
Functional SMT Solving with Z3 and Racket

Siddharth Agarwal∗†

sid0@fb.com
∗Facebook Inc,

Menlo Park, CA, USA

Amey Karkare†

karkare@cse.iitk.ac.in
†Department of Computer Science & Engineering

Indian Institute of Technology Kanpur, India

Abstract—Satisfiability Modulo Theories (SMT) solvers are
powerful tools that can quickly solve complex constraints
involving Booleans, integers, first-order logic predicates, lists,
and other data types. They have a vast number of potential
applications, from constraint solving to program analysis and
verification. However, they are so complex to use that their power
is inaccessible to all but experts in the field. We present an
attempt to make using SMT solvers simpler by integrating the
Z3 solver into a host language, Racket. The system defines a
programmer’s interface in Racket that makes it easy to harness
the power of Z3 to discover solutions to logical constraints. The
interface, although in Racket, retains the structure and brevity
of the SMT-LIB format. This system is expected to be useful for
a wide variety of applications, from simple constraint solving
to writing tools for debugging, verification, and automatic test
generation for functional programs.

I. INTRODUCTION

The Boolean satisfiability or SAT problem asks: Given
a Boolean formula with a set of variables in it, is there a
way to assign each variable a value such that the formula
becomes true? The SAT problem is one of the cornerstones
of computer science, with enormous theoretical and practical
implications. Indeed, it was the very first problem to be proved
NP-complete [1]. Yet, interest in efficiently solving so-called
“natural” or “real-world” instances of SAT has remained. This
is at least partly because a large number of practical problems
are also NP-complete and can be reduced to SAT [2].

Typically, program analysis tools that used SAT solvers
would have to find a way to translate variables found in
programs to Boolean ones. For example, a 32-bit integer
could be encoded as a set of 32 Boolean variables1. It was
soon realized that pushing this step into the SAT solver would
help. Since users would still be asking whether formulas were
satisfiable, except with variables from more complex domains
or theories, this approach was dubbed Satisfiability Modulo
Theories (SMT). Several popular SMT solvers have been
developed : Z3 [4], Yices [5] and CVC4 [6] to name a few.

These solvers let programmers specify constraints over
Booleans, integers, pure functions and other types, and either
come up with assignments that satisfy these constraints, or, if
possible, a proof that the constraints aren’t satisfiable. Over
the last few years, SMT solvers using DPLL(T) [7] and other
frameworks have come into their own and can solve a wide
variety of problems using efficient heuristics. Problems they

1It is also possible to represent integers as Boolean variables via predicate
abstraction [3], which is more efficient but potentially loses information.

can attack range from simple puzzles like Sudoku and n-
queens, to planning and scheduling, program analysis [8],
whitebox fuzz testing [9] and bounded model checking [10].
Yet SMT solvers are only used by a small number of experts. It
isn’t hard to see why: the standard way for programs to interact
with SMT solvers like Z3 [4], Yices [5] and CVC3 [11] is via
powerful but relatively arcane C APIs that require the users
to know the particular solver’s internals. For example, here
is a C program that asks Z3 whether the simple proposition
p ∧ ¬p is satisfiable.

Z3_config cfg = Z3_mk_config();
Z3_context ctx = Z3_mk_context(cfg);
Z3_del_config(cfg);
Z3_sort bool_srt = Z3_mk_bool_sort(ctx);

Z3_symbol sym_p = Z3_mk_int_symbol(ctx, 0);

Z3_ast p = Z3_mk_const(ctx, sym_p, bool_srt)
;

Z3_ast not_p = Z3_mk_not(ctx, p);

Z3_ast args[2] = {p, not_p};
Z3_ast conjecture = Z3_mk_and(ctx, 2, args);
Z3_assert_cnstr(ctx, conjecture);

Z3_lbool sat = Z3_check(ctx);
Z3_del_context(ctx);
return sat;

Simultaneously, most SMT solvers also feature interaction
via the standard input language SMT-LIB [12]. SMT-LIB is
significantly easier to use in isolation. The same program in
SMT-LIB would look something like

; Declare a Boolean variable
(declare-fun p () Bool)
; Try to find a contradiction
(assert (and p (not p)))
(check-sat)
; Prints "unsat", meaning "unsatisfiable"

However, the SMT-LIB interfaces are generally hard to
use directly from programs and often not as full-featured or
extensible as corresponding C APIs2. Importantly, it is difficult
to write programs that interact with the solver in some way,
for example by adding assertions based on generated models.
This makes it difficult to build new abstractions to enhance
functionality.

