
MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

Liveness-Based Garbage Collection

Rahul Asati, Amitabha Sanyal
Indian Institute of Technology, Bombay

Amey Karkare
Indian Institute of Technology, Kanpur

Alan Mycroft
University of Cambridge

September 8th, 2015

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

MAIN IDEA

◮ During execution, there are significant amounts of heap
allocated data that are reachable but not live.

◮ Current GCs will retain such data.

◮ Our idea:
◮ We do a liveness analysis and provide GCs with its result.
◮ Modify GCs to mark data for retention only if it is live.

◮ Consequences:
◮ Fewer cells marked.

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

MAIN IDEA

◮ During execution, there are significant amounts of heap
allocated data that are reachable but not live.

◮ Current GCs will retain such data.

◮ Our idea:
◮ We do a liveness analysis and provide GCs with its result.
◮ Modify GCs to mark data for retention only if it is live.

◮ Consequences:
◮ Fewer cells marked. More garbage collected per collection.

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

MAIN IDEA

◮ During execution, there are significant amounts of heap
allocated data that are reachable but not live.

◮ Current GCs will retain such data.

◮ Our idea:
◮ We do a liveness analysis and provide GCs with its result.
◮ Modify GCs to mark data for retention only if it is live.

◮ Consequences:
◮ Fewer cells marked. More garbage collected per collection.

Fewer garbage collections.

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

MAIN IDEA

◮ During execution, there are significant amounts of heap
allocated data that are reachable but not live.

◮ Current GCs will retain such data.

◮ Our idea:
◮ We do a liveness analysis and provide GCs with its result.
◮ Modify GCs to mark data for retention only if it is live.

◮ Consequences:
◮ Fewer cells marked. More garbage collected per collection.

Fewer garbage collections.
◮ Programs expected to run faster and with smaller heap.

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

AN EXAMPLE

(define (append l1 l2)
(if (null? l1) l2

(cons (car l1)
(append (cdr l1) l2))))

(let z←(cons (cons 4 (cons 5 nil))
(cons 6 nil)) in

(let y← (cons 3 nil) in
(let w← (append y z) in

π:(car (cdr w)))))

3

y
×

×

×

w z

4 6

×

5

◮ Though all cells are reachable at π, a liveness-based GC
will retain only the cells pointed by thick arrows.

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

PREVIEW OF THINGS TO COME

◮ Our analysis captures liveness as automata.

y

z

w
1 0

0 |1

Liveness at π

3

y
×

×

×

w z

4 6

×

5

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

THE LANGUAGE ANALYZED

◮ First order eager
Scheme-like language.

◮ In Administrative Normal
Form (ANF).

p ∈ Prog ::= d1 . . . dn emain

d ∈ Fdef ::= (define (f x1 . . . xn) e)

e ∈ Expr ::=

(if x e1 e2)
(let x← a in e)
(return x)

a ∈ App ::=

k
(cons x1 x2)
(car x) (cdr x)
(null? x) (+ x1 x2)
(f x1 . . . xn)

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS – BASIC CONCEPTS AND NOTATIONS

◮ Access paths: Strings over {0, 1}.

0 – access car field
1 – access cdr field

◮ Liveness environment: Maps root variables to
set of access paths.

Li

y 7→ ∅
z 7→ {ǫ}
w 7→ {ǫ, 1, 10, 100}

y

z

w

Notation: We write Li(x) as Lxi

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS – BASIC CONCEPTS AND NOTATIONS

◮ Access paths: Strings over {0, 1}.

0 – access car field
1 – access cdr field

◮ Liveness environment: Alternate
representation.

Li

∅ ∪
{z.ǫ} ∪
{w.ǫ,w.1,w.10,w.100}

y

z

w

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

DEMAND

3

y
×

×

×

w z

4 6

×

5

◮ Demand (notation: σ) is a description of intended use of
the result of an expression.

◮ We assume the demand on the main expresssion to be
(0+ 1)∗, which we call σall.

◮ The demand on each function body, σf , have to be
computed.

