
JOLOKIAC++ : AN ANNOTATION BASED

COMPILER FRAMEWORK FOR GPGPU

A Thesis Submitted

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

VIBHA PATEL

to the

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR, INDIA

June 2014

Abstract

We present the design and implementation of a generic annotation based compiler

framework, JolokiaC++, which generates high quality CUDA (Compute Unified Device

Architecture) code for GPUs. The framework abstracts the details of the underlying hard-

ware using annotations, thus allowing an end-user to write parallel programs without

detailed knowledge about the hardware. The end-user can extract an acceptable level of

performance from GPU hardware without worrying about low level details of the hard-

ware like data allocation, memory organization and communication overhead.

The ultimate goal of the framework is to increase productivity without compromising

performance. The proposed key ingredients to achieve the goals of productivity and per-

formance are implicit and explicit annotations supported by task-level data flow analysis

and operation-level data flow analysis. JolokiaC++ can also optimize irregular data appli-

cations on GPUs. We developed extensions for the generic parallel constructs that allow

portable and efficient programming of codes with irregular accesses on the GPU.

We evaluate and show the effectiveness of our framework on kernels with regular and

irregular accesses. The regular access kernels include Blackscholes, Matrix-Vector mul-

tiplication, Matrix-Matrix multiplication, Jacobi 1D & 2D, Heat 2D, Vector Addition and

Convolution. We evaluated the performance of regular kernel on Nvidias GeForce 770 us-

ing CUDA version 5.5. The inspector-executor composition for irregular accesses in our

framework is evaluated by generating synthetic data for aggregation benchmarks: MOL-

DYN, IRREG and NBF. We present experimental results from compiling the irregular

vi

data kernels for execution on Fermi GTX 480, Tesla C1060 and Tesla K20c GPUs. The

speedup of optimized JolokiaC++ implementation for regular kernels ranges from 0.89 -

4242.21 as compared to OpenCL which ranges from 0.42 - 571.59 and OpenACC which

ranges from 1.08 - 526.08. The speedup of shared memory composition of irregular ker-

nels ranges from 0.59 - 11.23 as compared to the composition without shared memory

implementation which ranges from 0.5 - 7.74. The speedup of optimized JolokiaC++

when compared with hand-written OpenCL and OpenACC implementation for regular

kernels ranges from 0.52 - 17.13 and 0.199 - 79.56 respectively.

The speedup of almost all the regular kernels using optimized JolokiaC++ is better

when compared with OpenCL and OpenACC implementations. The shared memory com-

position of the inspector/executor mechanism for irregular kernels performs reasonably

well when compared with a sequential CPU based implementation and without shared

memory composition. Experimental results indicate that the annotation based framework

can help domain experts to achieve better performance using GPUs without knowing the

details of the architecture and programming intricacies.

Acknowledgements

At this moment of accomplishment, first of all I pay homage to my guide, Late. Prof.

Sanjeev K. Aggarwal. This work would not have been possible without his guidance,

support and encouragement academically as well as personally. He has been a wonderful

mentor and a facilitator. Under his guidance I successfully overcame many difficulties

and learned a lot. Despite of his extremely busy schedule, he has always accommodated

me whenever I needed his guidance. His unflinching courage and conviction will always

inspire me, and I hope to continue to work with his noble thoughts. I wish his soul roots

in peace and solace in the heaven. I can only say a proper thanks to him through my

future work.

I am also extremely indebted to my guide Prof. Harish Karnick, for picking me up as

a student at the critical stage of my Ph.D. I warmly thank my co-guide, Prof. Amey

Karkare, for his valuable advice, constructive criticism and his extensive discussions

around my work. I would like to express my deepest gratitude to my co-guide, Prof.

Vivek Sarkar, for his support and guidance in my thesis. I am thankful to all the faculty

members of the department to provide a research conducive environment.

My life as a PhD student has been full of fun, thanks to my dear friends Umarani,

Surya, Rohit, Purushottam, Amrita, Ajitha, Saiful, Puneet, Pawan and the entire class

of MTech 2008. Thanks to the administrative staff members for making all the paper

work hassle-free. Thanks to the lab staff members for technical and infrastructural sup-

port. I especially thank Research-I foundation for funding my visits to conferences. I

viii

acknowledge the financial support for my PhD from the Ministry of Human Resources

and Development.

I am grateful for the unconditional and unquestioning support from my loving hus-

band throughout my work. My very existence is indebted to my parents and I thank them

to make me what I am today. I would like to pay high regards to my brother and sisters

for their sincere encouragement and inspiration throughout my research work and lifting

me uphill this phase of life.

Last but not the least, I thank the God almighty for giving me strength all my life.

