we present a simple and alternative algorithm

for computing dominators that takes O(m log n) time. Given a directed graph G and a designated

source s, a vertex x is said to be a dominator of a vertex v if every path from s to v contains x. The

single source 1-fault tolerant reachability is closely related to the notion of dominators. Though

ours is not an optimal algorithm and there exist better results like [LT79, BGK+08], but it is the

first result that does not exploit a DFS tree for computing dominators.

In the next result, we present an optimal solution to the problem of reporting reachability

information from a designated source s under dual vertex failures. We show that it is possible
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to compute in polynomial time an O(n) size data structure that for any query vertex v, and any

pair of failed vertices f1, f2, answers in O(1) time whether or not there exists a path from s to

v in G \ {f1, f2}. We also present a distributed implementation of this oracle (that is, a labeling

scheme).

In our result on sparse reachability preserving subgraph, we show that for every k ≥ 1 there

is a sparse subgraph H of G with at most 2kn edges that preserves the reachability from s after

any k failures. We call H a k-Fault Tolerant Reachability Subgraph (k-FTRS). Formally, H is

said to be a k-FTRS if for any set F of k edges (vertices), a vertex v ∈ V is reachable from s in

G \ F if and only if v is reachable from s in H \ F . Until recently, a sparse FTRS was known to

exist only for single failure, and this result follows from the work of Lengauer and Tarjan [LT79]

on dominators. We also show that the upper bound of 2kn is tight by providing a matching lower

bound.

Using our k-FTRS structure, we obtain an oracle for strong connectedness under multiple

failures. We show that for any directed graph G on n vertices, and any integer k ≥ 1, there is a

data structure that computes in O(2kn log2 n) time all the strongly connected components of the

graph G \ F , for any set F of size at most k. The time taken to report the strongly connected

components is almost optimal since the time for outputting the SCCs of G \ F is at least Ω(n).

For the problem of fault tolerant approximate shortest path, we present various results, namely,

a subgraph, an oracle, a labeling scheme, and a routing scheme for maintaining approximate single

source shortest paths from a designated source s under single failure. We show that for any directed

weighted graph G with edge weights in the range [1,W ], we can compute a subgraph H with

Õ(n log1+ε(nW )) edges such that for any x, v ∈ V , the graphH \x contains a path whose length

is a (1+ε)-approximation of the shortest path from s to v inG\x. Using this subgraph, we present

a single source routing scheme that can route on a (1 + ε)-approximation of the shortest path from

a fixed source s to any destination t in the presence of a fault. We also obtain an efficient oracle

and a compact labeling scheme for reporting (1 + ε)-approximate distances after the occurrence

of the failure.
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1.4 Organization of the Thesis

In Chapter 2, we give the alternate algorithm for computing domintaors. In Chapter 3, we present

the dual fault tolerant reachability oracle and also present a labeling scheme for this problem.

In chapter 4, we give the construction of k-fault tolerant reachability subgraph and also present

a matching lower bound. In Chapter 5, we use our k-FTRS structure to obtain an oracle for

reporting strongly connected components of a graph after any k failures. We turn to the problem

of preserving (1+ε)-approximate distances in Chapter 6, and present our construction for a sparse

subgraph, an oracle, a labeling scheme, and a compact routing scheme.



Chapter 2

An Alternate Algorithm for Computing

Dominators

Dominators are known to have a lot of applications including fault-tolerance. Thus it is important

to design efficient algorithms for computing them.

The single fault tolerant reachability is closely related to the notion of dominators as follows.

Given a directed graph G and a source vertex s, we say that a vertex x dominates a vertex v if

every path from s to v contains x. Lengauer and Tarjan [LT79] introduced a data structure called

dominator tree which is a tree rooted at s such that for any v in G, the set of ancestors of v in the

tree is precisely the set of dominators of v. Thus, for any two vertices x and v in G, v becomes

unreachable from s on failure of x if and only if x is ancestor of v in the dominator tree.

A lot of work has been done on computing dominators in optimal and near-optimal time,

see [LT79, BGK+08, GT12]. However, one thing that is common in all these results is that they

are based on DFS tree and crucially use its properties to efficiently compute dominators. In fact,

the only non-trivial result that could compute dominators without a DFS tree earlier was for di-

rected acyclic graphs (DAGs) [FGMT13]. Thus, it natural to ask - “Can we efficiently compute

dominators in general directed graphs without employing a DFS structure?" In this chapter, we

affirmatively answer this question by providing a near optimal construction for dominators that

works for general graphs.

15
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2.1 Definitions and Notations

Let T be any arbitrary tree of G rooted at s and let P denote a sequence of vertices in G defined

by any pre-order traversal of tree T . For notational convenience, throughout this chapter, a vertex

will also be denoted by its pre-order numbering. Thus, u < v would imply that the pre-order

number of u is less than that of v.

Definition 2.1 (Dominator). A vertex w is said to be a dominator of a vertex v in a directed graph

G with s as designated source if every path from s to v passes through vertex w.

Definition 2.2 (Immediate Dominator). A vertex w is said to be the immediate dominator of v,

denoted by w = IDOM(v), if w is a dominator of v and every dominator of v (other than v itself)

is also a dominator of w.

Definition 2.3. A simple path P = (u0, . . . , ut = v) in G is said to be a detour of v with respect

to T if u0 is an ancestor of v, and for 0 < i < t, none of the ui’s is an ancestor of v in T .

Definition 2.4. A detour to v with respect to T that emanates from the ancestor of v with minimal

pre-order number is called a highest detour of v.

We denote the highest detour of v with HD(v). In case that there is more than one highest

detour we pick one arbitrarily.

The reachability tree T induces a classification of edges of G into four categories. These are

as follows:

1. Tree Edges: Any edge in G that appears in the tree T is called a tree edge.

2. Forward Edges: An edge (u, v) where u is an ancestor of v in T , but not the parent of v is

called a forward edge.

3. Back Edges: An edge (u, v) where u is a descendant of v in T is called a back edge.

4. Cross Edges: All the remaining edges are categorized as cross edges. The endpoints of these

edges do not have any ancestor-descendant relationship in T .
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2.2 DFS Tree versus Arbitrary Tree

Lengauer and Tarjan [LT79] presented an algorithm for computing immediate dominators. As part

of their work they defined semidominators over a DFS tree T . Their definition of semidominators

can be reformulated as follows:

Definition 2.5 (Semidominators in a DFS Tree). Given a DFS tree, the semidominator of v (v 6= s)

is defined to be the highest ancestor of v from which there is a detour to v. We use the notation

SDOM(v) to denote the semidominator of v.

For the case when T is a DFS tree, Lengauer and Tarjan [LT79] gave an O(mα(m,n)) time

algorithm for computing immediate dominators. In order to prove this bound they used a crucial

property of DFS tree which in simple words can be re-stated as follows.

Property 2.1. If (SDOM(v), v) is not an edge inG then we can always find a highest detour HD(v)

for v which can be represented as 〈HD(w) :: PATHT (w, y) :: (y, v)〉, where y is an in-neighbor

of v and w is either equal to y or an ancestor of y.

For the case when T is an arbitrary tree, and not a DFS tree, Property 2.1 no longer holds. A

simple example that illustrates the situation for general trees is shown in Figure 2.1. Thus it is not

immediately clear whether we can compute immediate dominators by starting with an arbitrary

tree. In order to achieve our goal, we define semidominators for arbitrary trees in the next section.

v

b

Figure 2.1: The paths highlighted in yellow and pink colors respectively represent the highest
detours HD(w) and HD(v) for vertices w and v. The detour HD(v) cannot be expressed as
〈HD(w) :: PATHT (w, y) :: (y, v)〉 because HD(w) passes through an ancestor of v.
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2.3 Semidominators with respect to Arbitrary Tree

Given an arbitrary tree T , let D be a detour from a vertex u to a vertex v with minimum number

of non-tree edges. Let (u1, v1) be the first edge in D and let (u2, v2), (u3, v3), . . . , (ut, vt) be the

sequence of non-tree edges in the order they appear in D\(u1, v1). Here u1 = u and vt = v.

Consider the edge (ui, vi), where 1 < i ≤ t. Since the segment of D from vi−1 to ui is a path in

T it follows that ui ∈ T (vi−1). Moreover, vi /∈ T (vi−1) because if vi ∈ T (vi−1) we can replace

the segment of D from vi−1 to vi by PATHT (vi−1, vi), thereby reducing the number of non-tree

edges.

Consider now the sequence - (u, v1, v2, . . . , vt). From the above discussion it follows that ver-

tices in this sequence satisfy the relation that v1 ∈ OUT(u), and for 1 < i ≤ t, vi ∈ OUT(T (vi−1)).

This motivates us to define the notion of a valid sequence as follows.

Definition 2.6 (Valid sequence). A sequence of vertices (u, v1, v2, . . . , vt = v) is said to be a valid

sequence with respect to tree T if the following two conditions hold:

(i) (u, v1) is an edge in G.

(ii) for 1 < i ≤ t, vi ∈ OUT(T (vi−1)).

Let u, v be any two vertices such that u is an ancestor of v in T . It follows from Definition 2.6

that if there exists a detour from u to v in T , then there exists a valid sequence from u to v.

However, the other direction is not always true, that is, a valid sequence from u to v in T may not

correspond to a detour in T . For example, consider the sequence σ = (u, b, w, v) in Figure 2.1.

This is a valid sequence but there is no detour from u to v. The one to one correspondence between

detours and valid sequences holds only when T is a DFS tree.

We will now define semidominator with respect to an arbitrary tree using valid sequence. In

arbitrary trees, it will turn out that if there is a valid sequence from SDOM(v) to v and SDOM(v) 6=

parentT (v), then there are two vertex disjoint paths from SDOM(v) to v.

Definition 2.7 (Semidominators in an Arbitrary Tree). A vertex u is semidominator of v if (i) u

is an ancestor of v, (ii) there is a valid sequence from u to v, and (iii) there is no other vertex on

PATHT (s, u) which has a valid sequence to v.
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The following lemma shows that in the case of a DFS tree, Definition 2.7 degenerates to

Definition 2.5.

Lemma 2.1. Let T ′ be a DFS tree of G, and u, v ∈ T ′ be such that u is an ancestor of v and there

exists a valid sequence from u to v in G. Then there must also exist a detour from u to v.

Proof. Let σ = (u, v1, v2, . . . , vt = v) be a valid sequence from u to v. For i ∈ [2, t], let

ei = (ui, vi) be an edge emanating out from the subtree T ′(vi−1) and terminating to vi. Now

consider the path

D = (u, v1) ::
(

PATHT ′(v1, u2) :: (u2, v2)
)

:: · · · ::
(

PATHT ′(vt−1, ut) :: (ut, vt)
)

We will show that D is a detour from u to v, that is, none of the internal vertices of D lie on

PATHT ′(s, v). Since for i ∈ [2, t], the segment of D from vi−1 to ui is a tree path, it suffices to

show that the vertices - v1, v2, . . . , vt−1 are not an ancestor of v.

Consider the edge (ui, vi) emanating out from the subtree T ′(vi−1), for some i ∈ [2, t]. As

(ui, vi) is either a cross edge or a back edge, it follows from the properties of DFS traversal that

VISIT-TIME(vi) < VISIT-TIME(vi−1) ≤ VISIT-TIME(ui). On applying this inequality recur-

sively, we get that for each i < t, VISIT-TIME(vt) < VISIT-TIME(vi). This shows that none of

the internal vertices of σ can be an ancestor of v, and thus D is a detour from u to v in G.

We now show some of the properties of semidominators defined with respect to any arbitrary

tree.

Lemma 2.2. Let u, v, w ∈ V be three vertices such that v ∈ OUT(T (w)), v /∈ OUT(u), and u is

some common ancestor of v and w. If G contains two vertex disjoint paths from u to w, then it

also contains two vertex disjoint paths from u to v.

Proof. Let us assume towards a contradiction that G does not contain two vertex disjoint paths

from u to v. Then it follows from Menger’s Theorem [Wil86] that there exists a vertex x (other

than u, v) such that every path from u to v inG passes through x. So vertex x lies on PATHT (u, v).

Let P and Q be two vertex disjoint paths from u to w in G (see Figure 2.2). Since w 6= x, at least

one out of these two paths, say Q, does not pass through x. Now 〈Q :: PATHT (w, y) :: (y, v)〉

gives a path from u to v not passing though x. (Though this concatenated path may contain loops,
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but we can remove all these loops). Thus we get a contradiction. So G must contain two vertex

disjoint paths from u to v.

Proof To prove the lemma it suffices to show that u must be an ancestor
of v. Let us assume, towards a contradiction, that u is not an ancestor of v.
Thus, there is a vertex w such that w = lca(u, v), w ̸= v and w ̸= u. Let
(u = v0, v1, v2, . . . , vk = v) be a valid sequence from u to v. Let w1 and w2

be the children of w such that v0 = u ∈ T (w1) and vk = v ∈ T (w2). Let vj

be the first vertex of the sequence that doest not lie in T (w1). If j = 1, then
the in-neighbor v0 of v1 lies in T (w1). If j > 1, then vj has an in-neighbor
say uj that lies in T (vj−1) ⊆ T (w1). Thus, vj ∈ out(T (w1)). The sequence
σ = (w, w1, vj , vj+1, . . . , vk) is also a valid sequence that reaches v, and since
w < u, we get a contradiction. !

5 FTRS for any arbitrary tree

In this section we provide the construction of an optimal size FTRS containing
any given arbitrary tree. Our starting point is the following lemma that will be
used to show that in order to have two vertex disjoint paths from sdom(v) to v,
for each v, we need to keep only one extra incoming edge per vertex.

Lemma 2. Let u, v, w ∈ V be three vertices such that v ∈ out(T (w)), v /∈
out(u), and u is some common ancestor of v and w. Let H be a subgraph of G
containing tree T and an edge (y, v), where y ∈ T (w). If H contains two vertex
disjoint paths from u to w, then H also contains two vertex disjoint paths from
u to v.

Proof Let us assume towards a contradiction that H does not contain two
vertex disjoint paths from u to v. Then it follows from Menger’s Theorem that
there exists a vertex x (other than u, v) such that every path from u to v in H
passes through x, therefore vertex x is on path(u, v). Let P and Q be two vertex
disjoint paths from u to w in H (see Figure 2). Since w ̸= x, at least one out of
these two paths, say Q, does not pass through x. Now ⟨Q :: path(w, y) :: (y, v)⟩
gives a path from u to v not passing though x. (Though this concatenated
path may contain loops, but we can remove all these loops). Thus we get a
contradiction. So H must contain two vertex disjoint paths from u to v. !

u

v
y

wP

Q

Fig. 2. Two vertex disjoint paths P and Q from u to w.
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Figure 2.2: Two vertex disjoint paths P and Q from u to w

Lemma 2.3. Let u, v ∈ V be such that there is no ancestor-descendant relationship between u

and v in tree T . If there exists a valid sequence from u to v in G, then there exists a valid sequence

from LCA(u, v) to v as well.

Proof. Let σ = (u, v1, v2, . . . , vt = v) be a valid sequence from u to v, and u0 be LCA(u, v).

Let y be the child of u0 lying on PATHT (u0, u). Let vj be the first vertex of the sequence σ that

doest not lie in T (y). If j = 1, then the in-neighbor u of v1 lies in T (y). If j > 1, then vj has an

in-neighbor, say uj , that lies in T (vj−1) ⊆ T (y). Thus, vj ∈ OUT(T (y)). Therefore, the sequence

σ = (u0, y, vj , vj+1, . . . , vt) is a valid sequence from LCA(u, v) to v.

The following corollary provides an alternative definition to semidominators. We shall use

these two definitions interchangeably henceforth.

Corollary 2.1. Let u be a vertex with minimum pre-order number such that there exists a valid

sequence from u to v. Then u is an ancestor of v, and therefore a semidominator of v.

The following theorem shows that whenever SDOM(v) 6= parentT (v), then G contains two

vertex disjoint paths from SDOM(v) to v.

Theorem 2.1. Let v ∈ V be such that SDOM(v) 6= parentT (v). Then there exist two vertex

disjoint paths from SDOM(v) to v in G.

Proof. Let σ = (u, v1, v2, . . . , vt = v) be a valid sequence from u = SDOM(v) to v. We fist show

that all the vertices of σ lie in the subtree T (u). Let us assume on the contrary that there exists a
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vertex vj (1 ≤ j ≤ t) that lies outside the subtree T (u). Notice that (parentT (vj), vj , vj+1, . . . , vt)

is also a valid sequence to v. So on applying Lemma 2.3 we get that there exists a valid sequence

from LCA(parentT (vj), v) to v. Since LCA(parentT (vj), v) is an ancestor of u = SDOM(v),

this violates the fact that u is a semidominator of v. Hence we get a contradiction and thus all the

vertices of σ must lie in the subtree T (u).

As all the vertices of σ lies in T (u), from Lemma 2.2 it follows that if there exists two vertex

disjoint paths from s to some vertex vj (j < t), then there will exist two vertex disjoint paths from

s to vj+1 as well. Thus it suffices to show that there exist two vertex disjoint paths from u to v1 or

from u to v2. If (u, v1) is a forward edge, then it is easy to see that the edge (u, v1) and the tree

path PATHT (u, v1) are two vertex disjoint paths from u to v1. Let us now consider the case when

(u, v1) is a tree edge. Let y be an in-neighbor of v2 lying in the subtree T (v1). Then in this case

PATHT (u, v2) and (u, v1)::PATHT (v1, y)::(y, v2) are two vertex disjoint paths from u to v2.

2.4 Algorithm for Computing Semidominators and Valid sequences

In this section, we provide an efficient algorithm for computing the semidominator and a corre-

sponding valid sequence for each v ∈ V \ {s} with respect to a given tree T . Throughout this

section, we use the notation σ(v) to denote a valid sequence from SDOM(v) to v. Our algorithm

iteratively processes the vertices of G in the increasing order of the pre-order numbering P . Let

vi denote the vertex at the ith place in P . During ith iteration, the algorithm computes the set Wi

consisting of all those vertices whose semidominator is vi.

Consider a vertex vi. Let B denote the set of all those vertices w for which there exists a

valid sequence starting from vi and ending at w. The set B can be computed as follows. We

initialize B as the out-neighbors of vi. Next we add OUT(T (w)) to B for each w in B, and

proceed recursively. By the alternative definition of semidominators as in Corollary 2.1 we have

that Wi = B \ (∪j<iWj).

In order to design an efficient implementation of the algorithm outlined above, there are two

requirements. The first requirement is that while computing valid sequences from vi we should

not process those vertices whose semidominator have already been computed. For this purpose,

we keep a flag variable active/inactive corresponding to each vertex w in G. At any instant of
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time the active vertices are those vertices whose semidominator has not yet been computed. The

second requirement is that given any vertex w we should be able to compute the set of active

nodes in OUT(T (w)) efficiently. In order to fulfill these requirements, we use a data structure D

that supports the following two operations efficiently.

1. ACTIVEOUTNGHBRS(D, T (w)): return the set of active nodes in OUT(T (w)).

2. MARKINACTIVE(D, S): mark the vertices in set S as inactive. This is done by simply

deleting from D the incoming edges to all vertices present in set S.

The data structure D is a suitably augmented segment tree formed on an Euler tour of the tree

T . The data structure takes O(deg(A) log n)) time to perform ACTIVEOUTNGHBRS(D, T (w))

operation, where A is the set of vertices reported. It takes O(deg(S) log n) time to perform

MARKINACTIVE(D, S) operation. We provide the complete details of the data structure in Sub-

section 2.4.1.

Algorithm 2.1: Computing semidominator and the corresponding valid sequence

1 Q ← ∅;
2 for i = 1 to n do
3 S ← Set of active vertices lying in OUT(vi);
4 ENQUEUE(Q, S);
5 MARKINACTIVE(D, S);
6 foreach w ∈ S do σ(w) = (vi, w);
7 while (Q 6= ∅) do
8 x← DEQUEUE(Q);
9 SDOM(x)← vi;

10 S ← ACTIVEOUTNGHBRS(D, T (x));
11 ENQUEUE(Q, S);
12 MARKINACTIVE(D, S);
13 foreach w ∈ S do σ(w) = (σ(x), w);
14 end
15 end

Algorithm 2.1 gives the pseudo code for computing semidominators. It maintains a queue Q

throughout the run of algorithm. The semidominator of the vertices is computed in the order they

are enqueued. Initially all the vertices in G except root are marked as active. A vertex is marked

inactive as soon as it is enqueued in Q. In the ith iteration the algorithm computes the set of all

those vertices whose semidominator is vi as follows. First it computes the set S of all the active
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out-neighbors of vi. This set is enqueued and for each w ∈ S, σ(w) is set as (vi, w). Next while

Q is non empty, it removes the first vertex say x from Q. For each active node w in OUT(T (x)),

σ(w) is assigned as (σ(x), w) and w is enqueued in Q. This process is repeated until Q becomes

empty. Vertex vi is assigned as semidominator of all the vertices enqueued in the ith iteration.

Figure 2.3 illustrates the execution of our algorithm. Figure 2.3(a) depicts the first iteration

which is supposed to compute W1. The vertices that are enqueued before the while loop are

〈2, 14〉. The execution of the while loop will place vertices 15 and 16 into the queue in this order.

It can be visually inspected that these vertices constitute W1. Similarly Figure 2.3(b) depicts the

second iteration that is supposed to compute W2. The vertices that are enqueued before entering

the while loop are 〈3, 7, 12〉. The execution of the while loop will place vertices 5, 10, 4, 8, 11 into

the queue in this order. It can be visually inspected that these vertices constitute W2.

Algorithm 2: Computing semidominator and the corresponding valid se-
quence

1 Q← ∅;
2 for i = 1 to n do
3 S ← Set of active vertices lying in out(vi);
4 Enqueue(Q, S);
5 MarkInActive(D, S);
6 foreach w ∈ S do σ(w) = (vi, w);
7 while (Q ̸= ∅) do
8 x← Dequeue(Q);
9 sdom(x)← vi;

10 S ← ActiveOutNghbrs(D, T (x));
11 Enqueue(Q, S);
12 MarkInActive(D, S);
13 foreach w ∈ S do σ(w) = (σ(x),w);

14 end

15 end
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Fig. 3. The filled vertices in Figure (a) and (b) respectively constitute the sets W1 and
W2. Figure (b) shows that all the vertices in W1 are marked inactive in round 2.

For each vertex u, let σ(u) denote a valid sequence from sdom(u) to u of
minimum possible length. Let L be the list of vertices in G arranged in the
non-decreasing order of |σ(u)|. Then it can be proved by induction on L that
Algorithm 2 correctly computes (i) semidominator of u, and (ii) a minimum
length valid sequence from sdom(u) to u, for each vertex u in G.

We now analyze the time complexity of Algorithm 2. The total time taken
by Step 3 in the algorithm is O(m). The time taken by steps 5, 10, and 12 is
O(log n) times the sum of degrees of vertices enqueued in Q. Since each vertex
is enqueued at most once, the running time of the algorithm is O(m log n).

Theorem 2. There exists an O(m log n) time algorithm that for any given graph
with n vertices and m edges, and any given reachability tree T , computes the
semidominator and a minimum length valid sequence for each vertex in G.
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Figure 2.3: The filled vertices in Figure (a) and (b) respectively constitute the sets W1 and W2.
Figure (b) shows that all the vertices in W1 are marked inactive in round 2.

We now analyze the time complexity of Algorithm 2.1. The total time taken by Step 3 in the

algorithm is O(m). The time taken by steps 5, 10, and 12 is O(log n) times the sum of degrees

of vertices enqueued in Q. Since each vertex is enqueued at most once, the running time of the

algorithm is O(m log n).

Theorem 2.2. There exists an O(m log n) time algorithm that for any given graph with n vertices

and m edges, and any given reachability tree T rooted at source, computes the semidominator

and a minimum length valid sequence for each vertex in G.
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2.4.1 Data Structure

Let T be a segment tree [Ben77] whose leaf nodes from left to right correspond to the sequence

〈v1, ..., vn〉 (see Figure 2.4). Our data structure will be T whose nodes are suitably augmented as

follows. Let (u, v) be an edge in G. We store a copy of the edge as the ordered pair (u, v) at all

ancestors of u (including itself) in tree T . Thus each edge in G is stored at O(log n) levels in T .

Let E(b) be the collection of edges stored at any node b in T . We keep the set E(b) sorted by the

second endpoint of the edges in a doubly link list. For each edge (u, v) ∈ E, we also store pointer

to all log n copies of it in T . The size of the data structure is O(m log n) in the beginning.

From Theorems 1 and 2, we directly get the following result.

Theorem 3. There exists an O(m log n) time algorithm that for any given graph
G with n vertices and m edges, and any given reachability tree T rooted at source,
computes an optimal set E such that T ∪ E is an FTRS for G.

6.1 Data structure

Let T be a segment tree [2] whose leaf nodes from left to right correspond to the
sequence ⟨v1, ..., vn⟩ (see Figure 4). Our data structure will be T whose nodes
are suitably augmented as follows. Let (u, v) be an edge in G. We store a copy
of the edge as the ordered pair (u, v) at all ancestors of u (including itself) in
tree T . Thus each edge in G is stored at O(log n) levels in T . Let E(b) be the
collection of edges stored at any node b in T . We keep the set E(b) sorted by the
second endpoint of the edges in a doubly link list. For each edge (u, v) ∈ E, we
also store pointer to all log n copies of it in T . The size of the data structure is
O(m log n) in the beginning.