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS ANALYSIS – THE BIG PICTURE

πmain: (let z← . . . in
(let y← . . . in

π9: (let w← (append y z) in
π10: (let a← (cdr w) in
π11: (let b← (car a) in
π12: (return b)))))))

(define (append l1 l2)
π1: (let test← (null? l1) in
π2: (if test π3:(return l2)
π4: (let tl← (cdr l1) in
π5: (let rec← (append tl l2) in
π6: (let hd← (car l1) in
π7: (let ans← (cons hd rec) in
π8: (return ans))))))))

Liveness environments:

L1 = . . .

L2 = . . .

. . .

L9 = . . .

L10 = . . .

Demand summaries:

σmain = σall

σappend = . . .

Function summaries:

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS ANALYSIS OF APPLICATIONS

x

σ Lapp((car x), σ) = {x.ǫ, x.0σ}

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS ANALYSIS OF APPLICATIONS

x y

σ

Lapp((cons x y), σ) = {x.α | 0α ∈ σ} ∪

{y.β | 1β ∈ σ}

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS ANALYSIS OF APPLICATIONS

x y

σ

Lapp((cons x y), σ) = {x.α | 0α ∈ σ} ∪

{y.β | 1β ∈ σ}0 1

α β

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS ANALYSIS OF APPLICATIONS

x y

σ

Lapp((cons x y), σ) = {x.α | 0α ∈ σ} ∪

{y.β | 1β ∈ σ}

◮ 0̄ – Removal of a leading 0
1̄ – Removal of a leading 1

Lapp((cons x y), σ) = x.0̄σ ∪ y.1̄σ

0 1

α β

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS ANALYSIS OF APPLICATIONS

x y

σ

Lapp((f x y), σ) =
(f x y)

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS ANALYSIS OF APPLICATIONS

x y

σ

Lapp((f x y), σ) = {x.LF1
f (σ), y.LF2

f (σ)}
(f x y)

LFf
1(σ) LFf

2(σ)

◮ LFf is a context independent summary of the function f .

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS ANALYSIS OF APPLICATIONS

x y

σ

Lapp((f x y), σ) = {x.LF1
f (σ), y.LF2

f (σ)}
(f x y)

LFf
1(σ) LFf

2(σ)

◮ LFf is a context independent summary of the function f .

◮ To find LFi
f (σ):

◮ Assume a symbolic demand σ.
◮ Let ef be the body of f ..
◮ Set LFi

f (σ) to Lexp(ef , σ)(xi).

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS ANALYSIS OF EXPRESSIONS

Lexp((return x), σ) = {x.σ}

Lexp((if x e1 e2), σ) = {x.ǫ} ∪ Lexp(e1, σ) ∪ Lexp(e2, σ)}

Lexp((let x ← s in e), σ) = L \ {x.∗} ∪ Lapp(s,L(x))
where L = Lexp(e, σ)

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS ANALYSIS – THE BIG PICTURE

πmain: (let z← . . . in
(let y← . . . in

π9: (let w← (append y z) in
π10: (let a← (cdr w) in
π11: (let b← (car a) in
π12: (return b)))))))

(define (append l1 l2)
π1: (let test← (null? l1) in
π2: (if test π3:(return l2)
π4: (let tl← (cdr l1) in
π5: (let rec← (append tl l2) in
π6: (let hd← (car l1) in
π7: (let ans← (cons hd rec) in
π8: (return ans))))))))

Liveness environments:

Ll1
1

= {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σappend)

Ll2
1

= σ ∪ LF2
append(1̄σappend)

. . .
Ly
9
= LF1

append({ǫ, 1} ∪ 10σall)

Demand summaries: Function summaries:

LF1
append(σ) = {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σ)

LF2
append(σ) = σ ∪ LF2

append(1̄σ)

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS ANALYSIS – DEMAND SUMMARY

πmain: (let z← . . . in
(let y← . . . in

π9: (let w← (append y z) in
π10: (let a← (cdr w) in
π11: (let b← (car a) in
π12: (return b)))))))