2Z3, for instance, supports plugging in external theories via the C API,
but not via the textual SMT-LIB interface.

978-1-4673-6292-4/13 c© 2013 IEEE FormaliSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

15



To overcome these difficulties, we decided to implement
an SMT-LIB-like interface to Z3 in a way that allowed
for the same power as the C interface while appearing
naturally integrated into a host language. Since SMT-LIB
is s-expression-based, for the host language a Lisp dialect was
a natural choice. We chose Racket [13] for our implementation,
z3.rkt, because of its extensive facilities for implementing
new languages [14], not just for the interface to the solver,
but also for the resulting tools that the solver would make
possible.

Using this system, the program above becomes almost as
brief as the SMT-LIB version.

(smt:with-context
(smt:new-context)
(smt:declare-fun p () Bool)
(smt:assert (and/s p (not/s p)))
(smt:check-sat))

It is important to note that we are neither increasing the
power of the Z3 SMT solver, nor adding any new features
to it. We are providing a new interface in Racket so that the
solver can be used from within the Racket language with
much ease. This itself is an interesting, challenging and useful
task as the rest of the paper demonstrates.

II. INTERACTIVE SMT SOLVING

To demonstrate the value in integrating a language with an
SMT solver, we turn our attention to a pair of classic logical
puzzles.

A. Sudoku

We first turn our attention to a problem that demonstrates
how the interaction of a language with an SMT solver is
useful. A Sudoku puzzle asks the player to complete a partially
pre-filled 9×9 grid with the numbers 1 through 9 such that no
row, column, or 3×3 box has two instances of a number. This
is a classic constraint satisfaction problem, and any constraint
solver can handle it with ease.

A Racket program using z3.rkt to solve Sudoku would
look like the following:

(define (solve-sudoku grid)
(smt:with-context
(smt:new-context)
; Declare a scalar datatype (finite domain
; type) with 9 entries
(smt:declare-datatypes ()

((Sudoku S1 S2 S3 S4 S5 S6 S7 S8 S9)))
; Represent the grid as an array from
; integers to this type
(smt:declare-fun sudoku-grid ()
(Array Int Sudoku))

; Assert the standard grid rules
; (row, column, box)
(add-sudoku-grid-rules)
; Add pre-filled entries
(add-grid grid)
(define sat (smt:check-sat))
; ’sat means we found a solution,
; ’unsat means we didn’t

(if (eq? sat ’sat)
; Retrieve the values from the model
(for/list ([x (in-range 0 81)])
(smt:eval (select/s sudoku-grid x)))

#f)))

Here we omit a couple of function definitions:
add-sudoku-grid-rules asserts the standard Sudoku
grid rules, and add-grid reads a partially filled grid in a
particular format and creates assertions based on it. We note
that the function (select/s arr x) retrieves the value
at x from the array arr, and that this can be used to add
constraints on the array (for instance, (smt:assert (=/s
(select/s arr x) y))). We also note that if a set of
constraints is satisfiable, Z3 can generate a model showing
this; values can be extracted out of this model using the
smt:eval command.

However, simply finding a solution isn’t enough for a good
Sudoku solver: it must also verify that there aren’t any other
solutions. The usual way to do that for a constraint solver is
by retrieving a generated model, adding assertions such that
this model cannot be generated again, and then asking the
solver whether the system of assertions is still satisfiable. If
it is, a second solution exists and the puzzle is considered
invalid.

