

A Platform for Data Analysis and Tutoring For
Introductory Programming

A Thesis Submitted

in partial fulfilment of the requirements

for the degree of

Master of Technology

by

Rajdeep Das

to the

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

June, 2015

ABSTRACT

Computer aided education1 is the emerging technology to make education available to masses

all over the world. MOOC2 platforms have solved the problem of managing large courses,

improving community interactions and making them available to people covering a large

geographic area. However, they do not help the students much when solving problems offered

by the course. Problem solving is an integral part of learning in courses, and MOOCs have not

added any value to the existing methods present today. In this thesis, I will attempt to tackle

such issues in introductory programming courses. The issues that arise here, with respect to

problem solving include lack of early and uniform feedback, necessity to learn a complex

programming environment and lack of information about students’ approach to solving

problems. I will present a tutoring system platform which may be used to conduct introductory

programming courses. The system provides a cloud based web application which can be used

to learn programming and provides instant feedback to students while solving programming

problems. The system also provides a view of the students’ approach to solving programming

problems. It avoids the requirements for students, of having to learn a programming

environment such as Linux and its tools, and enables the students to focus on solving only the

programming problems. The system also collects valuable data regarding how the students

solve the problems, the errors they commit and a lot of other information valuable for analysis.

The various interfaces in this system provide a lot of analytics for this collected data. Such data

is then used in developing intelligent tools for giving feedback to students, some of which are

used in this system itself. This system thus serves as a platform for tutoring as well as data

collection for researchers.

1
 Can Cemal Cingi, “Computer Aided Education,” Procedia - Social and Behavioral Sciences 103

(November 2013): 220–29, doi:10.1016/j.sbspro.2013.10.329.
2
 “Massive Open Online Course,” Wikipedia, n.d.,

http://en.wikipedia.org/wiki/Massive_open_online_course.

Dedicated to my parents

ACKNOWLEDGEMENT

I would like to express my sincere gratitude towards my thesis supervisor Prof. Amey Karkare

for providing me with all the support and encouragement needed to accomplish this thesis.

Without his help in providing the required infrastructure and authorizations, it would not have

been possible to carry out the necessary experiments for this thesis work. I am also overly

thankful to him for supporting the deployment of this system at IIT Kanpur for the ESC101

course which is taught to 400 odd students from various disciplines. He had given me the

wonderful opportunity of being able to architect and deploy a full blown system on powerful

systems, to be used by live users.

I would like to thank Dr Sumit Gulwani, who is my co-supervisor for this thesis, for his extremely

valuable guidance into solving the problems encountered by me while doing this thesis. It would

not have been possible for me to complete this thesis in time and come up with meaningful

results, if it were not for his guidance. He has been the backbone of driving this project forward

through our weekly meetings, and giving valuable feedback on every minute aspect of this

system.

I would finally like to thank a few other people whose efforts were no less valuable in developing

this thesis project. I would like to start with Umair Z Ahmed for providing a lot of help in

conducting the ESC101 course and also providing valuable insights in conducting the course

using this system. I would like to thank Naman Bansal for his contributions to automatic test

case generation using KLEE, which has helped generate a large number of test cases for the

problems used in the course. I would also like to thank all the undergraduates, who had taken

up internships for this project in summer, for their valuable contributions to problem generation

for the ESC101 course.

Table of Contents
LIST OF FIGURES .. 1

INTRODUCTION ... 2

RELATED WORK .. 4

SYSTEM PURPOSE .. 5

Context ... 5

System Interface .. 6

Non-Functional Requirements ...15

Qualities ...15

Constraints ...16

Principles ...16

STRUCTURE ..17

Overview ...17

Components ..25

Interfaces ..28

DYNAMIC BEHAVIOUR ...35

Scenarios ..35

Scenario Specification..35

Component Interaction Model ..52

Mechanisms ..54

OTHER VIEWS ...56

Process View ...56

Development View...58

Physical View ..60

CONCEPTUAL FRAMEWORK ...61

Domain Lexicon ...61

Lexicon Diagram ...63

RESULTS ...64

CONCLUSION ..67

Assessments ...67

FUTURE WORK ...69

BIBLIOGRAPHY ...70

1

LIST OF FIGURES

Figure 1: High level use-case diagram of Tutoring System 6

Figure 2: Overview of the architecture of the system 17

Figure 3: Components connectivity 21

Figure 4: A logical view of the Web Application subsystem 22

Figure 5: The application modules in the Web Application subsystem 23

Figure 6: A logical view of the Engine subsystem 23

Figure 7: Sequence diagram for a Web API Request 52

Figure 8: Sequence diagram for a compilation request 53

Figure 9: Activity diagram of scaling monitor for auto scaling web services 54

Figure 10: Activity diagram of load balancing monitor for dynamic load balancing 55

Figure 11: Collaboration diagram for Web Application subsystem 56

Figure 12: Collaboration diagram for Engine subsystem 56

Figure 13: Normal student activity 57

Figure 14: Normal admin activity 57

Figure 15: Deployment view of the tutoring system 60

Figure 16: Lexicon diagram for concepts used 63

2

INTRODUCTION

Computer aided education is the emerging technology to enhance the process of learning and

make education available to masses all over the world. Several software systems have been

built to enhance the process of learning across various domains. MOOC3 platforms are a very

prominent example which has been primarily built to enhance reachability to students distributed

across the world. Examples of MOOCs include Coursera4, Edx5, Khan Academy6, Udacity7, etc.

These online platforms host a large number of courses, conducted by instructors from

prominent institutes all over the world. Such systems have also succeeded in providing open

courses to the masses and improving community interaction whilst learning. However problem

solving forms an integral part of learning in courses, and the problem of providing early and

uniform feedback to students when solving problems in courses remains persistent even now.

Moreover these MOOCs are quite generic in nature and do not address the problems of

conducting individual courses, such as programming. Some of these problems include the

necessity for students to learn a programming environment such as Linux and its build tools.

Most students who learn programming do not need to know of these environments as there is a

lot of Integrated Development Environments (IDE)8 available today, which abstract these issues

from the programmers. Further, when solving a programming problem, sometimes it is quite

necessary to determine the approach of the student while solving a programming problem. This

helps to judge the solution presented by the student as well as provide feedback to the student

when she commits errors.

In this thesis, I will try to solve the problems mentioned above from an architectural point of

view, by presenting a tutoring platform which may be primarily used to conduct introductory

programming courses. The platform can be used to deploy a system which can be used to

teach programming to students by providing a versatile programming environment and real-time

feedback systems. The system provides a cloud based editor interface, which can be accessed

from any standard browser. This abstracts the issues of having to learn a complex programming

environment such as Linux, in order to learn programming. The system enables easy integration

of feedback tools so that early and uniform feedback can be provided to the students. The

system also records code progression of student programs, which help to decipher the

approach of the student when solving programming problems. From a broad perspective, the

platform is intended to be used by students, instructors, developers and researchers combined

to achieve their respective goals. Students would use this system to learn introductory

programming and benefit most of the features available in MOOCs. Instructors would use this

system to conduct introductory programming courses. Developers may use this platform as a

framework to create tutoring systems in programming. Finally, researchers may use this system

3
 Ibid.

4
 “Coursera.org,” n.d., https://www.coursera.org/.

5
 “Edx,” n.d., https://www.edx.org/.

6
 “Khan Academy,” n.d., https://www.khanacademy.org/.

7
 “Udacity,” n.d., https://www.udacity.com/.

8
 “Integrated Development Environment,” Wikipedia, n.d.,

http://en.wikipedia.org/wiki/Integrated_development_environment.

3

as a tool for collecting valuable data to understand patterns in the student learning process. This

versatile system is tested in production for the introductory programming course at IIT Kanpur,

and meets the goals of every user mentioned above.

This document essentially describes the software architecture of “A Platform for Data Analysis

and Tutoring for Introductory Programming”. It is intended for software developers and

implementers of the platform along with anyone who needs to understand the working of this

software platform. The document covers the description of the platform as well as critical

reasoning, in order to help the audience realize the pros and cons of deploying this platform. It

also provides developers with an idea of how to extend or modify this platform. Researchers

may also be able to understand how to use this platform for data analysis and research in the

area of Intelligent Tutoring Systems. This document may be used as an architecture reference

manual for developers as well as an architecture overview for a wide range of users. It is

presented in a style designed by HP9.

9
 Michael A. Ogush, Derek Coleman, Dorothea Beringer, “A Template for Documenting Software and

Firmware Architectures,” March 15, 2000,
http://www.cs.helsinki.fi/group/os3/HP_arch_template_vers13_withexamples.pdf.

4

RELATED WORK

A large number of premier institutions have been conducting MOOCs since quite some time

which had led to the development of popular online educational systems. Coursera emerged in

2012 which now offers more than 1000 courses across 117 institutions according to Wikipedia10.

Other notable instances include Khan Academy which was founded by educator Salman Khan

in 2006, EdX by MIT and Harvard founded in 2012 and Udacity founded by Sebastian Thrun,

David Stavens, and Mike Sokolsky. In India, NPTEL11 which is funded by the Ministry of Human

Resource Development (MHRD) is managed by seven IITs and IISc Bangalore. All these

examples offer MOOCs, which aim at teaching a large population of students for free.

Intelligent tutoring systems have also been existent for some time now. The automata tutor12

developed initially by Arjun Radhakrishna, and Damien Zufferey helps students learn basic

concepts of automata theory. It is based off the papers at IJCAI ‘1313 and TOCHI ‘1514. This

system uses tools which generates feedback for DFA assignments for automata courses. It is

also capable of automatic grading of such assignments. Even in the area of programming, there

have been advancements in development of feedback tools. AutoProf15 is an example, which

generates feedback for programming assignments in introductory programming courses. It has

been integrated into the EdX course “Introduction to Computer Science and Programming

(6.00x)”. A logic tutor16 had also been built for the generation of natural deduction problems

using first order logic. A large number of these tools have been built using techniques from

program synthesis. Such techniques have been used in problem generation17, solution

generation18 and automated grading19 of assignment problems from a large set of disciplines.

10

 “Coursera,” Wikipedia, n.d., http://en.wikipedia.org/wiki/Coursera.
11

 “NPTEL,” n.d., http://nptel.ac.in/.
12

 “Automata Tutor,” n.d., http://www.automatatutor.com/.
13

 Rajeev Alur et al., “Automated Grading of DFA Constructions,” in Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence, IJCAI ’13 (Beijing, China: AAAI Press, 2013),
1976–82, http://dl.acm.org/citation.cfm?id=2540128.2540412.
14

 Loris D’antoni et al., “How Can Automatic Feedback Help Students Construct Automata?,” ACM
Transactions on Computer-Human Interaction 22, no. 2 (March 10, 2015): 1–24, doi:10.1145/2723163.
15

 Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama, “Automated Feedback Generation for
Introductory Programming Assignments,” ACM SIGPLAN Notices 48, no. 6 (June 23, 2013): 15,
doi:10.1145/2499370.2462195.
16

 Umair Z. Ahmed, Sumit Gulwani, and Amey Karkare, “Automatically Generating Problems and
Solutions for Natural Deduction,” in IJCAI 2013, 2013.
17

 Oleksandr Polozov, Sumit Gulwani, and Sriram Rajamani, Structure and Term Prediction for

Mathematical Text (Microsoft Research, 2012).
18

 Sumit Gulwani, Vijay Anand Korthikanti, and Ashish Tiwari, “Synthesizing Geometry Constructions,” in
PLDI, 2011, 50–61.
19

 Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama, Automated Semantic Grading of
Programs, 2012.