(define (append l1 l2)
π1: (let test← (null? l1) in
π2: (if test π3:(return l2)
π4: (let tl← (cdr l1) in
π5: (let rec← (append tl l2) in
π6: (let hd← (car l1) in
π7: (let ans← (cons hd rec) in
π8: (return ans))))))))

σmain = σall

Liveness environments:

Ll1
1

= {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σappend)

Ll2
1

= σ ∪ LF2
append(1̄σappend)

. . .
Ly
9
= LF1

append({ǫ, 1} ∪ 10σall)

Demand summaries: Function summaries:

LF1
append(σ) = {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σ)

LF2
append(σ) = σ ∪ LF2

append(1̄σ)

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS ANALYSIS – DEMAND SUMMARY

πmain: (let z← . . . in
(let y← . . . in

π9: (let w← (append y z) in
π10: (let a← (cdr w) in
π11: (let b← (car a) in
π12: (return b)))))))

(define (append l1 l2)
π1: (let test← (null? l1) in
π2: (if test π3:(return l2)
π4: (let tl← (cdr l1) in
π5: (let rec← (append tl l2) in
π6: (let hd← (car l1) in
π7: (let ans← (cons hd rec) in
π8: (return ans))))))))

σmain = σall

σ1

Liveness environments:

Ll1
1

= {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σappend)

Ll2
1

= σ ∪ LF2
append(1̄σappend)

. . .
Ly
9
= LF1

append({ǫ, 1} ∪ 10σall)

Demand summaries: Function summaries:

LF1
append(σ) = {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σ)

LF2
append(σ) = σ ∪ LF2

append(1̄σ)

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS ANALYSIS – DEMAND SUMMARY

πmain: (let z← . . . in
(let y← . . . in

π9: (let w← (append y z) in
π10: (let a← (cdr w) in
π11: (let b← (car a) in
π12: (return b)))))))

(define (append l1 l2)
π1: (let test← (null? l1) in
π2: (if test π3:(return l2)
π4: (let tl← (cdr l1) in
π5: (let rec← (append tl l2) in
π6: (let hd← (car l1) in
π7: (let ans← (cons hd rec) in
π8: (return ans))))))))

σmain = σall

σ1

σappend = σ1 ∪ . . .

Liveness environments:

Ll1
1

= {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σappend)

Ll2
1

= σ ∪ LF2
append(1̄σappend)

. . .
Ly
9
= LF1

append({ǫ, 1} ∪ 10σall)

Demand summaries: Function summaries:

LF1
append(σ) = {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σ)

LF2
append(σ) = σ ∪ LF2

append(1̄σ)

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS ANALYSIS – DEMAND SUMMARY

πmain: (let z← . . . in
(let y← . . . in

π9: (let w← (append y z) in
π10: (let a← (cdr w) in
π11: (let b← (car a) in
π12: (return b)))))))

(define (append l1 l2)
π1: (let test← (null? l1) in
π2: (if test π3:(return l2)
π4: (let tl← (cdr l1) in
π5: (let rec← (append tl l2) in
π6: (let hd← (car l1) in
π7: (let ans← (cons hd rec) in
π8: (return ans))))))))

σmain = σall

σ1

σappend = σ1 ∪ . . .

σ2

Liveness environments:

Ll1
1

= {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σappend)

Ll2
1

= σ ∪ LF2
append(1̄σappend)

. . .
Ly
9
= LF1

append({ǫ, 1} ∪ 10σall)

Demand summaries: Function summaries:

LF1
append(σ) = {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σ)

LF2
append(σ) = σ ∪ LF2

append(1̄σ)

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS ANALYSIS – DEMAND SUMMARY

πmain: (let z← . . . in
(let y← . . . in

π9: (let w← (append y z) in
π10: (let a← (cdr w) in
π11: (let b← (car a) in
π12: (return b)))))))

(define (append l1 l2)
π1: (let test← (null? l1) in
π2: (if test π3:(return l2)
π4: (let tl← (cdr l1) in
π5: (let rec← (append tl l2) in
π6: (let hd← (car l1) in
π7: (let ans← (cons hd rec) in
π8: (return ans))))))))