In such situations, the interactivity offered by z3.rkt
becomes useful: it lets the programmer add dynamically
discovered constraints on the fly. The last part of the program
then becomes

..
if (eq? sat ’sat)

; Make sure no other solution exists
(let ([result-grid
(for/list ([x (in-range 0 81)])

(smt:eval (select/s sudoku-grid x)))])
; Assert that we want a new solution
; by asserting (not <current solution>)
(smt:assert
(not/s
(apply and/s

(for/list
([(x i) (in-indexed result-grid)])
(=/s (select/s sudoku-grid i) x)))

))
(if (eq? (smt:check-sat) ’sat)

#f ; Multiple solutions
result-grid))

#f)))

This part can even be abstracted out into a function that
returns a lazily-generated sequence of satisfying assignments
for any given set of constraints.

B. Number Mind

The deductive game Bulls and Cows, commercialized as
Master Mind [15], is popular all around the world. The rules
may vary slightly, but their essence stays the same: Two players
play the game. One player (we’ll call her Alice) thinks of
a 4-digit number, and the other (Bob) tries to find it. Bob
guesses a number, and Alice tells him how many digits he

16



has correct and in the correct position (bulls) and how many
he has correct but in the wrong position (cows). Through
repeated guessing Bob tries to arrive at the answer.

The game is deceptively simple: while even the standard
4-digit variant is challenging for humans, the general problem
for n digits is NP-complete [16]. As such, it becomes an
interesting problem for constraint solvers.

For simplicity, we tackle a variant of the game: Num-
ber Mind [17], where Alice only tells Bob how many digits are
correct and in the correct place (bulls). The user is Alice and
the computer Bob, which means that the game is interactive.
An API to solve Number Mind would have

(a) a way to tell the computer how many digits the
number has

(b) a way for the computer to guess a number
(c) a way for the user to tell the computer how many

digits it got correct in the last guess.

The constraint solver would have an important role in not
just (a) and (c) but also (b), since we would like the computer
to make “reasonable” guesses and not just wild ones. We do
this by never guessing a number that would be impossible
because of the answers already given.

Our system makes all three tasks simple. The following
code shows the three functions, each corresponding to one of
the tasks above.

; (a) Create variables for each digit
(define (make-variables num-digits)

(define vars (smt:make-fun/list num-digits
() Int))

; Every variable is between 0 and 9
(for ([var vars]) (smt:assert (and/s (>=/s

var 0) (<=/s var 9))))
vars)

; (b) Guess a number. Returns the guess as a
; list of digits, or #f meaning no number can
; satisfy all the constraints.
(define (get-new-guess vars)

(define sat (smt:check-sat))
(if (eq? sat ’sat)

; Get a guess from the SMT solver
(map smt:eval vars)
#f))

; (c) How many digits the computer got correct
; If a digit is correct then we assign it the
; value 1, otherwise 0. We sum up the values
; and assert that that’s equal to the number
; of correct digits.

(define (add-guess vars guess correct-digits)
(define correct-lhs
(apply +/s

(for/list ([x guess]
[var vars])

(ite/s (=/s var x)
1 ; Correct guess
0)))) ; Wrong guess

(smt:assert (=/s correct-lhs correct-digits)
))

As a demonstration of z3.rkt, we have written a small
web application around the code [18].

III. DESIGN AND IMPLEMENTATION

z3.rkt is currently implemented as a few hundred lines
of Racket code that interface with the Z3 engine via the
provided library. Since the system is still a work in progress,
some of these details might change in the future.

A. The Z3 Wrapper

We use Racket’s foreign interface [19] to map the Z3
library’s C functions into Racket. The high-level interface
communicates with Z3 by calling the Racket functions defined
by the wrapper. While it is possible to use the Z3 wrapper
directly, we highly recommend using the high-level interface
instead.

B. Built-in Functions

Z3 comes with a number of built-in functions that operate
on Booleans, numbers, and more complex values. We expose
these functions directly but add a /s suffix to their usual
names in the SMT-LIB standard, because most SMT-LIB
names are already defined as functions by Racket and we
want to avoid colliding with them.

C. The Core Commands

This is a small set of Racket macros and functions layered
on top of the Z3 wrapper. As noted in Section I, the aim
here is to hide the complexities of the C wrapper and stay as
close to SMT-LIB version 2 commands [12] as possible. We
prefix commands with smt: to avoid collisions with Racket
functions.

D. Deriving Abstractions

Since the full power of Racket is available to us, we can
define abstractions that allow users to simplify their code.
For example, SMT-LIB allows users to define macros via the
define-fun command.