5

SYSTEM PURPOSE

The platform provides web application interfaces which is targeted for both students and

instructors. Students are provided with an editor with integrated tools for compilation, execution,

evaluation and feedback generation. They are also provided basic course related statistics such

as grades. Instructors are provided with interfaces to manage problems, user accounts, and

course events such as labs, exams and quizzes. There are other features that the interfaces

offer, which will be elaborated later in this document. The tutoring system is designed to support

a class of students having strength of around 500. It is designed for high availability and

moderate performance.

Context

Current MOOC systems offer basic course management through online portals. They still

require a lot of tedious human effort to provide high quality education through it. In specific

cases of programming courses, this effort can be substantially decreased through the

introduction of automated and intelligent tools for tasks such as student thought process

analysis, problem generation and feedback generation.

This tutoring system solves the problem of teaching introductory programming to a large

population of students using automated feedback generation, data analytics and course

management. It enables instructors to provide high quality feedback to students in real time,

while solving programming problems, using some intelligent feedback generation tool. It also

enables management of programming courses. A key feature of this system is that it provides

interfaces for viewing the code progression of student programs. This helps in analysing the

thought process of the students while programming, and provides an excellent base for

research and analytics. The system adds value to existing MOOCs by providing real-time

feedback generation through the versatile code editor and also by providing a platform for data

analysis.

This software platform will be used by instructors to teach students introductory programming

using an intelligent tutoring environment. It may also be used by researchers to analyse data

collected from the students, in order to come up with new techniques for intelligent tutoring.

6

Figure 1: High level use-case diagram of Tutoring System

System Interface

Interface Student home

Use Cases View grades and course statistics: This
interface allows student users to view their
grades for previous course assignments. It
also enables them to view their own statistics
for the course, such as the number of
submitted solutions.
View on-going events: This interface
displays any on-going course event along
with a summary of the problems that have
been assigned to the student for the
respective course event. A student can
directly go to the environment from where he
can start coding for any of the problems listed
in the summary.

Interface Editor for course events

7

Use Cases View problem: This interface displays a
programming problem that has been
assigned to the respective student for the
current on-going course event. The student is
able to view this problem from one of the tabs
located to the left of the user interface.
Write programs: This service allows student
users to write source code for the
programming problem that is defined within
this interface. Code can be written in an editor
that is displayed within this interface. The
editor support basic features such as syntax
highlighting, code-folding, automatic
indentation and displaying line numbers.
Students are also able to save their programs
manually.
Compile programs: This service allows
student users to compile the programs that
they have written in the editor. They are also
able to view the compiler messages in a
console window within this interface, along
with any feedback that are provided by the
feedback tools integrated into this system.
Execute programs: This service allows
users to execute compiled programs that they
have written in the editor. They can supply
input data into a corresponding window
located within this interface. The output from
the program is displayed in another similar
window located adjacently. This interface also
displays any error messages that may have
occurred while executing the program.
Evaluate programs: This service allows
users to evaluate their program against a set
of test cases supplied along with the problem
statement. They are able to view the number
of passed test cases along with a table
showing which have passed and which have
failed, if the respective test cases are visible.
The interface also displays any feedback
generated by any of the relevant feedback
tools integrated into this system.
Submit programs: This service allows
student users to submit their programs as
solutions for the current programming
problem.

Interface Scratchpad

8

Use Cases Create/Delete files/folders: This service
allows users to create and delete virtual
source files, and folders to organize them.
Write Programs: This service allows users to
write arbitrary programs for practice or testing
purposes. An editor is provided within this
interface, which is similar to the one present
in the editor for course events. These
programs are saved in the virtual source files
created above.
Compile: This service allows users to
compile their source code, written in the
virtual source files, and view the messages
generated by the compiler.
Execute: This service allows users to
execute their compiled source code on
custom input, and view the results in a
corresponding output window. Users are also
able to view any errors which occur while
executing the program.

Interface Codebook

Use Cases View attempted problems list: This service
allows users to view the list of practice
problems that they have attempted, and also
the list of problems they had been assigned
during the course events. Students can view
these problems and their own solutions to
them.
View submitted solution: This service
allows students to view the code submitted as
solution for the problems listed within this
interface. For practice problems, this interface
displays the last saved solution code. It also
displays the grading status of the problem, if
the problem is an assignment problem.

Interface Practice arena

Use Cases View practice problems: This service allows
student users to view the problems that have
been marked for practice. Students can
directly navigate to the “Editor for course
events” interface from here, for the
corresponding problem.

9

Interface Pager send message

Use Cases Start support thread: This service allows
student users to send a message to all
concerned teaching assistants, tutors and
instructors. Messages are expected to
contain queries regarding difficulties in using
the system and in solving assignment
problems. References to source code
versions are automatically included in the
messages, if they are sent from the editor
interface for course events.

Interface Pager viewer

Use Cases View and respond to replies: This service
allows student users to view the replies to the
messages sent by them through the “Pager
send message” interface. They can also
respond to such replies, thus continuing a
message thread.

Interface Admin home

Use Cases Navigate to management and analytics
interfaces: This interface is used by
administrators to navigate to the management
and data analytics interfaces. It provides an
overview of what features are available to the
user.

Interface Problem management

Use Cases Create problems: This service is used to
create a new blank problem instance by
specifying an identifier for the problem, along
with a category that the problem belongs to.
View/Edit problems: This service is used to
view and edit previously created problems.
Items that can be edited for a problem are its
statement, solution code and solution
template. All edits are reflected instantly to
anyone viewing the respective problem.
Add/Delete test cases: This service allows
instructors, tutors and teaching assistants to
add test cases for the problem, upon which
student solutions can be evaluated. Test

10

cases can be added individually, or in
batches. Test cases can also be deleted
using this interface.

Interface Problem upload

Use Cases Upload problems in batch: This service
allows problems to be uploaded to the system
in batch. The problems are required to be in a
specific format, in order to be uploaded.

Interface Account management

Use Cases Add accounts: This service allows
administrators to add user accounts to the
system. User accounts may be either student
or administrator accounts.
Edit/Delete accounts: This service allows
administrators to edit profile and accounting
information of existing users, including
authentication methods. It also allows
deleting of user accounts from the system.
For administrator accounts, this interface also
facilitates changing of administrator roles
such as instructor, tutor and teaching
assistant.

Interface Event management

Use Cases View course event calendar: This service
allows viewing of course events and their
corresponding schedules. The interface
includes a calendar, which helps instructors
to plan course events.
Create course events: This service allows
the creation of new course events in the
system, such as labs, exams and quizzes.
Create event schedules: This service allows
instructors to create schedules for the course
events which had been created previously.
Assign problems to students: This service
allows instructors to assign problems to
students for course events that had been
created previously. This assignment is done
based on some algorithm, which is
interactively specified by the instructor.

11

Interface Event dashboard

Use Cases View student performance rankings: This
service allows instructors to view rankings of
students according to some score computed
using some algorithm.
View student performance distributions:
This service allows instructors to view the
distribution of the scores mentioned above.

Interface Submissions viewer

Use Cases View student submissions: This service
enables viewing of student submissions to
problems for course events. The submissions
can be filtered based on a set of categories.

Interface Code history viewer

Use Cases View code history: This service allows
viewing of source code history for a specific
course assignment. It is used to view the
stimuli on which code versions were saved
along with the code that was saved.
View submission code: This service allows
viewing of the code version that was
submitted by the student, while solving this
assignment.
Evaluate submitted code: This service
enables evaluation of the submitted source
code on the test cases that are available for
the respective problem. Evaluation results for
each test case are displayed in a table.
Grade submissions: This service enables
teaching assistants and tutors to grade the
assignment being viewed.

Interface Admin editor

Use Cases Compile program: This service allows admin
users to compile programs and view syntactic
error messages.
Execute program: This service allows admin
users to execute programs on custom input.
Evaluate program: This service allows
admin users to evaluate programs that
correspond to a student submission for a

12

course event. Admins are able to modify the
code and then evaluate on the modified code.
Update solution code: This service allows
admin users to update the ground truth
solution code to a particular problem.

Interface Assignment analytics

Use Cases View code size variation: This service
allows users to view the variations in code
size of a student submission over time.
View code save progression: This service
allows users to view the progression of code
saves for a student submission, over time.
View syntactic analytics: This service
allows users to view the sort of compilation
errors performed by a student while solving
that particular programming assignment. It
also shows instances of the errors and where
they were triggered.
View compilation error timeline: This
service allows users to view the compilation
errors committed by the students in solving
the problem, as well as the time taken by
them to fix the individual compilation errors.
View execution sequence: This service
allows users to view the sequence of
executions and evaluations made by a
student while solving a programming
assignment, over time. It also displays the
results of those executions and evaluations.

Interface Dataviz

Use Cases View visualizations and clusters: This
interface allows users to view the data
collected by the system after some
processing. The format in which the data is
displayed depends on the developers of the
visualizations. For example, it can be used to
view the compiler messages corresponding to
the various student programs.

Interface Control panel

Use Cases Modify compiler options: This service
allows admins to modify the flags used by the

13

compiler to compile programs.
Modify execution sandbox settings: This
service allows admins to change the quotas
for execution of programs. Quotas include
time and memory.
Enable/Disable plugins: This service allows
admins to enable or disable plugins used in
the system.
Modify delays: This service allows admins to
modify the time delays for compilation,
execution and evaluation of programs.
Enable/Disable logging: This service allows
admins to enable or disable logging of
compilations, executions and evaluation
attempts by students, while solving
programming problems.

Interface Tasks panel

Use Cases View personal pending/complete tasks:
This service allows admin users to view the
pending or complete tasks, which have been
assigned to them.
View overall pending/complete tasks: This
service allows admin users to view the status
of tasks that have been assigned to all admin
users, grouped by the admin users and the
course events for which tasks have been
assigned.

Interface Admin pager

Use Cases View messages: This service allows admin
users to view the message threads created
by students, as well as all replies to such
threads.
Reply to messages: This service allows
admin users to reply to the messages that are
viewable in this interface. Users can also
navigate to the code instance which the
student was working on (if any), when he sent
the message.

Interface Admin account settings

Use Cases Update name: This service allows admin
users to update their name on the system.

14

Update password: This service allows admin
users to update their password on the
system.

Interface Cache interface

Use Cases Store/Retrieve session/cache data: This
interface allows the web and engine
applications to store and retrieve data
corresponding to session information and
database rows for caching.