1

Tree T
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6 7

8

Segment tree T
1 2 3 4 5 6 7 8

(5,2) (6,3) (5,6) (5,7) (6,7) (5,8)

∅

1 2 3 4 5 6 7 8

w z
← Vertices of T

Fig. 4. Data Structure.

The operation MarkInActive(D, S) involves deletion of incoming edges to
all the vertices in set S. Since we store pointers to all log n copies of an edge, a
single edge can be deleted from the data structure in O(log n) time. So the time
taken by this operation is O(deg(S) log n).

We now show that D can perform the operation ActiveOutNghbrs(D, T (w))
quite efficiently. Let S0 be the set of active nodes in out(T (w)). Note that the
preorder numbering of the vertices in T (w) will be a contiguous subsequence of
[1, .., n], and w would be the vertex of minimum preorder number in T (w). Let
z be the vertex with maximum preorder number in subtree T (w) (This informa-
tion can be precomputed in total O(n) time for all vertices in the beginning).
So [w, .., z] denotes the set of vertices in T (w).

Notice that any contiguous subsequence of [1, .., n] can be expressed as dis-
joint union of at most log n subrees in T . Let τ1, ..., τℓ denote these subrees for
the subsequence [w, .., z]. For i = 1 to ℓ, let Ei denote the set of all those edges
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Figure 2.4: Data structure

The operation MARKINACTIVE(D, S) involves deletion of incoming edges to all the vertices

in set S. Since we store pointers to all log n copies of an edge, a single edge can be deleted from

the data structure in O(log n) time. So the time taken by this operation is O(deg(S) log n).

We now show that D can perform the operation ACTIVEOUTNGHBRS(D, T (w)) quite effi-

ciently. Let S0 be the set of active nodes in OUT(T (w)). Note that the pre-order numbering of the

vertices in T (w) will be a contiguous subsequence of [1, .., n], and w would be the vertex of min-

imum pre-order number in T (w). Let z be the vertex with maximum pre-order number in subtree

T (w) (This information can be precomputed in total O(n) time for all vertices in the beginning).

So [w, .., z] denotes the set of vertices in T (w).

Notice that any contiguous subsequence of [1, .., n] can be expressed as disjoint union of at

most log n subtrees in T . Let τ1, ..., τ` denote these subtrees for the subsequence [w, .., z]. For

i = 1 to `, let Ei denote the set of all those edges (x, y) such that x is a leaf node of τi and y lies

outside the set [w, .., z]. It can be observed that the desired set S0 corresponds to the set of second-

endpoints of all edges in the set ∪`i=1Ei. Let b1, ..., b` respectively denote the roots of subtrees
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τ1, ..., τ` in T . Then set Ei can be computed by scanning the list E(bi) from beginning (and

respectively end) till we encounter an edge (u, v) with v lying in range [w, .., z]. (See Figure 2.4).

Thus the time taken by the operation ACTIVEOUTNGHBRS(D, T (w)) is bounded byO(deg(S0)+

log n), where S0 is the set of vertices reported.

This data structure can be preprocessed in O(m log n) time as follows. First we compute set

E(b) for each leaf node b of T . This takes O(m) time. Now E(b) for an internal node b can be

computed by simply merging the lists E(b1), E(b2) where b1 and b2 are children of b. The space

complexity of D is also O(m log n).

Theorem 2.3. Given a graph G, it can be preprocessed in O(m log n) time to build a data struc-

ture of size O(m log n) to perform the following operations.

1. ACTIVEOUTNGHBRS(D, T (w)): return the set of active nodes in OUT(T (w)).

2. MARKINACTIVE(D, S): mark the vertices in set S as inactive.

The time taken by both of the above operations is O(deg(S) log n) where S is the set of vertices

reported in the first case, and S is the set of vertices marked inactive in the second case.

2.5 Computation of Dominators from Semidominators

In order to find the dominators of the vertices ofG it suffices to compute IDOM(v) for each v ∈ V .

Our algorithm for computing immediate dominators from semidominators is almost the same as

for the restricted case when T is a DFS tree. For the sake of completeness, we now provide this

algorithm. The starting point is the concept of relative dominators defined as follows.

Definition 2.8 ([BGK+08]). A vertex w is said to be a relative dominator of v, denoted by w =

rdom(v), if w is a descendant of SDOM(v) on PATHT (SDOM(v), v) for which SDOM(w) has the

minimum pre-order numbering.

The following relationship between relative dominators, immediate dominators, and semidom-

inators was shown by Buchbaum et al. [BGK+08] for DFS tree. We show that this relation holds

for any arbitrary tree as well.
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Lemma 2.4. Letw be any relative dominator of v. Ifw = v, then IDOM(v) = SDOM(v), otherwise

IDOM(v) = IDOM(w).

Proof. We first consider the case when w = v. In order to prove that SDOM(v) = IDOM(v),

we need to show that (i) SDOM(v) is a dominator of v, and (ii) none of the internal vertices of

PATHT (SDOM(v), v) is a dominator of v. Let us assume on the contrary that there is a path from

s to v in G\{SDOM(v)}. Then there must exist a detour D starting from an ancestor, say a, of

SDOM(v) and terminating to a descendant, say b, of SDOM(v) belonging to PATHT (SDOM(v), v).

Since existence of detour D implies a valid sequence from a to b, it follows that SDOM(b) ∈

PATHT (s, a). This contradicts the fact that w is a relative dominator of v. Hence v is unreachable

from s in G\{SDOM(v)}. Thus in this case SDOM(v) is a dominator of v. Next let us assume

on the contrary that an internal vertex on PATHT (SDOM(v), v), say x, is a dominator of v. Then,

SDOM(v) cannot be parent of v, and so Theorem 2.1 implies there exist two vertex disjoint paths

from SDOM(v) to v. But this contradicts the existence of vertex x, and thus SDOM(v) must be the

immediate dominator of v.

We now consider the case w 6= v. Let u be the immediate dominator of w. Again, in order to

prove that u = IDOM(v), we need to show that (i) u is a dominator of v, and (ii) none of the internal

vertices of PATHT (u, v) is a dominator of v. Let us assume on the contrary that there is a path from

s to v in G\{u}. Since in the graph G\{u}, w is unreachable from s, there must exist a detour

D starting from an ancestor, say a, of u and terminating to a descendant, say b, of w belonging

to PATHT (w, v). As existence of detour D implies a valid sequence from a to b, it follows that

SDOM(b) ∈ PATHT (s, a). Since a is an ancestor of u, this contradicts the fact that w is a relative

dominator of v. Hence v is unreachable from s in G\{u}. Thus in this case u is a dominator of v.

Next let us assume on the contrary that an internal vertex on PATHT (u, v), say x, is a dominator

of v. Since w is an internal vertex of PATHT (SDOM(v), v), so SDOM(v) 6= parentT (v), and thus

Theorem 2.1 implies that there exist two vertex disjoint paths from SDOM(v) to v. This shows that

x must lie on PATHT (u, SDOM(v)). But there must exist a path from s to w in G\{x}, say P , as x

is not a dominator of v. So P ::PATHT (w, v) gives a path from s to v in G\{x}. This contradicts

the existence of x, and thus u must be the immediate dominator of v.

Lemma 2.4 suggests that once we have computed relative dominators, the immediate domina-
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tors can be computed in O(n) time by processing the vertices of T in a top down manner. The

task of computing relative dominators can be formulated as a data structure problem on a rooted

tree as follows.

Each tree edge (u, y) is assigned a weight equal to SDOM(y). It can be seen that if (a,w) is

minimum weight edge on PATHT (SDOM(v), v), then w is a relative dominator of v. So in order

to compute relative dominators, all we need is to compute the least weight edge on any given path

of tree T . This problem turns out to be an instance of Bottleneck Edge Query (BEQ) problem on

trees with integral weights. Demaine et al. [DLW14] recently presented the following optimal

solution for this problem.

Theorem 2.4 (Demaine et al. [DLW14]). A tree on n vertices and edge weights in the range

[0, n3] can be preprocessed in O(n) time to build a data structure of O(n) size so that given any

u, v ∈ V , the edge of smallest weight on PATHT (u, v) can be reported in O(1) time.

We process tree T in a top down order to compute IDOM(v) as follows. We first compute

rdom(v) in O(1) time by performing BEQ query between v and SDOM(v). Using the data struc-

ture stated in Theorem 2.4, it takes O(1) time. Let w = rdom(v). If w = v, then we set

IDOM(v) ← SDOM(v). Otherwise, we set IDOM(v) ← IDOM(w). Since we process the vertices

in a top down fashion, IDOM(w) has already been computed. Hence it takesO(1) time to compute

IDOM(v). So it can be concluded that we can compute immediate dominators of all vertices in

O(n) time only if we know semidominators of all vertices.





Chapter 3

Dual Fault Tolerant Reachability Oracle

In this chapter, we address the problem of building efficient data structures for answering reach-

ability queries from a designated source upon more than one vertex failures. Till now efficient

fault tolerant reachability data structures existed only for a single failure using the dominator tree

[LT79]. Through a dominator tree one gets an O(n) space data structure that can answer reach-

ability queries after any single failure in O(1) time. We extend this result to dual failures. Our

results are summarized as follows:

1. Oracle: There exists a data structure of O(n) size that given any two failing vertices f1, f2

and a query vertex v, takes O(1) time to determine if v is reachable from s in G\{f1, f2}.

2. Labeling Scheme: There exists a compact labeling scheme for answering reachability queries

under two failures. Each vertex stores a label of O(log3 n) bits such that for any two failing

vertices f1, f2 and any destination vertex v, it is possible to determine whether v is reachable

from s in G\{f1, f2} by processing the labels associated with f1, f2 and v only.

Our result also implies a data structure for the closely related problem of double dominator

verification. A pair of vertices (x, y) is said to be double-dominator of a vertex v if each path

from s to v contains either x or y, but none of x and y are dominators of v. Using our data

structure together with the dominator-tree of Lengauer and Tarjan [LT79], one can obtain an O(n)

space data structure that for any given triplet x, y, v ∈ V verifies in O(1) time if (x, y) is double-

dominator of v. The best previously known result for this could verify double-dominators only for

a fixed s, v pair in O(1) time using an O(n) space data structure called dominator chain [TD05].

29



30 Chapter 3. Dual Fault Tolerant Reachability Oracle

3.1 Preliminaries

Throughout this chapter, we use f1 and f2 to denote the pair of failed vertices. We use the concept

of independent spanning trees which was introduced by Georgiadis and Tarjan [GT12].

Definition 3.1 (Georgiadis and Tarjan [GT12]). Given a directed graphG and a designated source

s, a pair of trees, denoted by T1, T2, rooted at s are said to be independent spanning trees if for

each v 6= s the paths from s to v in T1 and T2 intersect only at the dominators of v.

Below we state a few basic properties of dominators in a directed graph.

Property 3.1. Let T be a reachability tree rooted at s, and y0, y1 be vertices such that y0 =

IDOM(y1). Then for any z ∈ PATHT (ȳ0, y1), IDOM(z) belongs to PATHT (y0, y1).

Property 3.2. Let T be a reachability tree rooted at s, and y1, y2 be vertices such that y1 is

ancestor of y2, and IDOM(y1) = IDOM(y2). Then for any z ∈ PATHT (y1, y2) either y1 is a

dominator of z or IDOM(z) = IDOM(y1).

For efficient implementation of our oracle, we use the following lemma which is immediate

from Theorem 2.4.

Lemma 3.1. Given a tree, say T , on n vertices, with each vertex assigned an integral weight in

range [0, n3], we can obtain in O(n) time an O(n) size data structure that for any two vertices

x, y, outputs in O(1) time the vertex with minimum weight on PATHT (x̄, y).

3.1.1 A heavy path decomposition

The heavy path decomposition of a tree was designed by Sleator and Tarjan [ST83] in the context

of dynamic trees. This decomposition has been used in a variety of applications since then. Given

any rooted tree T , this decomposition splits T into a setP of vertex disjoint paths with the property

that any path from the root to a leaf node in T can be expressed as a concatenation of at most log n

subpaths of paths in P . This decomposition is carried out as follows. Starting from the root, we

follow the path downward such that once we are at a node, say v, the next node traversed is the

child of v in T whose subtree is of maximum size, where the size of a subtree is the number of

nodes it contains. We terminate upon reaching a leaf node. Let P be the path obtained in this
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manner. If we remove P from T , we are left with a collection of subtrees each of size at most

n/2. Each of these trees hang from P through an edge in T . We carry out the decomposition of

these trees recursively. The following lemma is immediate from the construction of a heavy path

decomposition.

Lemma 3.2. Let T be any rooted tree ofG and P be the collection of paths obtained from a heavy

path decomposition of T . Then for any vertex v ∈ V , the number of paths in P which start from

either v or an ancestor of v in T is at most log n.

3.2 Detour based Reachability Oracle for handling Single Failure

In order to understand the dual fault tolerant reachability oracle we first briefly discuss the case

of single failure. We here describe an alternative reachability oracle using detours instead of

dominator tree. Let T be any reachability tree of G rooted at s, and f, v be respectively the failed

and the query vertex. Also assume f is an ancestor of v in T . Notice that if v is reachable from s

inG\{f}, then there must exist a path starting from PATHT (s, f̄) and terminating at PATHT (f̄ , v)

which, except for its endpoints, does not pass through any ancestor of v in T . So for each w ∈ V ,

we can define a detour D(w) to be a path starting from the highest possible ancestor of w in T and

terminating at w such that none of the internal vertices of the path pass through an ancestor of w.

Now on failure of f it suffices to search whether there exists a vertex lying in PATHT (f̄ , v) whose

detour starts from an ancestor of f . This can be achieved by assigning to each vertex w a weight

equal to the depth of the first vertex on D(w). By doing this the problem of reachability under

one vertex failure reduces to the problem of solving range minima on weighted trees, for which

already an optimal solution exists. (See Lemma 3.1).

3.3 Overview

Let us consider the failure of a pair of vertices f1, f2 in G, and let v be the query vertex. Note that

if any of the tree paths - PATHT1(s, v) or PATHT2(s, v) is intact, then v will be reachable from s.

Also, if both PATHT1(s, v) or PATHT2(s, v) contains a common failed vertex, say f1, then v will

not be reachable from s. This is because then f1 would be a dominator of v. Thus the non-trivial
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case is when PATHT1(s, v) contains only f1 and PATHT2(s, v) contains only f2, or the vice-versa.

So whenever a query vertex v is given to us, we may assume that the following condition is satis-

fied.

C : f1 lies on PATHT1(s, v)\PATHT2(s, v), and f2 lies on PATHT2(s, v)\PATHT1(s, v).

Now consider the sets SA(v) and SB(v) as defined below. (For a better understanding of these

sets see Figure 3.1(i)).

• SA(v): Set of vertices lying either above f1 on PATHT1(s, v) or above f2 on PATHT2(s, v).

• SB(v): Set of vertices lying either below f1 on PATHT1(s, v) or below f2 on PATHT2(s, v).

(i)                                                                      (ii)

Figure 3.1: (i) Representation of sets SA(v) and SB(v) when condition C is satisfied for vertex v;
(ii) A path from a ∈ SA(v) to b ∈ SB(v) when v is reachable from s in G\{f1, f2}.

It turns out that if v is reachable from s in G\{f1, f2}, then there must exists a path from set

SA(v) to SB(v) avoiding the vertices of both PATHT1(s, v) and PATHT2(s, v). This fact is formally

stated in the following lemma.

Lemma 3.3. Given a pair of failed vertices f1, f2, a vertex v is reachable from s if and only if G

contains a path P satisfying the following conditions. (See Figure 3.1(ii)).

C1. The first and last vertices of P lies respectively in sets SA(v) and SB(v).

C2. None of the internal vertices of P lies on PATHT1(s, v) or PATHT2(s, v).

Proof. We first consider the case that v is reachable from s after the failure of f1, f2. Let Q

be any path from s to v in G\{f1, f2}. Let a be the last vertex on Q lying in the set SA(v),
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and b be the first vertex on Q[a, v] that lies in the set SB(v). The vertices a, b are well defined

since s ∈ SA(v) and v ∈ SB(v). It is easy to see that none of the intermediate vertices of path

Q[a, b] lies on PATHT1(s, v) and PATHT2(s, v). Hence Q[a, b] is the required path which starts

from a vertex in SA(v) and terminates to a vertex in SB(v). Now to prove the converse let us

assume that there exists a path, say P , from a ∈ SA(v) to b ∈ SB(v) such that none of the

intermediate vertices of P lies on PATHT1(s, v) and PATHT2(s, v). Let i, j ∈ [1, 2] be such that

a ∈ PATHTi(s, fi) and b ∈ PATHTj (fj , v). Note that the paths PATHTi(s, a), PATHTj (b, v), and P

cannot contain the failed vertices f1 or f2. Hence PATHTi(s, a)::P ::PATHTj (b, v) is a path from s

to v in G\{f1, f2}.

For simplicity we refer to a path satisfying the conditions C1 and C2 stated in the above lemma

as an SA,B(v) path. In order to efficiently compute such a path we define a pair of detours D1(w)

and D2(w) for each vertex w ∈ V as follows.

• Di(w): a path starting from the highest possible ancestor of w in Ti and terminating at w

such that none of the internal vertices of the path are ancestor of w in T1 or T2.

Note that the detours D1(w) and D2(w) can be seen as a simple generalization of the detours

defined in Chapter 2 (see Definition 2.3). However, we show that this simple generalization is

not sufficient to answer the reachability queries in dual failure. To understand this subtle point

consider an SA,B(v) path with a, b as its endpoints. If the endpoint b is equal to v, then P could be

simply either D1(v) or D2(v). The problem arises when b 6= v. This is because if b is an ancestor

of v in T1, then P might contain vertices from PATHT2(s, b). (Recall that the internal vertices of

P are disjoint from PATHT2(s, v), but not necessarily disjoint from PATHT2(s, b)). So in this case

P can neither be D1(b) nor be D2(b). For a more clear insight into this consider the graph and

its two independent spanning trees in Figure 3.2. Since in-degree of each vertex in the graph is at

most two, Di(w) for each w ∈ V is simply the incoming edge from parentTi(w) to w. Thus the

path P connecting SA(v) to SB(v) is a concatenation of as many detours as there are number of

edges in P . Determining whether a concatenation of all these single-edge detours can give us an

SA,B(v) path is difficult to achieve in O(1) time.

This shows that a simple generalization of detours from a single tree to two trees is not suf-

ficient. To tackle the problem we extend the notion of detours to ‘Parent Detours’ and ‘Ancestor
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(i)                                                             (ii)                                                           (iii)

Figure 3.2: (i) A graphG with in-degree of each vertex bounded by two; (ii) A pair of independent
spanning trees T1 and T2 for G; (iii) A path P from a ∈ SA(v) to b ∈ SB(v) in G\{f1, f2}.

Detours’. These detours unlike the normal detour terminates at an appropriate ancestor of w in T1

or T2. We formally define the parent-detours and ancestor-detours in the following sections, and

show how they can be used to solve the problem of dual fault tolerant reachability.

3.4 Reachability Oracle for 2-Vertex Strongly Connected Graphs

In this section we describe an O(n) space and O(1) time reachability oracle for 2-vertex strongly

connected graphs. By 2-vertex strongly connectedness we have that on removal of any vertex f

(f 6= s), all the vertices in G\{f} are still reachable from s. Thus each vertex is dominated only

by source s and by itself. This implies that for any vertex w, PATHT1(s, w) and PATHT2(s, w)

intersects only at the endpoints s, w.

Consider a query vertex v which is reachable from s in G\{f1, f2}. Let us assume that con-

dition C is satisfied for v. Let P be any SA,B(v) path, and a, b be respectively the first and last

vertices on P . Without loss of generality we can assume that b lies on PATHT1(s, v). See Fig-

ure 3.3(i). We make the following additional assumptions.

1. None of the SA,B(v) paths terminates at v (i.e. b cannot be v).

2. b is the lowest vertex on PATHT1(s, v) at which an SA,B(v) path terminates.

Remark 3.1. The assumption 1 is justified since if b = v, then v will be reachable from s using

the detours D1(v) or D2(v).

We now state a lemma which provides the motivation for defining the parent detours.
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Lemma 3.4. Let a, b, P be as described above, and c be the child of b on PATHT1(s, v). Then,

(i) Vertex f2 is an ancestor of c in T2.

(ii) None of the internal vertices of P lie on PATHT1(s, c) or PATHT2(s, c).

Proof. Let z denote the LCA of vertices c and v in tree T2. (See Figure 3.3(ii)). Consider the path

Q = PATHT2(z, c). It is easy to see that none of the internal vertices of Q lies on PATHT2(s, v).

Also, the internal vertices ofQ appearing on PATHT1(s, v) must lie below c on PATHT1(s, v). This

is because, by definition of independent spanning trees, PATHT1(s, c) and Q can intersect only at

the vertices s and c.

We now prove claim 1. Let d be the first point of intersection of Q with PATHT1(c, v). (See

Figure 3.3(ii)). Then the internal vertices of Q[z, d] are disjoint from both PATHT1(s, v) and

PATHT2(s, v). Now if z is an ancestor of f2 in T2, thenQ[z, d] forms an SA,B(v) path, terminating

at descendant of b in T1, thereby violating assumption 2. Hence f2 must be either same as z or an

ancestor of z. This shows that f2 is an ancestor of c in T2.

!!! !

(i)                                                         (ii)                                                           (iii)

!!

Figure 3.3: (i) Possibilities for path P when b ∈ PATHT1(f̄1, v̄); (ii) Representation of
PATHT2(s, c) and z = LCA(c, v) in T2; (iii) Violation of assumption 2 if P ∩ PATHT2(z, c) is
non-empty.

In order to prove claim 2, we first show that P is disjoint from Q. Let us suppose on the

contrary, that there exists a vertex, say z′, belonging to P ∩ Q. Also let d′ be the first vertex of

Q[z′, c] lying on PATHT1(c, v). (See Figure 3.3(iii)). Then P [a, z′]::Q[z′, d′] forms an SA,B(v)

path terminating at a descendant of b in T1. This again violates assumption 2. Thus P ∩ Q = ∅.

Now since the internal vertices of P are disjoint from PATHT1(s, v), PATHT2(s, v), they must be

disjoint from PATHT1(s, c) and PATHT2(s, z)::Q = PATHT2(s, c), as well.

The above lemma implies that f1 is an ancestor of c in T1, and f2 is an ancestor of c in T2.
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Thus SA(v) = SA(c). Hence we have the following corollary.

Corollary 3.1. P is an SA,B(c) path terminating at parentT1(c).

In order to capture the above fact we define parent-detours for each w ∈ V which instead of

terminating at w terminates at either parentT1(w) or parentT2(w).

• PDi
j(w): a path starting from the highest possible ancestor of w in Ti and terminating at

parentTj (w) s.t. none of the internal vertices of the path lie on PATHT1(s, w) or PATHT2(s, w).

By above definition of parent-detour it follows that P can be replaced by either PD1
1(c) or

PD2
1(c) depending upon whether it starts from an ancestor of c in T1 or T2. Now let x1 denote the

child of f1 in T1 lying on PATHT1(s, v), and x2 denote the child of f2 in T2 lying on PATHT2(s, v).

Then the parent-detours of vertices x1, x2 may not be of any help, since they would terminate at

f1 and f2. However, the parent-detours of vertices in SB(v)\{x1, x2} will suffice to determine

whether v is reachable from s or not.

In above discussion, we observed that P is an SA,B(c) path terminating at b = parentT1(c).

This shows that for vertices lying on PATHT1(x̄1, v), we only need to worry about parent-detours

terminating at parentT1(·), i.e. PD1
1(·) and PD2

1(·). Whereas, for vertices on PATHT2(x̄2, v), we

need to worry about parent-detours terminating at parentT2(·), i.e. PD1
2(·) and PD2

2(·). We thus

have the following lemma.

Lemma 3.5. Let x1 and x2 be as defined above. A vertex v is reachable from s in G\{f1, f2} if

and only if at least one of the following vertices lie in SA(v).

(i) The first vertex of D1(v) or D2(v).

(ii) The first vertex of either PD1
1(w) or PD2

1(w) for some w ∈ PATHT1(x̄1, v).

(iii) The first vertex of either PD1
2(w) or PD2

2(w) for some w ∈ PATHT2(x̄2, v).

3.4.1 Implementation of the Oracle

We first introduce the following notations for detours and parent detours.

• βi(v): depthTi(first vertex on Di(v)).
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• γij(v): depthTi(first vertex on PDi
j(v)).

Now let f1, f2 be a given pair of failed vertices and v be a given query vertex. Our first step is

to check if condition C is satisfied. Recall that this requires only verifying the ancestor-descendant

relationship in trees T1 and T2. One simple method to achieve this for any given tree T is to

perform the pre-order and the post-order traversal of T , and store the vertices in the order they

are visited. Now x will be ancestor of y in T if and only if x appears before y in the pre-order

traversal, and after y in the post-order traversal.

Algorithm 3.1 presents the pseudo-code for answering reachability query for a vertex v as-

suming condition C is satisfied. This can be explained in words as follows. For i = 1, 2, we first

check if Di(v) starts from an ancestor of fi in Ti or not. This is done by comparing the value of

βi(v) with the depth of fi in Ti. Next we compute the vertices x1, x2. Finally for i, j ∈ {1, 2}, we

compute a vertex w ∈ PATHTj (x̄j , v) for which γij(·) is minimum. If γij(w) is less than the depth

of fi in Ti, then it implies that PDi
j(w) starts from an ancestor of fi in Ti, so we return True. If

we reach to the end of code, that means we have not been able to find any path for v, so we return

False.

Algorithm 3.1: Oracle for reachability to v in 2-vertex strongly connected graphs.