(define-fun max ((a Int) (b Int)) Int
(ite (> a b) a b)) ; ite is if-then-else

...
(assert (= (max 4 7) 7))

However, Z3’s C API exposes no such command. Our first
attempt to implement this facility for z3.rkt was to define
a Racket function to do the same thing:

(define (smt-max a b)
(ite/s (>/s a b) a b))

...
(smt:assert (=/s (smt-max 4 7) 7))

This works for smaller macros like max, but in our
experience this sort of naı̈ve substitution can result in final
expressions for deeply nested functions becoming too large
for Z3 to handle. Consider a function (f a b) that uses
(smt-max a b) m times. This expression will be repeated

17



m times in the expression for f. Now consider a function g
that uses the value of (f 0 1) n times. The expression for g
will contain that of (f 0 1) n times, and consequently that
of (smt-max 0 1) mn times. As the nesting increases, we
see an exponential blowup in the size of the final expression3.

We note, however, that any macro can also be written as
a universally quantified formula. For example, max can be
rewritten in the following way.

(declare-fun max (Int Int) Int)
(assert (forall ((a Int) (b Int))

(= (max a b)
(ite (> a b) a b))))

Using this technique, we finally solved the problem of
defining macros in our interface by providing a Racket macro,
smt:define-fun, that has the same syntax as the SMT-
LIB command and that outputs the equivalent universally
quantified formula. Our solution is efficient owing to the fact
that Z3 has a macro finder component that identifies and
eliminates universal quantifiers that are macros in disguise.

The definition of smt:define-fun is as follows:

(define-syntax smt:define-fun
(syntax-rules ()
[(_ id () type body) ; Plain identifier
(begin ; don’t need a forall

(smt:declare-fun id () type)
(smt:assert (=/s id body)))]

[(_ id ((argname argtype) ...) type body)
(begin

(smt:declare-fun id (argtype ...) type)
(smt:assert
(forall/s ((argname argtype) ...)

(=/s (id argname ...) body)
)))]))

We use Scheme’s syntax-rules macro system [20] to
its fullest extent. syntax-rules accepts pairs of input and
output patterns and goes with the output pattern for the first
input that can be matched, somewhat like the cond construct
found in many Lisps. We handle two separate cases: (a) we’re
defining a plain identifier, in which case we have no need
for the forall, and (b) we’re defining a macro as above, in
which case we do. The ... as part of the macro definition is
a special form recognized by syntax-rules: wherever it
sees them in the output pattern, it substitutes for them a list
of whatever was present in the input pattern. For example,

(smt:define-fun foo ((x Int) (y Bool)) Int
(+/s x (ite/s y 20 0)))

expands to

(smt:declare-fun foo (Int Bool) Int)
(smt:assert (forall/s ((x Int) (y Bool))

(=/s (foo x y) (+/s x (
ite/s y 20 0)))))

3We could merge common parts of expressions to reduce the number of
AST nodes generated. In our experiments, this proved to be quite effective,
yet still significantly slower than the solution we finally adopted.

E. Reusing Racket Abstractions

It is important that any new interface work well with
existing abstractions. For example, consider users who want
to write web applications in Racket using Z3 on the server.
Racket’s web server libraries [21] let them use delimited
continuations whenever they need to pause computation on
the server and wait for a client response, so our interface
ought to be continuation-safe.

The smt:with-context macro uses another of
Racket’s abstractions, dynamic binding via parameters, to
ensure that the Z3 context remains valid for the macro’s
dynamic extent [22]. In particular, for the case of a web
server, the context is garbage collected only once either the
computation is finished, or it times out waiting for a client
response. By surrounding just the first part of a computation
with smt:with-context, the user can insert arbitrary calls
to Z3 at any point during the computation without losing
context. The details of state preservation are hidden from the
user, and the resulting code tends to be quite elegant.

F. Porting Existing SMT-LIB Code

One of our explicit goals is to enable existing SMT-LIB
version 2 code to be ported with a small number of systematic
changes. Table I lists the minimal set of changes that needs
to be made to port existing SMT-LIB code to z3.rkt. We
expect many SMT-LIB programs to become shorter as authors
use Racket features wherever appropriate.