Interface Database proxy

Use Cases Communicate with database nodes: This
interface allows the web and engine
application services to access database
nodes for executing queries on them.

Interface Database node interface

Use Cases Communication with database server: This
interface allows the database proxy and
optionally the web/engine applications to
communicate with the database server
running on that node.

Interface Web application interface

Use Cases Retrieve user interfaces: This interface is
used by browser clients to retrieve user
interfaces provided by the web application
services.
Send RPC requests: This interface is used
by the web application subsystem to send
send RPC requests to the web application
service.

Interface Engine endpoint

Use Cases Compile/Execute/Evaluate: This service is
used by the web application to send requests
for compilation, execution or evaluation to the
engine.
Run tools: This service is used by the web

15

application to run various tools hosted by the
engine.

Interface HTTP proxy

Use Cases Access web services: This interface is used
by the clients to access web services offered
by the tutoring system.

Interface Static proxy

Use Cases Access static content: This interface is used
by the web application to access static
content such as stylesheets, scripts and
images.

Interface Consul interface

Use Cases View health status of nodes: This service
allows users to view the health status of the
various nodes deployed in the system.

Non-Functional Requirements

Qualities

● Portability: The system is designed to run on almost any flavour of Linux. The nodes

can be packed into archives and relocated to different physical machines. Only the

environment which is required to run the nodes must be set up on the physical

machines. Docker is the environment which is used for deploying nodes, and can easily

be set up on any standard Linux distribution.

● Extensibility: The system and its functionalities can be extended by adding new plugins

and tools to it. Adding plugins for specific purposes such as feedback generation

requires a few lines of configuration and code. Other tools can be integrated by adding

modules, which are quite simple to write, and will require less than a day to implement

for most scenarios. Also new features can be added to the system without any

downtime.

● Modifiability: The existing tools and modules in the system can be modified quite easily

by changing a few lines of code. Few tools such as compilers can be changed by simply

changing the compilation configurations. Features can also be enabled and disabled via

the admin interface using simple clicks.

● Scalability: New nodes can be added and removed to and from the system without any

downtime. New physical machines can also be added to the system, without affecting

16

the uptime. The system has the capability to auto scale nodes within a physical machine,

in the case when the machine is used for multiple purposes.

● Usability: The system is meant to be used by novice computer users to expert

programmers. The user interfaces are modular and intuitive.

● Durability: The data nodes on the system are replicated, thus making it immune to data

loss.

● Fault-Tolerance: All nodes on the system are replicated, thus making the system highly

available. Failure of nodes does not result in downtime due to the presence of redundant

replicas. The proxies also operate in high availability master-slave mode, thus adding a

new layer of tolerance at the physical level.

Constraints

● The system has to run on a Linux environment. However any bare minimal Linux

distribution which supports Docker will suffice.

Principles

● The entire system is highly modularized. This enables the system to be easily

modifiable. New features can be added by introducing new modules and registering

them on the system. This principle supports extensibility and modifiability.

● The nodes of the system are deployed using Docker. Each node is a container spawned

from a previously created image. Since Docker can be archived and ported from

machine to machine, so can the system. This principle supports portability.

● The systems services are separated into different nodes. Nodes hosting specific

services are clustered. Additional nodes can be added to the system to increase

performance, and nodes can also be removed from the system to free up resources.

This principle supports scalability.

● The database nodes are clustered for replication. Each node is a replica of the others in

the system. All writes to the nodes are synchronous, thus ensuring that data is replicated

to all of the nodes, every time a write occurs on one of the nodes. Hence, data is not lost

in the event that any one of the nodes crash. This principle supports durability.

● The physical machines have proxies that listen on a single floating IP with a master-

slave configuration. Thus, in the event that one of the physical machines go down, the

other machine’s proxy takes over. This principle supports fault tolerance.

17

STRUCTURE

Overview

Figure 2: Overview of the architecture of the system

The tutoring system has 6 principal components. These are the HTTP proxy, database proxy,

relational database, in-memory cache, web application and engine. All these components reside

on top of a service discovery layer, which is responsible for keeping track of the health and

presence of the instances of these components. Below the service discovery layer lies a

virtualization layer, which enables creation and deletion of instances dynamically within a

physical machine. It also enables distribution and relocation of instances across physical

machines, without any changes to the instances themselves. The physical hardware forms the

lowest layer of the architecture.

The virtualization technology used for the system is Linux Containers. Containers are a better

approach to virtualization than standard hypervisors, owing to their lightweight nature. Docker

has been chosen as the technology to containerize the application components. A Docker

container is almost as light as running a process within an operating system. Also they are

portable. You can read on Docker20 containers to know about their advantages and

disadvantages

The system is designed to scale horizontally. Thus we can expect the addition and removal of

service instances to and from it, dynamically. This requires keeping track of what services are

running and where they are running. Also components within the system, which need to interact

with one another, need to know of each other in a dynamic environment. Thus, service

discovery is used in the deployment of the system. Consul21 has been chosen as the software

20

 dotCloud, “Docker,” n.d., https://www.docker.com/whatisdocker/.
21

 Hashicorp, “Consul,” n.d., https://www.consul.io/.

18

which acts as the service discovery agents in the various components across the system.

Whenever a component boots up, it adds itself to the system cloud, by registering itself as a

service on the system. Other components, which require the services offered by this component

consults the service discovery agent to get the location and configuration of the service

providing node. It then uses this information to communicate with the node. Whenever a

component leaves the system, it deregisters itself from the service cloud and exits. This way,

nodes can be dynamically added and removed from the system without affecting service

availability. Another important feature of the service discovery agents is to keep track of the

health of the individual nodes. By registering checks for itself on its agent, each node publishes

its health status via the agent to the service cloud. This way, monitoring applications can keep

track of what services are unavailable and should be replaced or repaired.

HTTP Proxy: This component acts as a proxy22 as well as a load balancer23 for all HTTP

requests corresponding to the web services offered by the Engine and Web Application.

Requests are redirected to either the Engine or the Web Application instances according to

some URL rules specified in its access control list. It also load balances24 the requests among

all the instances of each of these two types of web servers. The least connected load balancing

algorithm is used to distribute the requests. The proxy uses service discovery to keep track of

what instances of each web service are available and healthy. It uses this information to update

its server list whenever there is a change. This mechanism enables instances to be dynamically

added and removed from the system without any downtime. HAProxy25 is used as the load

balancer.

Database Proxy: This component acts as a proxy and a load balancer for the database

instances. The job of this component is to redirect requests for database accesses to one of the

available database instances, based on the least connected load balancing algorithm. The

proxy acquires information about the available database instances through a service discovery

agent. It updates its server list based on the health and availability of such instances. HAProxy

is used as the database proxy.

The rationale behind the requirement of a database proxy is to uniformly distribute database

load across all the available database instances. It also helps to dynamically add and remove

database instances from the system without any downtime. As database queries can vary

based on the amount of time required to address them, it is not wise to statically assign

database instances to application nodes which require it. This is because; a single application

node can consume a lot of database resources, while others may be almost idle. Thus the entire

load gets concentrated on a single database node, which is inefficient. A load balancer is kept to

tackle this situation, which balances load among the running instances of database nodes.

22

 “Proxy Server,” Wikipedia, n.d., http://en.wikipedia.org/wiki/Proxy_server.
23

 “Load Balancing (computing),” Wikipedia, n.d.,

http://en.wikipedia.org/wiki/Load_balancing_%28computing%29.
24

 Valeria Cardellini, Michele Colajanni, and Philip S. Yu, “Dynamic Load Balancing on Web-Server
Systems,” IEEE Internet Computing, 1999.
25

 HAProxy, “HAProxy,” n.d., http://www.haproxy.org/.

19

Relational Database: This component is responsible for storing all data corresponding to the

system. The data stored includes user accounting information, code history, programming

problems and their test cases, course events and corresponding assignments, grading

information, compilation logs, execution logs and evaluation logs. The database also stores

various other information required for system operation such as configurations. This component

is the sole persistent data store for the system. The database instances are clustered using

replication, so that they together form a high-availability, fault-tolerant and durable data store.

The cluster uses Galera26 for master-master replication with synchronous writes. This implies

that all database instances have the same data at any instant of time. This feature guarantees

data consistency. MySQL27 is used as the data store.

One of the main purposes of the system is to provide a framework for collection of data for

analytics. Since the data collected by the system is relational in nature, a relational database28

has been chosen as the data storage engine. Also a relational database supports querying in

ways which support providing statistical information directly. This is necessary for various

research activities which require such information.

In-Memory Cache: This component is responsible for session storage and database caching.

Memcached29 is used as the cache. Use of in-memory storage for sessions ensures high

performance, where almost all of the requests for web services require authentication. Database

caching is also necessary as a lot of database queries are expensive and do not change

frequently. The cache instances are also clustered. However the data across the instances are

sharded to optimize performance. The cache component has no persistence, and in the event of

a node failure, all data stored in that node is lost. However, since the sort of data stored in the

cache instances are not valuable and are recoverable, this is not a problem. The cache cluster

also does not involve replication, so as to minimize the overhead involved.

Session stores mostly use persistence, in which they save the contents to the disk in either

regular files or databases. While designing the session store, it was observed that almost all of

the requests that are served by either of the services - engine or web application, require

authentication. Thus from the perspective of the web applications, they must look up the session

stores to fetch/write information on every request. For a session store that uses persistence, this

is quite expensive and may be a bottleneck for the application itself. Thus an in-memory cache

is used as a session store, to speed up the process. Memcached is used for this purpose as it

can be sharded and distributed across nodes with ease. One may argue that using a persistent

store with caching such as Redis30 can be a better option, as it has persistence as well as in-

memory caching. However, firstly clustering support for Redis is not yet stable and moreover

26

 Galera, “Galera,” n.d., http://galeracluster.com/products/technology/.
27

 Oracle, “MySQL,” MySQL, n.d., https://www.mysql.com/.
28

 T. Bakuya and M. Matsui, Relational Database Management System (Google Patents, 1997),
https://www.google.com/patents/US5680614.
29

 Memcached, “Memcached,” n.d., http://memcached.org/.
30

 Redis, “Redis,” n.d., http://redis.io/.

20

writes to Redis will cause an overhead larger than Memcached. Further, as session data is not

valuable data, persistence is not necessary. Losing session data simply results in the end user

being logged out. We can always add redundancy to the Memcached cluster to avoid such

losses, if necessary.

Web Application: This component is responsible for providing user interfaces and API services

corresponding to the web application offered by the system. The operations performed by this

component are mostly database and hence I/O intensive. Thus NodeJS31, a web server with

asynchronous I/O is chosen for this purpose. Each instance of this component consumes a

single thread, and hence multiple instances are required to increase performance. Thus, the

web application subsystem is clustered as well. However each node in the cluster is

independent of one another. The HTTP proxy balances the load among these nodes. The web

application subsystem has the largest codebase among all the components present in the

system.