1 if β1(v) < depthT1(f1) or β2(v) < depthT2(f2) then Return True;
2 x1 ← the vertex with minimum depth on PATHT1(f̄1, v);
3 x2 ← the vertex with minimum depth on PATHT2(f̄2, v);
4 foreach i, j ∈ {1, 2} do
5 w ← a vertex on PATHTj (x̄j , v) for which γij(·) is minimum;
6 if γij(w) < depthTi(fi) then Return True;
7 end
8 Return False;

The above oracle can be easily implemented in O(1) time, by having a total of six weight

functions - one each for storing the depth of a vertex in trees T1, T2, and the other four for storing

the values γij(·), for i, j ∈ {1, 2}. By doing this the vertices x1, x2 can be computed in constant

time since they are respectively the vertices with minimum depth on the paths PATHT1(f̄1, v) and

PATHT1(f̄1, v). Also Step 4 can be carried out in O(1) time. Next notice that the independent

spanning trees T1 and T2 in Definition 3.1, and the data structure of Lemma 3.1 can respectively

be computed inO(m) andO(n) time. Also for any vertex v, the detours Di(v) and PDi
j(v) can be
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computed in O(m) time. So, it is easy to see that the preprocessing time of our oracle is O(mn).

We can thus state the following theorem.

Theorem 3.1. A 2-vertex strongly connected graph on n vertices can be preprocessed in O(mn)

time for a given source vertex s to build a data structure of O(n) size such that for any query

vertex v, and pair of failures f1, f2, it takes O(1) time to determine if there exists any path from s

to v in G\{f1, f2}.

3.5 Reachability Oracle for General Graphs

In this section we explain the reachability oracle for general graphs. Consider a query vertex u

in G. Let u0, u1, ..., uk be the dominators of u with u0 = s and uk = u. Thus PATHT1(s, u)

and PATHT2(s, u) intersect only at ui’s. (See Figure 3.4(i)). As in Section 3.4, we assume that

condition C holds for u, so none of the ui’s can be equal to f1 or f2. Now let i, j ∈ [1, k] be

such that f1 ∈ PATHT1(ūi−1, ūi) and f2 ∈ PATHT2(ūj−1, ūj). It is easy to see that if i 6= j,

then u is reachable from s by the path PATHT1(s, ui−1)::PATHT2(ui−1, ui)::PATHT1(ui, u). (See

Figure 3.4(ii)). Thus we consider the case when i = j 1. For simplicity, we use symbols, v and

IDOM(v) to respectively denote the vertices ui and ui−1. Notice that in order to check reachability

of u from s, it suffices to check if v is reachable from s in G\{f1, f2}.

(i)                                             (ii)                                               (iii)

Figure 3.4: (i) Representation of dominators of u; (ii) A path from s to u (highlighted in yel-
low) when f1 lies on PATHT1(ū1, ū2) and f2 lies on PATHT2(ū2, ū3); (iii) A path from s to u
(highlighted in yellow) when there exists a vertex w ∈ SB(v) for which IDOM(w) lies in the set
SA(v)\{IDOM(v)}.

1One can verify in O(1) time whether ui−1 = uj−1 (i.e. if i = j) since vertex ui−1 = LCA(f1, v) and vertex
uj−1 = LCA(f2, v) in the dominator tree of G.
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We now divide our analysis into various different cases as follows:

Case 1. There exists an SA,B(v) path terminating at vertex v.

In this case v will be reachable from s using either of the detours D1(v) or D2(v).

Case 2. There exists a vertex w ∈ SB(v) for which IDOM(w) ∈ SA(v)\{IDOM(v)}.

In this case also we can show that v is reachable from s by the following argument. Without

loss of generality let us assume that w is an ancestor of v in T1. Since IDOM(w) is an an-

cestor of w in T1, it must lie on PATHT1(IDOM(v), f̄1). (See Figure 3.4(iii)). Consider the

path Q = PATHT2(IDOM(w), w). Note that f2 cannot lie on Q. This is because otherwise

PATHT1(IDOM(v), w) and PATHT2(IDOM(v), f2)::Q[f2, w] will form two vertex disjoint paths

from IDOM(v) to w, which would violate the fact that IDOM(w) 6= IDOM(v). Also f1 cannot

lie on Q, as Q is disjoint from PATHT1(IDOM(w), w̄). Thus v is reachable from s by the path

PATHT1(s, IDOM(w))::Q::PATHT1(w, v).

Case 3. None of the SA,B(v) path terminates at v, and there does not exist a vertex in SB(v)

whose immediate dominator lies in SA(v)\{IDOM(v)}.

This is the most non-trivial case of dual fault tolerant reachability oracle. We now provide analysis

for this case.

Let us suppose v is reachable from s in G\{f1, f2}. Then without loss of generality we can

assume that there exists an SA,B(v) path (say P ) terminating at an ancestor of v in T1. In case

there are multiple SA,B(v) paths, then we take P to be that path which terminates at lowest vertex

on PATHT1(f̄1, v̄). Let a, b be respectively the first and last vertices on P . By Property 3.1, we

know that IDOM(b) cannot be an ancestor of IDOM(v) in T1. Therefore, IDOM(b) must be equal to

IDOM(v). This is because IDOM(b) cannot lie in SA(v)\{IDOM(v)}, and if IDOM(b) lies in SB(v)

then P ∩SB(v) will contain both b and IDOM(b), which would violate the definition of an SA,B(v)

path.

Now consider the vertex c which is child of b on PATHT1(s, v). It turns out that in a general

graph the parent-detours of c may not be of any help. This is because the analysis for 2-vertex

strongly connected graphs crucially exploited the fact that IDOM(b) = IDOM(c) = s. But in

general graphs, if IDOM(b) is not equal to IDOM(c), then it can be shown that Lemma 3.4 no
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longer holds. To be more precise, we can show that the internal vertices of P might not be disjoint

from PATHT2(s, c).

However, the problem can be resolved if we take c to be the first descendant of b on PATHT1(s, v)

whose immediate dominator is the same as that of b. This motivates us to define the notion of

pseudo-child (and pseudo-parent) as follows.

Definition 3.2. Given a reachability tree T rooted at s, a vertex x is said to be pseudo-parent of y

in T (and y is said to be pseudo-child of x) if x is the nearest ancestor of y in T whose immediate

dominator is the same as that of y.

Note that in a 2-vertex strongly connected graph, the definition of pseudo-parent and pseudo-

child degenerates to normal notion of parent and child. This is because, immediate dominator of

all the vertices (other than s) in such graph is equal to s.

We now state a lemma which is an analogue of Lemma 3.4 for general graphs.

Lemma 3.6. Let a, b, P be as described above, and c be the pseudo-child of b on PATHT1(s, v).

Then,

(i) Vertex f2 is an ancestor of c in T2.

(ii) None of the internal vertices of P lie on PATHT1(s, c) or PATHT2(s, c).

As a corollary of the above lemma we get that P is an SA,B(c) path terminating at pseudo-

parent of c in T1. We thus define ancestor-detours which are a generalization of parent-detours as

follows.

• ADi
j(w): a path starting from the highest possible ancestor of w in Ti and terminating

at pseudo-parent of w in tree Tj such that none of the internal vertices of the path lie on

PATHT1(s, w) or PATHT2(s, w).

Now let x1 be the first descendant of f1 on PATHT1(s, v) whose immediate dominator is equal

to IDOM(v). Similarly, let x2 be the first descendant of f2 on PATHT1(s, v) whose immediate

dominator is equal to IDOM(v). Then the ancestor-detours of x1, x2 will not be of any help as

they would terminate at either f1, f2 or their ancestors. Now as in Section 3.4, we can argue that

ancestor-detours of vertices on PATHT1(x̄1, v) ∪ PATHT2(x̄2, v) suffice to answer the reachability

query for vertex v. This completes the analysis of the third case.
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We thus have the following lemma.

Lemma 3.7. Let v be a vertex satisfying condition C such that f1 ∈ PATHT1(IDOM(v), v) and

f2 ∈ PATHT1(IDOM(v), v). Also let x1 and x2 be as defined above. Then v is reachable from s in

G\{f1, f2} if and only if either of the following statements holds true.

(i) [Case 1] The first vertex of D1(v) or D2(v) lies in SA(v).

(ii) [Case 2] There exists a vertex w ∈ SB(v) for which IDOM(w) ∈ SA(v)\{IDOM(v)}.

(iii) [Case 3] There exists a vertex w ∈ PATHT1(x̄1, v) such that IDOM(w) = IDOM(v) and the

first vertex of either AD1
1(w) or AD2

1(w) lies in SA(v).

(iv) [Case 3] There exists a vertex w ∈ PATHT2(x̄2, v) such that IDOM(w) = IDOM(v) and the

first vertex of either AD1
2(w) or AD2

2(w) lies in SA(v).

3.5.1 Implementation of the Oracle

We now explain the implementation of reachability oracle for general graphs. As in Section 3.4,

we define the following notations.

• αi(v): depthTi(IDOM(v)).

• βi(v): depthTi(first vertex on Di(v)).

• γij(v): depthTi(first vertex on ADi
j(v)).

Let f1, f2 be a given pair of failed vertices and v be a given query step. We assume that

condition C is satisfied, and the failures f1, f2 lie respectively on the paths PATHT1(IDOM(v), v)

and PATHT2(IDOM(v), v). We first check for i = 1, 2, if Di(v) starts from an ancestor of fi in Ti

or not. This is done by comparing the value of βi(v) with the depth of fi in Ti.

Next we compute the vertices x1, x2 as follows. Recall that x1 is the highest ancestor of v

in PATHT1(f̄1, v) whose immediate dominator is equal to IDOM(v). So to obtain x1, we call the

range minima query for vertices on PATHT1(f̄1, v) with 〈α1(·), depthT1(·)〉 as the weight function.

By comparing the value of α1(·), it is able to filter out those vertices in PATHT1(f̄1, v) whose
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immediate dominator is at minimum depth in T1, i.e. it is equal to IDOM(v). After this it assigns

x1 to be that vertex which has minimum depth in T1. Vertex x2 is computed in a similar manner.

Now notice that to find whether there exists a vertex in SB(v) whose immediate dominator lies

in SA(v)\{IDOM(v)}, we only need to restrict ourself to paths PATHT1(f̄1, x̄1) and PATHT1(f̄1, x̄1).

This is because Property 3.2 implies that immediate dominator of vertices in PATHT1(x1, v) is ei-

ther equal to IDOM(v) or lies in PATHT1(x1, v) itself. Similarly, for PATHT2(x2, v). So for i = 1, 2,

we perform the range minima query to find a vertex, say w, on PATHTi(f̄i, x̄i) for which αi(w) is

minimum. If αi(w) is less than the depth of fi in Ti, then we report that v is reachable from s.

Finally for i, j ∈ {1, 2}, we compute a vertex w ∈ PATHTj (x̄j , v) for which 〈αi(·), γij(·)〉 is

minimum. The term αi(·) is added in front so that we are able to filter out those vertices whose

immediate dominator is equal to IDOM(v). Now if γij(w) is less than the depth of fi in Ti, then it

implies that ADi
j(w) starts from an ancestor of fi in Ti, so we return True.

If we reach to the end of code, that means we have not been able to find any path for v, so we

return False.

Algorithm 3.2: Oracle for reachability to v in general graphs.

1 if β1(v) < depthT1(f1) or β2(v) < depthT2(f2) then Return True;
2 x1 ← a vertex on PATHT1(f̄1, v) for which 〈α1(·), depthT1(·)〉 is minimum;
3 x2 ← a vertex on PATHT2(f̄2, v) for which 〈α2(·), depthT2(·)〉 is minimum;
4 foreach i ∈ {1, 2} do
5 w ← a vertex on PATHTi(f̄i, x̄i) for which αi(·) is minimum;
6 if αi(w) < depthTi(fi) then Return True;
7 end
8 foreach i, j ∈ {1, 2} do
9 w ← a vertex on PATHTj (x̄j , v) for which 〈αi(·), γij(·)〉 is minimum;

10 if γij(w) < depthTi(fi) then Return True;
11 end
12 Return False;

As in Algorithm 3.1, we can argue that the Steps 2, 3, 5 and 9 can be implemented in O(1)

time. Thus Algorithm 3.2 takes constant time to answer reachability queries. Also, one can see

that similar to Section 3.4, the preprocessing time of our oracle is O(mn). We thus conclude with

the following theorem.

Theorem 3.2. A directed graphG = (V,E) on n vertices can be preprocessed inO(mn) time for

a given source vertex s ∈ V to build a data structure of O(n) size such that for any f1, f2, v ∈ V ,
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it takes O(1) time to determine if there exists a path from s to v in G\{f1, f2}.

3.6 Labeling Scheme

In this section we describe the labeling scheme for answering reachability queries from s to any

vertex v on two vertex failures. In the first subsection we develop a labeling scheme for reporting

minima and second minima on tree paths. In the next subsection, we see how these labels can be

used to obtain a labeling scheme for answering reachability queries.

3.6.1 Labeling Scheme for Minima and Second-Minima on Tree Paths

We assume that a reachability tree T rooted at s is given to us, and each vertex x is assigned

a positive integral weight wt(x) in the range [0, n2]. Note that second-minima may have two

interpretations depending upon whether or not the second minimum value is allowed to be the

same as the first one. In this chapter, by second-minima we always mean the smallest value

obtained after removing all occurrence of the first minimum value. The first minimum and second

minimum operations are respectively denoted by min1(·) and min2(·). Now given any two vertices

x, y, where x is ancestor of y in T , we define the following notations.

• FM(x, y) := min1{wt(z) | z ∈ PATHT (x̄, y)}.

• SM(x, y) := min2{wt(z) | z ∈ PATHT (x̄, y)}.

Our aim is to develop compact labeling scheme for reporting FM(x, y) and SM(x, y) described

above. In order to achieve this we first perform a heavy path decomposition of T (refer to Sub-

section 3.1.1). Let P be the collection of paths obtained by this decomposition. For each vertex

x, we use P (x) to denote the path in P containing x. Now for each vertex x and each integer

i ∈ [1, log n], we define the following notations.

• FMa(x, i) := min1{wt(y) | y lies above x in P (x) and |depthT (x)− depthT (y)| ≤ 2i}.

• SMa(x, i) := min2{wt(y) | y lies above x in P (x) and |depthT (x)− depthT (y)| ≤ 2i}.

Similarly, we define the notations FMb(x, i) and SMb(x, i). For each vertex x, let δ(x) denote

the string of O(log2 n) bits obtained by concatenation of: (i) depthT (x), (ii) wt(x), and (iii)

FMa(x, i), SMa(x, i), FMb(x, i), SMb(x, i) for each i ∈ [1, log n].
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(i)                                                                                           (ii)
Figure 3.5: Representation of paths P0, P1, .., Pt where P0 = P (x) and P1, .., Pt are paths in P
starting from an ancestor of x. Note that t will be bounded by log n.

• δ(x) := 〈depthT (x), wt(x), FMa(x, i), SMa(x, i), FMb(x, i), SMb(x, i) ∀ i ∈ [1, log n]〉.

Note that if x is ancestor of y, and P (x) = P (y), then FM(x, y) and SM(x, y) can be com-

puted by just looking at the strings δ(x) and δ(y) as follows. We first extract out depthT (x)

and depthT (y) respectively from δ(x) and δ(y). Now let k be the greatest integer such that

2k ≤ depthT (y)− depthT (x)− 1. Then,

FM(x, y) = min1{wt(y), FMb(x, k), FMa(y, k)}, and (3.1)

SM(x, y) = min2{wt(y), FMb(x, k), FMa(y, k), SMb(x, k), SMa(y, k)} (3.2)

For the case when x, y belongs to different paths in P , observe that if x is ancestor of y, then

PATHT (x, y) can be obtained by joining together at most log n different paths from P .

Consider any vertex x ∈ T . Let P0 = P (x), and P1, . . . , Pt be the paths in P that starts from

an ancestor of x. From Lemma 3.2 it follows that t must be bounded by log n. For i = 1 to t,

let xi and yi be the vertices in PATHT (s, x) ∩ Pi of respectively the maximum and the minimum

depth value. (See Figure 3.5). We define label of x, denoted by `(x), as the string of O(log3 n)

bits obtained by concatenating together all δ(xi)’s and δ(yi)’s, where i ranges from 0 to t.

• `(x) := 〈δ(xi), δ(yi) ∀ i ∈ [0, t]〉, where xi, yi and t are as defined above.

Now, let z, x be a pair of query vertices such that z is ancestor of x. We give below the steps
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for computing FM(z, x) and SM(z, x) by using labels `(x) and `(z).

1. Let W = ∅.

2. Compute t = number of paths in P by scanning the string `(x). Let P0, P1, .., Pt denote

these paths, and xi, yi’s be the corresponding vertices.

3. Repeat for i = 0 to t.

− Add wt(xi) to set W .

− If depthT (xi) ≤ depthT (z) ≤ depthT (yi), i.e. z ∈ PATHT (yi, xi), then compute

FM(z, xi) and SM(z, xi) using Equations 3.1, 3.2 and add them to W . Also break the loop.

− If z /∈ PATHT (yi, xi), then compute FM(yi, xi) and SM(yi, xi) using Equations 3.1, 3.2

and add them to W .

4. Return FM(z, x) = min1(W ) and SM(z, x) = min2(W ).

We conclude with the following theorem.

Theorem 3.3. Given a rooted tree T on n vertices and vertex weights in range [0, n2] we can

design a labeling scheme of O(log3 n) bits such that for any two vertices x, y, FM(x, y) and

SM(x, y) can be computed in polylogarithmic time by just looking at the labels of x, y.

Remark 3.2. If in addition to weight wt(x), each vertex x also has a tag field of O(log n) bits,

say TAG(x), then while reporting min1(·) we can also report the corresponding vertex’s tag. This

can be easily done by defining a new weight function wt′(x) which is concatenation of both wt(x)

and TAG(x). Unless explicitly stated we assume TAG(x) to be empty. The tags of two different

vertices may be either same or distinct.

3.6.2 Labeling Scheme for answering Reachability Queries

In this subsection we describe labeling scheme for answering reachability queries from s after two

vertex failures. The label of a vertex x, denoted by σ(x), will be a concatenating of many small

strings σi(x)’s. We first define labels to check ancestor-descendant relations in trees T1 and T2.

Consider a DFS traversal of one of the trees, say T1. A vertex x will be an ancestor of vertex y

in T1, if and only if the start-time of x is less than the start-time of y, and the finish-time of x is

greater than the finish-time of y. We thus define strings σ1(·) to σ4(·) as follows.
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• σ1(x) := start-time of x in T1.

• σ2(x) := finish-time of x in T1.

• σ3(x) := start-time of x in T2.

• σ4(x) := finish-time of x in T2.

We also define the labels σ5(·) to σ6(·) to store depth fields.

• σ5(x) := depth of x in T1.

• σ6(x) := depth of x in T2.

Let u be a query vertex, and f1, f2 be a pair of failures. As in Section 3.5, let u0, u1, ..., uk be

the dominators of u with u0 = s and uk = u. We now consider following steps of our dual fault

tolerant reachability oracle.

Step 1. Check if condition C is satisfied or not.

This can be done by just comparing the labels σ1(·) to σ4(·) of vertices f1, f2 and u. Let us

assume that condition C holds true. Let i, j ∈ [1, k] be such that f1 ∈ PATHT1(ūi−1, ūi) and

f2 ∈ PATHT2(ūj−1, ūj).

Step 2. Check whether i = j, or in other words ui−1 = uj−1.

Recall that ui−1 is the dominator of u lying above f1 in T1, and uj−1 is the dominator of u lying

above f2 in T2. These can also be defined as below.

ui−1 = arg miny{depthT1(y) | y = IDOM(x) for some x ∈ PATHT1(f̄1, u)}

uj−1 = arg miny{depthT2(y) | y = IDOM(x) for some x ∈ PATHT2(f̄1, u)}

So σ7(·) and σ8(·) are defined as follows.

• σ7(x) := label for reporting 〈min1(·), TAG〉 on tree-paths of T1 when TAG(x) = IDOM(x)

and wt(x) = depthT1(IDOM(x)).

• σ8(x) := label for reporting 〈min1(·), TAG〉 on tree-paths of T2 when TAG(x) = IDOM(x)

and wt(x) = depthT2(IDOM(x)).



3.6. Labeling Scheme 47

Now if i 6= j, then u will be reachable from s, thus lets assume i = j. Let ui be repre-

sented by v, and so ui−1 = IDOM(v). Also let x1 be the first descendant of f1 on PATHT1(s, v)

whose immediate dominator is equal to IDOM(v). Similarly, let x2 be the first descendant of f2 on

PATHT1(s, v) whose immediate dominator is equal to IDOM(v). Note that we cannot have access

to labels of vertices x1, x2 and v. Thus, the construction will be not be a straight forward imple-

mentation of Algorithm 3.2.

Step 3. Check if there exists a vertex w ∈ SB(v) for which IDOM(w) ∈ SA(v)\{IDOM(v)}.

Since v is dominator of all vertices in SB(u)\SB(v), we can even search for w in the whole

set SB(u). If w lies on PATHT1(s, u), then its immediate-dominator will have second minimum

depth among immediate-dominators of all vertices in PATHT1(f̄1, u). So we just need to compute

min2{depthT1(IDOM(x)) | x ∈ PATHT1(f̄1, u)} and see if it is less than depthT1(f1). Similar

procedure is required for tree T2. We thus define the labels σ9(·) and σ10(·) as follows.

• σ9(x) := label for reporting min2(·) on tree-paths of T1 when wt(x) = depthT1(IDOM(x)).

• σ10(x) := label for reporting min2(·) on tree-paths of T2 whenwt(x) = depthT2(IDOM(x)).

Step 4. Check if eitherD1(v) starts from an ancestor of f1 in T1, orD2(v) starts from an ancestor

of f2 in T2.

Note that immediate dominator of each vertex x ∈ PATHT1(f̄1, u) is either equal to IDOM(v), or

a descendant of IDOM(v) in T1. Moreover, among all vertices in PATHT1(f̄1, u) whose immediate

dominator is same as IDOM(v), vertex v has the maximum depth. Thus any TAG of v can filtered

out by setting wt(x) as the ordered pair 〈depthT1(IDOM(x)), n− depthT1(x)〉. Here for i = 1, 2,

we need to compute βi(v) = depthTi(first vertex of Di(v)) and compare it with depthTi(fi). We

thus define σ11(x) and σ11(x) respectively as follows with TAG value as β1(x) and β2(x).

• σ11(x) := label for reporting 〈min1(·), TAG〉 on tree-paths of T1 when TAG(x) = β1(x) and

wt(x) = 〈depthT1(IDOM(x)), n− depthT1(x)〉.

• σ12(x) := label for reporting 〈min1(·), TAG〉 on tree-paths of T1 when TAG(x) = β2(x) and

wt(x) = 〈depthT1(IDOM(x)), n− depthT1(x)〉.
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Step 5. Check if there exists a vertex w ∈ PATHT1(f̄1, u)\{x1} such that IDOM(w) = IDOM(v)

and ADi
1(w) starts from an ancestor of fi in Ti, for some i ∈ {1, 2}.

Lets first consider the case i = 1. Then we to search for a vertex x ∈ PATHT1(f̄1, u)\{x1}

for which wt(x) = 〈depthT1(IDOM(x)), γ11(x)〉 is minimum, and check if γ11(x) is less than

depthT1(f1). We add depthT1(IDOM(x)) in the beginning of weight function so as to filter out

those vertices whose immediate dominator is same as IDOM(v).

The problem here is that we can perform minima queries on tree path PATHT1(f̄1, u), but do

not have any method to exclude out vertex x1. So we append the field depthT1(pseudo-parent of x

in T1) at the end of weight function, and query for both min1 and min2. By doing this we will get

two minimums, and by comparing the depth of the pseudo-parents, we can easily filter out which

one is from x1. (Recall that pseudo-parent of x1 lies in PATHT1(s, f1)). So we define the labels

σ13(·) and σ14(·) as follows.

• σ13(x) := label for reporting min1(·) and min2(·) on tree-paths of T1 when wt(x) =

〈depthT1(IDOM(x)), γ11(x), depthT1(pseudo-parent of x in T1)〉.

• σ14(x) := label for reporting min1(·) and min2(·) on tree-paths of T1 when wt(x) =

〈depthT1(IDOM(x)), γ21(x), depthT1(pseudo-parent of x in T1)〉.

Step 6. Check if there exists a vertex w ∈ PATHT2(f̄2, u)\{x2} such that IDOM(w) = IDOM(v)

and ADi
2(w) starts from an ancestor of fi in Ti, for some i ∈ {1, 2}.

This can be taken care in exactly similar manner as in Step 5. The labels σ15(·) and σ16(·) are

defined as follows.

• σ15(x) := label for reporting min1(·) and min2(·) on tree-paths of T2 when wt(x) =

〈depthT2(IDOM(x)), γ12(x), depthT2(pseudo-parent of x in T2)〉.

• σ16(x) := label for reporting min1(·) and min2(·) on tree-paths of T2 when wt(x) =

〈depthT2(IDOM(x)), γ22(x), depthT2(pseudo-parent of x in T2)〉.

The final label of a vertex x, denoted by σ(x) is the concatenation of all the smaller strings

σ11(x) to σ16(x) described above. We conclude with the following theorem.
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Theorem 3.4. A directed graphG = (V,E) on n vertices can be preprocessed for a source vertex

s to compute labels ofO(log3 n) bits such that for any two failing vertices f1, f2 and a destination

vertex v, whether v is reachable from s in G\{f1, f2} can be determined in polylogarithmic time

by only processing the labels associated with f1, f2 and v.