Dedicated

to

My Family Members & Respected Teachers

x

Contents

List of Tables xiv

List of Figures xvi

List of Algorithms xix

List of Abbreviations xxi

1 Introduction 1

1.1 Key Challenges for General Purpose Programming on GPU 3

1.1.1 Lack of Memory Hierarchy Management support 3

1.1.2 Lack of Language Support . 4

1.1.3 Thread Block Synchronization on GPU 4

1.1.4 Inadequate Parameter Modeling Support 4

1.2 GPU Programming using JolokiaC++ 5

1.3 Our Contributions . 5

1.4 Organization of the Thesis . 8

2 Background and Related Work 9

2.1 Basic Terms . 9

2.2 Background . 10

2.2.1 GPU Parallel Computing Architecture 10

xi

xii CONTENTS

2.2.2 Execution Model . 11

2.2.3 CUDA Programming Model . 12

2.3 Related Work . 12

3 Language Design 21

3.1 Design of JolokiaC++ Framework . 23

3.1.1 JolokiaC++ Programming Model 24

3.1.2 JolokiaC++ Annotations . 25

3.1.3 Task-Level Data Flow Graph . 30

3.1.4 Operation-Level Data Flow Graph 31

4 Regular Applications 37

4.1 Memory Access Operators . 38

4.2 Compiling high level JolokiaC++ constructs 42

4.2.1 Task-Level Data Flow Analysis for Optimizing Communication . 46

4.2.2 Operation-Level Data Flow Analysis for Optimizing Memory Ac-

cess . 47

5 Irregular Data Applications 55

5.1 Preliminaries of the Framework . 58

5.2 Optimization of Irregular Applications 59

5.2.1 Flow Analysis Framework for GPU 61

5.2.2 Code Generation using Sparse Polyhedral Framework 65

5.2.3 Executor Code Generation . 73

5.2.4 Inter-Block synchronization using lock-free barrier 74

5.3 Empirical Search for Selection of Optimal Tile Size and Scheduling Policy 76

6 Performance Measurement 79

CONTENTS xiii

6.1 Experimental Methodology and Performance Results for Regular Access

Kernels . 79

6.1.1 Ease of Programming . 81

6.1.2 Performance Results and Discussion 84

6.2 Experimental Evaluation of Irregular Access Kernels 85

7 Conclusion and Future Work 101

Appendices 103

A Annotation Grammar Specification 105

Publications 119

xiv CONTENTS

List of Tables

3.1 CPU-GPU Memory Space Management Annotations 28

6.1 Test Set and their Configuration . 80

6.2 Execution time of benchmarks in milliseconds 83

6.3 Speedup of the benchmarks over sequential CPU implementations 83

6.4 Configuration of GPUs . 85

6.5 Execution time of Sequential (Seq) and Parallel (Par) hand-coded CPU

implementation in milliseconds . 86

6.6 Execution Time of IRREG in milliseconds 87

6.7 Execution Time of MOLDYN in milliseconds 88

6.8 Execution Time of NBF in milliseconds 89

6.9 Average Reordering Time in milliseconds 89

xv

xvi LIST OF TABLES

List of Figures

2.1 CUDA Parallel Computing Architecture and Programming Model 11

3.1 Compilation Framework of JolokiaC++ 22

3.2 Translation spaces in JolokiaC++ . 24

3.3 Translation of JolokiaC++ code . 25

3.4 Task-Level Data Flow Graph . 32

4.1 Memory Access Patterns and their Respective Operator Annotations with

their Linearized Representation. 38

4.2 Inter and Intra-thread access of elements in absence of scratchpad anno-

tation . 41

4.3 Inter and Intra-thread access of elements in presence of scratchpad anno-

tation . 42

4.4 Memory Access Pattern of Naive Matrix-Vector Multiplication without

Scratchpad Annotation . 51

4.5 Memory Access Pattern of Matrix-Vector Multiplication using Scratch-

pad Annotation . 52

4.6 Operation-Level Data Flow Tree for Matrix-Vector Multiplication 53

4.7 Composed Task and Operation-Level Data Flow Tree 54

5.1 Irregular Memory Access . 56

xvii

xviii LIST OF FIGURES

5.2 Compiler Framework for Optimizing Irregular Applications 58

5.3 Loop Flow Graph for the Code in Listing 5.1 60

5.4 Scatter/Gather for Simplified MOLDYN Kernel 66

5.5 Compile Time Composition of Inspector 73

6.1 Performance of Matrix Multiplication 90

6.2 Performance of Matrix Vector Multiplication 91

6.3 Performance of Jacobi 2D . 92

6.4 Performance of Heat 2D . 93

6.5 Performance of Convolution . 94

6.6 Performance of 1D Benchmarks . 95

6.7 Scatter plot of 1000 molecules . 96

6.8 Performance of IRREG kernel . 97

6.9 Performance of MOLDYN kernel . 98

6.10 Performance of NBF kernel . 99

6.11 Data Transfer Overhead . 100

List of Algorithms

4.1 Determining Block and Grid Dimension for linearized array 43

4.2 Global Task-Level Data Flow Analysis 48

4.3 Task-Level Data Flow Variables Analysis 48

4.4 Memory Access Optimization . 50

5.1 Loop Flow Analysis . 62

5.2 Global Flow Analysis . 63

5.3 Automatic Shared Memory Tiling . 64

5.4 First Touch Policy . 69

5.5 Wavefront Generation . 72

5.6 Wavefront Regularization . 72

5.7 Intra-Loop Memory Access Mechanism 74

5.8 Lock-free Interblock Barrier . 76

xix

xx LIST OF ALGORITHMS

List of Abbreviations

GPU Graphics Processing Unit

GPGPU General-Purpose Computing on Graphics Processing Units

CUDA Compute Unified Device Architecture

OpenACC Open Accelerators

OpenCL Open Computing Language

SM Streaming Multiprocessor

SP Streaming Processor

SIMT Single Instruction Multiple Thread

DRAM Dynamic Random Access Memory

AST Abstract Syntax Tree

BLAS Basic Linear Algebra Subprograms

TFG Task-Level Data Flow Graph

TFV Task-Level Data Flow Variable

AO Array Object

OFG Operation-Level Data Flow Graph

LFV Loop Flow Variable

LFG Loop Flow Graph

AP Array Part

FT First Touch

FPGA Field Programmable Gate Array

xxi

xxii Abbreviations

Chapter 1

Introduction

Processor designers have turned towards architectures with increased degree of explicit

parallelism in response to the challenges faced by frequency scaling. Today’s hardware

offerings range from general purpose chips with a few cores to many cores graphics pro-

cessors (GPUs) that support large-scale data parallel computations. Graphics Process-

ing Units (GPUs), with many-core architecture have led the race due to their floating

point performance. However, adopting these architectures has been a process plagued

with legacy issues. The problem of partitioning existing single-threaded applications to

maximally utilize available multiple cores has been a challenging issue. Languages like

OpenCL [11] and CUDA [2] greatly improved speed and responsiveness for a wide spec-

trum of applications by providing a standard interface for general-purpose programming

of GPUs. However, using these languages effectively requires explicit management of

numerous low-level details which involves use of communication and synchronization

constructs. This burden makes GPU programming difficult and error-prone, preventing

wide access to these powerful devices for most programmers. While high level abstrac-

tions serve well for parallel programming, their semantics is based predominantly on what

happens in sequential architectures. As a result compilers for these languages provide

limited scalability in performance for complex programming architectures like GPUs.