σmain = σall

σ1

σappend = σ1 ∪ σ2

σ2

Liveness environments:

Ll1
1

= {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σappend)

Ll2
1

= σ ∪ LF2
append(1̄σappend)

. . .
Ly
9
= LF1

append({ǫ, 1} ∪ 10σall)

Demand summaries: Function summaries:

LF1
append(σ) = {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σ)

LF2
append(σ) = σ ∪ LF2

append(1̄σ)

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS ANALYSIS – DEMAND SUMMARY

πmain: (let z← . . . in
(let y← . . . in

π9: (let w← (append y z) in
π10: (let a← (cdr w) in
π11: (let b← (car a) in
π12: (return b)))))))

(define (append l1 l2)
π1: (let test← (null? l1) in
π2: (if test π3:(return l2)
π4: (let tl← (cdr l1) in
π5: (let rec← (append tl l2) in
π6: (let hd← (car l1) in
π7: (let ans← (cons hd rec) in
π8: (return ans))))))))

Liveness environments:

Ll1
1

= {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σappend)

Ll2
1

= σ ∪ LF2
append(1̄σappend)

. . .
Ly
9
= LF1

append({ǫ, 1} ∪ 10σall)

Demand summaries:

σmain = σall

σappend = {ǫ, 1} ∪ 10σall

∪ 1̄σappend

Function summaries:

LF1
append(σ) = {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σ)

LF2
append(σ) = σ ∪ LF2

append(1̄σ)

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

OBTAINING A CLOSED FORM SOLUTION FOR LF
◮ Function summaries will always have the form:

LFi
f (σ) = Iif ∪ Di

fσ

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

OBTAINING A CLOSED FORM SOLUTION FOR LF
◮ Function summaries will always have the form:

LFi
f (σ) = Iif ∪ Di

fσ

◮ Consider the equation for LF1
append

LF1
append(σ) = {ǫ} ∪ 00̄σ ∪ 1LF1

append(1̄σ)

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

OBTAINING A CLOSED FORM SOLUTION FOR LF
◮ Function summaries will always have the form:

LFi
f (σ) = Iif ∪ Di

fσ

◮ Consider the equation for LF1
append

LF1
append(σ) = {ǫ} ∪ 00̄σ ∪ 1LF1

append(1̄σ)

◮ Substitute the assumed form in the equation:

I1append ∪D1
appendσ = {ǫ} ∪ 00̄σ ∪ 1(I1append ∪ D1

append1̄σ)

◮ Equating the terms without and with σ, we get:

I1append = {ǫ} ∪ 00̄ ∪ 1I1append

D1
append = 00̄ ∪ 1D1

append1̄

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

SUMMARY OF ANALYSIS RESULTS

Liveness at program points:

Ll11 = {ǫ} ∪ 00̄σ ∪

1(I1append ∪ D1
append1̄σappend)

Ll21 = {ǫ} ∪ I2append

∪ D2
append 1̄σappend

Ll15 = {ǫ} ∪ 00̄σappend

Ltl5 = I1append ∪ D1
append 1̄σappend

Ll25 = I2append ∪ D2
append 1̄σappend

. . .

Demand summaries:

σappend = {ǫ, 1} ∪ 1̄σappend

∪ 10σall

Function summaries:

I1append = {ǫ} ∪ 00̄ ∪ 1I1append

D1
append = 00̄ ∪ 1D1

append 1̄

I2append = I2append

D2
append = {ǫ} ∪ D2

append0̄

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

SOLUTION OF THE EQUATIONS

View the equations as grammar rules:

Ll11 → ǫ | 00̄σ | 1(I1append | D
1
append1̄σappend)

I1append → ǫ | 1I1append

D1
append → 00̄ | 1D1

append1̄

The solution of Ll11 is the language L (Ll11) generated by it.

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

0/1 REMOVAL

◮ The CFG has access paths marked for 0/1 removal arising
from the cons rule.

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

0/1 REMOVAL

◮ The CFG has access paths marked for 0/1 removal arising
from the cons rule.