Engine: This component is responsible for handling all compilation, execution and evaluation

requests of the tutoring system, along with requests for execution of some tools. It performs all

of the major compute intensive operations of the system. The Engine uses a multi-threaded web

server Apache32, to handle its requests, so that each request can be assigned to a single

thread. The web application is itself written in PHP33. This component is also clustered so that

Engine nodes can be added and removed dynamically from the system. The HTTP proxy

balances the requests among these nodes.

The engine is a web application which runs behind a web server. Since the time taken for the

operations that the engine performs can be quite high, it is necessary to queue them. However,

an explicit message queue is not maintained for this purpose. Instead the web server is

configured to receive a maximum of n clients for processing by the engine. The value of n is

carefully chosen such that the instance is able to process all the n requests simultaneously. Any

more requests that come in during the time when the engine is saturated, get queued by the

web server automatically. Thus a queue is implicitly maintained by the web server. Moreover the

timeouts for the web server are chosen such that they exceed the maximum expected engine

time for any request.

The services provided to the users are split between two components - the engine and the web

application server. This is done intentionally, to enable scaling of the system based on usage of

services and provisioning the components on different hardware based on the type of resources

that they consume most. The web application is a database intensive piece of software, which in

turn implies that it is an I/O intensive application. An application server which supports this sort

of usage is Node JS. Thus the web application server is built using it. On the other hand,

services which involve compilation and execution are CPU intensive and require an

environment which supports this. Apache coupled with PHP is used for this purpose. Although it

31

 Joyent, “Node JS,” n.d., https://nodejs.org/.
32

 Apache Software Foundation, “Apache HTTP Server,” n.d., http://httpd.apache.org/.
33

 PHP, “PHP,” n.d., http://php.net/.

21

may be a good option to use “better” environments such as Java34 for this purpose, this choice

has been made from the perspective of rapid prototyping. Since Apache spawns new threads

for each request, a separate thread can be dedicated for an engine request. Node JS on the

other hand cannot support this as it is single threaded.

Static Content Proxy: Apart from the regular web and application servers, additional proxy

servers are maintained in order to serve static content. This has not been included in the

diagram above, as it is optional. The static content proxy server is used to relieve the application

servers of unnecessary load, and also to speed up site loading in browsers by strategically

placing static content on high speed web servers.

Figure 3: Components connectivity

All HTTP requests arrive at the HTTP proxies. The proxy servers then forward these requests to

either the Web Application servers or the Engine servers, depending upon the URL path of the

34

 Oracle, “Java EE,” n.d., http://www.oracle.com/technetwork/java/javaee/overview/index.html.

22

request. Load balancing at the HTTP level happens at this step. Each of the Engine and Web

Application servers requires the services of the Database and In-Memory Cache servers. The

cache servers are accessed directly, whereas the database servers are accessed via the

Database Proxy.

Figure 4: A logical view of the Web Application subsystem

The web application is composed of four basic components - Router, Route Controllers, App

Modules and the View Manager. The Router is responsible for invoking the appropriate action

whenever a web request comes in. Based on the HTTP request, it invokes the corresponding

controller. It is also responsible for filtering out non-authentic requests. It uses the session

manager to check whether the request belongs to a valid user session or not. It also checks

whether the user belongs to the correct role required to access the requested resources. The

controller is responsible for a group of routes which handle similar functionalities. It acts as a

coordinator between the various application modules and the view manager. It invokes the

required modules with the necessary arguments, based on the request and forwards the final

output to the view manager for rendering to the client. The application modules handle specific

sets of functions. They interact with the database of the system, using the database interface,

to perform basic CRUD operations as well as some computations. The view manager is

responsible for rendering output to the client, after all necessary data retrieval and computations

have been performed. The view manager renders the output in one of the three formats - HTML,

JSON or raw text. The HTML renderer is generally used for rendering user interfaces, whereas

the JSON and raw text renderer are used to output data requested via API calls. The HTML

renderer uses view definitions to render its output.

23

The web application uses a variation of the Model View Controller (MVC)35 architecture. Each

route has a controller, which can use multiple modules in the application.

Figure 5: The application modules in the Web Application subsystem

The web application subsystem contains a number of modules which are responsible for

delivering functionalities for various features of the system. The accounts module is responsible

for managing user accounts on the system as well as handling user authentication. The

problems module is responsible for managing programming problems and their test cases used

in conducting the course. The events module manages the course events and their schedules.

The statistics module is used to provide statistical information regarding the conducted course.

Examples of statistical information include number of submitted solutions, number of correct

solutions, number of labs conducted, etc. The feedback module is responsible for managing

data for feedback tools, integrated into the system. The analytics module is used for generating

analytics from the data collected by the system. The assignments module is responsible for

managing the course assignments and maintaining code history for the assignments. The pager

handles the messaging system within the application. The engine module is responsible for

updating the engine configurations to the database, so that they can be synchronized across

nodes. The grading module manages the grades of assignments for various course events. The

mailer module is used to send email messages by the system. The scratchpad module handles

the creation, deletion and modification of files in the student scratchpad.

35

 Glenn E Krasner, Stephen T Pope, and others, “A Description of the Model-View-Controller User
Interface Paradigm in the Smalltalk-80 System,” Journal of Object Oriented Programming 1, no. 3 (1988):
26–49.

24

Figure 6: A logical view of the Engine subsystem

The engine is composed of six major components - bootstrap manager, session manager,

application modules, router, registry and controller. The bootstrap manager boots the sub-

system on every request, so as to include the necessary classes and methods for use in the

later stages. Only the necessary classes and modules are loaded by the bootstrap manager,

which includes the class loader. The class loader loads the required classes dynamically on

each request. The session manager uses the cookie information provided with the request to

load the user session into the request. Once the bootstrap manager finishes booting, it invokes

the router with the request path and parameters. The router then decides the action to be

performed based on the request path, and invokes the appropriate controller for the same. The

router uses the registry to decide which controller to invoke, based on a mapping created

previously. The controller coordinates between the application modules to perform the required

action, as specified by the request. It creates objects of the necessary modules, once it gets the

request from the router, and invokes the appropriate methods on them. It also uses the session

manager to decide if the request is authentic or not and drops the request with an error or

redirection if it isn’t. The application modules are not completely decoupled, and use methods

from other modules to achieve their purposes. The final result received by the controller from

the application modules is then marshalled into a JSON string and sent back to the client.

The modules in the engine subsystem deliver the functionalities offered by it. The execution

engine is responsible for compiling and executing programs. The analytics module is used to

perform analysis on data collected by the system. The default service manager handles engine

requests by admin users and students using the system for purposes other than course events.

The student service manager handles requests by students using the system for course events.

The logger logs the results of compilation, execution and evaluation for course events. The

judge is responsible for evaluating student programs. The feedback engine generates feedback

for the student programs.

The engine has a variation of the Model View Controller (MVC) architecture. Here, the controller

does not have a dedicated model to itself. Instead, it can communicate with multiple modules to

achieve its purpose. This promotes reuse of modules within the system.

25

Components

Component Engine

Responsibilities Compiles, executes and evaluates programs.
It also runs various tools integrated into the
system. Examples of tools are feedback
generation tools.

The provided interfaces are:

1. Engine endpoint.

Collaborators

interface component

Database proxy Relational
Database

Cache interface In-Memory Cache

Notes Uses the database to read configurations. It is
dynamically created and destroyed. It is
created when an engine node is spawned. It
is destroyed when the node is destroyed. A
single engine instance uses multiple threads.

Issues Needs to handle multiple programming
languages and paradigms.

Component Web Application

Responsibilities Responsible for rendering user interfaces for
the tutoring system. Handles API requests
corresponding to the web application, such as
code saves, fetching grade cards, fetching
assignment problems, etc. Also responsible
for creating and destroying user sessions for
the application.

The provided interfaces are:

1. Web application interface
2. User interfaces

Collaborators

interface component

Database proxy Relational

26

Database

Cache interface In-Memory Cache

Notes Persistent for the lifetime of the node on
which it runs. Destroyed when the node is
destroyed. An instance is single threaded.

Issues Error handling not stable.

Component In-Memory Cache

Responsibilities Stores session information and database
rows for caching.

The provided interfaces are:

1. Cache interface

Collaborators

Notes Created when a cache node is created and
destroyed when it is destroyed.

Issues Sharding algorithms used by the engine and
web application nodes do not match perfectly.

Component Relational Database

Responsibilities Stores all persistent data for the system and
collected by the web services.

The provided interfaces are:

1. Database interface

Collaborators

Notes Created when a database node is created
and destroyed when it is destroyed. Uses
multiple threads.

Issues Clustering uses synchronous writes. Hence
writes are slow.

Component Database Proxy

Responsibilities Load balances database requests among the
available database nodes.

27

The provided interfaces are:

1. Database proxy interface

Collaborators

interface component

Database interface Relational
Database

Notes Created when a new system is deployed.
Persists throughout the lifetime of the system.
Destroyed only when replaced.

Issues Connection timeouts need to be inferred from
system performance.

Component HTTP Proxy

Responsibilities Load balances HTTP requests among the
Web Application and Engine nodes.

The provided interfaces are:

1. HTTP proxy interface

Collaborators

interface component

Web Application
Interface

Web Application

Engine endpoint Engine

Notes Created when a new proxy node is created.
Destroyed when it is destroyed. Usually
remains throughout the lifetime of the system.

Issues Load balancing weights need to be
determined based on the availability of web
application and engine nodes.

28

Interfaces

Interface Web application interface

Description Provides access to the Web Application
services.

Services Operation: render login page
Description: Renders the user interface to
enable users to log into the system.

Operation: login
Description: Attempts to login a user to the
system.

Operation: logout
Description: Logs out an user from the
system and clears session information.

Operation: render home page
Description: Renders the home page for a
student.

Operation: render event editor interface
Description: Renders the editor interface
corresponding to a course event.

Operation: render scratchpad interface
Description: Renders the editor interface for
the student scratchpad.

Operation: render practice arena
Description: Renders the user interface
containing practice problems.

Operation: render codebook
Description: Renders the user interface
corresponding to a student and containing all
the code submissions for course events as
well as practice problems.

Operation: render codebook page
Description: Renders the user interface
containing a code view, grading information
and problem statement corresponding to a

29

student’s codebook entry.

Operation: save code for assignment
Description: Saves a code version for an
assignment or practice problem, in a certain
mode.

Operation: create pager message
Description: Creates a new message on the
pager feature, corresponding to a certain
context.

Operation: respond to pager message
Description: Creates a response for a pager
message thread.

Operation: delete pager message
Description: Deletes a message
corresponding to a pager thread.

Operation: render pager view
Description: Renders the user interface
containing all message threads created by
the student.

Operation: create a file
Description: Creates a virtual scratchpad file
on the system.

Operation: delete a file
Description: Deletes a scratchpad file from
the system.

Operation: save scratchpad file
Description: Saves the contents of a
scratchpad file to the database.

Operation: create a folder
Description: Creates a virtual ScratchPad
folder on the system.

Operation: render admin home
Description: Renders the admin home user
interface, from where various admin services
can be accessed.