2 CHAPTER 1. INTRODUCTION

An alternate to writing parallel programs is to have a parallelizing compiler that can

automatically parallelize sequential applications. Auto-parallelization differs from par-

allel programming in that the programmer does not have to worry about using parallel

constructs in the program [12, 41]. It is the compiler’s responsibility to take advantage

of the parallelism existing in the underlying architecture. The advantage of this approach

is that existing/legacy applications need not be modified, e.g. applications just need to

be recompiled with a parallel compiler. Therefore, programmers need not learn new

programming paradigms. However, this is achieved at the cost of reduced performance

improvement.

The work presented in this thesis is based on a third approach, which is an annotation

based approach. We present the design and implementation of a generic annotation based

compiler framework that can be used to program GPGPUs where the programmer is only

required to have a clear idea about those parts of a program that must be parallelized.

We call our framework JolokiaC++. JolokiaC++ uses annotations to extend the C++

language to program GPUs. A JolokiaC++ programmer can exploit the parallelism of

GPUs using annotations, without writing complex low level code as required by other

mainstream approaches (OpenCL or CUDA). The JolokiaC++ complier translates a high-

level annotated C program to efficient low-level CUDA code. This makes GPUs more

accessible while effectively exploiting their computational power. We demonstrate the

utility of JolokiaC++ by providing a comparison between JolokiaC++ code and CUDA

code to show the ease of programming as also the performance improvement obtained

when using JolokiaC++.

GPUs have become widely used for general-purpose computation, and have the po-

tential to achieve high peak compute rates. This appealing property comes from the

massively parallel architecture of GPUs. However, this leads to high sensitivity in their

throughput to the presence of irregularities in memory access patterns in an application.

Irregularities in an application may degrade GPUs performance by as much as an order of

1.1. KEY CHALLENGES FOR GENERAL PURPOSE PROGRAMMING ON
GPU 3

magnitude. When the memory access pattern is regular, the GPUs perform extremely well

using high level programming models like OpenACC [10, 4]. However, a large number

of interesting applications have irregular data access patterns. Efficient parallelization

of codes with irregular accesses on the GPU is still a challenging problem. Hence, it

is important to develop mechanisms which can help generate efficient parallel code for

applications with irregular memory accesses. We overcome this problem by generating

schedules which can regroup data and iterations of loop kernel in such a way that the

number of consecutive independent iterations is maximized for execution on streaming

multiprocessors.

1.1 Key Challenges for General Purpose Programming

on GPU

We summarize the key challenges for obtaining high performance from general purpose

GPU code as they are the main focus of our proposed framework.

1.1.1 Lack of Memory Hierarchy Management support

Performance of applications is highly dependent upon the efficient utilization of memory

hierarchy. Unlike cache based systems the memory hierarchy of GPUs is under control

of the programmer. GPUs use scratch-pad memory which requires explicit instructions to

move data from global memory. Lack of compiler support to manage scratch-pad memory

is a motivating factor to automate this process. Further, random access in irregular ker-

nels leads to non-coalesced global access which reduces memory bandwidth utilization

in GPU.

4 CHAPTER 1. INTRODUCTION

1.1.2 Lack of Language Support

GPUs lack high level language support. Programmers need to know architectural intrica-

cies to effectively utilize GPU features. We provide compile time and runtime support for

a generic parallel construct like for in JolokiaC++ to make it work on GPUs. We pro-

vide operators like gpuIn and gpuOut to simplify the data transfer between the CPU and

GPU. In addition to this we introduce several operator annotations to guide the process of

memory hierarchy optimizations.

1.1.3 Thread Block Synchronization on GPU

In CUDA, syncthreads() is the barrier function which ensures proper intra-block

communication. However, there is no explicit support for inter-block communication.

Currently, this type of data communication occurs via global memory. It is followed by

barrier synchronization via the CPU. That is, the barrier is implemented by terminating

the current kernel’s execution and relaunching the kernel. This is an expensive opera-

tion. To overcome this problem we use a lock-free barrier implementation for inter-block

communication.

1.1.4 Inadequate Parameter Modeling Support

Blocks and threads are the basic unit of execution on GPUs. However, the programmer

has to experiment with a number of blocks and threads to get optimal performance. We

provide annotations to model the number of threads per block to gauge the performance.

To support modeling of parameters on GPU, we provide tile and scratchpad operators.

1.2. GPU PROGRAMMING USING JOLOKIAC++ 5

1.2 GPU Programming using JolokiaC++

In this section, we illustrate the usefulness of programming with JolokiaC++ using an

example.

Example 1.1: Listing 1.1 presents JolokiaC++ code to add two vectors, each containing

32 bit floating point numbers. A, B and C in the code are representatives for float arrays

in C space. The parameters to gpuIn are the objects that are to be copied from CPU to

GPU, while parameters to gpuOut are the objects to be copied from GPU to CPU. The

tile operator provides information required for determining block and grid dimensions.

The snippet in Listing 1.2 shows the CUDA code required to perform the same task.

It is also the code we expect the translator to generate while compiling the program in

Listing 1.1. Notice the amount of low level detail that is hidden by the high level an-

notations in Listing 1.1. This illustrates the advantage of using JolokiaC++ as it allows

the programmer to write simple high level code without compromising performance on a

multicore architecture like GPU.

The annotations like gpuIn, gpuOut are provided by the user to assist JolokiaC++

compiler in code generation. In addition to these explicit annotations, JolokiaC++ can

automatically infer information associated with array objects as implicit annotations to

allow accessing array elements through primitive array types.

