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MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

MAIN IDEA

◮ During execution, there are significant amounts of heap
allocated data that are reachable but not live.

◮ Current GCs will retain such data.

◮ Our idea:
◮ We do a liveness analysis and provide GCs with its result.
◮ Modify GCs to mark data for retention only if it is live.

◮ Consequences:
◮ Fewer cells marked.
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MAIN IDEA

◮ During execution, there are significant amounts of heap
allocated data that are reachable but not live.

◮ Current GCs will retain such data.

◮ Our idea:
◮ We do a liveness analysis and provide GCs with its result.
◮ Modify GCs to mark data for retention only if it is live.

◮ Consequences:
◮ Fewer cells marked. More garbage collected per collection.

Fewer garbage collections.
◮ Programs expected to run faster and with smaller heap.



MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

AN EXAMPLE

(define (append l1 l2)
(if (null? l1) l2

(cons (car l1)
(append (cdr l1) l2))))

(let z←(cons (cons 4 (cons 5 nil))
(cons 6 nil)) in

(let y← (cons 3 nil) in
(let w← (append y z) in

π:(car (cdr w)))))
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◮ Though all cells are reachable at π, a liveness-based GC
will retain only the cells pointed by thick arrows.
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PREVIEW OF THINGS TO COME

◮ Our analysis captures liveness as automata.
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w
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Liveness at π
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THE LANGUAGE ANALYZED

◮ First order eager
Scheme-like language.

◮ In Administrative Normal
Form (ANF).

p ∈ Prog ::= d1 . . . dn emain

d ∈ Fdef ::= (define (f x1 . . . xn) e)

e ∈ Expr ::=







(if x e1 e2)
(let x← a in e)
(return x)

a ∈ App ::=























k
(cons x1 x2)
(car x) (cdr x)
(null? x) (+ x1 x2)
(f x1 . . . xn)



MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS – BASIC CONCEPTS AND NOTATIONS

◮ Access paths: Strings over {0, 1}.

0 – access car field
1 – access cdr field

◮ Liveness environment: Maps root variables to
set of access paths.

Li







y 7→ ∅
z 7→ {ǫ}
w 7→ {ǫ, 1, 10, 100}

y

z

w

Notation: We write Li(x) as Lxi
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LIVENESS – BASIC CONCEPTS AND NOTATIONS

◮ Access paths: Strings over {0, 1}.

0 – access car field
1 – access cdr field

◮ Liveness environment: Alternate
representation.

Li







∅ ∪
{z.ǫ} ∪
{w.ǫ,w.1,w.10,w.100}

y

z

w
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DEMAND
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◮ Demand (notation: σ) is a description of intended use of
the result of an expression.

◮ We assume the demand on the main expresssion to be
(0+ 1)∗, which we call σall.

◮ The demand on each function body, σf , have to be
computed.
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LIVENESS ANALYSIS – THE BIG PICTURE

πmain: (let z← . . . in
(let y← . . . in

π9: (let w← (append y z) in
π10: (let a← (cdr w) in
π11: (let b← (car a) in
π12: (return b)))))))

(define (append l1 l2)
π1: (let test← (null? l1) in
π2: (if test π3:(return l2)
π4: (let tl← (cdr l1) in
π5: (let rec← (append tl l2) in
π6: (let hd← (car l1) in
π7: (let ans← (cons hd rec) in
π8: (return ans))))))))

Liveness environments:

L1 = . . .

L2 = . . .

. . .

L9 = . . .

L10 = . . .

Demand summaries:

σmain = σall

σappend = . . .

Function summaries:
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LIVENESS ANALYSIS OF APPLICATIONS

x

σ Lapp((car x), σ) = {x.ǫ, x.0σ}
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Lapp((cons x y), σ) = {x.α | 0α ∈ σ} ∪

{y.β | 1β ∈ σ}
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LIVENESS ANALYSIS OF APPLICATIONS

x y

σ

Lapp((cons x y), σ) = {x.α | 0α ∈ σ} ∪

{y.β | 1β ∈ σ}

◮ 0̄ – Removal of a leading 0
1̄ – Removal of a leading 1

Lapp((cons x y), σ) = x.0̄σ ∪ y.1̄σ

0 1

α β
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LIVENESS ANALYSIS OF APPLICATIONS

x y

σ

Lapp((f x y), σ) =
(f x y)
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LIVENESS ANALYSIS OF APPLICATIONS

x y

σ

Lapp((f x y), σ) = {x.LF1
f (σ), y.LF2

f (σ)}
(f x y)