Operation: render user accounts
Description: Renders the user interface
listing the user accounts on the system.

30

Operation: create admin account
Description: Creates a new admin user
account on the system.

Operation: create student account
Description: Creates a new student user
account on the system.

Operation: delete admin account
Description: Deletes an admin user account
from the system.

Operation: delete student account
Description: Deletes a student user account
from the system.

Operation: modify admin role
Description: Modifies the role taken by an
admin on the system, such as an instructor,
tutor or teaching assistant.

Operation: modify admin name
Description: Modifies the name by which the
admin user is identified on the system.

Operation: modify admin password
Description: Modifies the password for an
admin user.

Operation: modify student account
Description: Modifies profile and accounting
information related to a student user.

Operation: render problem management
portal
Description: Renders the user interface for
managing problems for the course which is
being run using the system.

Operation: render problem view
Description: Renders an interface containing
all information related to a problem, and
where the problem can be edited.

Operation: render problem upload
Description: Renders the interface using
which problems can be uploaded to the
system in batch.

Operation: update problem statement

31

Description: Updates the problem statement
for a problem instance.

Operation: update problem solution
Description: Updates the solution code for a
problem.

Operation: update problem template
Description: Updates the initial template
corresponding to a problem.

Operation: update problem title
Description: Updates the title corresponding
to a problem.

Operation: add test case
Description: Adds a test case for a specific
problem.

Operation: remove test case
Description: Removes a test case from the
system.

Operation: add bulk test cases
Description: Adds test cases for a problem
in batch.

Operation: delete problem
Description: Deletes a problem from the
system.

Operation: mark problem practice
Description: Marks a specific problem as a
practice problem.

Operation: render event management portal
Description: Renders the user interface
using which course events can be added,
schedules can be made and problems can be
assigned to students.

Operation: create event
Description: Creates a course event on the
system for the on-going course.

Operation: delete event
Description: Deletes a previously created
event from the system.

Operation: schedule event

32

Description: Creates a schedule for a
particular event.

Operation: assign problems
Description: Assign problems for a course
event to students based on some algorithm.

Operation: add slots for schedule
Description: Add slots for a specific
schedule of an event. Slots define which
students correspond to a particular schedule.

Operation: render admin tasks portal
Description: Render the user interface
showing the pending tasks for an admin as
well as all pending tasks grouped by
respective course events.

Operation: render submissions view
Description: Render the user interface
containing student submissions to
programming assignments.

Operation: render code viewer
Description: Renders the user interface for
viewing code history and grading.

Operation: grade submission
Description: Sets the grade for a
programming assignment submission for the
course.

Operation: render assignment analytics
Description: Renders the user interface
containing analytics for a particular
assignment.

Operation: render admin editor
Description: Renders the user interface from
which admin users can compile, execute and
evaluate arbitrary code. The editor is also
used to update solution codes to problems.

Operation: render control panel
Description: Renders the user interface
which is used to modify settings for the
tutoring system such as execution delays and
compiler flags.

Operation: render admin settings

33

Description: Renders the user interface from
where admin users can modify their name
and password.

Operation: render admin pager
Description: Renders the user interface
using which admin users will be able to view
message threads created by students.

Protocol All activities using this interface must be
preceded by a login.

Notes Exposed as a web service.

Issues Error handling not stable. Clean-up required
in the codebase.

Interface Engine endpoint

Description Provides access to the Engine services.

Services Operation: tool()
Description: Runs a tool specified in the set
of parameters sent to the server. Additional
parameters may also be passed to this
method, as required by it.

Operation: compile()
Description: Compiles a program, which is
specified as a parameter and returns the
result of compilation. This method may also
log results, based on the context of the
request.

Operation: execute()
Description: Executes a program on a test
case as specified in the set of parameters,
and returns the result of execution. This
method may also log the results based on the
context of the request.

Operation: evaluate()
Description: Evaluates a programming
assignment submission on a set of test cases
that were assigned to the problem, and
returns the result. This method may log
results depending on the context in which it
was invoked.

34

Protocol Compilation followed by execution or
evaluation.

Notes Exposed as a HTTP web service.

Issues Sequence of requests is to be enforced.

Interface Cache interface

Description Provides access to the In-Memory cache.

Services Operation: get key
Description: Fetches the value
corresponding to a key from the cache.

Operation: set key
Description: Sets a key along with its value,
in the cache.

Protocol There are no restrictions on accessing this
interface.

Notes A single interface is exported by a single
cache node.

Issues No issues currently.

Interface Database node interface

Description Provides access the database server.

Services Operation: run SQL queries
Description: Runs SQL queries against the
database server hosted on that node.

Protocol There are no restrictions on accessing this
interface.

Notes A database node exports a single interface
for it.

Issues No issues currently.

35

DYNAMIC BEHAVIOUR

Scenarios

Scenario Specification

Use Case ViewGradesAndStatistics

Description View grades for assignments and course
statistics.

Actors Student

Steps 1. User logs in to the system.
2. System redirects user to the home

page.
3. User views grading information and

statistics related to the course.

Use Case ViewOngoingEvents

Description View the on-going event along with a
summary of the problems assigned to the
student, if any.

Actors Student

Steps 1. User logs in to the system.
2. Systems redirects user to the home

page.
3. User views any running on-going

events in a panel along with a
summary of the event.

Use Case ViewAssignmentProblemStatement

Description Views the programming problem for an
assignment.

Actors Student

Steps 1. Student logs in to the system.
2. System redirects student to the home

page.
3. Student views on-going event.
4. Student clicks on an assignment

36

problem displayed in the summary.
5. Student is redirected to “Editor for

course events” interface.
6. Student views problem statement in

the problem tab in this user interface.

Use Case WriteAssignmentProgram

Description Writes a solution to a programming problem.

Actors Student

Steps 1. Student logs in to the system.
2. System redirects student to the home

page.
3. Student views on-going event.
4. Student clicks on an assignment

problem displayed in the summary.
5. Student is redirected to “Editor for

course events” interface.
6. Student writes programs in the

supplied editor.

Use Case CompileAssignmentProgram

Description Compiles a program written for a
programming assignment.

Actors Student

Steps 1. Student logs in to the system.
2. System redirects student to the home

page.
3. Student views on-going event.
4. Student clicks on an assignment

problem displayed in the summary.
5. Student is redirected to “Editor for

course events” interface.
6. Student writes program in editor.
7. Student compiles program by clicking

on the compile button in the menu bar
or hitting the shortcut key for compile.

Use Case ExecuteAssignmentProgram

Description Executes a program written for a
programming assignment.

37

Actors Student

Steps 1. Student logs in to the system.
2. System redirects student to the home

page.
3. Student views on-going event.
4. Student clicks on an assignment

problem displayed in the summary.
5. Student is redirected to “Editor for

course events” interface.
6. Student writes program in editor.
7. Student executes program by clicking

on the execute button in the menu bar
or hitting the shortcut key for execute.

Use Case EvaluateAssignmentProgram

Description Evaluates a program against a set of test
cases for a programming assignment.

Actors Student

Steps 1. Student logs in to the system.
2. System redirects student to the home

page.
3. Student views on-going event.
4. Student clicks on an assignment

problem displayed in the summary.
5. Student is redirected to “Editor for

course events” interface.
6. Student writes program in editor.
7. Student evaluates program by clicking

on the evaluate button in the menu
bar or hitting the shortcut key for
evaluate.

Use Case SubmitAssignment

Description Submits a program as a solution to an
assignment problem.

Actors Student

Steps 1. Student logs in to the system.
2. System redirects student to the home

page.
3. Student views on-going event.
4. Student clicks on an assignment

38

problem displayed in the summary.
5. Student is redirected to “Editor for

course events” interface.
6. Student writes program in editor.
7. Student submits the program by

clicking on the submit button in the
menu bar.

Use Case CreateScratchPadFileFolder

Description Creates a virtual file in the scratchpad
interface.

Actors Student

Steps 1. Student logs in to the system.
2. System redirects student to home

page.
3. Student clicks on scratchpad link.
4. System redirects student to

Scratchpad interface.
5. Student creates a virtual file or folder

by clicking on “create file” or “create
folder” from the menu bar or using the
context menu invoked by right clicking
on the workspace area.

Use Case DeleteScratchpadFileFolder

Description Deletes a virtual file or folder from the
scratchpad.

Actors Student

Steps 1. Student logs in to the system.
2. System redirects student to home

page.
3. Student clicks on scratchpad link.
4. System redirects student to

Scratchpad interface.
5. Student deletes a virtual file or folder

by clicking on “delete file” or “delete
folder” from the menu bar or using the
context menu invoked by right clicking
on the workspace area.

Use Case WriteScratchProgram

39

Description Writes a program for learning or experimental
purposes or for any other purpose than
solving a programming assignment.

Actors Student

Steps 1. Student logs in to the system.
2. System redirects student to home

page.
3. Student clicks on scratchpad link.
4. System redirects student to

Scratchpad interface.
5. Student creates and/or opens a virtual

file.
6. Student writes his program into it.

Use Case CompileScratchProgram

Description Compiles a scratch program previously
written by a student.

Actors Student

Steps 1. Student logs in to the system.
2. System redirects student to home

page.
3. Student clicks on scratchpad link.
4. System redirects student to

Scratchpad interface.
5. Student creates and/or opens a virtual

file.
6. Student writes a program.
7. Student compiles the program by

clicking on the compile button in the
menu bar or by hitting the
corresponding shortcut key.

Use Case ExecuteScratchProgram

Description Executes a scratch program previously
written by a student.

Actors Student

Steps 1. Student logs in to the system.
2. System redirects student to home

page.
3. Student clicks on scratchpad link.
4. System redirects student to

40

Scratchpad interface.
5. Student creates and/or opens a virtual

file.
6. Student writes a program.
7. Student executes the program by

clicking on the execute button in the
menu bar or by hitting the
corresponding shortcut key.

Use Case ViewAttemptedProblems

Description Views problems attempted by student in
course events and practice arena.

Actors Student

Steps 1. Student logs in to the system.
2. System redirects student to home

page.
3. Student clicks on CodeBook link.
4. System redirects student to Codebook

interface.
5. Student views list of attempted

problems.
6. Student clicks on an item in the list.
7. System displays codebook page view.
8. Student views attempted problem and

her submitted solution.

Use Case ViewPracticeProblems

Description Views practice problems uploaded by the
instructor or tutors.

Actors Student

Steps 1. Student logs in to the system.
2. System redirects student to home

page.
3. Student clicks on Practice Arena link.
4. Systems redirects student to Practice

arena interface.
5. Student views practice problem list.
6. Student clicks on an item in the list.
7. System displays practice problem.
8. Student views practice problem.

41

Use Case CreateMessageThread

Description Creates a message thread to obtain support
from admins.

Actors Student

Steps 1. Student logs in to the system.
2. System redirects student to home

page.
3. Student clicks on on-going event

problem.
4. System redirects student to Event

editor interface.
5. Student clicks on support button from

menu bar.
6. System displays popup window for

writing a message.
7. Student writes message.
8. Student clicks on send.
9. System creates support thread.