◮ 0 removal from a set of access paths:

α10̄0α2 ⇒ α1α2

α10̄1α2 ⇒ drop α10̄1α2 from the set

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

0/1 REMOVAL

◮ The CFG has access paths marked for 0/1 removal arising
from the cons rule.

◮ 0 removal from a set of access paths:

α10̄0α2 ⇒ α1α2

α10̄1α2 ⇒ drop α10̄1α2 from the set

◮ The simplification is easier to do on a finite state
automaton.

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

0/1 REMOVAL

◮ The CFG has access paths marked for 0/1 removal arising
from the cons rule.

◮ 0 removal from a set of access paths:

α10̄0α2 ⇒ α1α2

α10̄1α2 ⇒ drop α10̄1α2 from the set

◮ The simplification is easier to do on a finite state
automaton.

◮ Approximate the CFG by a strongly regular language
(Mohri-Nederhoff transformation).

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

0/1 REMOVAL

◮ The CFG has access paths marked for 0/1 removal arising
from the cons rule.

◮ 0 removal from a set of access paths:

α10̄0α2 ⇒ α1α2

α10̄1α2 ⇒ drop α10̄1α2 from the set

◮ The simplification is easier to do on a finite state
automaton.

◮ Approximate the CFG by a strongly regular language
(Mohri-Nederhoff transformation).

◮ Convert the strongly regular language to an automaton.

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

0/1 REMOVAL

◮ The CFG has access paths marked for 0/1 removal arising
from the cons rule.

◮ 0 removal from a set of access paths:

α10̄0α2 ⇒ α1α2

α10̄1α2 ⇒ drop α10̄1α2 from the set

◮ The simplification is easier to do on a finite state
automaton.

◮ Approximate the CFG by a strongly regular language
(Mohri-Nederhoff transformation).

◮ Convert the strongly regular language to an automaton.
◮ Perform removal on the automaton.

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

EXPERIMENTAL SETUP

◮ Built a prototype consisting of:
◮ An ANF-scheme interpreter
◮ Liveness analyzer
◮ A single-generation copying collector.

◮ The collector optionally uses liveness
◮ Marks a link during GC only if it is live.

◮ Benchmark programs are mostly from the no-fib suite.

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

GC BEHAVIOR AS A GRAPH

 0

 210000

 420000

 630000

 840000

 1.05e+06

 1.26e+06

 1.47e+06

 1.68e+06

 1.89e+06

 0 3e+06 6e+06 9e+06 1.2e+07 1.5e+07

nqueens

Cells in active semi-space (LGC)

Cells in active semi-space (RGC)

No. of reachable cells

No. of live cells

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

RESULTS AS TABLES

Analysis Performance:

Program sudoku lcss gc bench knightstour treejoin nqueens lambda

Time (msec) 120.95 2.19 0.32 3.05 2.61 0.71 20.51
DFA size 4251 726 258 922 737 241 732

Precision(%) 87.5 98.8 99.9 94.3 99.6 98.8 83.8

◮ Our liveness analysis is precise.

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

RESULTS AS TABLES

Garbage collection performance

Collected MinHeap GC time
cells per GC #GCs (#cells) (sec)

Program RGC LGC RGC LGC RGC LGC RGC LGC

sudoku 490 1306 22 9 1704 589 .028 .122
lcss 46522 51101 8 7 52301 1701 .045 .144

gc bench 129179 131067 9 9 131071 6 .086 .075
nperm 47586 174478 14 4 202597 37507 1.406 .9
fibheap 249502 251525 1 1 254520 13558 .006 .014

knightstour 2593 314564 1161 10 508225 307092 464.902 14.124
treejoin 288666 519943 2 1 525488 7150 .356 .217
nqueens 283822 1423226 46 9 1819579 501093 70.314 24.811
lambda 205 556 23 8 966 721 .093 2.49

◮ LGC collects more garbage than RGC.