Chapter 4

Fault Tolerant Subgraph for Single

Source Reachability

In this chapter we address the problem of constructing a sparse subgraph that preserves the reach-

ability from a designated source s even after k failures. The following definition characterizes this

subgraph precisely.

Definition 4.1 (k-FTRS). Let G = (V,E) be a directed graph and s ∈ V be a designated source

vertex. A subgraph H of G is said to be a k-Fault Tolerant Reachability Subgraph (k-FTRS) for

G if for any subset F ⊆ E of at most k edges, a vertex v ∈ V is reachable from s in G \ F if and

only if v is reachable from s in H \ F .

Existence of a sparse k-FTRS and its efficient construction is important from the perspective

of theoretical as well as applied computer science. Moreover, reachability lies at the core of many

other graph problems like strong-connectedness, dominators [LT79], double dominators [TD05],

etc. Therefore obtaining a sparse k-FTRS may help in obtaining fault tolerant solution for these

problems as well. The only previously known result for k-FTRS was for k = 1. Given a DFS tree

T rooted at s, it is straightforward using the ideas of [LT79] to compute a 1-FTRS with at most

2n edges.

In this chapter we present an efficient algorithm for computing a sparse k-FTRS for any k > 1.

We prove the following theorem.

Theorem 4.1. LetG be a directed graph on n vertices,m edges with a designated source vertex s.

51
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Then for any given integer k ≥ 1, there exists an O(2kmn) time algorithm that computes a

k-FTRS for G with at most 2kn edges. Moreover, the in-degree of each vertex in this k-FTRS is

bounded by 2k.

We also show that the 2kn bound on the size of k-FTRS is tight by proving the following

theorem.

Theorem 4.2. For any positive integers n, k with n ≥ 2k, there exists a directed graph on n

vertices whose k-FTRS must have Ω(2kn) edges.

The above theorems also hold in the case when the k-FTRS is defined with respect to vertex

failures instead of edge failures.

Our sparse construction of k-FTRS implies solutions to the following problems in a straight-

forward manner.

1. Strong connectedness of a graph. We show that it is possible to preprocessG in polynomial

time to build an O(2kn) size data structure that, after the failure of any set F of k edges

or vertices, can determine in O(2kn) time if the strongly connected components of graph

G \ F are the same as that of graph G.

2. Fault tolerant dominator tree. We show that any given directed graph G with a source

vertex s can be preprocessed in polynomial time to build an O(2kn) size data structure that,

after the failure of any set F of k edges or vertices, can report the dominator tree of G \ F

in O(2kn) time.

Besides the above applications, our techniques reveal an interesting connection between two

seemingly unrelated structures: farthest min-cut and k-FTRS. The farthest min-cut is a very basic

concept in the area of flows and cuts, and was already introduced by Ford and Fulkerson [FF62].

4.1 Preliminaries

Let us start by defining some of the notations that will be used throughout this chapter.

• E(f): Edges of the graph G carrying a non-zero flow for a given flow f .
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• E(P ): Edges lying on a path P .

• E(A): Edges of the graph G whose both endpoints lie in set A, where A ⊆ V .

• MAX-FLOW(H,S, t): The value of the maximum flow in graph H , where the source is a

set of vertices S and destination is a single vertex t.

Our algorithm for computing a k-FTRS will involve the concepts of max-flow, min-cut, and

edge disjoint paths. So, at times, we will visualize the same graph G as a network with unit edge

capacities. The following result follows directly from Integrality of max-flows [CLRS09].

Theorem 4.3. For any positive integer α, there is a flow from a source set S to a destination vertex

t of value α if and only if there are α edge disjoint paths originating from set S and terminating

at t.

We now give definition of an (S, t)-min-cut.

Definition 4.2. A set of edges C ⊆ E is said to be an (S, t)-cut if each path from any s ∈ S to t

must pass through at least one edge from C. The size of a cut C is the number of edges present in

C. An (S, t)-cut of smallest size is called (S, t)-min-cut.

The following definition introduces the notion of FTRS from perspective of a single vertex

v ∈ V .

Definition 4.3. Given a vertex v ∈ V and an integer k ≥ 1, a subgraph G′ = (V,E′), E′ ⊆ E

is said to be k-FTRS(v) if for any set F of k edge failures, the following condition holds: v is

reachable from s in G\F if and only if v is reachable from s in G′\F .

This definition allows us to define k-FTRS in an alternative way as follows.

Definition 4.4. A subgraph H of G is a k-FTRS if and only if H is k-FTRS(v) for each v in G.

4.2 Overview

Our starting point is a lemma (referred as Locality Lemma) that allows us to focus on a single

vertex for computing k-FTRS. It essentially states that if there exists an algorithm that for any

vertex v computes a k-FTRS(v) in which in-degree of v is bounded by small constant c, then
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on applying this algorithm recursively on an arbitrary sequence of vertices of G, we can get a

k-FTRS for G in which in-degree of all the vertices is bounded by same constant c.

Thus the problem reduces to computing a k-FTRS(t) with at most 2k incoming edges for any

t ∈ V . The construction of a k-FTRS(t) employs farthest min-cut. Recall that a (s, t)-cut C

partitions the vertices into two sets: one containing the source, and the other containing the sink.

The farthest min-cut is the (unique) min-cut for which the set containing the source is of largest

size. We now provide the main idea underlying the construction of a k-FTRS(t).

If the max-flow from s to t in G is k + 1 or greater, then we can define k-FTRS(t) to be any

k + 1 edge disjoint paths from s to t. In order to convey the importance of farthest min-cut, let us

consider the case when max-flow is exactly k. Let us suppose that there exists a path P from s to

t in G \ F , where F is the set of failing edges. Then P must pass through an edge, say (ai, bi),

of the farthest min-cut. It follows from the properties of the farthest min-cut that if we include

vertex bi in the source then the max-flow increases (see Lemma 4.3). That is, we get at least k+ 1

edge disjoint paths from the set {s, bi} to t. Note that one of these paths, say Q, must be intact

even after k failures. Though Q may start from bi (instead of s), but it is not problematic as the

concatenation P [s, bi] :: Q will be preserved in G \ F . This suggests that a subgraph H of G that

contains k + 1 edge disjoint paths from {s, bi} to t, for each i, will serve as a k-FTRS(t).

For the case when (s, t) max-flow in G is less than k, we compute a series of farthest min-cuts

built on a hierarchy of nested source sets. Our construction consists of k rounds. It starts with a

source set S containing the singleton vertex s. In each iteration we add to the previous source S,

the endpoints bi’s of the edges corresponding to the farthest (S, t) min-cut. The size of the cuts

in this hierarchy governs the in-degree of t in k-FTRS(t). In order to get a bound on the size of

these cuts, we transform G into a new graph with O(m) vertices and edges, so that the following

assumption holds.

Assumption 1: The out-degree of all vertices in G is at most two.

It turns out that a k-FTRS(t) for the original graph can be easily obtained by a k-FTRS(t) of

the transformed graph. We provide the justification for the above assumption in the next section.

In this chapter, we describe the construction of a k-FTRS with respect to edge failures only.

Vertex failures can be handled by simply splitting each vertex v into an edge (vin, vout), where the
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incoming and outgoing edges of v are respectively directed into vin and directed out of vout.

4.3 The Main Tools

We now describe the main tools used in obtaining our k-FTRS.

4.3.1 Locality Lemma and Proof of Assumption 1

We first formally state and prove the locality lemma.

Lemma 4.1. Suppose there exists an algorithm A and an integer ck satisfying the following con-

dition: Given any graph G and a vertex v in G, A can compute a subgraph H of G such that

(i) H is a k-FTRS(v), and

(ii) in-degree of v in H is bounded by ck.

Then, we can compute a k-FTRS for G with at most ck · n edges.

Proof. Let 〈v1, . . . , vn〉 be any arbitrary sequence of the n vertices of G. We compute k-FTRS in

n rounds as follows. Let G0 = G be the initial graph. In round i, we compute a graph Gi which

is a k-FTRS with in-degree of vertices v1, ..., vi bounded by ck. This is done as follows - (i) We

compute a k-FTRS(vi), say H , for graph Gi−1 using algorithm A; (ii) We set Gi to be the graph

obtained fromGi−1 by restricting the incoming edges of vi to only those present inH . It is easy to

see that in-degree of vertices v1, ..., vi in graph Gi would be bounded by ck. We now show using

induction that the graphs G0, G1, .., Gn are all k-FTRS for G. The base case trivially holds true.

In order to show that Gi (i > 0) is a k-FTRS for G, it suffices to show that Gi is a k-FTRS for

Gi−1.

Consider any set F of k edge failures inGi−1. Let x be any vertex reachable from s inGi−1\F

by some path, say P . We need to show the existence of a path Q from s to x in Gi \ F . If path P

does not pass through vi then we can simply set Q as P . If P passes through vi, then we consider

the segments P [s, vi] and P [vi, x]. Since Gi and Gi−1 may differ only in incoming edges of vi,

path P [vi, x] must be intact in Gi \ F . Now H is a k-FTRS(vi) for Gi−1, thus there must exist a

path, say Q, from s to vi in H \ F . Note that Gi contains H . Thus Q :: P [vi, x] is a walk from s

to x in Gi \ F , and after removal of all loops from it, we get a path from s to x in Gi \ F . Hence

Gi is a k-FTRS for Gi−1.
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We now provide a justification for Assumption 1.

Lemma 4.2. Let G = (V,E) be a graph on n vertices and m edges. Then for any t ∈ V , we can

compute a graph H with O(m) edges and vertices, and out-degree of each vertex bounded by two

such that given a k-FTRS(t) of H (say H ′), we can be easily compute a k-FTRS(t) of G (say

G′). Moreover, the in-degree of vertex t in G′ is the same as the in-degree of t in H ′.

Proof. Given the input graph G, we construct a new graph H = (V0, E0) from G such that out-

degree of each vertex in it is bounded by two as follows.

(i) For each u in V , construct a binary tree Bu such that the number of leaves in Bu is exactly

equal to the out-degree (say d(u)) of u in G. Let ur be the root of this tree, and u`1, .., u
`
d(u)

be its leaves.

(ii) Insert the binary tree Bu in place of out-edges of u in G as follows. We delete all the out-

edges, say (u, v1), . . . , (u, vd(u)), of vertex u. Next we connect u to ur, and u`i to vi, for

each i ≤ d(u).

Observe that H constructed in this manner will have O(m) edges and vertices. In this process, the

out-degree of each vertex in H gets bounded by two, though the in-degree of the original vertices

remains unchanged. Notice that an edge in G is mapped to a path in H as follows.

(u, vi) 7→ (u, ur)::(path from ur to u`i in Bu)::(u`i , vi)

We now show how to compute a k-FTRS(t) in G (say G′) from a k-FTRS(t) in H (say H ′).

For each out-neighbor vi of a vertex u in G, we include edge (u, vi) in G′ if and only if edge

(u`i , vi) is present in H ′. Consider any set F of k failed edges in G. Define a set F0 of failed edges

in H by adding edge (u`i , vi) to F0 for each (u, vi) ∈ F . It can be inferred from the mapping

defined above that there is a path from s to t in G′ \ F if and only if there is a path from s to t

in H ′ \ F0. Thus graph G′ is a k-FTRS(t) for graph G. Notice that in-degree(t, G′) is the same

as in-degree(t,H ′). This shows that computing a k-FTRS(t) for t ∈ V in G is equivalent to

computing a k-FTRS(t) in graph H .
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4.3.2 Farthest Min-Cut

Definition 4.5. Let S be a source set and t be a destination vertex. Any (S, t)-min-cutC partitions

the vertex set into two sets: A(C) containing S, and B(C) containing t. An (S, t)-min-cut C∗

is said to be the farthest min-cut if A(C∗) ) A(C) for any (S, t)-min-cut C other than C∗. We

denote C∗ with FMC(G,S, t).

Ford and Fullkerson [FF62] gave an algorithm for constructing the farthest (S, t)-min-cut and

also established its uniqueness. For the sake of completeness we state the following result from

[FF62].

Lemma 4.3. Let Gf be the residual graph corresponding to any max-flow fS from S to t. Let B

be the set of those vertices from which there is a path to t in Gf , and A = V \ B. Then the set

C of edges originating from A and terminating to B is the unique farthest (S, t)-min-cut, and is

independent of the choice of the initial max-flow fS .

We now state an important property of the farthest min-cut. Informally, this property claims

that the max-flow in G increases by one if we add to G a new edge from the set S × B . (If the

new edge already exists in E, then we add one more copy of it to G).

Lemma 4.4. Let S be a source set, t be a destination vertex, C be FMC(G,S, t), and (A,B)

be the partition of V corresponding to cut C. Let (s, w) ∈ (S × B) be any arbitrary edge, and

G′ = G + (s, w) be a new graph. Then, MAX-FLOW(G′, S, t) = 1 + MAX-FLOW(G,S, t), and

C ′ = C ∪ {(s, w)} forms a (S, t)-min-cut for graph G′.

Proof. Let fS be a max-flow from S to t, and Gf be the corresponding residual graph. Since

w ∈ B, Lemma 4.3 implies that there exists a path from w to t in Gf . This shows that there exists

a path from s to t inGf +(s, w). Note thatGf +(s, w) is the residual graph forG′ with respect to

flow fS . Thus MAX-FLOW(G′, S, t) is greater than MAX-FLOW(G,S, t). Since G′ is obtained by

adding only one extra edge to G, the value of max-flow cannot increase by more than one, hence

we get that MAX-FLOW(G′, S, t) is equal to 1 + MAX-FLOW(G,S, t).

To prove the second part, note that the existence of a path P from S to t in G′ \ C ′ would

imply the existence of a path from S to t in G not passing through cut C. Since this cannot be

possible, C ′ must be an (S, t)-cut for graphG′. Now |C ′| = 1+ |C| = 1+ MAX-FLOW(G,S, t) =



58 Chapter 4. Fault Tolerant Subgraph for Single Source Reachability

MAX-FLOW(G′, S, t). That is, the cardinality of C ′ is the same as the value of max-flow from S

to t. Hence, C ′ is an (S, t)-min-cut.

We state two more properties of farthest-min-cut that will be used in our construction.

Lemma 4.5. Let s and t be a pair of vertices. Let S ⊆ V such that s ∈ S and t /∈ S. Let fS be a

max-flow from S to t, C be FMC(S, t), and (A,B) be the partition of V induced by cut C. Then

we can find a max-flow, say f , from s to t such that E(f) ⊆ E(A) ∪ E(fS).

Proof. Let α be equal to MAX-FLOW(G,S, t), and β be equal to MAX-FLOW(G, s, t). Let e1, .., eα

be the edges lying in the cut C. Let f ′ be any arbitrary max-flow from s to t. Note that C is also an

(s, t)-cut. Thus, without loss of generality we can assume that C ∩ E(f ′) = {e1, .., eβ}. Now let

{(Pi :: ei :: P ′i ) : i ≤ α} be a set of α edge disjoint paths from S to t corresponding to max-flow

fS . Since the edges of cut C are fully saturated with respect to flow fS , each Pi will lie entirely in

G(A) and each P ′i will lie entirely in G(B).

Let {(Qi :: ei :: Q′i) : i ≤ β} be set of β edge disjoint paths from s to t corresponding to flow

f ′ such that each Qi lies entirely in G(A). Note that since C is not necessarily an (s, t)-min-cut,

so a path Q′i may pass multiple times through cut C. Now {(Qi :: ei :: P ′i ) : i ≤ β} forms β edge

disjoint paths from s to t. This is so because Qi’s lie entirely in G(A) and P ′i ’s lie entirely in set

G(B). Let f be the flow corresponding to these paths. Then f gives a max-flow from s to t such

that E(f) ⊆ E(A) ∪ E(fS).

Lemma 4.6. Let s and t be a pair of vertices. Let S ⊆ V such that s ∈ S and t /∈ S. Let

(Â, B̂) be the partition of V induced by FMC(s, t), and (A,B) be the partition of V induced by

FMC(S, t). Then B ⊆ B̂.

Proof. Consider any vertex x ∈ B. We first show that we can find a max-flow (say fS) from S to t,

and path (sayP ) from x to t, such thatE(fS)∩E(P ) is empty. Consider the graphG′ = G+(s, x).

From Lemma 4.4, we have that MAX-FLOW(G′, S, t) = 1 + MAX-FLOW(G,S, t) = 1 + α (say).

Consider any max-flow f ′S from S to t in G′. Notice that E(f ′S) must contain the edge (s, x).

On removal of this edge from f ′S , it decomposes into a flow fS (from S to t in G of capacity

α), and a path P (from x and to t in G). It is easy to verify that fS is a max-flow in G, and

E(fS) ∩ E(P ) = ∅.
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Now from Lemma 4.5 we have that there exists a max-flow, say f , from s to t such that

E(f) ⊆ E(A) ∪ E(fS). Also note that path P will lie entirely in graph G(B), since edges of

cut (A,B) are fully saturated by flow fS , so if path P enters set A, it will not be able to return to

vertex t ∈ B. Thus E(f)∩E(P ) is also empty. Thus path P lies in residual graph corresponding

to max-flow f from s to t in G. So vertex x must lie in B̂. Hence we have B ⊆ B̂.

4.4 A 2-FTRS for graph G

From Lemma 4.1 it follows that in order to construct a 2-FTRS for a vertex s of graph G, it is

sufficient to construct for an arbitrary vertex t a subgraph H which is a 2-FTRS(t), such that the

in-degree of t in H is at most 4.

(i)                                                              (ii)                                                  (iii)

Figure 4.1: (i) Edges (a, b) and (a′, b′) represent the farthest min-cut from s to t. (ii) Paths
highlighted in yellow color represent three edge-disjoint paths P0, P1, P2 in graph G + (s, b).
(iii) As b, b′ 6= t, source S is equal to A ∪ {b, b′}, and FMC(G,S, t) = 3.

By Assumption 1 stated in Section 4.2, we have that out-degree of s is at most 2. Thus the

value of max-flow from s to t must be either one or two. Below we explain how to construct a

2-FTRS(t) in each of these cases.

(i) MAX-FLOW(G, s, t) = 2: Let C = {(a, b), (a′, b′)} be the farthest (s, t) min-cut in G. (See

Figure 4.1 (i)). So after the failure of a set F of any two edges, a path from s to t (if it exists) in

G\F , must pass through C. We construct an auxiliary graphH by adding the edge (s, b) or (s, b′)

to G depending upon whether this path passes through (a, b) or (a′, b′). Since C is the farthest
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min-cut of G, it follows from Lemma 4.4 that the value of (s, t) max-flow in both the graphs

G+ (s, b) and G+ (s, b′) must be 3. So we denote P0, P1, P2 to be any three edge disjoint paths

from s to t inG+(s, b) (see Figure 4.1 (ii)), and similarly P ′0, P
′
1, P

′
2 to be three edge disjoint paths

in G+ (s, b′). The lemma below shows how these paths can be used to compute a 2-FTRS(t).

Lemma 4.7. Let Et be a subset of incoming edges to t satisfying the following conditions:

• Et contains last edges on paths P0, P1, P2 in case b 6= t, and the edge (a, b) in case b = t.

• Et contains last edges on paths P ′0, P
′
1, P

′
2 in case b′ 6= t, and the edge (a′, b′) in case b′ = t.

Then the graph G∗ formed by restricting the incoming edges of t in G to Et is a 2-FTRS(t).

Proof. Consider any set F of two edge failures. Note that if t is unreachable from s in G\F , then

we have nothing to prove. So let us assume that there exists a path R from s to t in G \ F , and it

passes through edge (a, b) of cut C. So, the auxiliary graph is H = G+ (s, b). Now if b = t, then

R is in G∗ \ F since (a, b) = (a, t) ∈ Et. Consider the case that b 6= t. Since P0, P1, and P2 are

edge disjoint, at least one of them is in the graph H \ F , let this path be P0. Now either (i) P0 is

in G \ F , or (ii) the first edge on it must be (s, b). In the latter case we replace the edge (s, b) by

path R[s, b], so that the path R[s, b]::P0[b, t] is in G \ F . In both cases we get a path from s to t in

G \ F that enters t using only edges of the set Et. Similar analysis can be carried out when path

R passes through edge (a′, b′). Hence we get that G∗ is a 2-FTRS(t).

Using the above lemma we can get a 2-FTRS(t) in which the in-degree of t is bounded by 6,

by including the last edges of all six paths P0, P1, P2, P
′
0, P

′
1, P

′
2 in Et. But our aim is to achieve

a bound of 4. For this we construct a source set S = A ∪ ({b, b′} \ {t}), where A and B forms a

partition of V induced by C, and compute a max flow fS from S to t. (See Figure 4.1 (iii)). The

following lemma shows that the graph obtained by restricting the incoming edges of t to those

carrying a non-zero flow with respect to fS is a 2-FTRS(t).

Lemma 4.8. Let E(t) be the set of incoming edges to t carrying a non-zero flow with respect to

fS . Then the graph G∗ =
(
G \ IN-EDGES(t, G)

)
+ E(t) is a 2-FTRS(t).

Proof. In order to prove this lemma it suffices to show that there exist paths P0, P1, P2, . . . , P
′
2

such that set E(t) satisfies the conditions required in Lemma 4.7. Here we show the existence of

P0, P1, P2. The proof for the existence of paths P ′0, P
′
1, P

′
2 follows in a similar manner.
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Note that if b = t, then edge (a, b) will be a direct edge from S to t, and would thus be in fS .

In this case (a, b) is in E(t). So consider the case b 6= t. In order to compute the paths P0, P1, P2

we consider the graph Gb = G + (s, b). Since both the endpoints of edge (s, b) lie in S, we have

that fS is a max-flow from S to t in graph Gb, as well. Let (AS , BS) be the partition of V induced

by any (S, t) min-cut in graph Gb. Lemma 4.5 implies that we can find a max-flow, say f , from s

to t in Gb such that E(f) ⊆ E(AS)∪E(fS). In other words, the incoming edges to t in E(f) are

from the set E(t). Recall that Lemma 4.4 implies that value of flow f is 3. So we set P0, P1, P2 to

be just the three paths corresponding to flow f .

We now show that the in-degree of t in G∗ is bounded by 4. In order to prove this, it suffices

to show that the value of (S, t) max-flow in G is at most 4. Now if

1. b, b′ 6= t, then outgoing edges of b and b′ will form an (S, t) cut,

2. b = t, then (a, b) along with outgoing edges of b′ will form an (S, t) cut, and

3. b′ = t, then (a′, b′) along with outgoing edges of b will form an (S, t) cut.

By Assumption 1, the out-degree of every vertex is bounded by two. Therefore, the value of (S, t)

min-cut (and max-flow) can be at most 4.

(ii) MAX-FLOW(G, s, t) = 1: Let C = {(x, y)} be the farthest min-cut from s to t. Then every

path from s to t must pass through edge (x, y). Note that if y = t, then we can simply return the

graph obtained by deleting all incoming edges of t except (x, t). If y 6= t, then the value of (y, t)-

max-flow must be 2. So in this case we return a 2-FTRS(t) with y as a source (using Case i.), let

this graph be G∗. It is easy to verify that G∗ is a 2-FTRS(t) with s as source, and in-degree of t

in G∗ is bounded by 4.

This completes the construction of a 2-FTRS(t). So we have the following theorem.

Theorem 4.4. There exists a polynomial time algorithm that for any given directed graph G on n

vertices computes a 2-FTRS for G with at most 4n edges.

4.5 Construction of a k-FTRS

In this section we prove Theorem 4.1. Let t be a vertex in G for which k-FTRS(t) from s needs

to be computed. (Recall that from Lemma 4.1 it follows that this is sufficient in order to prove
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Theorem 4.1.) Before we present the construction of k-FTRS(t) we state one more assumption

on the graph G (in addition to Assumption 1).

Assumption 2: The out-degree of the source vertex s is 1.

The above assumption can be easily justified by adding a new vertex s′ together with an edge

(s′, s) to G and then setting s′ as the new source vertex. Algorithm 4.1 constructs a k-FTRS(t)

with at most 2k incoming edges of t.

Algorithm 4.1: Algorithm for computing k-FTRS(t)

1 S1 ← {s};
2 for i = 1 to k do
3 Ci ← FMC(G,Si, t);
4 (Ai, Bi)← Partition(Ci);
5 Si+1 ← (Ai ∪ OUT(Ai)) \ {t};
6 end
7 f0 ← max-flow from Sk+1 to t;
8 E(t)← Incoming edges of t present in E(f0);
9 Return G∗ = (G \ IN-EDGES(t, G)

)
+ E(t);

Algorithm 4.1 works as follows. It performs k iterations. In the ith iteration it computes the

farthest min-cut Ci between a source set Si and vertex t. For the 1st iteration, the source set S1

is just vertex s. For i ≥ 1, the source set Si+1 is defined by the farthest min-cut computed in the

ith iteration. If (Ai, Bi) is the partition of V induced by Ci, then we set Si+1 as Ai union those

vertices in Bi \ {t} that have an incoming edge from any vertex of Ai. Notice that since Si ⊆ Ai

it implies that Si ⊆ Si+1. After k iterations the algorithm computes a max-flow f0 from Sk+1 to

t and sets E(t) to be the incoming edges of t that are in E(f0). The algorithm returns a graph G∗

obtained by restricting the incoming edges of t to E(t). We show in the next subsection that G∗ is

a k-FTRS(t) with in-degree(t) bounded by 2k. We must note that after some iteration i < k, the

source set may become V \ {t}. In this case, all subsequent iterations will be redundant.