LFf
1(σ) LFf

2(σ)

◮ LFf is a context independent summary of the function f .
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LIVENESS ANALYSIS OF APPLICATIONS

x y

σ

Lapp((f x y), σ) = {x.LF1
f (σ), y.LF2

f (σ)}
(f x y)

LFf
1(σ) LFf

2(σ)

◮ LFf is a context independent summary of the function f .

◮ To find LFi
f (σ):

◮ Assume a symbolic demand σ.
◮ Let ef be the body of f ..
◮ Set LFi

f (σ) to Lexp(ef , σ)(xi).
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LIVENESS ANALYSIS OF EXPRESSIONS

Lexp((return x), σ) = {x.σ}

Lexp((if x e1 e2), σ) = {x.ǫ} ∪ Lexp(e1, σ) ∪ Lexp(e2, σ)}

Lexp((let x ← s in e), σ) = L \ {x.∗} ∪ Lapp(s,L(x))
where L = Lexp(e, σ)
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π5: (let rec← (append tl l2) in
π6: (let hd← (car l1) in
π7: (let ans← (cons hd rec) in
π8: (return ans))))))))

Liveness environments:

Ll1
1

= {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σappend)

Ll2
1

= σ ∪ LF2
append(1̄σappend)

. . .
Ly
9
= LF1

append({ǫ, 1} ∪ 10σall)

Demand summaries: Function summaries:

LF1
append(σ) = {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σ)

LF2
append(σ) = σ ∪ LF2

append(1̄σ)



MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS ANALYSIS – DEMAND SUMMARY

πmain: (let z← . . . in
(let y← . . . in

π9: (let w← (append y z) in
π10: (let a← (cdr w) in
π11: (let b← (car a) in
π12: (return b)))))))

(define (append l1 l2)
π1: (let test← (null? l1) in
π2: (if test π3:(return l2)
π4: (let tl← (cdr l1) in
π5: (let rec← (append tl l2) in
π6: (let hd← (car l1) in
π7: (let ans← (cons hd rec) in
π8: (return ans))))))))

σmain = σall

Liveness environments:

Ll1
1

= {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σappend)

Ll2
1

= σ ∪ LF2
append(1̄σappend)

. . .
Ly
9
= LF1

append({ǫ, 1} ∪ 10σall)

Demand summaries: Function summaries:

LF1
append(σ) = {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σ)

LF2
append(σ) = σ ∪ LF2

append(1̄σ)



MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS ANALYSIS – DEMAND SUMMARY

πmain: (let z← . . . in
(let y← . . . in

π9: (let w← (append y z) in
π10: (let a← (cdr w) in
π11: (let b← (car a) in
π12: (return b)))))))

(define (append l1 l2)
π1: (let test← (null? l1) in
π2: (if test π3:(return l2)
π4: (let tl← (cdr l1) in
π5: (let rec← (append tl l2) in
π6: (let hd← (car l1) in
π7: (let ans← (cons hd rec) in
π8: (return ans))))))))

σmain = σall

σ1

Liveness environments:

Ll1
1

= {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σappend)

Ll2
1

= σ ∪ LF2
append(1̄σappend)

. . .
Ly
9
= LF1

append({ǫ, 1} ∪ 10σall)

Demand summaries: Function summaries:

LF1
append(σ) = {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σ)

LF2
append(σ) = σ ∪ LF2

append(1̄σ)



MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS ANALYSIS – DEMAND SUMMARY

πmain: (let z← . . . in
(let y← . . . in

π9: (let w← (append y z) in
π10: (let a← (cdr w) in
π11: (let b← (car a) in
π12: (return b)))))))

(define (append l1 l2)
π1: (let test← (null? l1) in
π2: (if test π3:(return l2)
π4: (let tl← (cdr l1) in
π5: (let rec← (append tl l2) in
π6: (let hd← (car l1) in
π7: (let ans← (cons hd rec) in
π8: (return ans))))))))

σmain = σall

σ1

σappend = σ1 ∪ . . .