1.3 Our Contributions

We have made the following contributions:

• We describe the design and implementation of JolokiaC++, a compiler framework

to generate CUDA code from high-level language abstractions provided through

implicit and explicit annotations. We explore compiler techniques to recognize

high-level abstractions to exploit their semantics for parallelization.

6 CHAPTER 1. INTRODUCTION

� �
void vecAdd(f32Array &A,f32Array &B,f32Array &C){

A = B + C
}
int main(){

f32Array A(N),B(N),C(N);
/*---- Task call site -----*/
#pragma jolokia gpuIn(A,B,C) gpuOut(A)

tile(BLK1 ,1,1)
vecAdd(A,B,C); /* GPU Task */

return 0;
}� �

Listing 1.1: JolokiaC++ Code for Vector Addition

� �
#define N 4096

__global__ void vecAdd(int *A, int *B, int *C){
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if(idx < N){

C[idx] = A[idx] + B[idx];
}

}
int main (void){

int Host_a[N], Host_b[N], Host_c[N]; //Host array
int *Device_a , *Device_b , *Device_c; //Device array
// Initialize Host array
...
// Declare and initialize grid and block dimensions
...
//Allocate the memory on the GPU
cudaMalloc((void **)&Device_a , N*sizeof(int));
cudaMalloc((void **)&Device_b , N*sizeof(int));
cudaMalloc((void **)&Device_c , N*sizeof(int));
//Copy Host array to Device array
cudaMemcpy(Device_a , Host_a , N*sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(Device_b , Host_b , N*sizeof(int), cudaMemcpyHostToDevice);

//Make a call to GPU kernel
vecAdd <<< gridDim , blockDim >>> (Device_a , Device_b , Device_c);
//Copy back to Host array from Device array
cudaMemcpy(Host_c , Device_c , N*sizeof(int), cudaMemcpyDeviceToHost);
//Free the Device array memory
cudaFree(Device_a);
cudaFree(Device_b);
cudaFree(Device_c);
return 0;

}� �
Listing 1.2: CUDA Code for Vector Addition

1.3. OUR CONTRIBUTIONS 7

• We present a compiler system extension to automate parallelization of data par-

allel regular kernels on GPUs. We introduce a set of automatic optimizations for

GPU architectures, that includes memory optimizations that improve locality, re-

duce bank conflicts, and permit vectorization. The framework analyzes the opera-

tors supported by the language, identifies the off-chip memory access patterns, and

optimizes the memory accesses through vectorization and coalescing to achieve

high data access bandwidth. These optimizations are implemented in JolokiaC++.

• We present a compiler and runtime system extension to automate parallelization

of irregular kernels with subscripted subscripts for execution on GPUs. We use a

combination of compile time analysis and composition of runtime data and iteration

reordering transformations to optimize the performance of irregular kernels with

irregular memory accesses on GPUs.

• We evaluate the performance of the code generated by JolokiaC++ for kernels like

Blackscholes, Matrix-Vector multiplication, Matrix-Matrix multiplication, Jacobi

1D and 2D, Heat 2D, Vector Addition and Convolution. We also evaluate the effec-

tiveness of the framework for irregular memory access kernels: IRREG, MOLDYN

and NBF. The performance of the kernels is presented both in terms of execution

time and speedup. The speedup of optimized JolokiaC++ implementation for regu-

lar kernels ranges from 0.89 - 4242.21 as compared to OpenCL which ranges from

0.42 - 571.59 and OpenACC which ranges from 1.08 - 526.08. The speedup of

shared memory composition of irregular kernels ranges from 0.59 - 11.23 as com-

pared to the composition without shared implementation which ranges from 0.5 -

7.74. The speedup of almost all the regular kernels using optimized JolokiaC++ is

better when compared with OpenCL and OpenACC implementations. The shared

memory composition of the inspector/executor mechanism for irregular kernels per-

forms reasonably well when compared with a sequential CPU based implementa-

8 CHAPTER 1. INTRODUCTION

tion and without shared composition. The speedup of optimized JolokiaC++ when

compared with hand-written OpenCL and OpenACC implementation for regular

kernels ranges from 0.52 - 17.13 and 0.199 - 79.56 respectively.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. Background and Related work is discussed

in Chapter 2. Chapter 3 describes the design and implementation of the language for

annotations in JolokiaC++. Chapter 4 describes how to use language construct for regu-

lar kernels. It also discusses the optimizations supported by the framework. In Chapter

5, we describe the optimizations to improve the performance of irregular kernels with

indirect memory accesses. In Chapter 6, we show the effectiveness of our approach on

various benchmark codes and provide results for kernels with regular and irregular ac-

cesses. Chapter 7 concludes the thesis and gives directions which can be pursued to

further improve GPGPU programming.

Chapter 2

Background and Related Work

Multi-core and many-core architectures have emerged as an elegant solution to meet the

increased computational requirements of current applications while avoiding problems

like chip overheating. The GPU is probably the dominant massively parallel architecture

that is available. Nevertheless, taking advantage of this architecture has been a major con-

cern for traditional serial programmers. Writing parallel codes for existing/new problems

to work on current GPUs is a non-trivial task. One of the most difficult tasks in moving

from serial to parallel programming is in fact adopting a completely new mindset. CUDA

(Compute Unified Device Architecture) programming models high performance imple-

mentations for general purpose computational tasks on NVIDIA GPUs. However, man-

ual development of optimized CUDA code for efficient data access is non-trivial. Hence,

source to source translation of sequential programs to efficient multi-threaded CUDA pro-

grams is of interest for GPGPU programmers. In this chapter we present aspects which

will help understand our work and relate it to other work in the field.

2.1 Basic Terms

We define some basic terms used throughout the thesis.

10 CHAPTER 2. BACKGROUND AND RELATED WORK

Definition 2.1. (Kernel) A function loaded onto the device (GPU) by the host (CPU)

command is called a kernel.