For a better understanding of the hierarchy of cuts and the source sets constructed in our

algorithm, refer to Figure 4.2 (i). Note that some of the edges in a cut Ci (i ∈ [1, k]) may terminate

to t, we denote this set by Eti . The following lemma shows that these edges are always included

in our FTRS G∗.

Lemma 4.9. For every 1 ≤ i ≤ k, Eti ⊆ E(t).
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(i)                                                                                    (ii)

Figure 4.2: (i) The edges in brown color constitute the set E(t) when k = 4. (ii) Paths highlighted
in yellow color represent 5 edge-disjoint paths in graph H .

Proof. Consider any edge (u, t) ∈ Eti . Since u belongs to Ai it follows from the algorithm that u

is added to the source set Si+1 ⊆ Sk+1. Thus (u, t) is a direct edge from source Sk+1 to t, and

must be in every max-flow from Sk+1 to t.

4.5.1 Analysis

We now show that G∗ is a k-FTRS(t). Let F be any set of k failed edges. Assume that there

exists a path R from s to t in G \ F . We shall prove the existence of a path R̂ from s to t in

G∗ \ F . Let i ∈ [1, k]. Since each cut Ci is an (s, t)-cut, the path R must pass through an edge,

say (ui, vi), in Ci. Let us first consider the case when (ui, vi) ∈ Eti for some i ∈ [1, k]. Since

Lemma 4.9 implies that (ui, vi) is present in G∗ and vi = t, the path R is contained in G∗. So we

can set R̂ to R. We now turn to the case when the edge (ui, vi) belongs to the set Ci \Eti for every

i ∈ [1, k]. In order to show the existence of a path R̂ in G∗, we introduce a sequence of auxiliary

graphs Hi’s (for every i ∈ [1, k + 1]) as follows.

H1 = G, Hi = G+ (s, v1) + . . .+ (s, vi−1), i ∈ [2, k + 1]

Let H = Hk+1 be the graph obtained by adding all the edges (s, v1), ..., (s, vk) to graph G.
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(See Figure 4.2 (ii)). We will show using induction that Hi contains exactly i edge disjoint paths

from s to t. Before presenting the proof, we show that for any i, the cut Ci, which is the farthest

min-cut between Si and t in G, is also the farthest min-cut between Si and t in Hi.

Lemma 4.10. Ci = FMC(Hi, Si, t).

Proof. The cut Ci is defined as FMC(G,Si, t) and Hi = G +
∑

j<i(s, vj). Since the algorithm

adds to the source set Sj+1 all the vertices in OUT(Aj) \ {t}, the vertex vj ∈ OUT(Aj) \ {t} is

added to Sj+1 ⊆ Si. This implies that the graph Hi is formed by adding edges such that both of

their endpoints are in Si. Hence, Ci is also equal to FMC(Hi, Si, t), and Ai, Bi form the partition

of V induced by Ci in Hi.

Lemma 4.11. MAX-FLOW(H, s, t) = k + 1.

Proof. We show by induction that MAX-FLOW(Hi, s, t) = i, for any i ∈ [1, k + 1]. Note that

H1 = G. The base case holds since the out-degree of s is one and t is reachable from s, thus

MAX-FLOW(H1, s, t) = 1.

Recall thatHi+1 is formed by adding the edge (s, vi) toHi, where (ui, vi) was an edge present

in cut Ci. It follows from Lemma 4.10 that Ci is the farthest min-cut in Hi with Si as source,

and (Ai, Bi) is the partition of V induced by Ci. Let (Â, B̂) be the partition of V induced by

FMC(Hi, s, t). It follows from Lemma 4.6 that Bi ⊆ B̂. Therefore, using Lemma 4.4 we get

MAX-FLOW(Hi+1, s, t) = 1 + MAX-FLOW(Hi, s, t) = i+ 1.

Next, we define H∗ to be a graph obtained from H where the incoming edges of t are only

those present in the set E(t), that is, H∗ = (H \ IN-EDGES(t,H)) + E(t). The following Lemma

shows that the value of max-flow remains unaffected by restricting the incoming edges of t to E(t).

Lemma 4.12. MAX-FLOW(H∗, s, t) = k + 1.

Proof. Recall that f0 is a max-flow from Sk+1 to t in G. Since both endpoints of the edges

(s, v1), . . . , (s, vk) are in Sk+1, we get that f0 is a max-flow from Sk+1 to t in graph H = G +∑k
i=1(s, vi) as well. From Lemma 4.5 it follows that we can always find an (s, t) max-flow, say

f , in H such that E(f) ⊆ E(f0) ∪ E(Ak+1). The flow f terminates at t using only edges from

E(t), therefore, it is a flow in graph H∗ = (H \ IN-EDGES(t,H)) + E(t) as well. Since f is an
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(s, t) max-flow in H and max-flow cannot increase on edge removal, it follows from Lemma 4.11

that MAX-FLOW(H∗, s, t) = k + 1.

Note that graph H∗ defined above is also equal to G∗ +
∑k

j=1(s, vj). Next, using the k + 1

edge disjoint paths in H∗ we show that G∗ is a k-FTRS(t).

Lemma 4.13. For any set F of k edges, if t is reachable from s in G \F , then t is reachable from

s in G∗ \ F as well.

Proof. Recall that we started with assuming that R is a path from s to t in G \ F . We need to

show that there exists a path R̂ from s to t in G∗ \ F . Consider the graph H∗. By Lemma 4.12

we get that there exists k + 1 edge disjoint paths from s to t in H∗, let these be P0, P1, . . . , Pk.

Since |F | = k, we have that at least one of these k + 1 paths, say P0, must be intact in H∗ \ F .

Now if P0 lies entirely in G∗ \ F , then we can set R̂ to be P0. Thus let us assume that P0 does

not lie in G∗ \ F . Since H∗ is formed by adding edges (s, v1), .., (s, vk) to G∗, we will have that

the first edge on P0 is one of the newly added edges, say (s, vj), and the remaining path P0[vj , t]

will lie entirely in G∗ \ F . Now we can simply replace edge (s, vj) by path R[s, vj ] to get path

R̂ = R[s, vj ]::P0[vj , t] from s to t in G∗ \ F .

We shall now establish a bound on the number of incoming edges of t in G∗.

Bounding the size of set E(t). Let Ck+1 = FMC(G,Sk+1, t). We now prove using induction

that |Ci| is bounded by 2i−1, where i ∈ [1, k], thus achieving a bound of 2k on |E(t)| = |Ck+1|.

For the base case of i = 1, |C1| = 1 is obvious, since the out-degree of s is one. In the following

lemma we prove the induction step.

Lemma 4.14. For any i ≥ 1 and i ≤ k, |Ci+1| ≤ 2|Ci|.

Proof. LetD denote the set of edges originating from Si+1 and terminating to V \Si+1. Since Si+1

contains Ai, all the edges in set Eti must lie in D. Now consider an edge in (u, v) ∈ D \Eti . Note

that vertex u cannot lie in Ai, because then v must be either t or lie in (OUT(Ai) \ {t}) ⊆ Si+1.

Thus edges ofD\Eti must originate from vertices of the set OUT(Ai)\{t}. Since |OUT(Ai)\{t}| ≤

|Ci \ Eti | and the out-degree of every vertex is at most two, so we get that |D \ Eti | ≤ 2|Ci \ Eti |.

Thus, |D| ≤ |Eti | + 2|Ci \ Eti | ≤ 2|Ci|. Since D is an (Si, t) cut, we get that the size of (Si, t)

min-cut must be bounded by 2|Ci|.
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Remark 4.1. The fact that the out-degree of each vertex is bounded above by two plays a crucial

role in bounding the size of cuts Ci’s in the proof of Lemma 4.14.

Analysis of running time. We now analyze the running time of our algorithm to compute a

k-FTRS(t) for any t ∈ V . The first step in computation of k-FTRS(t) is to transform G into a

graph with O(m) vertices and edges such that out-degree of each vertex is bounded by two. This

takes O(m) time (see Lemma 4.2). Next we apply Algorithm 4.1 on this transformed graph. The

time complexity of Algorithm 4.1 is dominated by the time required for computing the k farthest

min-cuts which is O(
∑k

i=1m× |Ci|) = O(2km) (see [FF62]). Finally a k-FTRS(t) for original

graph can be extracted form a k-FTRS(t) of transformed graph in O(m) time (see Lemma 4.2).

Thus a k-FTRS(t) for any vertex t can be computed in O(2km) time.

Since computation of a k-FTRS requires n rounds, where in each round we compute a sub-

graph which is k-FTRS(v) for some v ∈ V , the total time required for constructing k-FTRS is

O(2kmn). We conclude with the following theorem.

Reminder of Theorem 4.1 Let G be a directed graph on n vertices, m edges with a designated

source vertex s. Then for any given integer k ≥ 1, there exists an O(2kmn) time algorithm that

computes a k-FTRS for G with at most 2kn edges. Moreover, the in-degree of each vertex in this

k-FTRS is bounded by 2k.

4.6 Lower Bound

We shall now show that for each k, n (n ≥ 2k), there exists a directed graph G with O(n) vertices

whose k-FTRS must have Ω(2kn) edges. Let T be a balanced binary tree of height k rooted at

s. Let X be the set of leaf nodes of T , thus |X| = 2k. Let Y be another set of n vertices. Then

the graph G is obtained by adding an edge from each x ∈ X to each y ∈ Y . In other words,

V (G) = V (T ) ∪ Y and E(V ) = E(T ) ∪ (X × Y ). Figure 4.3 illustrates the graph for k = 3.

We now show that a k-FTRS for G must contain all edges of G. It is easy to see that all edges

of T must be present in a k-FTRS of G. Thus let us consider an edge (x, y) ∈ X × Y . Let P be

the tree path from s to leaf node x. Let F be the set of all those edges (u, v) ∈ T such that u ∈ P

and v is the child of u not lying on P . Clearly |F | = k. Observe that x is the only leaf node of

T reachable from s on the failure of the edges in set F . Thus P ::(x, y) is the unique path from s
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T

X

Y

…

Figure 4.3: For each edge (x, y), there exist 3 edges (shown dotted) whose failure will render y
unreachable from s unless (x, y) is kept in the 3-FTRS.

to y in G \ F . This shows that edge (x, y) must lie in a k-FTRS for G. This establishes a lower

bound of Ω(2kn) on the size of k-FTRS for G.

Reminder of Theorem 4.2 For any positive integers n, k with n ≥ 2k, there exists a directed

graph on n vertices whose k-FTRS must have Ω(2kn) edges.

4.7 Applications

In this section we present a few applications of k-FTRS.

4.7.1 Determining if a set of k edge/vertex failures alters the strong connectivity

We consider the problem of determining whether the strong connectivity relation among the ver-

tices of G remains preserved even after the failure of any given k edges or vertices. Our construc-

tion works as follows. Let GR denote the graph obtained by reversing each edge of graph G. Let

S1, . . . , St be the partition of V corresponding to the SCCs of G, and let si be any arbitrary vertex

in Si. For 1 ≤ i ≤ t, letGi (GRi ) denote the graph induced by set Si inG (GR). For each i ∈ [1, t],

let Hi and HR
i denote the k-FTRS for Gi and GRi respectively with si as the source vertex. Our

data structure is simply the collection of the subgraphs H1, H
R
1 , ...,Ht, H

R
t . Given any query set

F of at most k failing edges/vertices, we perform traversal from si in graphs Hi \ F and HR
i \ F ,

where i ∈ [1, t]. The SCC Si is preserved if and only if the set of vertices reachable from si in

both Hi \ F and HR
i \ F is the same as the set Si. Note that the total space used, and the query

time after any k failures are both bounded by O(2kn). Thus we get the following theorem.

Theorem 4.5. Given any directed graphG = (V,E) on n vertices, a source s ∈ V , and a positive
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integer k, we can preprocess G in polynomial time to build an O(2kn) size data structure that,

after the failure of any set F of k edges or vertices can determine in O(2kn) time whether the

SCCs of graph G \ F are the same as those of the graph G.

4.7.2 Fault tolerant algorithm for reporting dominator tree of a graph

Recall that a dominator tree is a tree rooted at s where each node’s children are those nodes that

it immediately dominates [LT79]. Buchsbaum et al. [BGK+08] gave an O(m) time algorithm for

computing dominators and dominator tree. Here we show how this algorithm can be combined

with the concept of k-FTRS to obtain a fault tolerant algorithm for reporting the dominator tree

after the failure of any k edges or vertices. Let H be a (k + 1)-FTRS for graph G. It is easy to

see that on failure of any set F of k edges or vertices, the graph H \F is still a 1-FTRS for graph

G \ F . Thus dominators of a vertex w in graph H \ F are identical to that in graph G \ F . So in

order to compute the dominator tree of G \ F it suffices to run the algorithm of Buchsbaum et al.

[BGK+08] on graph H \ F . This would take time of the order of the number of edges in H , that

is, O(2kn). The space used is also O(2kn) as it suffices to store just the graph H . Thus we get

that the following theorem.

Theorem 4.6. Given any directed graphG = (V,E) on n vertices, a source s ∈ V , and a positive

integer k, we can preprocess G in polynomial time to build an O(2kn) size data structure that,

after the failure of any set F of k edges or vertices, can compute the dominator tree of G \ F in

O(2kn) time.
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Computing the strongly connected components (SCCs) of a directed graph G is one of the most

fundamental problems in computer science. There are several classical algorithms for comput-

ing the SCCs in O(m + n) time that are been taught in any standard undergraduate algorithms

course [CLRS09]. In this chapter, we study the following natural variant of the problem in the

fault tolerant setting - “What is the fastest algorithm to compute the SCCs of G \ F , where F is

any set of edges or vertices?”. The algorithm can use a polynomial size data structure computed

in polynomial time for G during a preprocessing phase. We obtain the following result.

Theorem 5.1. For any n-vertex directed graphG, there exists anO(2kn2) size data structure that

given any set F of at most k failing edges, can report all the SCCs of G\F in O(2kn log2 n) time.

The preprocessing time required to compute this data structure is O(2kn2m).

Since the time for outputting the SCCs of G\F is at least Ω(n), the reporting time of our data

structure is optimal (up to a polylogarithmic factor) for any fixed value of k.

Georgiadis, Italiano and Parotsidis [GIP17] addressed the problem of reporting SCCs after a

single edge or a single vertex failure, that is |F | = 1. They showed that it is possible to compute

the SCCs of G \ {e} for any e ∈ E (or of G \ {v} for any v ∈ V ) in O(n) time using a data

structure of size O(n) that is computed for G in a preprocessing phase in O(m + n) time. Our

result generalizes their result for any constant size F at the price of an extra O(log2 n) factor in

69
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the running time. We also use a slower preprocessing algorithm and a larger data structure.

Using the k-FTRS structure, it is relatively straightforward to obtain a data structure that, for

any pair of vertices u, v ∈ V and any set F of size k, answers in O(2kn) time queries of the form:

“Are u and v in the same SCC of G \ F ?”

The data structure consists of a k-FTRS for every v ∈ V . It is easy to see that u and v

are in the same SCC of G \ F if and only if v is reachable from u in k-FTRS(u) \ F and u is

reachable from v in k-FTRS(v) \ F 1. So the query can be answered by checking, using graph

traversals, whether v is reachable from u in k-FTRS(u) \F and whether u is reachable from v in

k-FTRS(v) \ F . The cost of these two graph traversals is O(2kn). The size of the data structure

is O(2kn2).

The challenge that we address in this chapter is given an arbitrary set F how fast all the SCCs

of G \ F can be computed.

5.1 Overview

We obtain our O(2kn log2 n)-time algorithm using several new ideas. One of the main building

blocks is surprisingly the following restricted variant of the problem.

Given any set F of k failed edges and any path P which is intact in G\F , output all the SCCs

of G \ F that intersect with P (i.e. contain at least one vertex of P ).

To solve this restricted version, we implicitly solve the problem of reachability from x (and to

x) in G \ F , for each x ∈ P . Though it is trivial to do so in time O(2kn|P |) using k-FTRS of

each vertex on P , our goal is to preform this computation in O(2kn log n) time, that is, in running

time that is independent of the length of P . For this we use a careful insight into the structure of

reachability between P and V . Specifically, if v ∈ V is reachable from x ∈ P , then v is also

reachable from any predecessor of x on P , and if v is not reachable from x, then it cannot be

reachable from any successor of x as well. Let w be any vertex on P , and let A be the set of

vertices reachable from w in G \ F . Then we can split P at w to obtain two paths: P1 and P2.

We already know that all vertices in P1 have a path to A, so for P1 we only need to focus on set

1Here k-FTRS(u) (resp. k-FTRS(v)) denote a k-FTRS for graph G with u (resp. v) as source.
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V \A. Also the set of vertices reachable from any vertex on P2 must be a subset ofA, so for P2 we

only need to focus on set A. This suggests a divide-and-conquer approach which along with some

more insight into the structure of k-FTRS helps us to design an efficient algorithm for computing

all the SCCs that intersect P .

In order to use the above result to compute all the SCCs ofG\F , we need a clever partitioning

of G into a set of vertex disjoint paths. A Depth-First-Search (DFS) tree plays a crucial role here

as follows. Let P be any path from root to a leaf node in a DFS tree T . If we compute the SCCs

intersecting P and remove them, then the remaining SCCs must be contained in subtrees hanging

from path P . So to compute the remaining SCCs we do not need to work on the entire graph.

Instead, we need to work on each subtree. In order to pursue this approach efficiently, we need to

select path P in such a manner that the subtrees hanging from P are of small size. The heavy path

decomposition of Sleator and Tarjan [ST83] helps to achieve this objective.

Our algorithm and data structure can be extended to support insertions as well. More specifi-

cally, we can report the SCCs of a graph that is updated by insertions and deletions of k edges in

the same running time.

5.2 Preliminaries

We assume that the input graph G is strongly connected, since if it is not the case, then we may

apply our result to each strongly connected component of G. Below we introduce some of the

notations that will be used throughout this chapter.

• T : A DFS tree of G.

• depth(PATHT (a, b)): The depth of vertex a in T .

• GR: The graph obtained by reversing all the edges in graph G.

• P: The set of vertex disjoint paths in G obtained from a heavy path decomposition of T .

Our algorithm will require the knowledge of the vertices reachable from a vertex v as well as

the vertices that can reach v. So we define a k-FTRS of both the graphs - G and GR with respect

to any source vertex v as follows.
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• G(v): The k-FTRS of graph G with v as source obtained by Theorem 4.1.

• GR(v): The k-FTRS of graph GR with v as source obtained by Theorem 4.1.

The following lemma states that the subgraph of a k-FTRS induced by A ⊂ V can serve as a

k-FTRS for the subgraph G(A) given that A satisfies certain properties.

Lemma 5.1. Let s be any designated source and H be a k-FTRS of G with respect to s. Let A

be a subset of V containing s such that every path from s to any vertex in A is contained in G(A).

Then H(A) is a k-FTRS of G(A) with respect to s.

Proof. Let F be any set of at most k failing edges, and v be any vertex reachable from s in

G(A) \ F . Since v is reachable from s in G \ F and H is a k-FTRS of G, v must be reachable

from s in H \ F as well. Let P be any path from s to v in H \ F . Then (i) all edges of P are

present in H and (ii) none of the edges of F appear on P . Since every path from s to any vertex

in A is contained in G(A), P must be present in G(A). So every vertex of P belongs to A. This

fact combined with the inferences (i) and (ii) imply that P must be present in H(A) \ F . Hence

H(A) is k-FTRS of G(A) with respect to s.

The next lemma is an adaptation of Lemma 10 from Tarjan’s classical paper on Depth First

Search [Tar72] to our needs.

Lemma 5.2. Let T be a DFS tree of G. Let a, b ∈ V be two vertices without any ancestor-

descendant relationship in T , and assume that a is visited before b in the DFS traversal of G

corresponding to tree T . Every path from a to b in G must pass through a common ancestor of a

and b in T .

Proof. Let us assume on the contrary that there exists a path P from a to b in G that does not

pass through any common ancestor of a, b in T . Let z be the LCA of a, b in T , and w be the

child of z lying on PATHT (z, a) in T . See Figure 5.1. Let A be the set of vertices which are

either visited before w in T or lie in the subtree T (w), and B be the set of vertices visited after

w in T . Thus a belongs to set A, and b belongs to set B. Let x be the last vertex in P that lies

in A, and y be the successor of x on P . Since none of vertices of P is a common ancestor of a

and b, the edge (x, y) must belong to set A × B. So the following relationship must hold true-
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FINISH-TIME(x) ≤ FINISH-TIME(w) < VISIT-TIME(y). But such a relationship is not possible

since all the out-neighbors of x must be visited before the DFS traversal finishes for vertex x.

Hence we get a contradiction.

Figure 5.1: Depiction of vertices a, b, z, w and sets A (shown in orange) and B (shown in purple).

We now introduce the notion of ancestor path.

Definition 5.1. A path PATHT (a1, b1) ∈ P is said to be an ancestor path of PATHT (a2, b2) ∈ P ,

if a1 is an ancestor of a2 in T .

In this chapter, we describe the algorithm for computing SCCs of graph G after any k edge

failures. Vertex failures can be handled by simply splitting each vertex v into an edge (vin, vout),

where the incoming and outgoing edges of v are directed to vin and from vout, respectively.

5.3 Computation of SCCs intersecting a given path

Let F be a set of at most k failing edges, and X = (x1, x2, . . . , xt) be any path in G from x1 to

xt which is intact in G \ F . In this section, we present an algorithm that outputs in O(2kn log n)

time the SCCs of G \ F that intersect X .

For each v ∈ V , let X IN(v) be the vertex of X of minimum index (if exists) that is reachable

from v in G \ F . Similarly, let XOUT(v) be the vertex of X of maximum index (if exists) that has

a path to v in G \ F . (See Figure 5.2).

We start by proving certain conditions that must hold for a vertex if its SCC inG\F intersects

X .

Lemma 5.3. For any vertex w ∈ V , the SCC that contains w in G \ F intersects X if and only if

the following two conditions are satisfied.
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Figure 5.2: Depiction of X IN(v) and XOUT(v) for a vertex v whose SCC intersects X .

(i) Both X IN(w) and XOUT(w) are defined, and

(ii) Either X IN(w) = XOUT(w), or X IN(w) appears before XOUT(w) on X .

Proof. Consider any vertex w ∈ V . Let S be the SCC in G \ F that contains w and assume S

intersects X . Let w1 and w2 be the first and last vertices of X , respectively, that are in S. Since

w and w1 are in S there is a path from w to w1 in G \ F . Moreover, w cannot reach a vertex that

precedes w1 in X since such a vertex will be in S as well and it will contradict the definition of

w1. Therefore, w1 = X IN(w). Similarly we can prove that w2 = XOUT(w). Since w1 and w2 are

defined to be the first and last vertices from S on X , respectively, it follows that either w1 = w2,

or w1 precedes w2 on X . Hence conditions (i) and (ii) are satisfied.

Now assume that conditions (i) and (ii) are true. The definition of X IN(·) and XOUT(·) implies

that there is a path from XOUT(w) to w, and a path from w to X IN(w). Also, condition (ii) implies

that there is a path from X IN(w) to XOUT(w). Thus w, X IN(w), and XOUT(w) are in the same SCC

and it intersects X .

The following lemma states the condition under which any two vertices lie in the same SCC,

given that their SCCs intersect X .

Lemma 5.4. Let a, b be any two vertices in V whose SCCs intersect X . Then a and b lie in the

same SCC if and only if X IN(a) = X IN(b) and XOUT(a) = XOUT(b).

Proof. In the proof of Lemma 5.3, we show that if SCC of w intersects X , then X IN(w) and

XOUT(w) are precisely the first and last vertices on X that lie in the SCC of w. Since SCCs forms

a partition of V , vertices a and b will lie in the same SCC if and only if X IN(a) = X IN(b) and

XOUT(a) = XOUT(b).

It follows from the above two lemmas that in order to compute the SCCs inG\F that intersect

with X , it suffices to compute X IN(·) and XOUT(·) for all vertices in V . It suffices to focus on
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computation of XOUT(·) for all the vertices of V , since X IN(·) can be computed in an analogous

manner by just looking at graph GR. One trivial approach to achieve this goal is to compute the

set Vi consisting of all vertices reachable from each xi by performing a BFS or DFS traversal of

graph G(xi) \ F , for 1 ≤ i ≤ t = |X|. Using this straightforward approach it takes O(2knt)

time to complete the task of computing XOUT(v) for every v ∈ V , while our target is to do so in

O(2kn log n) time.

Observe the nested structure underlying Vi’s, that is, V1 ⊇ V2 ⊇ · · · ⊇ Vt. Consider any

vertex x`, 1 < ` < t. The nested structure implies for every v ∈ V` that XOUT(v) must be on

the portion (x`, . . . , xt) of X . Similarly, it implies for every v ∈ V1 \ V` that XOUT(v) must be

on the portion (x1, . . . , x`−1) of X . This suggests a divide and conquer approach to efficiently

compute XOUT(·). We first compute the sets V1 and Vt in O(2kn) time each. For each v ∈ V \ V1,

we assign NULL to XOUT(v) as it is not reachable from any vertex on X; and for each v ∈ Vt

we set XOUT(v) to xt. For vertices in set V1 \ Vt, XOUT(·) is computed by calling the function

Binary-Search(1, t− 1, V1 \ Vt). See Algorithm 5.1.

Algorithm 5.1: Binary-Search(i, j, A)

1 if (i = j) then
2 foreach v ∈ A do XOUT(v) = xi;
3 else
4 mid← d(i+ j)/2e;
5 B ← Reach(xmid, A); /* vertices in A reachable from xmid */
6 Binary-Search(i,mid-1, A\B);
7 Binary-Search(mid, j, B);
8 end

In order to explain the function Binary-Search, we first state an assertion that holds true for

each recursive call of the function Binary-Search. We prove this assertion in the next subsection.