TABLE I. DIFFERENCES BETWEEN SMT-LIB AND Z3.RKT

SMT-LIB code z3.rkt code
Options: (set-option :foo true) Keyword arguments:

(smt:new-context
#:foo #t)

Logics: (set-logic QF_UF) The #:logic keyword:
(smt:new-context

#:logic "QF_UF")
Commands: declare-fun, assert, . . . Prefixed with smt:
Functions: and, or, +, distinct . . . Suffixed with /s
Boolean literals: true and false #t and #f

IV. OUR EXPERIENCE

We see two broad classes of applications for interfaces like
z3.rkt: enabling formal methods researchers to be more
productive in their research, and making SMT solving more
accessible to programmers in general. We have already looked
at the second in Section II. In this section we explore a few
ideas we’ve had and lessons we’ve learned while looking at
the first. These ideas, though elementary, form a starting point
for potential research in the area of formal verification.

A. Quantified Formulas are Hard

Z3 and other SMT solvers support lists and other recursive
types. Z3 provides only basic support for lists: insert (cons),
head, and tail. Further, Z3’s macros are substitutions and
do not support recursion. This makes it challenging to define
functions that operate over the entirety of an arbitrary-length
list.

18



Our first thought was to use a universal quantifier, as in
Section III-D. Here is an example of a function that calculates
the length of an integer list:

(declare-fun len ((List Int)) Int)
(assert (forall ((xs (List Int)))

(ite (= xs nil)
(= (len xs) 0)
(= (len xs) (+ 1 (len (tail xs)))))))

There is a drawback with this approach: solving quantified
assertions in Z3 requires model-based quantifier instantiation
(MBQI) [23]. MBQI, while powerful, can also be very slow.
In our experience, it is very easy to write a quantified formula
that Z3’s MBQI engine fails to solve in reasonable time4.

So avoiding quantified formulas altogether seems like a
good idea, but how do we do that? The easiest way is to
unroll and bound the recursion to a desired depth [26]. One
way to do this is to define macros len-0, len-1, len-2,
. . .len-N, where each len-k returns the length of the list
if it is less than or equal to k, and k otherwise.

(define-fun len-0 ((xs (List Int)))
0)

(define-fun len-1 ((xs (List Int)))
(ite (= xs nil)

0
(+ 1 (len-0 (tail xs)))))

(define-fun len-2 ((xs (List Int)))
(ite (= xs nil)

0
(+ 1 (len-1 (tail xs)))))

...

Our system makes defining a series of macros like this
very easy.

(define (make-length n)
(smt:define-fun len ((xs (List Int))) Int
(if (zero? n)

0
(ite/s (=/s xs nil/s)

0
(let ([sublen (make-length (sub1

n))])
(+/s 1 (sublen (tail/s xs)))))

))
len)

(make-length 5) returns an SMT function that works
for lists of up to length 5, and returns 5 for anything bigger
than that. Note how freely the Racket if and let forms
are mixed into the SMT body. These constructs are evaluated
at definition time, meaning that this definition reduces to
the series of macros defined above up to length n. (At

4In general, it is hard to deal with quantified formulas containing even
linear arithmetic, because there is no sound and complete decision procedure
for them [24].

Z3 has another way to solve quantified assertions, called E-matching [25].
E-matching uses patterns based on ground terms to instantiate quantifiers.
We have not yet explored this approach.

this point, the observant reader might have noticed that
smt:define-fun expands to a universal quantifier as
well. However, Z3 doesn’t need MBQI to solve universally
quantified assertions equivalent to define-fun macros. The
initial example given for len is not one such assertion, since
it refers to itself and define-fun macros aren’t permitted
to.)

It is easy to define other bounded recursive functions along
the same lines that reverse lists, concatenate them, filter them
on a predicate and much more. Using these building blocks
we can now verify properties of recursive functions.