Definition 2.2. (Annotation) An annotation in the JolokiaC++ programming language

is a form of syntactic metadata used to annotate variables, operators, and functions.

Definition 2.3. (Pragma) A pragma is an explicit annotation interpreted differently in

order to address the requirements of GPU hardware.

Definition 2.4. (Stencil Codes) Stencil Codes are computations that involve repeated

updating of values connected with points on a multi-dimensional grid, utilizing only the

values in a set of neighboring points.

2.2 Background

As our work develops annotation based compiler framework for GPUs, and generates

CUDA code for such devices, we discuss the GPU parallel computing architecture and

CUDA programming model in detail in this section.

2.2.1 GPU Parallel Computing Architecture

The GPU parallel computing architecture contains a set of multiprocessors. Each stream-

ing multiprocessor (SM) contains a set of processing cores called streaming processors

(SPs). Fig. 2.1(a) shows the GPU parallel computing architecture with different memory

spaces: global memory, shared memory, constant cache, texture cache, and registers. The

off-chip global memory is a large memory and has very high latency. The shared memory

is an on-chip memory present in each SM and is organized into banks. When multiple

addresses belonging to the same bank are accessed at the same time, it results in bank

conflict. Each SM has a set of registers associated with it. The constant and texture mem-

ories are read-only regions in the global memory space and they have on-chip read-only

2.2. BACKGROUND 11

caches. Accessing constant cache is faster, but it has only a single port and hence it is

beneficial when multiple processor cores load the same value from the cache. Texture

cache has higher latency than constant cache, but it does not suffer greatly when memory

read accesses are irregular and it is also beneficial for accessing data with spatial locality.

(a) GPU Parallel Computing Architecture (b) CUDA Programming Model

Figure 2.1: CUDA Parallel Computing Architecture and Programming Model

2.2.2 Execution Model

The parallel portions of an application are executed on the device (GPU) as kernels, with

one kernel executed at a time. A CUDA kernel launches a grid of thread blocks (as

shown in Figure 2.1(b)), a group of threads that should be executed concurrently. Each

thread block consists of several warps, which are much smaller groups of threads. A

warp is the smallest unit of hardware execution. The SM executes instructions from a

warp in an SIMT (Single- Instruction Multiple-Thread) fashion. In SIMT execution, a

single instruction is fetched and all the threads in the warp execute the same instruction

in lockstep, except when there is control divergence.

12 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.3 CUDA Programming Model

CUDA is NVIDIA’s parallel computing architecture for GPUs. It is an interface which en-

ables programmers to access the highly parallel hardware of programmable GPUs. CUDA

is an extension of the C programming language, with the CUDA runtime library provid-

ing a collection of routines for device memory management, host-device stream synchro-

nization, and execution control functions (among others). CUDA is a data parallel SIMT

(Single Instruction Multiple Thread) architecture, in which the same programmer defined

kernels execute on all launched threads. These threads are launched in batches of blocks

and grids, where blocks are collections of threads and grids are collections of blocks.

Kernel Performance Tuning

When all threads of a warp execute a load, if all accessed locations fall into the same

section, only one DRAM request will be made and the access is fully coalesced. When the

access locations spread across burst section boundaries, coalescing fails, multiple DRAM

requests are made and the access is not fully coalesced. Efficient use of global memory

(DRAM) bandwidth is one of the important performance considerations for massively

parallel processors.

2.3 Related Work

GPUs are widely used for general-purpose computation and have the potential to achieve

high peak compute rates. Programming models such as NVIDIA’s Compute Unified De-

vice Architecture (CUDA) [2, 3] and Khronos Group’s Open Compute Language

(OpenCL) [11, 35] facilitate general purpose programming for GPUs through APIs that

expose the low-level details of the device architecture to the programmer. The program-

mer is expected to manually tune low-level code for a specific device in order to fully

exploit its processing capability. On the other hand, OpenACC [10, 4] provides high level

2.3. RELATED WORK 13

abstractions for accessing GPUs but it is unable to give good gains for codes with irreg-

ular memory access patterns. Rapidmind [58] is a parallel development framework that

allows the user to write parallel programs using standard C++ language. The framework

uses dynamic compilation to execute the program in parallel and targets x86, Cell BE and

GPGPUs. PeakStream [53] is a parallel development framework similar to RapidMind.

PeakStream programs are compiled into an intermediate language using a custom com-

piler and then just-in-time compiled at execution time. Both, RapidMind and PeakStream

are not publicly available.

Sarkar et. al. [68] describes a matrix and non-matrix based generic framework for

representing iteration-reordering transformations. Li et. al. [46] presents a transformation

framework which performs Λ-transformations like permutation, skewing and reversal, as

well as a transformation called loop scaling. An algebraic representation based unified

data and control transformation for distributed shared memory machines is presented by

Cierniak et. al. [25]. The advances in automatic parallelization and optimization of pro-

grams are to large extent based on the use of polyhedral model [19, 32, 21]. Baskaran et.

al. [16, 15] gave a polyhedral model based compiler framework for affine loops. Their

framework performs an empirical search for determining best loop transformation param-

eters, which includes loop tiling sizes and unrolling factors.

Polyhedral Parallel Code Generation (PPCG) for CUDA with multilevel tiling strat-

egy and a code generation scheme for the parallelization and locality optimization of

imperfectly nested loops is introduced by Verdooaege et. al. [74]. In order to overcome

the load imbalance which may occur due to pipeline fill-ups and drain delay in GPUs,

two new parallelism exposing transformations are proposed by Di et. al. [30]. An an-

notation based CUDA-free interface to implement stencil methods on GPU hardware is

introduced by Unat et. al. [73]. Meng et. al. [49] presents a data-flow driven GPU

performance projection for multi-kernel transformations. The transformation framework

requires users to provide CPU code skeletons for a sequence of parallel loops. The frame-

14 CHAPTER 2. BACKGROUND AND RELATED WORK

work can then automatically identify opportunities for multi-kernel transformations and

data management. Majeti et. al. [47] presents a compiler-driven data-layout transforma-

tion framework for heterogeneous platforms. The data layout framework is integrated

with the data parallel construct, forasync of Habanero-C, and enable the same source

code to be compiled with different data layouts for various architectures. The framework

requires the programmer or an auto-tuner to provide a schema of the data layout.