Assertion 1: If Binary-Search(i, j, A) is called, thenA is precisely the set of those vertices v ∈ V

whose XOUT(v) lies on the path (xi, xi+1, . . . , xj).

We now explain the execution of function Binary-Search(i, j, A). If i = j, then we assign xi

to XOUT(v) for each v ∈ A as justified by Assertion 1. Let us consider the case when i 6= j. In this

case we first compute the indexmid = d(i+j)/2e. Next we compute the setB consisting of all the

vertices inA that are reachable from xmid. This set is computed using the function Reach(xmid, A)
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which is explained later in Subsection 5.3.2. As follows from Assertion 1, XOUT(v) for each

vertex v ∈ A must belong to path (xi, . . . , xj). Thus, XOUT(v) for all v ∈ B must lie on path

(xmid, . . . , xj), andXOUT(v) for all v ∈ A\B must lie on path (xi, . . . , xmid-1). So for computing

XOUT(·) for vertices in A \ B and B, we invoke the functions Binary-Search(i,mid-1, A\B) and

Binary-Search(mid, j, B), respectively.

5.3.1 Proof of correctness of algorithm

In this section we prove that Assertion 1 holds for each call of the Binary-Search function. Let

us first see how this assertion implies that XOUT(v) is correctly computed for every v ∈ V . It

follows from the description of the algorithm that for each i, (1 ≤ i ≤ t− 1), the function Binary-

Search(i, i, A) is invoked for some A ⊆ V . Assertion 1 implies that A must be the set of all those

vertices v ∈ V such that XOUT(v) = xi. As can be seen, the algorithm in this case correctly sets

XOUT(v) to xi for each v ∈ A.

We now show that Assertion 1 holds true in each call of the function Binary-Search. It is

easy to see that Assertion 1 holds true for the first call Binary-Search(1, t− 1, V1 \ Vt). Consider

any intermediate recursive call Binary-Search(i, j, A), where i 6= j. It suffices to show that if

Assertion 1 holds true for this call, then it also holds true for the two recursive calls that it in-

vokes. Thus let us assume A is the set of those vertices v ∈ V whose XOUT(v) lies on the path

(xi, xi+1, . . . , xj). Recall that we compute index mid lying between i and j, and find the set B

consisting of all those vertices in A that are reachable from xmid. From the nested structure of

the sets Vi, Vi+1, . . . , Vj , it follows that XOUT(v) for all v ∈ B must lie on path (xmid, . . . , xj),

and XOUT(v) for all v ∈ A \ B must lie on path (xi, . . . , xmid-1). That is, B is precisely the set

of those vertices whose XOUT(v) lies on the path (xmid, . . . , xj), and A \B is precisely the set of

those vertices whose XOUT(v) lies on the path (xi, . . . , xmid-1). Thus Assertion 1 holds true for

the recursive calls Binary-Search(i,mid-1, A\B) and Binary-Search(mid, j, B) as well.

5.3.2 Implementation of function Reach

The main challenge left now is to find an efficient implementation of the function Reach which

has to compute the vertices of its input set A that are reachable from a given vertex x ∈ X in

G \F . The function Reach can be easily implemented by a standard graph traversal initiated from
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x in the graph G(x)\F (recall that G(x) is a k-FTRS of x in G). This, however, will takeO(2kn)

time which is not good enough for our purpose, as the total running time of Binary-Search in this

case will become O(|X|2kn). Our aim is to implement the function Reach in O(2k|A|) time. In

general, for an arbitrary set A this might not be possible. This is because A might contain a vertex

that is reachable from x via a single path whose vertices are not in A, therefore, the algorithm

must explore edges incident to vertices that are not in A as well. However, the following lemma,

that exploits Assertion 1, suggests that in our case as the call to Reach is done while running the

function Binary-Search we can restrict ourselves to the set A only.

Lemma 5.5. If Binary-Search(i, j, A) is called and ` ∈ [i, j], then for each path P from x` to a

vertex z ∈ A in graph in G \ F , all the vertices of P must be in the set A.

Proof. Assertion 1 implies that A is precisely the set of those vertices in V which are reachable

from xi but not reachable from xj+1 in G \ F . Consider any vertex y ∈ P . Observe that y

is reachable from xi by the path X[xi, x`]::P [x`, y]. Moreover, y is not reachable from xj+1,

because otherwise z will also be reachable from xj+1, which is not possible since z ∈ A. Thus

vertex y is in the set A.

Lemma 5.5 and Lemma 5.1 imply that in order to find the vertices in A that are reachable

from xmid, it suffices to do traversal from xmid in the graph GA, the induced subgraph of A in

G(xmid) \ F , that has O(2k|A|) edges. Therefore, based on the above discussion, Algorithm 5.2

given below, is an implementation of function Reach that takes O(2k|A|) time.

Algorithm 5.2: Reach(xmid, A)

1 H ← G(xmid) \ F ;
2 GA ← (A, ∅); /* an empty graph */
3 foreach v ∈ A do
4 foreach (y, v) ∈ IN-EDGES(v,H) do
5 if y ∈ A then E(GA) = E(GA) ∪ (y, v);
6 end
7 end
8 B ← Vertices reachable from xmid obtained by a BFS or DFS traversal of graph GA;
9 Return B;

The following lemma gives the analysis of running time of Binary-Search(1, t− 1, V1 \ Vt).

Lemma 5.6. The total running time of Binary-Search(1, t− 1, V1 \ Vt) is O(2kn log n).
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Proof. The time complexity of Binary-Search(1, t − 1, V1 \ Vt) is dominated by the total time

taken by all invocations of function Reach. Let us consider the recursion tree associated with

Binary-Search(1, t − 1, V1 \ Vt). It can be seen that this tree will be of height O(log n). In each

call of the Binary-Search, the input set A is partitioned into two disjoint sets. As a result, the input

sets associated with all recursive calls at any level j in the recursion tree form a disjoint partition

of V1 \ Vt. Since the time taken by Reach is O(2k|A|), the total time taken by all invocations of

Reach at any level j is O(2k|V1 \ Vt|). As there are at most log n levels in the recursion tree, the

total time taken by Binary-Search(1, t− 1, V1 \ Vt) is O(2kn log n).

We conclude with the following theorem.

Theorem 5.2. Let F be any set of at most k failed edges, and X = {x1, x2, . . . , xt} be any path

in G \ F . If we have prestored the graphs G(x) and GR(x) for each x ∈ X , then we can compute

all the SCCs of G \ F which intersect with X in O(2kn log n) time.

5.4 Main Algorithm

In the previous section we showed that given any path P , we can compute all the SCCs intersecting

P efficiently, if P is intact in G \ F . In the case that P contains ` failed edges from F then P is

decomposed into ` + 1 paths, and we can apply Theorem 5.2 to each of these paths separately to

get the following theorem:

Theorem 5.3. Let P be any given path in G. Then there exists an O(2kn|P |) size data structure

that for any arbitrary set F of at most k edges computes the SCCs of G \F that intersect the path

P in O((`+ 1)2kn log n) time, where ` (` ≤ k) is the number of edges in F that lie on P .

Notice that in order to use Theorem 5.3 to efficiently compute SCCs of G \ F we chose P to

be a heavy path decomposition of DFS tree T . Choosing T as a DFS tree helps us because of the

following reason: let P be any root-to-leaf path, and suppose we have already computed the SCCs

in G \ F intersecting P . Then each of the remaining SCCs must be contained in some subtree

hanging from path P . The following lemma formally states this fact.

Lemma 5.7. Let F be any set of failed edges, and PATHT (a, b) be any path in P . Let S be any

SCC in G \F that intersects PATHT (a, b) but does not intersect any ancestor path of PATHT (a, b)
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in P . Then all the vertices of S must lie in the subtree T (a).

Proof. Consider a vertex u on PATHT (a, b) whose SCC Su in G \ F is not completely contained

in the subtree T (a). We show that Su must contain an ancestor of a in T , thereby proving that it

intersects an ancestor-path of PATHT (a, b) in P . Let v be any vertex in Su that is not in the subtree

T (a). Let Pu,v and Pv,u be paths from u to v and from v to u, respectively, inG\F . From Lemma

5.2 it follows that either Pu,v or Pv,u must pass through a common ancestor of u and v in T . Let

this ancestor be z. Notice that all the vertices of Pu,v and Pv,u must lie in Su. Therefore, u and z

are in the same SCC in G \F . Moreover, since v /∈ T (a) and u ∈ T (a), their common ancestor z

in T is an ancestor of a. Since z ∈ Su and it is an ancestor of a in T , the lemma follows.

Lemma 5.7 suggests that if we process the paths from P in the non-decreasing order of their

depths, then in order to compute the SCCs intersecting a path PATHT (a, b) ∈ P , it suffices to

focus on the subgraph induced by the vertices in T (a) only. This is because the SCCs intersecting

PATHT (a, b) that do not completely lie in T (a) would have already been computed during the

processing of some ancestor path of PATHT (a, b).

Algorithm 5.3: Compute SCC(G,F )

1 C ← ∅; /* Collection of SCCs */
2 W ← ∅;
3 P ← A heavy path decomposition of T , where paths are sorted in the non-decreasing order

of their depths;
4 foreach PATHT (a, b) ∈ P do
5 A← Vertices lying in the subtree T (a);
6 (S1, . . . , St)← SCCs intersecting PATHT (a, b) in G(A) \ F computed using Da,b;
7 foreach i ∈ [1, t] do
8 if (Si *W ) then Add Si to collection C and set W = W ∪ Si;
9 end

10 end
11 Return C;

We preprocess the graph G as follows. We first compute a heavy path decomposition P of

DFS tree T . Next for each path PATHT (a, b) ∈ P , we use Theorem 5.3 to construct the data

structure for path PATHT (a, b) and the subgraph of G induced by vertices in T (a). We use the

notation Da,b to denote this data structure. Our algorithm for reporting SCCs in G \F will use the

collection of these data structures associated with the paths in P as follows.
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Let C denote the collection of SCCs in G \ F initialized to ∅. We process the paths from P

in non-decreasing order of their depths. Let PATHT (a, b) be any path in P and let A be the set

of vertices belonging to T (a). We use the data structure Da,b to compute SCCs of G(A) \ F

intersecting PATHT (a, b). Let these be S1, . . . , St. Note that some of these SCCs might be a part

of some bigger SCC computed earlier. We can detect it by keeping a set W of all vertices for

which we have computed their SCCs. So if Si ⊆ W , then we can discard Si, else we add Si to

collection C. Algorithm 5.3 gives the complete pseudocode of this algorithm.

Note that, in the above explanation, we only used the fact that T is a DFS tree, and P could

have been any path decomposition of T . We now show how the fact that P is a heavy path

decomposition is crucial for the efficiency of our algorithm. Consider any vertex v ∈ T . The

number of times v is processed in Algorithm 5.3 is equal to the number of paths in P that start

from either v or an ancestor of v, which we know from Lemma 3.2 to be bounded by log n.

On applying Theorem 5.3, this immediately gives that the total time taken by Algorithm 5.3 is

O(k2kn log2 n). In the next subsection, we do a more careful analysis and show that this bound

can be improved to O(2kn log2 n).

5.4.1 Analysis of time complexity

For any path PATHT (a, b) ∈ P and any set F of failing edges, let `(a, b) denote the number of

edges of F that lie on PATHT (a, b). It follows from Theorem 5.3 that the time spent in processing

PATHT (a, b) by Algorithm 5.3 is O
(
(`(a, b) + 1)× 2k|T (a)|× log n

)
. Hence the time complexity

of Algorithm 5.3 is of the order of

∑
PATHT (a,b)∈P

(`(a, b) + 1)× 2k|T (a)| × log n

In order to calculate this we define a notation α(v, PATHT (a, b)) as `(a, b) + 1 if v ∈ T (a),

and 0 otherwise, for each v ∈ V and PATHT (a, b) ∈ P . So the time complexity of Algorithm 5.3

becomes

2k log n×
( ∑

PATHT (a,b)∈P

(`(a, b) + 1)× |T (a)|
)

= 2k log n×
( ∑

PATHT (a,b)∈P

∑
v∈V

α(v, PATHT (a, b))
)
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= 2k log n×
(∑
v∈V

∑
PATHT (a,b)∈P

α(v, PATHT (a, b))
)

Observe that for any vertex v and PATHT (a, b) ∈ P , α(v, PATHT (a, b)) is equal to `(a, b) + 1

if a is either v or an ancestor of v, otherwise it is zero. Consider any vertex v ∈ V . We now show

that
∑

PATHT (a,b)∈P α(v, PATHT (a, b)) is at most k + log n. Let Pv denote the set of those paths

in P which starts from either v or an ancestor of v. Then
∑

PATHT (a,b)∈P α(v, PATHT (a, b)) =∑
PATHT (a,b)∈Pv `(a, b)+1. Note that

∑
PATHT (a,b)∈Pv `(a, b) is at most k. Also Lemma 3.2 implies

that the number of paths in Pv is at most log n. This shows that
∑

PATHT (a,b)∈P α(v, PATHT (a, b))

is at most k + log n which is O(log n), since k ≤ log n.

Hence the time complexity of Algorithm 5.3 becomes O(2kn log2 n). We thus conclude with

the following theorem.

Reminder of Theorem 5.1 For any n-vertex directed graph G, there exists an O(2kn2) size

data structure that given any set F of at most k failing edges, can report all the SCCs of G \ F in

O(2kn log2 n) time. The preprocessing time required to compute this data structure isO(2kn2m).

5.5 Extension to handle insertion as well as deletion of edges

In this section we extend our algorithm to incorporate insertion as well as deletion of edges. That

is, we describe an algorithm for reporting SCCs of a directed graph G when there are at most k

edge insertions and at most k edge deletions.

LetD denote theO(2kn2) size data structure, described in Section 5.4, for handling k failures.

In addition to D, we store the two k-FTRS: G(v) and GR(v) for each vertex v in G. Thus the

space used remains the same, i.e. O(2kn2). Now let U = (X,Y ) be the ordered pair of k updates,

withX being the set of failing edges and Y being the set of newly inserted edges. Also let |X| ≤ k

and |Y | ≤ k.

Our first step is to compute the collection C, consisting of SCCs of graph G \X . This can be

easily done in O(2kn log2 n) time using the data structure D. Now on addition of set Y , some of

the SCCs in C may get merged into bigger SCCs. Let S be the subset of V consisting of endpoints

of edges in Y . Note that if the SCC of a vertex gets altered on addition of Y , then its new SCC

must contain at least one edge from Y , and thus also a vertex from set S. Therefore, in order to

compute SCCs of G+ U , it suffices to recompute only the SCCs of vertices lying in the set S.
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Algorithm 5.4: Find-SCCs(U = (X,Y ))

1 C ← SCCs of graph G \X computed using data structure D;
2 S ← Subset of V consisting of endpoints of edges in Y ;
3 H ← ⋃

v∈S
(
G(v) + GR(v) + Y

)
;

4 Compute SCCs of graph H \X using any standard static algorithm;
5 foreach v ∈ S do
6 Merge all the smaller SCCs of C which are contained in SCCH\X(v) into a single SCC;
7 end

Lemma 5.8. Let H be a graph consisting of edge set Y , and the k-FTRS G(v) and GR(v), for

each v ∈ S. Then SCCH\X(v) = SCCG+U (v), for each v ∈ S.

Proof. Consider a vertex v ∈ S. Since H \X ⊆ G+U , SCCH\X(v) ⊆ SCCG+U (v). We show

that SCCH\X(v) is indeed equal to SCCG+U (v).

Let w be any vertex reachable from v in G + U , by a path, say P . Our aim is to show that w

is reachable from v in H \X as well. Notice that we can write P as (P1::e1::P2::e2 · · · e`−1::P`),

where e1, . . . , e`−1 are edges in Y ∩ P and P1, . . . , P` are segments of P obtained after removal

of edges of set Y . Thus P1, . . . , P` lie in G \X . For i = 1 to `, let ai and bi be respectively the

first and last vertices of path Pi. Since a1 = v and a2, . . . , a` ∈ S, the k-FTRS of all the vertices

a1 to a` is contained in H . Thus for i = 1 to `, vertex bi must be reachable from ai by some path,

say Qi, in graph H \X . Hence Q = (Q1::e1::Q2 · · · e`−1::Q`) is a path from a1 = v to b` = w in

graph H \X .

In a similar manner we can show that if a vertex w′ has a path to v in graph G + U , then w′

will also have path to v in graph H \X . Thus SCCH\X(v) must be equal to SCCG+U (v).

So we compute the auxiliary graph H as described in Lemma 5.8. Note that H contains

only O(k2kn) edges. Next we compute the SCCs of graph H \ X using any standard algorithm

[CLRS09] that runs in time which is linear in terms of the number of edges and vertices. This

algorithm will take O(2kn log n) time, since k is at most log n. Finally, for each v ∈ S, we check

if the SCCH\X(v) has broken into smaller SCCs in C, if so, then we merge all of them into a

single SCC. We can accomplish this entire task in a total O(nk) time only. This completes the

description of our algorithm. For the pseudocode see Algorithm 5.4.

We conclude with the following theorem.

Theorem 5.4. For any n-vertex directed graphG, there exists anO(2kn2) size data structure that,
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given any set U of at most k edge insertions and at most k edge deletions, can report the SCCs of

graph G+ U in O(2kn log2 n) time.





Chapter 6

Approximate Single Source Fault

Tolerant Shortest Path

In this chapter, we present a comprehensive study of the problem of maintaining a multiplicative

(1 + ε)-approximate shortest path from a designated source s to every v ∈ V \ {s} in the presence

of a failure of an edge or a vertex. Our construction works for any arbitrary ε ∈ (0, 1). We as-

sume that our graph is a directed weighted graph with edge weights in range [1,W ]. We study the

problem from the aspect of graph theory (sparse subgraph), data structures (oracle) and distributed

algorithms (labeling and routing schemes).

Sparse subgraph. We show that for any graph G it is possible to compute a subgraph H with

O(n log3(n) log1+ε(nW )) edges such that for every v, x ∈ V , distance of v from s in H \ {x} is

at most (1 + ε) times the distance from s in G \ {x}. Moreover, the in-degree of each vertex in H

is bounded by O(log4(n) log1+ε(nW )). We show that the size of the subgraph H is optimal (up

to logarithmic factors) by proving a lower bound of Ω(n log1+εW ) edges.

Demetrescu, Thorup, Chowdhury and Ramachandran [DTCR08] showed that there exist graphs

for which any subgraph preserving exact distances from a designated source in the presence of fail-

ure of an edge or a vertex must require Ω(m) space. Peleg and Parter [PP13] showed that even

in the restricted case of unweighted graphs there exists a lower bound of Ω(n1.5). Therefore, it is

only natural to consider an approximation.

85
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Oracle. We show that there exists an O(n log1+ε(nW )) size oracle that for any v ∈ V reports

a (1 + ε)-approximate distance of v from s upon a failure of any x ∈ V in O(log log1+ε(nW ))

time. We show that the size of the oracle is optimal (up to logarithmic factors) by proving a lower

bound of Ω(n log1+ε(W )/ log n).

Distributed algorithms. We present two distributed algorithms. We present a single source

routing scheme in the presence of single fault with the following characteristics. The path taken

by the packet on failure of any x is a (1 + ε)-approximation of the shortest path from s in the

graph G \ {x}. Each vertex has a label of O(log4(n) log1+ε(nW )) bits and a routing table of

O(log5 n log1+ε(nW )) bits. When the routing is started at the source the labels of the failing

vertex and the destination vertex are assumed to be known.

We present also a labeling scheme that assigns each vertex a label of O(log2(n) log1+ε(nW ))

bits. For any two vertices x, v ∈ V the labeling scheme outputs a (1 + ε)-approximation of the

distance of v from s in G \ x using only the labels of x and v.

6.1 Preliminaries

Below we introduce some of the notations that will be used throughout this chapter.

• T : A shortest path tree of G rooted at s.

• wt(u, v): Weight of edge (u, v) in graph G.

• wt(P ): The weight of path P inG, i.e., if P = (u0, ..., ut) thenwt(P ) =

t−1∑
i=0

wt(ui, ui+1).

• σ(P ): Sequence of those vertices of path P whose incoming edge in the path is a non-tree

edge.

• FREQ(w, C): The number of sequences of set C in which vertex w appears.

• G \ x: The graph obtained by deleting vertex x from G.

• POWERS(c): The set of all powers of c in the range [1, nW ].

Recall the definition of a detour (Definition 2.3). We now define a special class of detours, the

tree-path favoring detours, that will be used in our constructions.
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Definition 6.1. A detour D from u to v is a tree-path favoring detour if for any a, b ∈ D \ {u, v},

where a precedes b in D and a is an ancestor of b in T , it holds that the segment D[a, b] is a tree

path.

It is easy to see that if a detour is not a tree-path favoring detour then we can easily convert

it into a tree-path favoring detour, by repeatedly replacing segment D(a, b) with the tree path

PATHT (a, b). Since T is the shortest path tree, by doing this we do not increase the weight of the

detour. So, henceforth we can assume that all the detours referred in this chapter are tree-path

favoring detours.

For the sake of simplicity we use the following alternative weight function (usually known as

the Johnson transformation) which is quite popular in the literature of shortest paths.

wt∗(u, v) := wt(u, v) + distG(s, u)− distG(s, v)

It is easy to see that for any edge (u, v), wt∗(u, v) ≥ 0. Also if (u, v) is a tree edge then

wt∗(u, v) must be 0. From the next lemma it follows that for any detour D, wt∗(D) must be

bounded by nW .

Lemma 6.1. Let a, b ∈ T be such that a is an ancestor of b, and let P be any path from a to b.

Then, wt∗(P ) = wt(P )− distG(a, b).

Proof. Let P = (a = a0, . . . , at = b). So

wt∗(P ) =
∑t

i=1wt
∗(ai−1, ai)

=
∑t

i=1

(
wt(ai−1, ai) + distG(s, ai−1)− distG(s, ai)

)
= distG(s, a0)− distG(s, at) +

∑t
i=1wt(ai−1, ai)

= wt(P ) + distG(s, a)− distG(s, b) = wt(P )− distG(a, b)

Thus we get wt∗(P ) is equal to wt(P )− distG(a, b).

In the next Lemma we prove an important property of certain detours which we use for con-

structing our subgraph. This Lemma uses the new weight function and exemplifies its significance.

Lemma 6.2. Let x, v ∈ V be such that x is an ancestor of v in T . There is a shortest path from s

to v inG\x of the form - PATHT (s, a)::D::PATHT (b, v), whereD is a detour starting from a vertex
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a ∈ PATHT (s, x̄) and terminating at a vertex b ∈ PATHT (x̄, v) for which wt∗(D) is minimum.

Proof. Let P be some shortest path from s to v in G \ x. Let a be the last vertex of P that is also

in PATHT (s, x̄), and let b be the first successor of a in P that is in PATHT (x̄, v). It is easy to see

that such two vertices a, b must exist. The segment P [a, b] is a detour for b, as none of its internal

vertices can be an ancestor of b. Thus we can set D to be P [a, b]. Since T is the shortest path tree

we can replace the segments P [s, a] and P [b, v] with PATHT (s, a) and PATHT (b, v), respectively,

without increasing the total weight. Thus the path Q = PATHT (s, a)::D::PATHT (b, v) forms a

shortest path from s to v in G \ x.

Finally, note that wt(Q) = distG(s, v) + (wt(D) − distG(a, b)) = distG(s, v) + wt∗(D).

For every other path Q′ of the form PATHT (s, a′)::D′::PATHT (b′, v), where a′ ∈ PATHT (s, x̄) and

b′ ∈ PATHT (x̄, v), it holds that wt(Q′) = distG(s, v) + wt∗(D′). Now since wt(Q) = wt(P )

and P is a shortest path it follows that D must be a detour with minimum wt∗ value among all

detours which starts at a vertex in PATHT (s, x̄) and terminates at a vertex in PATHT (x̄, v).

We now state a simple lemma that will be used to obtain a randomized construction for sparse

subgraph.

Lemma 6.3. Let C be a collection of at most n2 subsets of V each of size exactly (4c lnn). If we

pick a subset S of V of size n/c uniformly at random, then probability that there exists a W ∈ C

for which W ∩ S is empty is at most 1/n2.

Proof. Let t = (4c lnn). Note that there are total
(
n
n/c

)
possibilities for set S. Now for any subset

A ∈ C, probability that A ∩ S is empty is(
n−t
n/c

)(
n
n/c

) ≤ (n− t
n

)n/c
=

(
1− 1

n/t

)n/t · 4 lnn
≤ 1

n4

On applying union bound we get that probability there exists a W ∈ C for which W ∩ S is empty

is at most 1/n2.

6.2 Main Ideas

For any α > 0, let HDα(v) be a detour that originates from the highest possible ancestor of v in

T and terminates at v such that its weight wt∗(HDα(v)) ≤ α, that is, there is no other detour that
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ends at v and starts at a higher ancestor of v whose weight is bounded by α. We denote the first

vertex of HDα(v) with FIRSTα(v). Consider the following subgraph:

H = T
⋃( ⋃

b∈V
α∈POWERS(1+ε)

HDα(b)

)

For any x, v ∈ V , the graph H \ x contains a (1 + ε)-approximation of the shortest path from s to

v in G \x. This is because if the shortest path takes a detour D from a to b to avoid x, then H will

contain a detourD′ that starts at a or one of its ancestors, ends at b and wt∗(D′) ≤ (1+ε)wt∗(D).