Liveness environments:

Ll1
1

= {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σappend)

Ll2
1

= σ ∪ LF2
append(1̄σappend)

. . .
Ly
9
= LF1

append({ǫ, 1} ∪ 10σall)

Demand summaries: Function summaries:

LF1
append(σ) = {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σ)

LF2
append(σ) = σ ∪ LF2

append(1̄σ)



MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS ANALYSIS – DEMAND SUMMARY

πmain: (let z← . . . in
(let y← . . . in

π9: (let w← (append y z) in
π10: (let a← (cdr w) in
π11: (let b← (car a) in
π12: (return b)))))))

(define (append l1 l2)
π1: (let test← (null? l1) in
π2: (if test π3:(return l2)
π4: (let tl← (cdr l1) in
π5: (let rec← (append tl l2) in
π6: (let hd← (car l1) in
π7: (let ans← (cons hd rec) in
π8: (return ans))))))))

σmain = σall

σ1

σappend = σ1 ∪ . . .

σ2

Liveness environments:

Ll1
1

= {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σappend)

Ll2
1

= σ ∪ LF2
append(1̄σappend)

. . .
Ly
9
= LF1

append({ǫ, 1} ∪ 10σall)

Demand summaries: Function summaries:

LF1
append(σ) = {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σ)

LF2
append(σ) = σ ∪ LF2

append(1̄σ)



MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS ANALYSIS – DEMAND SUMMARY

πmain: (let z← . . . in
(let y← . . . in

π9: (let w← (append y z) in
π10: (let a← (cdr w) in
π11: (let b← (car a) in
π12: (return b)))))))

(define (append l1 l2)
π1: (let test← (null? l1) in
π2: (if test π3:(return l2)
π4: (let tl← (cdr l1) in
π5: (let rec← (append tl l2) in
π6: (let hd← (car l1) in
π7: (let ans← (cons hd rec) in
π8: (return ans))))))))

σmain = σall

σ1

σappend = σ1 ∪ σ2

σ2

Liveness environments:

Ll1
1

= {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σappend)

Ll2
1

= σ ∪ LF2
append(1̄σappend)

. . .
Ly
9
= LF1

append({ǫ, 1} ∪ 10σall)

Demand summaries: Function summaries:

LF1
append(σ) = {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σ)

LF2
append(σ) = σ ∪ LF2

append(1̄σ)



MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

LIVENESS ANALYSIS – DEMAND SUMMARY

πmain: (let z← . . . in
(let y← . . . in

π9: (let w← (append y z) in
π10: (let a← (cdr w) in
π11: (let b← (car a) in
π12: (return b)))))))

(define (append l1 l2)
π1: (let test← (null? l1) in
π2: (if test π3:(return l2)
π4: (let tl← (cdr l1) in
π5: (let rec← (append tl l2) in
π6: (let hd← (car l1) in
π7: (let ans← (cons hd rec) in
π8: (return ans))))))))

Liveness environments:

Ll1
1

= {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σappend)

Ll2
1

= σ ∪ LF2
append(1̄σappend)

. . .
Ly
9
= LF1

append({ǫ, 1} ∪ 10σall)

Demand summaries:

σmain = σall

σappend = {ǫ, 1} ∪ 10σall

∪ 1̄σappend

Function summaries:

LF1
append(σ) = {ǫ} ∪ 00̄σ ∪

1LF1
append(1̄σ)

LF2
append(σ) = σ ∪ LF2

append(1̄σ)



MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

OBTAINING A CLOSED FORM SOLUTION FOR LF
◮ Function summaries will always have the form:

LFi
f (σ) = Iif ∪ Di

fσ



MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

OBTAINING A CLOSED FORM SOLUTION FOR LF
◮ Function summaries will always have the form:

LFi
f (σ) = Iif ∪ Di

fσ

◮ Consider the equation for LF1
append

LF1
append(σ) = {ǫ} ∪ 00̄σ ∪ 1LF1

append(1̄σ)



MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

OBTAINING A CLOSED FORM SOLUTION FOR LF
◮ Function summaries will always have the form:

LFi
f (σ) = Iif ∪ Di

fσ

◮ Consider the equation for LF1
append

LF1
append(σ) = {ǫ} ∪ 00̄σ ∪ 1LF1

append(1̄σ)

◮ Substitute the assumed form in the equation:

I1append ∪D1
appendσ = {ǫ} ∪ 00̄σ ∪ 1(I1append ∪ D1

append1̄σ)

◮ Equating the terms without and with σ, we get:

I1append = {ǫ} ∪ 00̄ ∪ 1I1append

D1
append = 00̄ ∪ 1D1

append1̄



MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

SUMMARY OF ANALYSIS RESULTS

Liveness at program points:

Ll11 = {ǫ} ∪ 00̄σ ∪

1(I1append ∪ D1
append1̄σappend)

Ll21 = {ǫ} ∪ I2append

∪ D2
append 1̄σappend

Ll15 = {ǫ} ∪ 00̄σappend

Ltl5 = I1append ∪ D1
append 1̄σappend

Ll25 = I2append ∪ D2
append 1̄σappend

. . .

Demand summaries:

σappend = {ǫ, 1} ∪ 1̄σappend

∪ 10σall

Function summaries:

I1append = {ǫ} ∪ 00̄ ∪ 1I1append

D1
append = 00̄ ∪ 1D1

append 1̄

I2append = I2append

D2
append = {ǫ} ∪ D2

append0̄
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SOLUTION OF THE EQUATIONS

View the equations as grammar rules:

Ll11 → ǫ | 00̄σ | 1(I1append | D
1
append1̄σappend)

I1append → ǫ | 1I1append

D1
append → 00̄ | 1D1

append1̄

The solution of Ll11 is the language L (Ll11 ) generated by it.
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◮ The CFG has access paths marked for 0/1 removal arising
from the cons rule.
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0/1 REMOVAL

◮ The CFG has access paths marked for 0/1 removal arising
from the cons rule.

◮ 0 removal from a set of access paths:

α10̄0α2 ⇒ α1α2

α10̄1α2 ⇒ drop α10̄1α2 from the set

◮ The simplification is easier to do on a finite state
automaton.

◮ Approximate the CFG by a strongly regular language
(Mohri-Nederhoff transformation).

◮ Convert the strongly regular language to an automaton.
◮ Perform removal on the automaton.
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EXPERIMENTAL SETUP

◮ Built a prototype consisting of:
◮ An ANF-scheme interpreter
◮ Liveness analyzer
◮ A single-generation copying collector.

◮ The collector optionally uses liveness
◮ Marks a link during GC only if it is live.

◮ Benchmark programs are mostly from the no-fib suite.
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GC BEHAVIOR AS A GRAPH
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RESULTS AS TABLES

Analysis Performance:

Program sudoku lcss gc bench knightstour treejoin nqueens lambda

Time (msec) 120.95 2.19 0.32 3.05 2.61 0.71 20.51
DFA size 4251 726 258 922 737 241 732

Precision(%) 87.5 98.8 99.9 94.3 99.6 98.8 83.8

◮ Our liveness analysis is precise.
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RESULTS AS TABLES

Garbage collection performance

# Collected MinHeap GC time
cells per GC #GCs (#cells) (sec)

Program RGC LGC RGC LGC RGC LGC RGC LGC

sudoku 490 1306 22 9 1704 589 .028 .122
lcss 46522 51101 8 7 52301 1701 .045 .144

gc bench 129179 131067 9 9 131071 6 .086 .075
nperm 47586 174478 14 4 202597 37507 1.406 .9
fibheap 249502 251525 1 1 254520 13558 .006 .014

knightstour 2593 314564 1161 10 508225 307092 464.902 14.124
treejoin 288666 519943 2 1 525488 7150 .356 .217
nqueens 283822 1423226 46 9 1819579 501093 70.314 24.811
lambda 205 556 23 8 966 721 .093 2.49

◮ LGC collects more garbage than RGC.
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RESULTS AS TABLES