B. Verifying Recursive Functions

For this section we will work with a simple but non-trivial
example: quicksort. A simple functional implementation of
quicksort might look like the following:
(define (qsort lst)
(if (null? lst)

null
(let*
([pivot (car lst)]
[rest (cdr lst)]
[left (qsort (filter (lambda (x) (<= x

pivot)) rest))]
[right (qsort (filter (lambda (x) (> x

pivot)) rest))])
(append left (cons pivot right)))))

This definition is correct, but what if the programmer
mistakenly types in < instead of <=, or perhaps uses >=
instead of >? We note that (a) for a correct implementation,
the length of the output will always be the same as that of
the input, and that (b) in either buggy case, the length of
the output will be different whenever a pivot is repeated in
the rest of the list. So comparing the two lengths is a good
property to verify.

Using the method discussed in Section IV-A, we can write
make-qsort that generates bounded recursive versions of
qsort. Then we can verify the length property for all input
lists up to a certain length n.
(smt:with-context
(smt:new-context)
(define qsort (make-qsort n))
; adding 1 to the maximum length is
; enough to show inequality
(define len (make-length (add1 n)))
(smt:declare-fun xs () (List Int))
; set a bound on the length
(smt:assert (<=/s (len xs) n))
; prove the length property by asserting
; its negation
(smt:assert

(not/s (=/s (len xs)
(len (qsort xs)))))

(smt:check-sat))

Proving a property is done by checking that its negation
is unsatisfiable. A quicksort works correctly5 for lists up to

5Here correctness is in the context of the property we are considering, i.e.
the length of the output.

19



length n iff the above code returns ’unsat. For quicksorts
that are buggy (’sat), we can find a counterexample using
(smt:eval xs) and (smt:eval (qsort xs)). For
n = 4 on a buggy quicksort with filters <= and >=, Z3
returned us the counterexample with input ’(-3 -2 -1
-2), which as expected contains a repeated element.

In this approach, there is nothing specific to quicksort: this
can easily be generalized to other functions that operate on
lists and other data structures. The properties to prove can be
more complex, such as whether a given sorting algorithm is
stable. The only limits are computational constraints and the
user’s imagination.

V. RELATED WORK

A. SMT Integration

Integrating an SMT solver with a language enables
programmers in that language to solve whatever logical
constraints arise in a program, without needing to resort to
hand-coding a backtracking algorithm or other cumbersome
methods. The solutions thus obtained can be used in the rest of
the program. Thus, it isn’t surprising that several such projects
exist, most of them available freely on the Internet. These
projects differ mainly in the host language, the interface, and
the constructs they support.

As most languages support some form of interaction with
C functions, they can be said to be already integrated with
Z3 (or other SMT solvers) through the C API. However, we
do not consider this to be true integration because it doesn’t
simplify the job of the programmer and, as noted in Section I,
it requires her to deal with the internals of the solver.

The integration of Z3 with Scala [27] is one of the most
complete implementations available right now. It provides
support for adding new theories and procedural abstractions,
and also takes advantage of Scala’s type system to deal with
some type-related errors at compile time. The system has been
used to solve several challenging problems, both by the group
that developed it and by others. The main disadvantage of this
system is that the syntax is quite different from SMT-LIB,
and is sometimes almost as verbose as using the C bindings.

Z3Py [28] is a new Python interface bundled with Z3 4.0.
It has its own domain-specific language that is different from
SMT-LIB. However, it is much more pleasant to use than the
C interface and supports virtually all of Z3’s features.

SMT Based Verification (SBV) [29] is a Haskell package
that can be used to prove properties about bit-precise Haskell
programs. Given a constraint in a Haskell program, SBV
generates SMT-LIB code that can be run against either Yices
or Z3. SBV supports bit-vectors, integers, reals, and arrays,
but not lists or other recursive datatypes.

Yices-Painless [30] integrates Haskell with Yices via its
C API. This project does not support arrays, tuples, lists and
user defined data types yet. Further, the development of the
tool seems to have stalled (last change to the repository was
in January 2011).

The Z3 documentation page lists bindings to other lan-
guages like OCaml. These bindings correspond almost one-
to-one with the C API, and thus they suffer from the same
disadvantages.