Programming Integrated Parallel System (PIPS) [8], an automatic parallelization sys-

tem, can be used for source to source program optimization, program compilation, auto-

matic parallelization etc. PIPS accepts programs written in C or Fortran77. It supports

analysis techniques such as data flow, control flow, inter procedural analysis and depen-

dence analysis with support for generating code for multiple architectures. Ongoing work

in PIPS includes adding support for modern frameworks such as CUDA and OpenCL and

inclusion of programming languages like Fortran90/95 and C99. These tools aim at sim-

plifying the task of extracting parallelism for the programmer without compromising the

maximum achievable performance gain. These tools work well for affine array access

patterns with well understood semantics of popular benchmarked code.

OpenACC extends the familiar face of OpenMP pragma programming to encompass

co-processors. It is a set of directive-based extensions to C, C++ and Fortran that al-

lows code with annotations for offloading from a CPU host to an attached accelerator.

When using OpenACC, the programmer has to manually annotate the source code with

some pragmas that expose parallelism and might steer some data mapping. The PGI com-

piler then generates CUDA code for the GPU. The performance of the resulting mapping

depends both on the quality of the code generated by the tool and the ability of the pro-

grammer in setting all the required pragmas. The annotations supported in OpenACC

are explicit pragma based annotations. On the other hand, the annotations in JolokiaC++

include both explicit and implicit annotations. The implicit annotations are designed to

exploit fine grain parallelism using operation-level data flow analysis. The explicit an-

2.3. RELATED WORK 15

� �
#pragma acc data copyin(A[0:N * N], B[0:N * N]) copyout(C[0:N * N])
{

#pragma acc region if(accelerate)
{

#pragma acc loop independent
for (int i = 0; i < N; i ++){

#pragma acc loop independent
for (int j = 0; j < N ; j ++){

float sum = 0;
#pragma acc loop seq

for (int k = 0; k < N ; k ++) {
sum += A[i * N + k] * B[k * N + j];

}
C[i * N + j] = sum;

}
}

}
}� �

Listing 2.1: Code snippet of Matrix Multiplication using OpenACC

notations in JolokiaC++ work at coarser level using task-level data flow analysis. Code

Listing 2.1 and 2.2 shows the code snippet for Matrix multiplication using OpenACC and

JolokiaC++ respectively.

CUDA-lite, an annotation based tool to automatically generate CUDA code from

given annotated ANSI C code is presented by Ueng et. al. [71]. The annotations de-

veloped in the tool are complex and difficult to use. One of main reasons behind this

is the fact that compiler analysis is not integrated in the tool. Samadi et. al. [67] pro-

posed an adaptive input aware compilation system, called Adaptic, which automatically

generates optimized CUDA code for a wide range of input sizes and dimensions from a

high-level algorithmic description. The compiler framework proposed by Yang et. al. [76]

optimizes GPGPU programs using a set of novel compiler techniques to improve GPU

memory usage and distribute workload in threads and thread blocks. A mathematical

model to capture and categorize memory access patterns of affine loops to improve the

performance of GPU memory subsystem is presented by Jang et. al. [40]. Oancea et.

16 CHAPTER 2. BACKGROUND AND RELATED WORK

� �
void matrix_mult(f64Array &A,f64Array &B,f64Array &C){

f32Scalar pval;
_for(int i = 0; i < N; i++)

_for(int j = 0; j < N; j++){
pval += aview(A, N, i, row) * aview(B, N, j, column);

C(i,j) = pval;
}

}

#pragma jolokia gpuIn(A,B,C) gpuOut(C) tile(16,16,1)
scatchpad(A,16,16,1) scatchpad(B,16,16,1)

matrix_mult(A,B,C);� �
Listing 2.2: Code snippet of Matrix Multiplication using JolokiaC++

al. [52] proposed a fully automatic approach to loop parallelization using a novel logical

inference technique. An annotation guided dynamic compilation is presented by Grant et.

al. [34]. A work on annotating user defined abstraction for enforcing traditional compiler

optimizations is presented by Quinlan et. al. [55]. Broadway compiler [37] performs

high-level semantic encapsulation of PLAPACK library functions. A new programming

interface called OpenMPC is proposed by Seyong et. al. [44], to provide an abstraction to

the complex CUDA programming model. Further, to overcome some of the inefficiencies

of the original OpenMPC tuning scheme a new tuning strategy, called Modified IE (MIE)

is proposed by Sabne et. al. [64].

Unlike the existing approaches, we present a novel annotation based compiler frame-

work JolokiaC++, that has the potential to accomplish high performance for existing/new

legacy codes to work on the GPU. A JolokiaC++ programmer can exploit GPU paral-

lelism using annotations, without writing complex low level code as required by other

mainstream approaches (OpenCL or CUDA). The JolokiaC++ complier translates a high-

level annotated C++ program to efficient low-level CUDA code. This makes GPUs more

accessible while effectively exploiting their computational power.

Compile time data dependence analysis of loops accessing subscripted arrays is not

2.3. RELATED WORK 17

always adequate to exploit hidden parallelism that may manifest itself only at runtime.

Traversing data dependences at run-time is necessary for some run-time reordering trans-

formations. Taking this into consideration, a formal composition of runtime data and it-

eration reordering transformation at compile time to improve cache performance is given

by Strout et. al. [69]. Irregularities in code have been widely studied for high perfor-

mance computing on General-Purpose Graphics Processing Units(GPGPUs or GPUs for

short) [45, 76, 78]. A considerable amount of research to find efficient ways for the com-

pile and run-time support based on the inspector-executor technique is developed by Das

et. al.[28]. Researchers have developed run-time data dependence analysis to handle

non-affine memory references [54].