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

RESULTS AS TABLES

Garbage collection performance

Collected MinHeap GC time
cells per GC #GCs (#cells) (sec)

Program RGC LGC RGC LGC RGC LGC RGC LGC

sudoku 490 1306 22 9 1704 589 .028 .122
lcss 46522 51101 8 7 52301 1701 .045 .144

gc bench 129179 131067 9 9 131071 6 .086 .075
nperm 47586 174478 14 4 202597 37507 1.406 .9
fibheap 249502 251525 1 1 254520 13558 .006 .014

knightstour 2593 314564 1161 10 508225 307092 464.902 14.124
treejoin 288666 519943 2 1 525488 7150 .356 .217
nqueens 283822 1423226 46 9 1819579 501093 70.314 24.811
lambda 205 556 23 8 966 721 .093 2.49

◮ No of collections of LGC no higher than RGC. Very often,
smaller.

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

RESULTS AS TABLES

Garbage collection performance

Collected MinHeap GC time
cells per GC #GCs (#cells) (sec)

Program RGC LGC RGC LGC RGC LGC RGC LGC

sudoku 490 1306 22 9 1704 589 .028 .122
lcss 46522 51101 8 7 52301 1701 .045 .144

gc bench 129179 131067 9 9 131071 6 .086 .075
nperm 47586 174478 14 4 202597 37507 1.406 .9
fibheap 249502 251525 1 1 254520 13558 .006 .014

knightstour 2593 314564 1161 10 508225 307092 464.902 14.124
treejoin 288666 519943 2 1 525488 7150 .356 .217
nqueens 283822 1423226 46 9 1819579 501093 70.314 24.811
lambda 205 556 23 8 966 721 .093 2.49

◮ Programs require smaller heaps to execute when run with
LGC.

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

RESULTS AS TABLES

Garbage collection performance

Collected MinHeap GC time
cells per GC #GCs (#cells) (sec)

Program RGC LGC RGC LGC RGC LGC RGC LGC

sudoku 490 1306 22 9 1704 589 .028 .122
lcss 46522 51101 8 7 52301 1701 .045 .144

gc bench 129179 131067 9 9 131071 6 .086 .075
nperm 47586 174478 14 4 202597 37507 1.406 .9
fibheap 249502 251525 1 1 254520 13558 .006 .014

knightstour 2593 314564 1161 10 508225 307092 464.902 14.124
treejoin 288666 519943 2 1 525488 7150 .356 .217
nqueens 283822 1423226 46 9 1819579 501093 70.314 24.811
lambda 205 556 23 8 966 721 .093 2.49

◮ GC time is smaller for LGC in some cases. . .

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

RESULTS AS TABLES

Garbage collection performance

Collected MinHeap GC time
cells per GC #GCs (#cells) (sec)

Program RGC LGC RGC LGC RGC LGC RGC LGC

sudoku 490 1306 22 9 1704 589 .028 .122
lcss 46522 51101 8 7 52301 1701 .045 .144

gc bench 129179 131067 9 9 131071 6 .086 .075
nperm 47586 174478 14 4 202597 37507 1.406 .9
fibheap 249502 251525 1 1 254520 13558 .006 .014

knightstour 2593 314564 1161 10 508225 307092 464.902 14.124
treejoin 288666 519943 2 1 525488 7150 .356 .217
nqueens 283822 1423226 46 9 1819579 501093 70.314 24.811
lambda 205 556 23 8 966 721 .093 2.49

◮ . . . and larger in some.

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

SCOPE FOR FUTURE WORK

◮ Reducing GC-time.
◮ Reducing re-visits to heap nodes.
◮ Basing the implementation on full Scheme, not

ANF-Scheme

◮ Increasing the scope of the method.
◮ Higher order functions.
◮ Lazy languages.

◮ Orthogonal: Using the notion of demand for other analysis.

MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

CONCLUSIONS

◮ Proposed a liveness-based GC scheme. Proved
theoretically:

◮ The soundness of liveness analysis.
◮ That it can never do more collections than reachability

based GC.

◮ Implemented a prototype that:
◮ Demonstrated the precision of the analysis.
◮ Demonstrated reduced heap requirement.
◮ Reduced GC time for a majority of programs.

◮ Unfinished agenda:
◮ Improving GC time for a larger fraction of programs.
◮ Improving scope of the method.