B. Logic Programming and Constraint Programming

Many of the problems SMT solvers can tackle can also
be solved within the logic programming paradigm, where
programs are written as first-order logic predicates. However,
logic programming languages like Prolog typically have well-
defined and transparent search strategies, preventing the sorts
of automatic heuristics that allow SMT solvers to be fast.
Instead, programmers need to manually bound the search
space with goals and cuts in the appropriate places.

Racket supports logic programming via Racklog [31],
which works in much the same way as Prolog.

Many languages, including most Prolog variants, have
access to libraries that allow some form of constraint solv-
ing. Advanced toolkits include Gecode [32] for C++ and
JaCoP [33] for Java and Scala. Typically, these are limited to
problems traditionally associated with constraint programming:
Booleans, finite domains, integers and perhaps real numbers.
However, they also have built-in support for optimization
problems, something that is lacking in SMT solvers but can
be emulated with a binary search on the cost function.

A classic example deserves a mention here: SICP [34,
Section 4.3] describes an amb macro for Scheme, which
can choose for a variable one out of a set of values given
ambiguously, so as to satisfy given constraints. amb is a
simple, lightweight form of logic programming.

C. Bounded Verification

Our work is inspired by the Leon verifier [26], which goes
further and alternately considers underapproximations and
overapproximations. Where in Section IV-A we simply return
a default value if we’ve reached the limit of our recursion, the
Leon verifier alternately always satisfies or always rejects once
it gets to that point. We chose to simplify our implementation
to avoid being mired in mechanics, since that wasn’t the main
focus of this paper. In the future, we plan to extend our method
with ideas from the Leon verifier.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented z3.rkt, which lets
users interact with an SMT solver programmatically. We have
demonstrated through examples the simplicity and usefulness
of such an interaction. The power of z3.rkt comes from the
facilities provided by Racket to build abstractions on top of the
SMT-solving capabilities of Z3. From the user’s perspective,
the integration is seamless and fully transparent.

Our implementation is open source and freely available at

http://www.cse.iitk.ac.in/users/karkare/code/z3.rkt/

z3.rkt is still a work in progress, and we hope to soon
achieve the following:

20



• Support more Z3 constructs, including bit-vectors and
external theories

• Derive new abstractions guided by practical use cases

• Possibly integrate with other SMT solvers

In the long term, we hope the community will find this
system useful and will contribute to the project to solve large
practical problems.

ACKNOWLEDGEMENTS

We thank Leonardo de Moura at Microsoft Research for his
help in understanding the Z3 C API. The Racket community,
at #racket on Freenode IRC, helped us understand some of
the Racket syntax model’s intricacies. That helped us avoid
dead ends both early on and towards the end. This work was
done while the first author was at IIT Kanpur.

REFERENCES

[1] S. A. Cook, “The complexity of theorem-proving procedures,” in STOC,
1971, pp. 151–158.

[2] R. M. Karp, “Reducibility among combinatorial problems,” in Com-
plexity of Computer Computations, R. Miller and J. Thatcher, Eds.,
1972, pp. 85–103.

[3] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani, “Automatic
predicate abstraction of C programs,” in PLDI, 2001, pp. 203–213.

[4] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in TACAS,
ser. LNCS, 2008, vol. 4963.

[5] B. Dutertre and L. de Moura, “The Yices SMT solver,” SRI Interna-
tional, Tech. Rep., 2006.

[6] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović,
T. King, A. Reynolds, and C. Tinelli, “Cvc4,” in Proceedings of the
23rd international conference on Computer aided verification, ser.
CAV’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 171–177.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2032305.2032319

[7] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli,
“DPLL(T): Fast Decision Procedures,” in CAV, ser. LNCS, vol. 3114,
2004, pp. 175–188.

[8] S. Gulwani, S. Srivastava, and R. Venkatesan, “Program analysis as
constraint solving,” in PLDI, 2008, pp. 281–292.

[9] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated
Whitebox Fuzz Testing,” in NDSS, 2008. [Online]. Available:
http://www.truststc.org/pubs/499.html

[10] A. Armando, J. Mantovani, and L. Platania, “Bounded model checking
of software using SMT solvers instead of SAT solvers,” STTT, vol. 11,
no. 1, pp. 69–83, 2009.