Based on this key observation, we are able to compute an oracle of O(n log1+ε(nW )) size that

can report a (1 + ε)-approximation of distance of any vertex from the source after the occurrence

of failure in O(log log1+ε(nW )) time. Though the subgraph H can be seen as a fault tolerant

(1 + ε)-shortest path subgraph, its size can be as large as Θ(m). This is because even a single

detour may contain n edges. So storing HDα(v) for each v and each α may require Ω(m) space

in the worst case. In order to achieve sparseness for H , our starting point is the sub-structure

property of HDα(v) stated in the following lemma.

Lemma 6.4. Let D = HDα(v) be a detour for v, for some α > 0. Then for any vertex w ∈ σ(D),

the segment D[·, w] is also a detour.

Proof. Let u be the first vertex on D, that is, u = FIRSTα(v). We first show that all the vertices

of D must lie in the subtree T (u). Assume this is not the case, and let y be the last vertex of D

that is not in the subtree T (u). Also let z be the Lowest Common Ancestor (LCA) of y and u.

Consider the path D′ = PATHT (z, y)::D[y, v]. It is easy to see that D′ is a detour for v. Also the

set of non-tree edges of D′ is a subset of the non-tree edges of D, thus wt∗(D′) ≤ wt∗(D) ≤ α.

But this contradicts the definition of D, as D′ is a detour for v starting from an ancestor of u with

wt∗ at most α.

From the above discussion it follows that u must be an ancestor of w. Therefore, it suffices to

show now that none of the internal vertices of D[u,w] are ancestors of w. Let us suppose there

exists a vertex z ∈ D[u,w] (z 6= u,w) such that z is an ancestor of w. But in such a case we can

replace the segment D[z, w] of detour D with PATHT (z, w), thereby contradicting the fact that D

is a tree path favoring detour. Hence D[u,w] cannot pass through any ancestor of w, except for

the starting vertex u.
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It follows from Lemma 6.4 that for anyw ∈ σ(HDα(v)), ifH contains a (1+ε)-approximation

of the detour HDα(v)[·, w], then on including just the suffix HDα(v)[w, v], we can see thatH will

contain a (1 + ε)-approximation of HDα(v). A simple way to include a (1 + ε)-approximation of

the detour HDα(v)[·, w] would be to add toH the detours HDβ(w), for each β ∈ POWERS(1 + ε).

However, to get a sparse subgraph instead of including each HDβ(w), we can use the same trick

recursively and include a further (1 + ε)-approximation of HDβ(w). This motivates for a hierar-

chical computation of H in some k(≥ 2) rounds where in a round we only add a short suffix of

HDα(v) to the subgraph H , and we move its prefix (which is a detour in itself) to the next round

to be processed recursively. This constitutes the main idea for constructing a sparse subgraph and

a compact routing scheme for approximate shortest paths from s under failure of any vertex.

In this chapter, we describe all our constructions with respect to vertex failure only. Edge

failure can be handled by inserting a vertex, say zuv, in middle of each tree edge (u, v). So the

deletion of tree edge (u, v) is equivalent to deletion of vertex zuv.

6.3 Sparse Subgraph

For the sake of better exposition of the algorithm, we first present the construction of a subgraph

with Õ(n1.5 log1+ε(nW )) edges using a hierarchy of two levels. In the next subsection, we extend

it to a k-level hierarchical construction that achieves a bound of Õ(n log1+ε(nW )) on the size of

the subgraph.

6.3.1 Sparse subgraph with Õ(n1.5 log1+ε(nW )) edges

In this subsection, we give a construction of a sparse subgraphH with Õ(n1.5 log1+ε(nW )) edges

that with high probability preserves the approximate shortest paths from s after a failure of any

vertex. The underlying idea used in the construction of this subgraph is the following. We pick a

small set S of vertices uniformly and at random. For each v ∈ S and for each α ∈ POWERS(1+ε),

we include HDα(v) in the subgraph H . We cannot afford to include HDα(u) for every u ∈ V \S

so we include only a small suffix of HDα(u). Due to the random sampling used to construct S,

it turns out that if HDα(u) is long, then its small suffix will have a vertex, say w, from S. The

detour ofw concatenated with the small suffix of HDα(u) will preserve HDα(u) approximately. In
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Algorithm 6.1 we present the pseudocode for computing a subgraph H with Õ(n1.5 log1+ε(nW ))

edges that is based on this idea.

Algorithm 6.1: Computation of subgraph with Õ(n1.5 log1+ε(nW )) edges

1 H ← T ;
2 foreach v ∈ V and α ∈ POWERS(1 + ε) do
3 Add the last

√
n non-tree edges of HDα(v) to H;

4 end
5 S ← A uniformly random set of 4

√
n loge n vertices;

6 foreach v ∈ S and α ∈ POWERS(1 + ε) do
7 Add all non-tree edges of HDα(v) to H;
8 end

We first show that with high probability any long detour (>
√
n) has in its

√
n length suffix at

least one vertex from set S.

Lemma 6.5. With high probability the following holds - For each α ∈ POWERS(1 + ε) and each

v ∈ V , if HDα(v) contains more than
√
n non-tree edges, then the last

√
n vertices of σ(HDα(v))

contain a vertex from set S.

Proof. Consider the collection C defined below.

C = {last
√
n vertices of σ(HDα(v)) | v ∈ V, α ∈ POWERS(1 + ε), |σ(HDα(v))| > √n}

The collection C will contain at most n2 sets (each of size
√
n), since for any vertex v we can

have at most n detours corresponding to n ancestors of v in T . So, the result follows by simply

applying Lemma 6.3.

We will now show that upon a failure of any vertex x, the shortest paths from s in graph G\x

are stretched by a factor of at most (1 + ε)2 in H\x.

Lemma 6.6. For every two vertices x, v ∈ V , w.h.p,

distH\x(s, v) ≤ (1 + ε)2distG\x(s, v).

Proof. Let P be the shortest path from s to v in G \x. If x is not an ancestor of v in T then P will

be just the tree path from s to v in T . Thus let us consider the case when x is an ancestor of v. By

Lemma 6.2, the path P can be represented as PATHT (s, a)::D::PATHT (b, v), where D is a detour
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(i)                                                                                       (ii)

Figure 6.1: Approximate shortest path from s to v in H \x in the subcases: (i) x is not an ancestor
of w in T , and (ii) x is an ancestor of w.

avoiding x. We take α to be the smallest power of (1 + ε) greater than wt∗(D). Let us consider

the following two cases separately.

Case 1 : HDα(b) contains at most
√
n non-tree edges.

In this case HDα(b) will lie in subgraph H . Since α ≥ wt∗(D), FIRSTα(b) must be either equal

to a or an ancestor of a. So instead of detour D, we can just follow the detour HDα(b). Thus

the concatenation Q = PATHT (s, FIRSTα(b))::HDα(b)::PATHT (b, v) forms a path from s to v in

H \ x. Also, wt∗(Q) is at most (1 + ε)wt∗(P ), as under the weight function wt∗, tree edges get

zero weight.

Case 2 : HDα(b) contains more than
√
n non-tree edges.

In this case Lemma 6.5 implies that w.h.p. the last
√
n vertices of σ(HDα(b)) must contain a

vertex, say w, from set S. So the segment HDα(b)[w, b] will lie inH because the last
√
n non-tree

edges of HDα(b) are included in H . Also, by Lemma 6.4, the prefix HDα(b)[·, w] is a detour for

vertex w. We further consider the following subcases. (See Figure 6.1).

(i) If x is not an ancestor of w, then simply take Q as PATHT (s, w)::HDα(b)[w, b]::PATHT (b, v).

Since wt∗(HDα(b)[w, b]) ≤ wt∗(HDα(b)) ≤ (1+ ε)wt∗(D), we get that wt∗(Q) ≤ (1+ ε)×

wt∗(P ).
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(ii) We now consider the subcase when x is an ancestor of w in T . Notice that prefix HDα(b)[·, w]

is not included in H , but we can take a further (1 + ε)-approximation of it. Let β be the

smallest power of (1 + ε) greater than wt∗(HDα(b)[·, w]). Since w ∈ S, HDβ(w) will lie in

subgraph H . So we take Q as PATHT (s, FIRSTβ(w))::HDβ(w)::HDα(b)[w, b]::PATHT (b, v).

See Figure 6.1(ii). Notice that HDβ(w) cannot contain x, since FIRSTβ(w) is either same as

or an ancestor of the first vertex of HDα(b)[·, w]. Finally wt∗(HDβ(w)::HDα(b)[w, b]) ≤

(1 + ε)wt∗(HDα(b)) ≤ (1 + ε)2 × wt∗(D). Hence, wt∗(Q) is at most (1 + ε)2 × wt∗(P ).

In all the above cases/subcases, we were able to show that w.h.p. there exists a path Q such that

wt∗(Q) ≤ (1 + ε)2 ×wt∗(P ). Now as s is ancestor of v, on adding distG(s, v) on both sides and

applying Lemma 6.1, we get that wt(Q) ≤ (1 + ε)2 × wt(P ).

We conclude with the following theorem.

Theorem 6.1. Let G be a directed weighted graph on n vertices with maximum edge weight W

and s be the designated source vertex. Then we can compute in polynomial time a subgraph H

with O
(
n1.5 log(n) log1+ε(nW )

)
edges such that with high probability following relation holds:

For any x, v ∈ V , distH\x(s, v) ≤ (1 + ε)2distG\x(s, v).

6.3.2 Sparse subgraph with Õ(n log1+ε(nW )) edges

In the Õ(n1.5 log1+ε(nW )) size subgraph described in the previous subsection, we constructed

a 2-level hierarchy of vertices, namely, S and V . The detour of vertices in set S and the short

suffixes of detours of vertices in V could preserve every detour D up to a stretch of (1 + ε)2. In

order to further improve the size of the subgraph, we form a finer hierarchy of subsets of vertices:

S1, . . . , Sk for some k > 2. As we go up in this hierarchy, the size of these sets decreases and

thus we can afford to store longer suffixes of detours from their vertices. In particular, for a given

i ∈ [1, k], Si will have at most n1−(i−1)/k vertices and from each vertex v ∈ Si, we store suffixes

of Õ(ni/k log1+ε(nW )) length. Similar to the 2-level case, a combination of k types of these

detour suffixes will preserve every detour D up to a factor (1 + ε)k. We now formalize this key

idea by defining a (1 + ε, t)-preserver of a detour as follows.
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Definition 6.2. Let D be a detour from u to v, ε ∈ (0, 1) be some real number, and t be some

positive integer. Also let α be the smallest power of (1 + ε) greater than or equal to wt∗(D). Then

a (1 + ε, t)-preserver of D is a path in G obtained as follows. (See Figure 6.2).

1. If t = 1, then a (1 + ε, 1)-preserver of D is just HDα(v).

2. If t > 1, then it is obtained by concatenating (i) a (1 + ε, t − 1)-preserver of prefix

HDα(v)[·, w], and (ii) the suffix HDα(v)[w, v], for some vertex w ∈ σ(HDα(v)).

Remark 6.1. For above definition to be well defined we require that HDα(v)[·, w] is a detour for

vertex w. This is indeed true since w ∈ σ(HDα(v)), and the proof follows from Lemma 6.4.

Figure 6.2: The path highlighted in yellow color depicts a (1 + ε, 3)-preserver of detour D. Here
α, β, γ are respectively smallest powers of (1 + ε) > weight of (i) D, (ii) HDα(b)[·, w], and (iii)
HDβ(w)[·, u]. Note that in reality HDβ(w) and HDγ(u) may not be disjoint with PATHT (s, b),
however, for sake of better understanding we made them disjoint.

The following lemma shows the significance of a (1 + ε, t)-preserver.

Lemma 6.7. Let D be a detour from a to b, and H be a subgraph of G containing tree T and a

(1 + ε, t)-preserver for D. Then for any internal vertex x lying on PATHT (a, b), the graph H \ x

contains a path, say Q, from s to b such that wt∗(Q) is at most (1 + ε)t ×wt∗(PATHT (s, u)::D).

Proof. We prove the lemma by applying induction on integer t. Let us denote by P the path

PATHT (s, u)::D, then wt∗(P ) = wt∗(D). Now let α be the smallest power of (1 + ε) greater than

or equal to wt∗(D). Since α ≥ wt∗(D), the first vertex on HDα(b), i.e., FIRSTα(b) must be either
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a or an ancestor of a. We first prove that the base case holds true, and later using induction give

the proof for the generic case.

Base case : If t = 1, then HDα(b) will lie in H . So path Q = PATHT (s, FIRSTα(b))::HDα(b)

forms a path from s to v in H \ x. Also wt∗(Q) is at most (1 + ε)× wt∗(P ).

Generic case: If t > 1, then there will exist a vertex w ∈ σ(HDα(b)) for which H contains both

the suffix HDα(b)[w, b] and a (1 + ε, t − 1)-preserver of the prefix HDα(b)[·, w]. We have the

following two subcases depending upon whether or not x is an ancestor of w.

(i) Let us first consider the scenario when x is an ancestor of w. Though the prefix HDα(b)[·, w]

does not lie in H , it can be seen that H contains a (1 + ε, t − 1)-preserver of it. Since x is an

internal vertex of PATHT (FIRSTα(b), w), by induction hypothesis, H \ x must contain a path Q0

such that

wt∗(Q0) ≤ (1 + ε)t−1wt∗
(

PATHT (s, FIRSTα(b)) :: HDα(b)[·, w]
)

Thus we choose Q to be the path Q0::HDα(b)[w, b]. It is easy to see that Q is a path from s to

b in H avoiding x. Also,

wt∗(Q) = wt∗(Q0) + wt∗(HDα(b)[w, b])

≤ (1 + ε)t−1wt∗
(

PATHT (s, FIRSTα(b)) :: HDα(b)[·, w]
)

+ wt∗(HDα(b)[w, b])

≤ (1 + ε)t−1wt∗
(

PATHT (s, FIRSTα(b)) :: HDα(b)
)

≤ (1 + ε)twt∗(PATHT (s, u) :: D)

Thus in this subcase we are able to show that wt∗(Q) is at most (1 + ε)twt∗(P ).

(ii) If x is not an ancestor ofw in T , then we can simply takeQ to be PATHT (s, w)::HDα(b)[w, b].

Notice that wt∗(HDα(b)[w, b]) ≤ wt∗(HDα(b)) which is at most(1 + ε)wt∗(D). Thus in this

subcase wt∗(Q) is at most (1 + ε)×wt∗(P ) ≤ (1 + ε)t×wt∗(P ). This completes our proof.

Lemma 6.1 together with Lemma 6.7 implies the following corollary.

Corollary 6.1. Let D be a detour from a to b, and H be a subgraph of G containing tree T

and a (1 + ε, t)-preserver for D. Then for any internal vertex x lying on PATHT (a, b), the graph
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H \ x contains a path, say Q, from s to b whose weight (i.e. wt(Q)) is at most (1 + ε)t times

wt(PATHT (s, u)::D).

We now describe the algorithm for computing the sparse subgraph H . The algorithm consists

of k rounds that operate on k sets, namely, S1, S2, . . . , Sk as follows. Let S1 = V be the initial

set. In any round i < k, we first compute a uniformly random subset of V of size O(n/ni/k), and

move these vertices to Si+1. Next for each each v ∈ Si and each α ∈ POWERS(1 + ε),

1. If σ(HDα(v)) does not contain any vertex from Si+1, then the complete detour HDα(v) is

added to H .

2. Otherwise, if z is the last vertex of σ(HDα(v)) that lies in Si+1, then the suffix HDα(w)[z, w]

is added to H .

Finally in round k, for each each v ∈ Sk and each α ∈ POWERS(1 + ε), we add HDα(v) to H .

Also the shortest path tree T is added to the graph H .

Algorithm 6.2 presents the pseudocode for this construction. In the algorithm, we use the

notation SUFFIX(σ,A) to denote the maximal suffix of σ that does not contain an element of A,

where σ is any sequence of vertices and A is a subset of V . Notice that, instead of step 1 and

step 2 stated above, we can equivalently just say that for each w ∈ SUFFIX
(
σ(HDα(v)), Si+1

)
,

the incoming edge of w in HDα(v) is added to H .

Algorithm 6.2: Computation of subgraph with Õ(n log1+ε(nW )) edges

1 H ← T ;
2 S1 ← V (G);
3 for i = 1 to k-1 do
4 Si+1 ← A uniformly random subset of V of size O(n/ni/k);
5 foreach v ∈ Si and α ∈ POWERS(1 + ε) do
6 foreach w ∈ SUFFIX

(
σ(HDα(v)), Si+1

)
do

7 Add incoming edge of w in HDα(v) to H;
8 end
9 end

10 end
11 foreach v ∈ Sk and α ∈ POWERS(1 + ε) do Add HDα(v) to H;

The following lemma shows that the subgraph H contains a (1 + ε, k)-preserver for each

possible detour D in G.
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Lemma 6.8. The graph H computed by Algorithm 6.2 contains a (1 + ε, k)-preserver for each

possible detour D in G.

Proof. In order to prove the lemma it suffices to show that the following claim holds.

Claim: Let i be any index in [1, k]. Then for any v ∈ Sk−i+1, the graphH contains a (1+ε, i)

preserver of each detour terminating at v.

We prove the above claim by applying induction on index i. To prove the base case, i.e. i = 1,

consider any vertex v ∈ Sk. Since H contains HDα(v) for each α ∈ POWERS(1 + ε), it is easy to

see that H contains a (1 + ε, 1) preserver of each detour terminating at v.

Now consider any index i ∈ [2, k]. Let us assume that the claim holds true for all indices j < i.

Let v be a vertex in Sk−i+1 and D be a detour terminating at v. We need to show that H contains

a (1 + ε, i) preserver of D. Let α be the smallest power of (1 + ε) greater than or equal to wt∗(D).

Consider the detour HDα(v). If σ(HDα(v))∩Si+1 = ∅, then H will contain the complete detour

HDα(v) which is a (1+ε, 1) preserver ofD. And, we know that a (1+ε, 1)-preserver ofD is also

a (1+ε, i)-preserver ofD. If σ(HDα(v))∩Si+1 6= ∅, thenH will contain the suffix HDα(v)[z, v],

where z is the last vertex in σ(HDα(v)) that lies in set Si+1. Also by induction hypothesis, H will

contain a (1 + ε, i− 1) preserver of prefix HDα(v)[·, z], say P . Now by Definition 6.2 it follows

that P ::HDα(v)[z, v] is a (1 + ε, i) preserver of detour D, which is contained in H . This shows

that the claim holds for index i as well.

Corollary 6.1 along with Lemma 6.8 implies that upon failure of any vertex x, the shortest

paths from s in graph G\{x} are stretched by a factor of at most (1 + ε)k in H\{x}. We now do

the analysis of the size of subgraph H .

Lemma 6.9. With high probability, |H| = O(k × n1+1/k log n× log1+ε(nW )).

Proof. It is easy to see that for any i ∈ [1, k], |Si| = O(n
1+1/k

ni/k
). Consider the collection defined

below.

C = {σ(HDα(v)) | v ∈ Si, α ∈ POWERS(1 + ε)}

The collection C will contain at most n2 sets as for any vertex v we can have at most n detours

corresponding to n ancestors of v in T . From Lemma 6.3 it follows that for each σ(HDα(v))

of size greater than ni/k log n, w.h.p. the last ni/k log n vertices of σ(HDα(v)) will contain a
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vertex from Si+1. In other words, w.h.p. for each v ∈ Si and each α ∈ POWERS(1 + ε),

SUFFIX
(
σ(HDα(v)), Si+1

)
is of size at most ni/k log n. So for any vertex v in Si we add at

most ni/k log n× log1+ε(nW ) edges in Step 7. Since |Si| = O(n
1+1/k

ni/k
), and i ranges from 1 to k,

w.h.p. H contains O(k × n1+1/k log n× log1+ε(nW )) edges.

We thus get the following lemma.

Lemma 6.10. Let G be a directed weighted graph on n vertices with maximum edge weight W

and s be the designated source vertex. Then we can compute in polynomial time a subgraph H

satisfying the following relation: for any x, v ∈ V , distH\x(s, v) ≤ (1 + ε)kdistG\x(s, v). The

size of H is O
(
kn1+1/k log(n) log1+ε(nW )

)
with high probability.

On substituting εnew = εold/(2k), and k = log2(n) in Lemma 6.10 we get the following

theorem.

Theorem 6.2. Let G be a directed weighted graph on n vertices with maximum edge weight W

and s be the designated source vertex. Then we can compute in polynomial time a subgraph H

satisfying the following relation: for any x, v ∈ V , distH\x(s, v) ≤ (1 + ε)distG\x(s, v). The

size of H is O
(
n log3(n) log1+ε(nW )

)
with high probability.

6.4 Precursor to a Compact Routing

In the previous section, we showed a construction of a sparse subgraph H that contained a (1 +

ε, k)-preserver of each detour inG. In this section we slightly modify the construction of subgraph

H which will help us later in obtaining an efficient routing scheme.

Recall that a (1 + ε, k)-preserver in H is a concatenation of at most k suffixes of detours, that

were added to H in the k distinct rounds of Algorithm 6.2. Our routing scheme upon failure of

any node x will route packets along these suffixes. In order to efficiently route along a suffix of

a (1 + ε, k) preserver, we require that each vertex on the suffix knows its successor on the suffix.

Now if the frequency of a vertex w in all the suffixes included in H by Algorithm 6.2 is small,

then the routing table required at w will be small. Thus as a precursor to routing we require that

the frequency of any vertex in the suffixes added toH is bounded. More formally, ifQ1, ..., Qt are
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the suffixes added in a round i of Algorithm 6.2, then we need that the frequency of each vertex in

{σ(Q1), .., σ(Qt)} is small.

Though Algorithm 6.2 ensures that the average frequency of a vertex is Õ(log1+ε(nW )),

it fails to provide any bound on the maximum frequency. Recall that in any round, say i, of

Algorithm 6.2, we compute the next subset Si+1 using random sampling. Instead of building this

hierarchy of subsets randomly, we present in this section a deterministic algorithm that employs

more insight into the structure of the suffixes. We first explain the simpler case when G is a DAG.

6.4.1 Computation of Si+1 for acyclic graphs

When G is a DAG, there is a simple greedy algorithm to compute Si+1. Its pseudocode is given

in Algorithm 6.3. The input to this algorithm is the collection C = {σ(HDα(v)) | v ∈ Si, α ∈

POWERS(1 + ε)} and a parameter d to be fixed later on. The first step is to sort the vertices of G in

the topological ordering and assign S as empty set. Next we repeat the following two steps as long

as there exists a vertex whose frequency in C is greater than d: (i) Pick a vertex w with maximum

topological numbering whose frequency is greater than d and add it to set S; (ii) Remove from C

each sequence σ in which w is present. Note that if vertex w leads to the removal of a sequence

σ′ ∈ C, then the vertices in SUFFIX(σ′, {w}) will have frequency at most d at that moment. This

is because vertices in each sequence appear in topological ordering, and among all vertices with

frequency greater than dwe pick that vertex which has maximum topological numbering. Thus set

S satisfies the condition that frequency of each vertex in {SUFFIX(σ, S) | σ ∈ C} is bounded by d.

Notice that each time a vertex is added to S, at least d sequences are removed from C. Therefore,

the size of S is at most |C|/d. The set Si+1 is assigned to be the above computed set S.

Algorithm 6.3: GREEDY-CONSTRUCTION(C, d)

1 L← V (G) sorted in topological ordering;
2 S ← ∅;
3 while ∃ u ∈ V s.t. FREQ(u, C) > d do
4 w ← last vertex in L whose frequency in C is greater than d;
5 S ← S ∪ {w};
6 Remove all those σ from C that contains vertex w;
7 end
8 Return S;

Recall that in Algorithm 6.2, |Si| ≤ n/n(i−1)/k, and thus |C| ≤ n/n(i−1)/k log1+ε(nW ).
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By our construction in Algorithm 6.3, we have that |Si+1| is at most |C|/d, which we required

to be bounded by n/ni/k. To achieve this we assign d to be n1/k log1+ε(nW ). Finally notice

that the frequency of each vertex v in the set of all suffixes added during round i is bounded by

d = n1/k log1+ε(nW ). We thus have the following lemma.

Lemma 6.11. Let G be a directed acyclic graph (DAG) on n vertices. Then there exists a con-

struction for sets S1, S2, . . . , Sk in Algorithm 6.2 satisfying the following conditions.

1. For any index i, |Si+1| ≤ n/ni/k.

2. For any index i, frequency of each vertex in {SUFFIX(σ(HDα(v)), Si+1) | v ∈ Si, α ∈

POWERS(1 + ε)} is at most n1/k log1+ε(nW ).

6.4.2 Computation of Si+1 for general directed graphs

Our algorithm for general graphs can be seen as a combination of the divide-and-conquer and the

greedy approach. Given a sequence σ, let FIRST-HALF(σ) and SECOND-HALF(σ) respectively

denote the subsequences of σ obtained by splitting it at midpoint. Our first step is to compute

collections C1 and C2 by splitting each σ ∈ C at midpoint and adding FIRST-HALF(σ) to C1 and

SECOND-HALF(σ) to C2. Next we assign S as GREEDY-CONSTRUCTION(C2, d log n). Since

there is no topological ordering, we take L to be just any arbitrary ordering of V (G) in function

GREEDY-CONSTRUCTION. It easy to see that set S will be of size at most |C|/(d log n).

—  Collection of sequences in which 
frequency of every vertex is bounded

—  Collection of sequences left to be 
processed

a sequence in 

Figure 6.3: Divide and conquer approach: vertices in red color represent the set S.