Use Case RespondToMessage

Description Responds to a reply from an admin on a
message thread previously created by the
student.

Actors Student

Steps 1. Student logs in to the system.
2. System redirects student to home

page.
3. Student clicks on Pager link.
4. System redirects student to Pager

interface.
5. Student views replies by admins on

her message thread.
6. Student writes a response to the

replies.
7. Student clicks on reply button.
8. System creates a response to the

replies.

Use Case CreateProblem

Description Creates a problem to be used later on in the
course.

42

Actors Instructor (primary)
Tutor

Steps 1. Admin logs in to the system.
2. System redirects admin to admin

home page.
3. Admin clicks on problem management

link.
4. System redirects admin to Problem

management user interface.
5. Admin enters an identifier for the

problem along with a category in a
provided box.

6. Admin clicks on create.
7. System creates a blank instance of a

problem.

Use Case EditProblem

Description Edits a problem in the database.

Actors Instructor (primary)
Tutor

Steps 1. Admin logs in to the system.
2. System redirects admin to admin

home page.
3. Admin clicks on problem management

link.
4. System redirects admin to Problem

management user interface.
5. Admin clicks on problem from list.
6. System displays problem details.
7. Admin edits components of the

problem such as statement and
solution.

8. Admin clicks on save.
9. System saves problem.

Use Case AddTestCase

Description Adds a test case for a problem.

Actors Instructor (primary)
Tutor

Steps 1. Admin logs in to the system.
2. System redirects admin to admin

43

home page.
3. Admin clicks on problem management

link.
4. System redirects admin to Problem

management user interface.
5. Admin clicks on problem from list.
6. System displays problem details.
7. Admin enters input in the input

window for a new test case.
8. Admin clicks on save.
9. System generates output for the

corresponding input, against the
solution code to the problem.

10. System saves the test case.

Use Case RemoveTestCase

Description Deletes a test case corresponding to a
problem, from the system.

Actors Instructor (primary)
Tutor

Steps 1. Admin logs in to the system.
2. System redirects admin to admin

home page.
3. Admin clicks on problem management

link.
4. System redirects admin to Problem

management user interface.
5. Admin clicks on problem from list.
6. System displays problem details.
7. Admin clicks on the delete icon beside

an existing test case.
8. System deletes the test case from the

system.

Use Case UploadBulkProblems

Description Uploads problems in batch to the system.

Actors Instructor (primary)
Tutor

Steps 1. Admin logs in to the system.
2. System redirects admin to admin

home page.
3. Admin clicks on problem management

44

link.
4. System redirects admin to Problem

management user interface.
5. Admin clicks on upload problems link.
6. System redirects admin to the upload

problems page.
7. Admin clicks on select files link on the

interface.
8. System opens up a file browser

window.
9. Admin selects the files corresponding

to the problems that he wants to
upload and clicks on ok.

10. System inspects the set of files to
check whether they are consistent
with the required formats.

11. System uploads the files
corresponding to all the problems that
are consistent with the formats.

Use Case AddAdminAccount

Description Adds a user account for an admin user.

Actors Instructor

Steps 1. Admin logs in to the system.
2. System redirects admin to admin

home page.
3. Admin clicks on the accounts

management link.
4. System redirects admin to the

accounts management portal.
5. Admin clicks on admin tab.
6. Admin clicks on add button inside the

panels corresponding to one of the
admin roles (instructor/tutor/teaching
assistant).

7. System displays a form.
8. Admin enters respective details for

new admin user.
9. Admin clicks on save.
10. System adds a new admin user to the

system.

Use Case AddStudentAccount

Description Adds a user account for a student user.

45

Actors Instructor

Steps 1. Admin logs in to the system.
2. System redirects admin to admin

home page.
3. Admin clicks on the accounts

management link.
4. System redirects admin to the

accounts management portal.
5. Admin clicks on student tab.
6. Admin enters email ID of the student

he wants to add.
7. Admin clicks on add.
8. System adds a new student user with

the corresponding email ID.

Use Case DeleteAdminAccount

Description Deletes a user account corresponding to an
admin user.

Actors Instructor

Steps 1. Admin logs in to the system.
2. System redirects admin to admin

home page.
3. Admin clicks on the accounts

management link.
4. System redirects admin to the

accounts management portal.
5. Admin clicks on admin tab.
6. System displays the list of admin

users.
7. Admin clicks on the delete icon beside

the name of an admin user.
8. System shows confirmation dialog for

deletion of user.
9. Admin clicks on ok.
10. System deletes admin user account.

Use Case EditStudentAccount

Description Edits the account details corresponding to a
student user account.

Actors Instructor

Steps 1. Admin logs in to the system.

46

2. System redirects admin to admin
home page.

3. Admin clicks on the accounts
management link.

4. System redirects admin to the
accounts management portal.

5. Admin clicks on student tab.
6. System displays list of student users.
7. Admin clicks on edit button in the row

corresponding to a student user.
8. System displays a dialog containing a

form to edit the student’s details.
9. Admin edits the necessary details.
10. Admin clicks on update.
11. System saves the updates to the

student’s account information.

Use Case ViewCourseEventCalendar

Description Views a calendar containing all the scheduled
course events.

Actors Instructor (primary)
Tutor

Steps 1. Admin logs in to the system.
2. System redirects admin to admin

home page.
3. Admin clicks on event management

link.
4. System redirects admin to event

management portal.
5. Admin views the event calendar.

Use Case CreateCourseEvent

Description Creates a new course event.

Actors Instructor

Steps 1. Admin logs in to the system.
2. System redirects admin to admin

home page.
3. Admin clicks on event management

link.
4. System redirects admin to event

management portal.
5. Admin clicks on add event button.

47

6. System displays a form in which the
admin can enter details corresponding
to the new event and its schedule.

7. Admin enters necessary event details.
8. Admin clicks on create event.
9. System creates event and updates the

calendar.

Use Case AssignProblemsForEvent

Description Assigns problems to students for a course
event.

Actors Instructor

Steps 1. Admin logs in to the system.
2. System redirects admin to admin

home page.
3. Admin clicks on event management

link.
4. System redirects admin to event

management portal.
5. Admin clicks on assign problems

button.
6. System displays a wizard to specify

the assignment algorithm.
7. Admin completes the wizard.
8. System creates required assignments

for the course event.

Use Case ViewEventDashboard

Description View performance rankings of students for a
course event along with a distribution of the
scores used as the metric.

Actors Instructor (primary)
Tutor

Steps 1. Admin logs in to the system.
2. System redirects admin to admin

home page.
3. Admin clicks on event management

link.
4. System redirects admin to event

management portal.
5. Admin clicks on dashboard.
6. System redirects admin to dashboard

48

interface.
7. Admin views dashboard.

Use Case ViewStudentSubmissionList

Description Views the student submissions for a course
event.

Actors Instructor (primary)
Tutor
Teaching Assistant

Steps 1. Admin logs in to the system.
2. System redirects admin to admin

home page.
3. Admin clicks on student submissions

link.
4. System redirects admin to student

submissions page.
5. Admin views a list of student

submissions, along with other meta
information such as grading status.

Use Case ViewCodeHistory

Description Views the code history for a particular student
submission.

Actors Instructor (primary)
Tutor
Teaching Assistant

Steps 1. Admin logs in to the system.
2. System redirects admin to admin

home page.
3. Admin clicks on student submissions

link.
4. System redirects admin to student

submissions page.
5. Admin clicks on a submission link

corresponding to an assignment.
6. System redirects admin to code

viewer interface.
7. Admin views history of code saves

corresponding to the assignment.

Use Case GradeAssingmentSubmission

49

Description Grades an assignment submission.

Actors Instructor (primary)
Tutor
Teaching Assistant

Steps 1. Admin logs in to the system.
2. System redirects admin to admin

home page.
3. Admin clicks on student submissions

link.
4. System redirects admin to student

submissions page.
5. Admin clicks on a submission link

corresponding to an assignment.
6. System redirects admin to code

viewer interface.
7. Admin enters grade for the

assignment in the respective box in
the user interface.

8. Admin clicks on grade.
9. System saves the grade for the

respective assignment.

Use Case EvaluateStudentSubmission

Description Evaluates a student submission for an
assignment.

Actors Instructor (primary)
Tutor
Teaching Assistant

Steps 1. Admin logs in to the system.
2. System redirects admin to admin

home page.
3. Admin clicks on student submissions

link.
4. System redirects admin to student

submissions page.
5. Admin clicks on a submission link

corresponding to an assignment.
6. System redirects admin to code

viewer interface.
7. Admin clicks on evaluate button.
8. System displays the result of

evaluation of the submission
corresponding to the assignment.

50

Use Case ViewAssignmentAnalytics

Description Views the analytics corresponding to a course
assignment.

Actors Instructor (primary)
Tutor
Teaching Assistant

Steps 1. Admin logs in to the system.
2. System redirects admin to admin

home page.
3. Admin clicks on student submissions

link.
4. System redirects admin to student

submissions page.
5. Admin clicks on a submission link

corresponding to an assignment.
6. System redirects admin to code

viewer interface.
7. Admin clicks on assignment analytics

link.
8. System redirects admin to assignment

analytics portal.
9. Admin views analytics corresponding

to the assignment.

Use Case ViewDataVisualizations

Description Views data visualizations for data collected by
the system.

Actors Instructor (primary)
Tutor
Teaching Assistant

Steps 1. Admin logs in to the system.
2. System redirects admin to admin

home page.
3. Admin clicks on dataviz link.
4. System redirects admin to DataViz

portal.
5. Admin views the visualizations

created by developers, on the data
collected by the system.

Use Case ModifyEngineSettings

51

Description Modifies various settings for the engine such
as delays and quotas.

Actors Instructor

Steps 1. Admin logs in to the system.
2. System redirects admin to admin

home page.
3. Admin clicks on control panel link.
4. System redirects admin to control

panel interface.
5. Admin modifies values for various

settings used by the engine.
6. Admin clicks on save.
7. System saves the settings.

Use Case ModifyAccountSettings

Description Modifies the name and password for the
admin user account.

Actors Instructor (primary)
Tutor
Teaching Assistant

Steps 1. Admin logs in to the system.
2. System redirects admin to admin

home page.
3. Admin clicks on settings link in the

menu bar.
4. System displays settings page to

admin.
5. Admin updates the required

information.
6. Admin clicks on update.
7. System updates the settings for the

account.

52

Component Interaction Model

Figure 7: Sequence diagram for a Web API Request

The above diagram represents the flow of a basic API request from the client. The request first

reaches the HTTP proxy and load balancer, which forwards it to one of the web application

nodes based on its load balancing algorithm. The web application node, upon receiving it first

checks whether the request is authentic or not. It does so by using the cookie information

supplied with the request and consulting with the in-memory cache to fetch the corresponding

session data. If no such data is present, then the request is not authentic. A request may also

not be authentic, if the roles as specified in the session data, do not match with the role required

the access the service. Once the request is authenticated, the appropriate modules are invoked

and database accesses are made via the database proxy. The database proxy forwards these

requests to one of the database nodes based on the load balancing algorithm used. Once the

required result is available from the modules, it is sent back to the client.