[11] C. Barrett and C. Tinelli, “CVC3,” in CAV, ser. LNCS, W. Damm and
H. Hermanns, Eds., vol. 4590, 2007, pp. 298–302.

[12] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard: Version
2.0,” in Proceedings of the 8th International Workshop on Satisfiability
Modulo Theories (Edinburgh, England), A. Gupta and D. Kroening,
Eds., 2010.

[13] M. Flatt and PLT, “Reference: Racket,” PLT Inc., Tech. Rep. PLT-TR-
2010-1, 2010, http://racket-lang.org/tr1/.

[14] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and
M. Felleisen, “Languages as libraries,” in PLDI, 2011, pp. 132–141.

[15] D. E. Knuth, “The Computer as a Master Mind,” Journal of Recre-
ational Mathematics, vol. 9, no. 1, pp. 1–6, 1976–77.

[16] J. Stuckman and G. qiang Zhang, “Mastermind is NP-Complete,”
INFOCOMP Journal of Computer Science, vol. 5, pp. 25–28, 2006.

[17] Colin Hughes, “Problem 185 - Project Euler,” http://projecteuler.net/
problem=185, May 2012 (last accessed).

[18] S. Agarwal, “Numbermind,” http://numbermind.less-broken.com,
Source available from https://github.com/sid0/numbermind, January
2013 (last accessed).

[19] E. Barzilay, “The Racket Foreign Interface,” http://docs.racket-lang.
org/foreign/, March 2012 (last accessed).

[20] R. Kelsey, W. Clinger, and J. Rees, Eds., Fifth Revised Report on
the Algorithmic Language Scheme. ACM SIGPLAN Notices, 1998,
vol. 33, no. 9.

[21] J. McCarthy, “Web Applications in Racket,” http://docs.racket-lang.
org/web-server/, July 2012 (last accessed).

[22] M. Flatt, G. Yu, R. B. Findler, and M. Felleisen, “Adding delimited
and composable control to a production programming environment,”
in Proceedings of the 12th ACM SIGPLAN international conference
on Functional programming, ser. ICFP ’07. New York, NY, USA:
ACM, 2007, pp. 165–176.

[23] Y. Ge and L. de Moura, “Complete Instantiation for Quantified
Formulas in Satisfiability Modulo Theories,” in CAV, 2009, pp.
306–320.

[24] J. Y. Halpern, “Presburger Arithmetic With Unary Predicates is Π1
1

Complete,” Journal of Symbolic Logic, vol. 56, pp. 56–2, 1991.
[25] L. de Moura and N. Bjørner, “Efficient E-Matching for SMT Solvers,”

in CADE-21, 2007, pp. 183–198.
[26] P. Suter, A. S. Köksal, and V. Kuncak, “Satisfiability Modulo Recursive

Programs,” in SAS, 2011, pp. 298–315.
[27] A. S. Köksal, V. Kuncak, and P. Suter, “Scala to the Power of Z3:

Integrating SMT and Programming,” in ICAD, 2011, pp. 400–406.
[28] Microsoft Research, “Z3Py - Python interface for the Z3 Theorem

Prover,” http://rise4fun.com/z3py/, May 2012 (last accessed).
[29] L. Erkok, “Symbolic bit vectors: Bit-precise verification and auto-

matic C-code generation,” http://hackage.haskell.org/package/sbv-0.9.
24, March 2012 (last accessed).

[30] D. Stewart, “yices-painless: An embedded language for program-
ming the Yices SMT solver,” http://hackage.haskell.org/package/
yices-painless-0.1.2, March 2012 (last accessed).

[31] D. Sitaram, “Racklog: Prolog-Style Logic Programming,” http://docs.
racket-lang.org/racklog/, May 2012 (last accessed).

[32] Gecode Team, “Gecode: Generic Constraint Development Environ-
ment,” http://www.gecode.org, May 2012 (last accessed).

[33] JaCoP Team, “JaCoP - Java Constraint Programming solver,” http:
//jacop.osolpro.com/, May 2012 (last accessed).

[34] H. Abelson, G. J. Sussman, and J. Sussman, Structure and Interpretation
of Computer Programs, 2nd ed. MIT Press, 1996.

21