Saltz. et. al. [65, 27] describe a set of index set transformations that can efficiently

solve a form of irregular problems that are start-time schedulable for distributed mem-

ory machines. Parallelization of Fortran and C programs with irregular access patterns

is supported by the CHAOS [1] runtime library which is specifically targeted towards

distributed memory systems that supports message passing or distributed shared mem-

ory. Software schemes presented in [50, 60, 62, 59] analyze dependence structure of

the code accessing subscripted subscripts at runtime and try to run parts of it in parallel

protected by synchronization. Rus et. al. [63] take this further by adding the ability to

traverse all data dependences at run-time if necessary. They perform a hybrid (static and

dynamic) data dependence analysis inter-procedurally. [48, 31] contributes in improving

the memory hierarchy performance for irregular applications using data and computation

reordering. A new approach of slice classification for automatic generation of optimized

parallel code for N-body simulations is covered in [29]. Other software schemes [36]

speculatively run the code in parallel and later recover if a dependence violation is de-

tected.

The massive data parallelism offered by recent architectural enhancements in GPU’s

comes at the cost of a complex programming model. Researchers have developed several

18 CHAPTER 2. BACKGROUND AND RELATED WORK

strategies for overcoming the compilation challenges on the GPU. An auto-parallelization

framework for optimization of Affine loop nests on GPGPUs is presented by Baskaran et.

al. [17]. The C-to-CUDA by Baskaran et. al. [17], is the first automatic source-to-source

compiler based on PLuTo [20]. A preliminary result of an annotation based automated

tool for reducing GPU programming complexity is presented by Ueng et. al. [71]. Com-

piling irregular applications on a cell broadband processor using the inspector-executor

approach has been presented by Bhatotia et. al. [18]. Strout et. al. [69, 43] presents

the Sparse Polyhedral Framework (SPF) for generating efficient inspector and executor

code for multi-core CPUs. The study of an irregular application’s implementation on

a graphics pipeline is covered in [72]. An extension to StarSs programming model for

platforms with multiple GPUs proposed by Ayguade et. al. [14] provides an alternative

programming model for exploiting functional parallelism based on building a task depen-

dence graph at run-time with the help of explicit annotations. A comparative study of

data-driven and topology-driven implementations of graph algorithms is given by Nasre

et. al. [51]. They also devised hybrid approaches that combine both the techniques which

outperform each of the two individually.

A speculative parallelization based mechanism to execute iterations of DOACROSS

loops on GPU is described by Feng et. al. [33]. In their approach, the misspeculation

check is also performed on the GPU. In case of misspeculation, the incorrectly executed

iterations are identified and executed on the CPU if there are other misspeculated itera-

tions depending on them; otherwise they are executed again on the GPU. Paragon [66]

identifies possibly data parallel loops and runs them speculatively on the GPUs and also

runs them sequentially on the CPU. In case of misspeculation, the data generated by the

GPUs is ignored and the data generated by the CPU is used. Anantpur et. al. [13] work

differs from both these approaches as they do not execute any iterations speculatively on

the GPU. In their approach, the loop is executed sequentially on the CPU while the de-

pendence computation is going on, so that in case if the number of levels in the loop is too

2.3. RELATED WORK 19

high to benefit from running on the GPU, the GPU run can be stopped and the data from

the CPU run can be used. Kim et. al. [42] used a profiling based approach to specula-

tively parallelize loops on a cluster. It tries to optimize the communication and validation

overheads. Jablin et. al. [39] presents an inspector executor based approach to handle

GPU-CPU communication. However, we use an inspector executor based approach to

handle the memory hierarchy of the GPU.

We present a compilation framework for applications with irregular accesses which

can simplify general purpose programming of such applications on a GPU. We develop a

framework which allows high level specification and control of computational granularity

along with a good load balancing mechanism for scheduling and mapping of iterations

and data respectively. We used the concept of dynamic scratch pad memory manage-

ment which is well-known in the context of embedded systems [70] to manage the shared

memory of a streaming multiprocessor. Prior work on run-time parallelization on multi-

ple processors includes data and iteration partitioning for irregular applications [61]. In

contrast to these, the work presented here extends the compiling support for the GPU

in line with the inspector-executor paradigm. We propose the use of an automatic code

generator for memory communication and run-time parallelization to deal with irregular

kernels on the GPU.

20 CHAPTER 2. BACKGROUND AND RELATED WORK

Chapter 3

Language Design

Moores law states that the number of transistors on a chip will double every 18 to 24

months, and this has been true for the last 40 years. It appears to continue for another

decade. But Moores observation has been simplified to mean a doubling of performance

every 18 to 24 months, and that too has been true until now, but not anymore. This re-

sulted in transition to multi and many core processors. As a result, high performance

computing will have to make much more effective and efficient use of high degrees of

parallelism available through multiple cores and GPU architectures. This requires the de-

velopment of more sophisticated application code. The complex programming model of

GPUs greatly increases the compile-time optimization difficulties for applications. While

high level abstractions serve well for parallel programming, they are usually ill suited

for the complex programming model offered by GPUs. As a result compilers for such

languages provide limited scalability in performance.

In recent years, OpenMP has transitioned from being solely focused on shared-memory

systems to include accelerators, embedded systems, multicore and real-time systems.

OpenMP 4.0 [5, 6] includes support for accelerators, SIMD constructs to vectorize both

serial as well as parallelized loops, error handling, thread affinity, and tasking extensions.

OpenMP 4.0 API provides several extensions to its task-based parallelism support.