53

Figure 8: Sequence diagram for a compilation request

The above diagram represents the flow of a basic engine request. All engine service requests

arrive at the web proxy which forwards them to an engine node. The engine then uses its

session manager to look up the cache and verify the authenticity of the request. After verifying

the authenticity, the corresponding tools for the request are invoked in the engine and database

accesses are made via the database proxy. The final results of execution of required tools are

sent as a marshalled JSON string, to the client.

54

Mechanisms

Figure 9: Activity diagram of scaling monitor for auto scaling web services

Auto Scaling: For web application nodes, the response time is logged by the application

server. This log is used to compute the average response time over last n requests. This

average response time, is published to a distributed key-value store at regular intervals. A

monitor client for the host machine, which resides on the host machine itself, keeps track of

these published response time entries. It first gathers information regarding the running

containers on the host machine, and then computes the average over the response times

published by each of the individual nodes on the key-value store. This average is used as a

metric for the load on the web application servers. Once this value goes high, and stays high for

a specific number of intervals, an upscale is triggered. This situation is called heat-up. The

number of intervals for which the cumulative average stays high is referred to as the streak

length. Once upscale is triggered, a new instance of the web application is spawned and

connected to the cluster and load balancer. Similarly, if the average across all the web

application nodes falls below a certain threshold and stays as such for a specific streak length,

cooldown occurs, and a downscale is triggered. Downscaling simply removes a running

instance from the cluster of web applications. The streak length for heat-up is much smaller than

the streak length for cooldown (typically 1/10th). The time taken to provision a new instance is

quite small (order of a few seconds). The idea of auto scaling is adapted from Scalr36.

36

 Thomas Orozco, “Scalr Auto Scaling Algorithm,” n.d., https://scalr-
wiki.atlassian.net/wiki/display/docs/Autoscaling+Algorithms.

55

Figure 10: Activity diagram of load balancing monitor for dynamic load balancing

Dynamic Load Balancing: Due to the scalable nature of the system, nodes are added and

removed from it dynamically. For the load balancer, this requires keeping track of what web

service nodes are added to the system and what are removed. The load balancer forwards all

HTTP requests to one of the web application or engine servers, based on the load balancing

algorithm that it uses. However, in order to forward these requests, it must know the set of

servers that are available. One cannot statically assign such servers to its server list as these

can change arbitrarily. Thus the load balancer uses the services of the service discovery agent,

to acquire information about what nodes are available and healthy. It then uses this information

to dynamically update its server list, whenever there is a change.

56

OTHER VIEWS

Process View

Figure 11: Collaboration diagram for Web Application subsystem

Figure 12: Collaboration diagram for Engine subsystem

57

Figure 13: Normal student activity

Figure 14: Normal admin activity

58

Development View

Web Application:

● All the application modules for the web application correspond to JavaScript files inside

the “app_modules” folder of the application code base. The modules are in Common JS

format. All external libraries required by the application modules reside inside of the

“node_modules” folder. They are included in the respective application modules using

Common JS “require” methods.

● All route controllers are methods that defined in their respective route files. These

methods are registered with the application router which is a program within the Express

JS framework. The route files are JavaScript files defined inside the “routes” folder of the

application code base. These route files follow a hierarchy corresponding to the paths or

routes that they handle.

● The view definitions are present inside the “views” folder of the code base. They are

Jade template files that are used to render HTML views for the user interfaces.

● All static libraries are present inside the “public/vendor” folder. Their locations are

registered in the “public/scripts/main.js” file, which is loaded in every user interface.

● The user interfaces are rendered using the view definitions along with JavaScript files

and CSS files located inside the “public/scripts” and “public/styles” directory,

respectively.

Engine:

● The bootstrap manager corresponds to the “core/bootstrap.php” file in the code base.

● The router functionalities are managed jointly by the “index.php” and “core/resolver.php”

files in the code base.

● The registry is maintained by the class defined in “system/Registry.php” file.

● The session manager corresponds to the class defined in “system/Session.php” file.

● The classloader is defined for various types of classes in the “core/autoload.php” file.

● The controllers are defined in “app/controllers” as PHP class files. The routes to the

methods in these controllers are defined in “app/config/ports.ini”. This file contains all the

mappings from the request path to the controller and method which is to be invoked

upon receiving the corresponding request.

● The application modules are defined in the “app/modules” folder as different PHP class

files. These module classes are dynamically loaded by the classloader, whenever they

are required by the application.

Dynamic Load Balancer:

● A single file (“updater.php”) manages the server list used by the dynamic load balancer.

This file runs in the background as a daemon, and watches for updates to the server list

used for load balancing. It updates the list and restarts the server whenever there is a

change.

59

Auto Scale Monitor:

● A single file (“monitor.sh”) monitors the response times across the web servers (engine

and web application). It looks for heat up and cooldown situations and does the

necessary upscaling and downscaling respectively.

● The “upscale.php” file inside the respective service folder, is responsible for upscaling

the web services corresponding to it. It spawns a new node and configures it for use by

the system.

● The “downscale.php” file inside the respective services folder is responsible for

downscaling the web services corresponding to it. It destroys a node from the system,

when invoked.

60

Physical View

Figure 15: Deployment view of the tutoring system

61

CONCEPTUAL FRAMEWORK

Domain Lexicon

Engine: The component of the system which is responsible for tasks such as compilation,

execution, evaluation and feedback generation.

Virtual File: An identifier for a student program, created on the system, which appears as a file

to the student. Actual files are not created on the disk.

Virtual Folder: An identifier for a collection of programs, created on the system, which appears

as a folder to the student. Actual folders are not created on the disk.

Workspace: A collection of virtual files and folders, used by a student for programming

purposes.

ScratchPad: A web based IDE interface, wherein a student can create virtual files and folders

as a part of her workspace. Students can arbitrary write programs in such files using a provided

editor window, in the programming language assigned for the course. These programs can be

compiled and their results can be viewed in the form of annotations in the gutter area of the

editor window. Compiler messages can be viewed in a virtual console located within the same

user interface. Further, the student may execute her compiled program on arbitrary test cases

and view the results in an output window, within the same user interface. Execution results such

as runtime errors or time limit exceeded errors can also be viewed.

CodeBook: A portal where students can view submitted solutions to programming assignments

along with the corresponding problem statements for course events that were held previously.

Grading information for the submitted assignments can also be viewed in the same interface.

The portal also contains solutions to practice problems attempted by the student, along with the

corresponding problem statements.

Course Event: Any event which is conducted during the course offering, and includes

programming assignments to be solved by students. Such events are expected to have a set of

programming problems assigned to each student who is enrolled for the course. The events

may span multiple days or have multiple schedules. Lab assignments, examinations and

quizzes are examples.

Schedule: A time period which corresponds to a course event, during which, members of that

schedule may solve the programming problems assigned to them. All programming problems

assigned to a particular student for a course event are only accessible to her during the time

span of the schedule.

62

Practice Problems: A set of problems, which are not associated with any course event. They

are accessible at all times, and can be solved by the student at all times. They are intended to

provide practice to the students in solving programming problems.

PracticeArena: A portal where a student can access a collection of programming problems for

practice. Students may view these problems and navigate to the editor interface, using which

they can solve the problem.

Admin: A teaching assistant, tutor or an instructor of the course.

Teaching Assistant: A student who helps the instructor of the course in carrying out activities

such as grading, invigilation and helping students solve programming problems.

Tutor: A student or a professor who has the responsibilities of setting questions for various

course events and deciding the policies of the course events.

Instructor: A professor who conducts the course. He is responsible for deciding the course

structure and grading policies for the course.

GradeCard: A table containing scores awarded by teaching assistants, tutors and instructors for

the programming problems that were solved by the student for various course events. These

scores are grouped by the course events attended by the student.

Pager: A publish-subscribe based messaging system wherein a student can create a message

thread when she requires help in solving programming problems or in addressing technical

difficulties, while solving the problems. Instructors, tutors and teaching assistants are able to

view these messages and respond to them in real time. Only students can start a message

thread, while others can only respond to them.

DataViz: A portal where data collected using the system can be tabulated in arbitrary formats or

visualizations may be created from the data.

ControlPanel: A portal from where administrators can tune the settings of the Engine. Settings

include time delays in compilation and execution along with execution quotas, compiler flags

and tool active state.

CodeViewer: An user interface where the code history corresponding to a student submission

for a programming assignment can be viewed. Information regarding the category of a code

save along with any results of compilation or execution can be viewed for the entire code

history. Code saves may also be deleted from the system using this interface. Further, admins

can grade the programming assignments using this interface.

63

Lexicon Diagram

Figure 16: Lexicon diagram for concepts used

64

RESULTS

The following tables contain some results on scalability tests carried out for the system. Siege37

was used as the stress testing tool for carrying out the tests.

Database write: Measures the write performance of the database. Hosts correspond to the

physical machines being used. Two such machines were used in total.

Concurrency Time Hits Host - 1 Host - 2

100 5 seconds 88 YES YES

50 5 seconds 93 YES YES

100 5 seconds 110 YES NO

Compilation: Measures the performance of the system with respect to compilation requests.

Concurrency Time Transactions / Sec Transactions (total)

20 5 seconds 92 452

100 5 seconds 94 425

400 5 seconds 91 392

Execution: Measures the performance of the system with respect to execution requests.

Concurrency Time Transactions / Sec Transactions (total)

20 5 seconds 7 33

100 5 seconds 7 32

400 5 seconds 6 30

Evaluation: Measures the performance of the system with respect to evaluation requests. The

compute expense column denotes the type of algorithm/program used for evaluation tests. The

expense implies computational expense of the respective program. A high computational

expense would imply that a lot of CPU time is utilized in each run of the program and vice-versa.

Concurrency Time Transactions /
Sec

Transactions
(total)

Compute
Expense

20 30 seconds 1 20 HIGH

37

 Joe Dog, “Siege,” n.d., https://www.joedog.org/siege-home/.

65

100 30 seconds 0 0 HIGH

100 60 seconds 8 463 HIGH

100 30 seconds 8 215 MEDIUM

100 30 seconds 8 234 LOW

Web Application Nodes vs. Transactions: Measures the scalability of web application nodes

across the two physical host machines. Nodes denote the Docker containers used and hence

scalability implies scaling the CPU for the Docker containers. Multiple physical hosts are

aggregated using a load balancer.

Host - 1 Nodes Host - 2 Nodes Transactions / Sec Transactions (total)

2 0 29 141

3 0 42 211

4 0 59 283

5 0 73 353

5 1 78 320

Engine Nodes vs. Transactions: Measures the scalability of Engine nodes for a single

physical host machine. Similar to the web application nodes, each Engine node corresponds to

a Docker container within the physical host.