Consider any sequence σ ∈ C. Let us first consider the case when SECOND-HALF(σ) ∩ S is

non empty. (See Figure 6.3). If SUFFIX(σ, S) has no vertex of large frequency, then we are done

with this sequence. However, sinceG is not acyclic, it is quite possible that SUFFIX(σ, S) may still
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have vertices of large frequency. But, in this case, we are left to take care of only SUFFIX(σ, S),

whose length is at most |σ|/2, for the computation of the set Si+1. We now show how to take care

of those sequences whose SECOND-HALF does not contain any vertex from S. Let C′ denote the

set of all those σ in C for which SECOND-HALF(σ)∩S is empty. Notice that the frequency of each

vertex in the collection {SECOND-HALF(σ) | σ ∈ C′} is bounded by d log n. So for any σ ∈ C′,

we can safely discard SECOND-HALF(σ) and consider only FIRST-HALF(σ) for the computation

of Si+1. Thus, in this case also the length of sequence has been reduced to at most half.

The above discussion motivates us to design a recursive algorithm that performs at most log n

recursions to obtain the desired set Si+1. In Algorithm 6.4 we present the pseudocode of our

construction. Since in each recursive call of DAC-CONSTRUCTION, the set S included into Si+1

is of size at most |C|/(d log n), the size of the set Si+1 is at most |C|/d. Also in each recursive call

the frequency of vertices increases by at most d log n, thus the set Si+1 will satisfy the condition

that frequency of each vertex in {SUFFIX(σ, Si+1) | σ ∈ C} is bounded by d log2 n.

Algorithm 6.4: DAC-CONSTRUCTION(C, d)

1 C1 ← {FIRST-HALF(σ) | σ ∈ C};
2 C2 ← {SECOND-HALF(σ) | σ ∈ C};
3 S ← GREEDY-CONSTRUCTION(C2, d log n);
4 Cnew ← ∅;
5 foreach σ ∈ C do
6 if SECOND-HALF(σ) ∩ S 6= ∅ then add SUFFIX(σ, S) to Cnew;
7 if SECOND-HALF(σ) ∩ S = ∅ then add FIRST-HALF(σ) to Cnew;
8 end
9 Return

(
S
⋃

DAC-CONSTRUCTION(Cnew, d)
)
;

Recall that in Algorithm 6.2, |Si| ≤ n/n(i−1)/k, and thus |C| ≤ n/n(i−1)/k log1+ε(nW ).

By our construction in Algorithm 6.4, we will have that |Si+1| is at most |C|/d, which we required

to be bounded by n/ni/k. This shows that d must be n1/k log1+ε(nW ). Finally notice that the

frequency of each vertex v in the set of all suffixes added during round i will be bounded by

d log2 n = n1/k log1+ε(nW ) log2 n. We thus have the following lemma.

Lemma 6.12. Let G be a directed graph on n vertices. There exists a construction for sets

S1, S2, . . . , Sk in Algorithm 6.2 satisfying the following conditions.

1. For any index i, |Si+1| ≤ n/ni/k.
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2. For any index i, frequency of each vertex in {SUFFIX(σ(HDα(v)), Si+1) | v ∈ Si, α ∈

POWERS(1 + ε)} is at most n1/k log2 n log1+ε(nW ).

6.4.3 A sparse subgraph with bounded in-degree

We show as a corollary that the alternative construction of sets S1, . . . , Sk also gives a bound on

the in-degree of each vertex in the sparse subgraph H . Notice that in Algorithm 6.2, an incom-

ing edge is added to a vertex w only if w ∈ SUFFIX
(
σ(HDα(v)), Si+1

)
, for some v in Si and

α ∈ POWERS(1 + ε). So the number of incoming edges added to a vertex in round i is exactly

equal to frequency of that vertex in {SUFFIX(σ(HDα(v)), Si+1) | v ∈ Si, α ∈ POWERS(1 + ε)}.

Therefore, Lemma 6.11 and Lemma 6.12 respectively give a bound of kn1/k log1+ε(nW ) and

kn1/k log2 n log1+ε(nW ) on the in-degree of each vertex in the sparse subgraph preserving dis-

tances (1 + ε)k approximately. On substituting εnew = εold/(2k), and k = log2 n we get the

following theorem.

Theorem 6.3. Let G be a directed weighted graph on n vertices with maximum edge weight W

and s be the designated source vertex. Then in polynomial time we can compute a sparse subgraph

H satisfying the following.

1. For any x, v ∈ V , distH\x(s, v) ≤ (1 + ε)distG\x(s, v).

2. The in-degree of each vertex in graph H is at most O
(

log2(n) log1+ε(nW )
)

if G is acyclic

and O
(

log4(n) log1+ε(nW )
)

if G has cycles.

6.5 An Oracle and a Labeling Scheme

We first describe a fault tolerant oracle for reporting approximate distances from s. Let v be the

query vertex and x be the failed vertex. If x is not an ancestor of v, then the shortest path is the tree

path PATHT (s, v) which remains intact in G \ x. So let us consider the more interesting case in

which x is an ancestor of v. From Lemma 6.2 it follows that one of the shortest paths to v in G \x

is of the form - PATHT (s, a)::D::PATHT (b, v), where D is a detour avoiding x, and its weight is

distG(s, v) + wt∗(D).
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Notice that if α0 is the smallest power of (1 + ε) for which there exists a vertex b0 ∈

PATHT (x̄, v) with HDα0(b0) starting from an ancestor of x in T , then the value distG(s, v) + α0

would be a (1 + ε) approximation of distG\x(s, v). Thus in order to compute an approximation

of distG\x(s, v) we need to compute this α0 efficiently. We now describe our data structure that

accomplishes this task.

For each α ∈ POWERS(1 + ε), we create a copy of T and denote it by Tα. For each vertex

y ∈ Tα, we set the weight of edge (parentTα(y), y) as depthT (FIRSTα(y)). Thus the edge weights

in any tree Tα are integers in the range [0, n− 1]. Notice that for any α ∈ POWERS(1 + ε), there

will exist a detour starting from an ancestor of x and terminating at a vertex of PATHT (x̄, v) with

wt∗ at most α if and only if the weight of the minimum weight edge on PATHTα(x̄, v) is smaller

than depthT (x). The smallest such α can be easily computed using the Bottleneck Edge Query

(BEQ) data structure of Demaine et al. [DLW14] (see Theorem 2.4) for each of the trees Tα.

In Algorithm 6.5 we present the pseudocode for determining approximate s − v distance in

G \ x. Since the BEQ query on a single tree can be answered in O(1) time, the time for querying

all the trees will be O(log1+ε(nW )). However, instead of linearly checking all the powers of

(1 + ε) in the increasing order, if we perform a binary search on POWERS(1 + ε), then query time

is improved to O(log2 log1+ε(nW )).

Algorithm 6.5: Determining (1 + ε) approximate distance of v from s in graph G\{x}.

1 if (x is not an ancestor of v) then Return distG(s, v);
2 i← depthT (x);
3 foreach α ∈ POWERS(1 + ε) in increasing order do
4 j ← BEQ(x, v, Tα);
5 if j < i then Return (distG(s, v) + α);
6 end
7 Return “Unreachable”

Finally notice that the space complexity is O(n log1+ε(nW )). The following theorem stems

from the above discussion.

Theorem 6.4. Given a directed graph G on n vertices with maximum edge weight W and a

source vertex s ∈ V , it is possible to compute a data structure of O(n log1+ε(nW )) size that for

any failing vertex x and any destination vertex v, reports a (1 + ε) approximation of the distance

of v from s in G \ {x} in O(log2 log1+ε(nW )) time.
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6.5.1 Compact labeling scheme for Oracle

We now present the labeling scheme for oracle. Let v be a query vertex, and x be the failed vertex.

Recall Algorithm 6.5. Our first step is to check whether x is an ancestor of v in T . One simple

method to achieve this is to perform the pre-order and the post-order traversal of T , and store the

pre-order as well as the post-order numbering of each vertex in its label. Now x will be ancestor

of v in T if and only if the pre-order numbering of x is smaller than that of v, and the post order

numbering of x is greater than that of v. Next we assign i as depthT (x), extracting out this is also

easy since depth information can also be made part of the label.

Thus the only thing that is left is to obtain a labeling scheme for BEQ problem. In [DLW14],

Demaine et al. showed that the BEQ problem on any tree Tα is reducible to LCA problem on a

cartesian tree, say Tα, which is related to tree Tα as follows.

1. The vertices of Tα constitute the leaves of Tα.

2. The edges of Tα constitute the internal nodes of Tα.

3. For any two vertices u, v ∈ Tα, the least weight edge on PATHTα(u, v) is the LCA of the

leaf nodes corresponding to u and v in Tα.

Hence the bottleneck edge query for any two vertices u and v in Tα can be answered by

performing an LCA query for leaves u and v in Tα. However, notice that given the labels of u and

v in tree Tα, we are not interested in computing the label of the edge stored at the LCA of u and

v, rather we are interested in knowing the weight of the edge stored at the LCA.

Alstrup et al. [AHL14] established a labeling scheme for LCA that given the labels of any two

vertices u and v in a tree, returns a predefined label associated with the LCA of u and v in the

tree. If each predefined label consist of M -bits, then the labels in this scheme for LCA consists of

O(M log n0) bits, where n0 is the number of nodes in the tree. In our case, the number of nodes

in Tα is O(n) only. Also the predefined labels of internal nodes in Tα stores just the depth value,

thus M is O(log n).

Therefore, label of any vertex v stores: (i) the pre-order and the post-order numbering of v, (ii)

the depth of v in T , and (iii) the label of v corresponding to LCA queries in each tree Tα, where

α ∈ POWERS(1 + ε). Hence the label of each vertex consists of O(log2 n log1+ε(nW )) bits. We

thus have the following theorem.
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Theorem 6.5. Given a directed graphG on n vertices with maximum edge weight W and a source

vertex s ∈ V it is possible to compute vertex labels of O(log2 n log1+ε(nW )) bits such that for

any failing vertex x and any destination vertex v, the (1 + ε) approximate distance of v from s in

G \ {x} can be determined by processing the labels associated with v and x only.

Notice that in the above construction, the predefined label of an internal node of Tα, which

corresponds to an edge in Tα, say (parentTα(y), y), just stores the value depthT (FIRSTα(y)).

However, we can also store in the predefined label other relevant information associated with either

the detour HDα(y), or a (1+ε, k) preserver of HDα(y). Then, the result of Alstrup et al. [AHL14]

implies the following lemma, which we would use later in the construction of the routing scheme.

Lemma 6.13. For each y in V and α ∈ POWERS(1 + ε), let Φα(y) be the M -bit information

associated with a (1 + ε, k) preserver of HDα(y). Then there exists a labeling scheme with labels

of O(M log n log1+ε(nW )) bits such that given the label of any two vertices x, v ∈ V , where x is

an ancestor of v in T , the following information can be retrieved.

(i) Smallest α ∈ POWERS(1 + ε) such that there exists a vertex b ∈ PATHT (x̄, v) whose

HDα(b) starts from an ancestor of x,

(ii) Vertex b stated in (i), and the M-bit information, i.e. Φα(b), associated with the (1 + ε, k)

preserver of HDα(b).

6.6 A Compact Routing Scheme

Let v be a query vertex and x be a failed vertex. Let us consider the case in which x is an

ancestor of v in T . Let D be the detour corresponding to the shortest s-v path in G \ x, and let

α be the smallest power of (1 + ε) greater than or equal to wt∗(D). So there must exist a vertex

b ∈ PATHT (x̄, v) such that HDα(b) starts from an ancestor of x. Such a vertex can be easily

extracted out using the labels of v and x described in Section 6.5. Since we can not afford to store

the information of HDα(t) explicitly for each t ∈ V , we take help of a (1 + ε, k)-preserver of

HDα(b) to route the packets to destination v.

Recall that a (1+ε, k)-preserver of a HDα(b) can be seen as a concatenation of at most `(≤ k)

paths, say Q`, Q`−1, Q2, Q1. (See Figure 6.4 (i)). If b`+1, b`, . . . , b2, b1 are the endpoints of these

paths, then
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(i)            (ii)

Figure 6.4: (i) Depiction of segmentsQ1, Q2, Q3 and vertices b1, b2, b3, b4 in a (1+ε, 3)-preserver
of HDα(b), (ii) A finer description of Qi showing the first non-tree edge (ci, di).

(i) For each i < `, Qi is a suffix of detour of bi that is added in the ith round of Algorithm 6.2,

(ii) Q` is a detour of b` added in the `th round.

Also notice that for each i ∈ [1, `], vertex bi belongs to set Si. Now for i ∈ [1, `], let us denote by

(ci, di) the first non-tree edge in Qi. (See Figure 6.4 (ii)). So, di is also the first vertex in σ(Qi).

We first extend the labeling scheme described in Section 6.5 to obtain a labeling scheme for

routing.

6.6.1 Labeling scheme for routing

The label of each node consists of two subcomponents L0 and L1 as described below.

1. In [TZ01], Thorup and Zwick gave a construction of labeling scheme for rooted trees with

O(log n) bit labels such that given the labels of any two nodes w and y (with w being

ancestor of y), one can compute the port number of the child ofw on PATHT (w, y). The first

component of the labels, i.e. L0, would comprise of these labels. This will facilitate easy

routing of packets along the tree paths. Also the component L0 would store the pre-order

number, the post-order number, and the depth of vertex in T , so that ancestor descendant

relationships can be easily verified. Thus the label L0 consists of O(log n) bits.

2. The second component of the labels, that is L1, will comprise of the labels described in

Lemma 6.13, with Φα(y) of a vertex y storing the at most k + 1 vertices and k non-tree
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edges associated with a (1 + ε, k) preserver of HDα(y), described above. (See Figure 6.4).

So given the labels of v and x, we can extract out the value α equal to the smallest power

of (1 + ε) for which there exists a vertex b ∈ PATHT (x̄, v) with HDα(b) starting from

an ancestor of x in T . Also we can compute the L0 label of vertices b`+1, b`, . . . , b1, and

edges (c`, d`), . . . , (c1, d1) associated with the (1 + ε, k)-preserver of HDα(b). Finally,

notice that Φα(y) consists of O(k log n) bits of information, thus the label L1 consists of

O(k log2(n) log1+ε(nW )) bits.

6.6.2 Description of routing table

We now give the construction of the routing table of a vertex w ∈ V . The routing table of w

stores: (i) the label L0(w), and (ii) k segments, where ith segment corresponds to ith round of

Algorithm 6.2. Below we describe these k segments.

Let us fix an i ∈ [1, k]. Consider the detour HDα(u) for some vertex u ∈ Si and an α ∈

POWERS(1 + ε). Let u′ ∈ Si+1 be the last vertex in σ(HDα(u)) ∩ Si+1, if it exists, else let u′ be

FIRSTα(u). Then the suffix HDα(u)[u′, u] is added to H in the ith round of Algorithm 6.2. Now

let us suppose w ∈ σ
(
HDα(u)[u′, u]

)
and let (y, z) be the first non-tree edge appearing after w

on HDα(u). So z is the successor of w in the sequence σ(HDα(u)). Through our routing table

we need to ensure that if a packet reaches w then it can easily find the route to vertex z. This route

will be just the concatenation PATHT (w, y)::(y, z). So corresponding to the triplet (i, u′, u) in the

routing table of w we need to store the label of the edge (y, z).

Finally notice that in Lemma 6.12 we showed that the frequency of each vertex in the set of

all suffixes added in a round is O(n1/k log2(n) log1+ε(nW )). To store a non-tree edge (y, z), it

suffices to store just the labels L0(y) and L0(z) that are of O(log n) bits. Thus the size any of the

k segments of the routing table of vertex w will beO(n1/k log3(n) log1+ε(nW )) bits, and the size

of the routing table will be O(kn1/k log3(n) log1+ε(nW )) bits.

6.6.3 Routing algorithm

We now describe the routing algorithm. Let j ∈ [1, `] be the maximal index such that x is an

ancestor of vertices b1, . . . , bj . It follows from the proofs of Lemma 6.7 and Lemma 6.8, that the

concatenation P = 〈PATHT (s, bj+1)::(Qj , . . . , Q1)::PATHT (b, v)〉 is a path from s to v in H \ x
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whose length is at most (1 + ε)k times the length of the shortest s-v path in G\x. In our routing

scheme, the packets from s to v will traverse this path P .

Before starting the routing process we use the labels of x and v to compute the vertices

b1, . . . , bj and the edges (c1, d1), . . . , (cj , dj), also this information is added to the header of the

packet. Now path P can be seen as a sequence of segments of tree paths joined through non-tree

edges. So, whenever we reach any vertex w ∈ σ(P ), our first step is to calculate the next non-tree

edge, say (y, z), appearing after w in P . Once this edge is computed, we traverse the tree path

from w to y using L0 labels. Once we reach y, the packet traverses the edge (y, z). On reach-

ing any vertex w ∈ σ(P ), the next non-tree edge, say (y, z), on the path P can be computed as

follows.

1. If w is an internal vertex of some Qi, i ∈ [1, j], then we can just use the routing table stored

at w to find the edge (y, z).

2. If w = bi for some 1 < i ≤ j, the next non-tree edge will be (ci−1, di−1) lying in segment

Qi−1. This information can be retrieved from the header of the packet itself.

Till now we described that if we are at a vertex w in σ(P ) then how to navigate to the next

vertex in σ(P ). Notice that (cj , dj) is the first non tree edge in P . So to reach the first vertex dj

in σ(P ), path PATHT (s, cj)::(cj , dj) can be traversed using L0 labels. Finally when we reach the

last vertex in σ(P ), that is b1, then again we use L0 labels to traverse path PATHT (b1, v) to reach

vertex v. The pseudocode of this routing procedure is described in Algorithm 6.6.

Notice that the size of each label isO(k log2(n) log1+ε(nW )) bits, and the size of each routing

table is O(kn1/k log3(n) log1+ε(nW )) bits. Also the size of header attached to the packets is

O(k log n) bits and the stretch achieved is (1 + ε)k. On substituting εnew = εold/(2k) and k =

log2(n) we get the following theorem.

Theorem 6.6. For a directed network, there exists a fault tolerant scheme for routing packets from

a fixed source vertex s with the following properties.

1. The label of each vertex consists of O(log4(n) log1+ε(nW )) bits and the routing table con-

sists of O(log5(n) log1+ε(nW )) bits.

2. While routing, each packet has to have extra O(log2 n) bits as a header.
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Algorithm 6.6: Route(w, v, j, 〈b`, .., b1, c`, .., c1, d`, .., d1〉, nextEdge)

1 if (w = v) then Return “Packet received”;

2 if (j = 0 or w = b1) then /* traversal of tree path PATHT (b1, v) */
3 wnew ← child of w on PATHT (w, v);
4 Route(wnew, v, 0, <>,null);
5 end

6 if (nextEdge = null) then /* in this case w will lie in σ(Qj) */
7 if (w = bj) then /* transition from Qj to Qj−1 */
8 nextEdge← (cj−1, dj−1);
9 j ← j − 1;

10 else
11 nextEdge← Routing-Table-Look-Up(w, j, bj+1, bj);
12 end
13 end

14 (y, z)← nextEdge ; /* next non-tree edge to be followed */
15 if (w 6= y) then /* traversal of tree path PATHT (w, y) */
16 wnew ← child of w on PATHT (w, y);
17 else /* traversal of edge (y, z) */
18 wnew = z;
19 nextEdge = null;
20 end

21 Route(wnew, v, j, 〈b`, .., b1, c`, .., c1, d`, .., d1〉, nextEdge);

3. To route packets from s to a destination v under failure of a vertex x, s should know labels

(identity) of both v and x.

4. The route taken by packets have a stretch of at most (1 + ε) times that of the shortest path

possible in G \ x.

6.7 Lower Bounds

Let ε,W , n be such that ε lies in interval (0, 1), and W , n > 1. We first show the construction

of a graph G on O(n) vertices with edge weights in range [1, 2W ] such that its (1 + ε)-distance

preserving subgraph requires at least Ω
(
n×min{n, log1+εW }

)
edges.

Let L, ` be integers to be fixed later on. We construct a graph G on n + L − ` vertices as

follows. The vertex set of G is {u`+1, u`+2, . . . , uL, v1, . . . , vn}, and the edge set of G is the

union of the following two sets (see Figure 6.5).
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1. E1 = {(uL, uL−1), . . . , (ui, ui−1), . . . , (u`+2, u`+1)}, and

2. E2 = {(ui, vj) | i ∈ [`+ 1, L], j ∈ [1, n]}.

Figure 6.5: The path highlighted in yellow color represents path Pi,1.

We set s := uL as the designated source vertex. We now define our weight over the edges of

graph G. For each e ∈ E1, we set wt(e) = 1. For each e ∈ E2, if ui is the originating vertex of

e, then we set wt(e) = i + (1 + 2ε)i. It is easy to see that the set E1 ∪ {(u`+1, vj) | j ∈ [1, n]}

constitute the edges of the unique shortest path tree from s.

Now for any i ∈ [` + 1, L] and j ∈ [1, n], let Pi,j denote the path PATHT (s, ui)::(ui, vj) (see

Figure 6.5). Then for any j,

wt(Pi+1,j)

wt(Pi,j)
=
L+ (1 + 2ε)i+1

L+ (1 + 2ε)i
> (1 + ε), for i > log1+2ε(L) (6.1)

We set L := min{n, blog1+2εW c} and ` := blog1+2ε(L)c. Thus G contains at most 2n vertices

and all edge weights are in the range [1, 2W ].

Since i is always greater than ` = blog1+2ε(L)c, from Equation 6.1 it follows that if vertex

ui−1 fails then the only (1+ ε)-approximate route to vertex vj (j ∈ [1, n]) is path Pi,j . Hence each

vj must keep all its incoming edges in the subgraph preserving approximate distances. There are

L− ` = Ω(L) = Ω
(
min{n, log1+εW }

)
edges for each vj . Thus, we are able to show that there

exists a graph on O(n) vertices with edge weights in range [1, 2W ] such that its (1 + ε)-distance

preserving subgraph requires at least Ω
(
n×min{n, log1+εW }

)
edges.
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6.7.1 A lower bound of Ω(n log1+ε(W )/ log n) on the size of oracle

We now modify the construction of G to prove a lower bound on the size of (1 + ε)-approximate

distance reporting oracle. Let Z1, . . . , Zn be any arbitrary n vectors in {0, 1}L−`. We modify the

weights of edges lying in the set E2 as follows. For each i ∈ [` + 1, L] and each j ∈ [1, n], we

increase wt(ui, vj) to value (i+ W ), if the (i− `)th bit of vector Zj is one.

Consider failure of a vertex ui−1 for some index i, (` + 1 < i < L). The following two

statement holds true.

1. If the (i− `)th bit of Zj is one, then the length of the shortest path from s to vj in G \ ui−1
will be at least L+ (1 + 2ε)i+1.

2. If the (i− `)th bit of Zj is zero, then path Pi,j will be the unique shortest-path from s to vj

in G \ ui−1. So, in this case the (1 + ε)-approximate distance of vj from s in G \ ui−1 will

be at most (1 + ε)× (L+ (1 + 2ε)i) which is strictly less than L+ (1 + 2ε)i+1.

This shows that by querying a (1+ε)-approximate distance oracle we can extract out all (L−`)

bits of arbitrarily chosen vectors Z1, . . . , Zn. Thus the oracle must contain at least n(L − `) bits

or (n(L − `)/ log n) words. Hence, we get a lower bound of Ω
(
n ×min{n, log1+εW }/ log n

)
on the size of the oracle.





Chapter 7

Conclusion and Open Problems

The main focus of this thesis was on designing fault tolerant data structures for directed graphs.

For the single source reachability problem our main contribution is obtaining a sparse sub-

graph, referred as k-FTRS, of O(2kn) size that preserves the reachability information from a

designated source vertex after failure of any k edges or vertices. This result directly implies an

O(2kn) size data structure that after any k failures can answer reachability queries (using stan-

dard graph search on the k-FTRS avoiding the failed nodes and edges) from source in O(2kn)

time. For the dual failure case, we obtain an O(n) size data structure for answering single source

reachability queries in constant time. An open question is whether we can obtain an O(n) size

data structure that can answer reachability information from a designated source in sublinear time,

for k(> 2) failures. Another seemingly interesting problem is to compute an oracle for answering

reachability queries for a fixed source-destination pair upon any k-failures.

We also present an alternative construction for computing dominators, which are closely re-

lated to the problem of single fault tolerant reachability. Our construction uses O(m log n) time

and space. The main bottleneck in our result is a data-structure (see Section 2.4.1) that takes

O(m log n) time. It would be interesting to see if this data-structure can be improved to get O(m)

time algorithm for computing dominators.

We use our k-FTRS structure to obtain an efficient oracle for reporting strongly connected

components of a graph after k failures. The size of our oracle is O(2kn2) and the reporting time is

O(2kn log2 n). Two of the main building blocks used in this result are heavy path decomposition

and the restricted variant of the problem of computing SCCs intersecting a certain path. It is

113
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natural to explore if the ideas used here can help us in obtaining a sparse subgraph as well. That is,

can we compute a sparse subgraph H of G such that after any failure of at most k edges/vertices,

the strongly connected components of G \ F are exactly the same as that of H \ F ?

For the problem of preserving approximate distance from a designated source vertex, we show

that for any directed weighted graph we can compute a sparse subgraph of almost linear size that

after failure of any edge/vertex preserves distances from the source by a stretch factor of at most

(1 + ε). We also obtain efficient oracle, routing scheme, and labeling scheme for this problem. It

would be interesting to see if these results can be extended to multiple failures.
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