Garbage collection performance

# Collected MinHeap GC time
cells per GC #GCs (#cells) (sec)

Program RGC LGC RGC LGC RGC LGC RGC LGC

sudoku 490 1306 22 9 1704 589 .028 .122
lcss 46522 51101 8 7 52301 1701 .045 .144

gc bench 129179 131067 9 9 131071 6 .086 .075
nperm 47586 174478 14 4 202597 37507 1.406 .9
fibheap 249502 251525 1 1 254520 13558 .006 .014

knightstour 2593 314564 1161 10 508225 307092 464.902 14.124
treejoin 288666 519943 2 1 525488 7150 .356 .217
nqueens 283822 1423226 46 9 1819579 501093 70.314 24.811
lambda 205 556 23 8 966 721 .093 2.49

◮ No of collections of LGC no higher than RGC. Very often,
smaller.
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RESULTS AS TABLES

Garbage collection performance

# Collected MinHeap GC time
cells per GC #GCs (#cells) (sec)

Program RGC LGC RGC LGC RGC LGC RGC LGC

sudoku 490 1306 22 9 1704 589 .028 .122
lcss 46522 51101 8 7 52301 1701 .045 .144

gc bench 129179 131067 9 9 131071 6 .086 .075
nperm 47586 174478 14 4 202597 37507 1.406 .9
fibheap 249502 251525 1 1 254520 13558 .006 .014

knightstour 2593 314564 1161 10 508225 307092 464.902 14.124
treejoin 288666 519943 2 1 525488 7150 .356 .217
nqueens 283822 1423226 46 9 1819579 501093 70.314 24.811
lambda 205 556 23 8 966 721 .093 2.49

◮ Programs require smaller heaps to execute when run with
LGC.



MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

RESULTS AS TABLES

Garbage collection performance

# Collected MinHeap GC time
cells per GC #GCs (#cells) (sec)

Program RGC LGC RGC LGC RGC LGC RGC LGC

sudoku 490 1306 22 9 1704 589 .028 .122
lcss 46522 51101 8 7 52301 1701 .045 .144

gc bench 129179 131067 9 9 131071 6 .086 .075
nperm 47586 174478 14 4 202597 37507 1.406 .9
fibheap 249502 251525 1 1 254520 13558 .006 .014

knightstour 2593 314564 1161 10 508225 307092 464.902 14.124
treejoin 288666 519943 2 1 525488 7150 .356 .217
nqueens 283822 1423226 46 9 1819579 501093 70.314 24.811
lambda 205 556 23 8 966 721 .093 2.49

◮ GC time is smaller for LGC in some cases. . .



MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

RESULTS AS TABLES

Garbage collection performance

# Collected MinHeap GC time
cells per GC #GCs (#cells) (sec)

Program RGC LGC RGC LGC RGC LGC RGC LGC

sudoku 490 1306 22 9 1704 589 .028 .122
lcss 46522 51101 8 7 52301 1701 .045 .144

gc bench 129179 131067 9 9 131071 6 .086 .075
nperm 47586 174478 14 4 202597 37507 1.406 .9
fibheap 249502 251525 1 1 254520 13558 .006 .014

knightstour 2593 314564 1161 10 508225 307092 464.902 14.124
treejoin 288666 519943 2 1 525488 7150 .356 .217
nqueens 283822 1423226 46 9 1819579 501093 70.314 24.811
lambda 205 556 23 8 966 721 .093 2.49

◮ . . . and larger in some.



MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

SCOPE FOR FUTURE WORK

◮ Reducing GC-time.
◮ Reducing re-visits to heap nodes.
◮ Basing the implementation on full Scheme, not

ANF-Scheme

◮ Increasing the scope of the method.
◮ Higher order functions.
◮ Lazy languages.

◮ Orthogonal: Using the notion of demand for other analysis.



MOTIVATION SCOPE OF OUR METHOD LIVENESS RESULTS & CONCLUSIONS

CONCLUSIONS

◮ Proposed a liveness-based GC scheme. Proved
theoretically:

◮ The soundness of liveness analysis.
◮ That it can never do more collections than reachability

based GC.

◮ Implemented a prototype that:
◮ Demonstrated the precision of the analysis.
◮ Demonstrated reduced heap requirement.
◮ Reduced GC time for a majority of programs.

◮ Unfinished agenda:
◮ Improving GC time for a larger fraction of programs.
◮ Improving scope of the method.