Nodes Transactions / Sec Transactions (total)

1 98 397

2 112 491

3 113 500

HTML Rendering: Measures the performance of the web application with respect to the HTML

rendering engines. A lower response time implies a faster rendering engine.

Rendering Engine Time Responses

Jade 20 seconds 1963

DoT 20 seconds 33675

Student Home Page Loading Time: Measures the response time of the system while loading

the student home page, which contains statistical information. This operation involves database

66

read accesses from the perspective of the web application. The response times indicate how

well the system is able to handle a large number of requests.

Concurrency Number of Requests Response Time

20 1000 1500 ms

50 1000 4300 ms

100 1000 8400 ms

10 100 840 ms

5 100 430 ms

67

CONCLUSION

This system is architected in such a way that it can handle a load of about 400 students

accessing the system simultaneously. It is easily deployable, owing to the use of Docker

containers. This enables it to be deployed across multiple machines with ease and not requiring

much expertise. Thus instructors of various programming courses may install this system on the

servers available at their institutions. This system is also designed to run off any standard

machine. This implies that it can even be run off a laptop machine. Most of the features

provided by the architecture of this system reduce the amount of work required by system

administrators in maintaining it. The highly modular nature of the codebase, provides a great

framework for creating variants of this tutoring system.

The system has a combination of a layered architecture, a broker based architecture and a

Model View Controller (MVC) based architecture.

Assessments

Docker is used as the virtualization environment for the system. This results in the system being

easily portable. However, Docker’s networking does not currently support multiple hosts. To

address this issue, Weave has been used to create a common Docker network for containers

residing on multiple hosts. Currently there are no issues to this approach, except for the fact that

Docker itself does not recognize Weave. There is no way to obtain the information about what

IP address is assigned to a container using the Weave network, via Docker. This has to be done

manually by entering the container.

Multiple analytics tools have been integrated into the system, for research purposes. This has

proved the system to be extensible. These tools were integrated by simply adding a new

module into the Engine subsystem. The web services provided by this module were then

registered in the routes of the Engine.

The system had been modified to work with the Python interpreter as well as some basic

Prolog. The required changes to the system took around 2 days with a single person’s effort. In

general, in order to allow the system to work for a new imperative programming language, the

only modification required is to change the configuration files. The system can also be moulded

to include other tools as well, such as feedback tools. This makes the system highly modifiable.

The auto scaling algorithm had been tested by subjecting the system to stress tests. The

system was flooded with requests gradually, and the number of nodes increased to a specific

value. Similarly, when the flooding was over, the newly spawned nodes were destroyed after

some time. Scalability tests were also carried out manually. The response times (a measure of

the performance of the system), decreased for the web application and engine subsystems, as

more nodes were added to the system. According to the benchmarks, this was somewhat linear.

The database also scaled slowly up to a certain number of nodes, till it reached the saturation

68

point. This was understandable, as the clustering scheme used for the database was

synchronous replication. In order to scale up the database further, the data model of the system

needs to be changed.

There has been no data loss in the system till now. Failure of nodes did not affect the integrity or

consistency of data in the system. Removal of database nodes from the system did not result in

loss of data. This is consistent with the fact that synchronous replication is being used. Thus the

system is indeed durable.

There had been several occasions when a number of nodes of the system had crashed, due to

bugs in software or other reasons. However, service was not disrupted and the failures were

invisible to most of the end users. Only the few, who were using the respective node at the time

when it crashed, were affected for a brief period of time. This is due to the fault-tolerant design

of the system, where multiple redundant nodes are kept to mitigate failures.

69

FUTURE WORK

This system offers a wide range of features to cover most of the basic requirements in

conducting a programming course. Yet, there is a lot of future work, which needs to be done in

this area. To begin with, it must support a large selection of programming languages and

paradigms, so that instructors may be able to choose the language appropriate for their course.

The tools which have been designed for feedback generation must be able to provide feedback

for all programs, irrespective of the language in which it is written. The platform should support

seamless integration of any sort of feedback tools without the aid of any developers. In addition

to feedback generation tools, the platform should support the integration of problem generation

tools, once problem generation technology in the field of programming is stable. Similar support

should be present for test case generation, where KLEE38 is currently being used. The system

should be able to automatically generate problems and their test cases, when provided with

specifications for the same. There should also be interfaces to integrate automatic grading tools

into the system. Currently teaching assistants or instructors need to manually grade the student

submissions to programming problems. The system should export additional statistics to reveal

the progress of the student in learning the course concepts. Further, it should log data which

may help to understand the deficiencies of the students in the course concepts.

Currently, the system presents the same perspective to all students enrolled for the course. In

order to improve the effectiveness in learning, one needs to realize the fact, that different

students may have different learning speeds and aptitude. Further, one student may be weak at

concepts different from another student. The system must address this issue and provide

different perspectives to different students based on their performance and coding history.

Different problems with different levels of difficulties must be generated for different students.

The feedback provided to the students must also differ among each other.

From an architectural perspective, this system is currently designed to be deployed in house for

courses conducted in a university. One may want to reach out to a large number of students

across the world, in a way similar to MOOCs. Although this can be done currently, the

architecture is not efficient for this purpose. This is in fact due to the data model of the system,

which needs to be revised and remodelled for scalability. Designing a non-relational data model

will permit the use of NoSQL39 database systems such as Cassandra40 and MongoDB41. Such

database systems can scale to a huge number of users and will permit the system to be used

for MOOCs.

38

 Cristian Cadar, Daniel Dunbar, and Dawson Engler, “KLEE: Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems Programs,” in Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation, OSDI’08 (Berkeley, CA, USA: USENIX Association,
2008), 209–24, http://dl.acm.org/citation.cfm?id=1855741.1855756.
39

 “NoSQL,” Wikipedia, n.d., http://en.wikipedia.org/wiki/NoSQL.
40

 “Cassandra,” n.d., http://cassandra.apache.org/.
41

 “MongoDB,” n.d., https://www.mongodb.org/.

70

BIBLIOGRAPHY

Cadar, Cristian, Daniel Dunbar, and Dawson Engler. “KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs.” In Proceedings of
the 8th USENIX Conference on Operating Systems Design and Implementation, 209–
24. OSDI’08. Berkeley, CA, USA: USENIX Association, 2008.
http://dl.acm.org/citation.cfm?id=1855741.1855756.

“Cassandra,” n.d. http://cassandra.apache.org/.
Joe Dog. “Siege,” n.d. https://www.joedog.org/siege-home/.
“MongoDB,” n.d. https://www.mongodb.org/.
“NoSQL.” Wikipedia, n.d. http://en.wikipedia.org/wiki/NoSQL.
Ahmed, Umair Z., Sumit Gulwani, and Amey Karkare. “Automatically Generating Problems and

Solutions for Natural Deduction.” In IJCAI 2013, 2013.

Alur, Rajeev, Loris D’Antoni, Sumit Gulwani, Dileep Kini, and Mahesh Viswanathan. “Automated
Grading of DFA Constructions.” In Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence, 1976–82. IJCAI ’13. Beijing, China: AAAI Press,
2013. http://dl.acm.org/citation.cfm?id=2540128.2540412.

Apache Software Foundation. “Apache HTTP Server,” n.d. http://httpd.apache.org/.
“Automata Tutor,” n.d. http://www.automatatutor.com/.
Bakuya, T., and M. Matsui. Relational Database Management System. Google Patents, 1997.

https://www.google.com/patents/US5680614.
Cardellini, Valeria, Michele Colajanni, and Philip S. Yu. “Dynamic Load Balancing on Web-

Server Systems.” IEEE Internet Computing, 1999.
Cingi, Can Cemal. “Computer Aided Education.” Procedia - Social and Behavioral Sciences 103

(November 2013): 220–29. doi:10.1016/j.sbspro.2013.10.329.
“Coursera.” Wikipedia, n.d. http://en.wikipedia.org/wiki/Coursera.
“Coursera.org,” n.d. https://www.coursera.org/.
D’antoni, Loris, Dileep Kini, Rajeev Alur, Sumit Gulwani, Mahesh Viswanathan, and Björn

Hartmann. “How Can Automatic Feedback Help Students Construct Automata?” ACM
Transactions on Computer-Human Interaction 22, no. 2 (March 10, 2015): 1–24.
doi:10.1145/2723163.

dotCloud. “Docker,” n.d. https://www.docker.com/whatisdocker/.
“Edx,” n.d. https://www.edx.org/.
Galera. “Galera,” n.d. http://galeracluster.com/products/technology/.
Gulwani, Sumit, Vijay Anand Korthikanti, and Ashish Tiwari. “Synthesizing Geometry

Constructions.” In PLDI, 50–61, 2011.
HAProxy. “HAProxy,” n.d. http://www.haproxy.org/.
Hashicorp. “Consul,” n.d. https://www.consul.io/.
“Integrated Development Environment.” Wikipedia, n.d.

http://en.wikipedia.org/wiki/Integrated_development_environment.
Joyent. “Node JS,” n.d. https://nodejs.org/.
“Khan Academy,” n.d. https://www.khanacademy.org/.
Krasner, Glenn E, Stephen T Pope, and others. “A Description of the Model-View-Controller

User Interface Paradigm in the Smalltalk-80 System.” Journal of Object Oriented
Programming 1, no. 3 (1988): 26–49.

“Load Balancing (computing).” Wikipedia, n.d.
http://en.wikipedia.org/wiki/Load_balancing_%28computing%29.

“Massive Open Online Course.” Wikipedia, n.d.
http://en.wikipedia.org/wiki/Massive_open_online_course.

Memcached. “Memcached,” n.d. http://memcached.org/.

71

Michael A. Ogush, Derek Coleman, Dorothea Beringer. “A Template for Documenting Software
and Firmware Architectures,” March 15, 2000.
http://www.cs.helsinki.fi/group/os3/HP_arch_template_vers13_withexamples.pdf.

“NPTEL,” n.d. http://nptel.ac.in/.
Oracle. “Java EE,” n.d. http://www.oracle.com/technetwork/java/javaee/overview/index.html.
———. “MySQL.” MySQL, n.d. https://www.mysql.com/.
PHP. “PHP,” n.d. http://php.net/.
Polozov, Oleksandr, Sumit Gulwani, and Sriram Rajamani. Structure and Term Prediction for

Mathematical Text. Microsoft Research, 2012.
“Proxy Server.” Wikipedia, n.d. http://en.wikipedia.org/wiki/Proxy_server.
Redis. “Redis,” n.d. http://redis.io/.
Singh, Rishabh, Sumit Gulwani, and Armando Solar-Lezama. “Automated Feedback Generation

for Introductory Programming Assignments.” ACM SIGPLAN Notices 48, no. 6 (June 23,
2013): 15. doi:10.1145/2499370.2462195.

Singh et al. Automated Semantic Grading of Programs, 2012.
Thomas Orozco. “Scalr Auto Scaling Algorithm,” n.d. https://scalr-

wiki.atlassian.net/wiki/display/docs/Autoscaling+Algorithms.
“Udacity,” n.d. https://www.udacity.com/.