22 CHAPTER 3. LANGUAGE DESIGN

Parse Implicit and Explicit
Annotations

(ROSE)

Restructuring
Global

 Memory Access

CUDA
Code

Generation

Input
 JolokiaC++ file

.jc

 Output CUDA file with
.cu

Figure 3.1: Compilation Framework of JolokiaC++

Tasks can be grouped to support deep task synchronization and task groups can be aborted

to reflect completion of cooperative tasking activities such as search. Task-to-task syn-

chronization is also supported through the specification of task dependency. Our approach

in task-level data flow analysis is very similar to that supported in OpenMP 4.0, however,

it is adapted to the context of our language. And similarly, the operation-level data flow

graph is also a data flow graph but at the level of operations (statements) inside a task.

So, the two graphs are at different granularities.

In this Chapter, we describe the design and implementation of a generic annotation

based compiler framework that can be used to program GPGPUs. The programmer is

only required to have a clear idea about the parts of programs that will be parallelized.

and requires very little knowledge of hardware architecture, and can gauge the perfor-

mance to an acceptable level on GPUs. Unlike the existing approaches, JolokiaC++ uses

annotations for extending C++ to program GPUs. A JolokiaC++ programmer can exploit

the parallelism of a GPU using annotations and without writing complex low level code as

required by other mainstream approaches like OpenCL or CUDA. JolokiaC++ complier

translates high-level annotated C program to efficient low-level CUDA code. This makes

GPUs more accessible while effectively exploiting their computational power.

3.1. DESIGN OF JOLOKIAC++ FRAMEWORK 23

3.1 Design of JolokiaC++ Framework

JolokiaC++ enhances C++ with an annotation language to enable the user to write GPU

programs without worrying about the low level details of the underlying architecture. The

high level annotation language allows a user to express data parallelism by specifying

operations at the aggregate data collection level. The flow of control in the program for

dynamic data types is made explicit at compile time.

Figure 3.1 shows the high level compilation framework implemented for JolokiaC++.

The application developer writes a program in JolokiaC++ using explicit annotations

specified through pragmas. These annotations provide implementation specific infor-

mation about the language extensions to the compiler in a simple declarative manner.

Further, implicit annotations are added to the language to provide high level abstractions

for vector and scalar accesses. The semantic interpretation for these implicit annotations

(associated with array objects) allows accessing array elements through primitive array

types. We also introduce a way to specify the range of elements of the collection object

by means of the tile operator. The tile operator enables automatic code generation for

inter-thread memory access, thereby exploiting parallelism within a kernel by spawning

threads/thread blocks.

We use a source-to-source compiler infrastructure, ROSE [57], to explore compiler

techniques to recognize high-level abstractions and to exploit their semantics for auto-

matic parallelization. Our compiler framework takes as input annotated C code that is

functionally correct, but does not include any lower level device-specific performance

optimizations. The framework analyzes operator annotations to determine off-chip mem-

ory access patterns, and optimizes these accesses through vectorization and coalescing to

achieve high data access bandwidth.

In summary, the process of translation involves interpreting the semantics of the pre-

defined operators and data types supported by the annotation language and generating the

corresponding code for CUDA enabled GPUs using the hints provided through explicit

24 CHAPTER 3. LANGUAGE DESIGN

f32Array A(Size);
f32Array B(Size);
f32Array C(Size);
#pragma gpuIn(A,B) gpuOut(C)

vecAdd(&A, &B, &C);

float *A_pointer = A.getPointer();
float *B_pointer = B.getPointer();
float *C_pointer = C.getPointer()
#pragma gpuIn(A,B) gpuOut(C)

vecAdd(&A, &B, &C)

Copy A, B, C in
C Space

Copy A_pointer, B_pointer,
C_pointer in
GPU Space

float *A_dpointer = A.getDevice_pointer();
float *B_dpointer = B.getDevice_pointer();
float *C_dpointer = C .getDevice_pointer();
kernel_vecAdd<<<gridDim,blockDim>>>(A_dpointer,B_dpointer,C_dpointer, Size);

vecAdd(f32Array &A, f32Array &B,f32Array &C){

Copy out C_pointer from
C Space

Copy out C_dpointer from
GPU Space

vecAdd(f32Array &A, f32Array &B,
 f32Array &C){
 A = B + C;
}

vecAdd(f32Array &A, f32Array &B,
 f32Array &C){
 for(i = 0; i < Size; i++){
 A_pointer[i] = B_pointer[i] + C_pointer[j];
 }
}

}

kernel_vecAdd(float *A_dpointer, float *B_dpointer,float *C_dpointer){
 int tx = threadIdx.x;
 if(tx < Size){
 A_dpointer[tx] = B_dpointer[tx] + C_dpointer[tx];
 }
}

Jolokia Space C/C++ Space GPU Space

Figure 3.2: Translation spaces in JolokiaC++

annotations.

3.1.1 JolokiaC++ Programming Model

JolokiaC++ source code is intended to be compiled to CUDA, so that the resulting exe-

cutable code runs on a CUDA enabled GPU. The JolokiaC++ virtual machine provides

sufficient abstraction to the programmer to hide the communication details of the pro-

gramming model. It provides unified view of different address spaces associated with

CPU and GPU. This allows the programmer to focus on algorithms rather than dealing

with the communication intricacies involved in using different memory spaces required

for the execution of program on GPU.

To support this model JolokiaC++ introduces three spaces: 1) Jolokia space 2) C space

and 3) Device space. These are depicted in Figure 3.2. Different views for scalar array

3.1. DESIGN OF JOLOKIAC++ FRAMEWORK 25

Figure 3.3: Translation of JolokiaC++ code

objects are created in different spaces as per the aliasing information provided through

annotations. The use of a simple scalar object corresponds to the creation of a thread local

variable in the kernel, resulting in use of streaming multiprocessors’ registers. Pragmas

are preprocessed to generate the annotations required for creating an alias on the device.

The process of translation is shown in Figure 3.3.

3.1.2 JolokiaC++ Annotations

Explicit annotations exist in the input program in the form of data annotations, operator

annotations or as pragma specifiers. Implicit annotations are implemented to simplify

the translation of explicit annotations. To recognize annotations, we build an annotation

grammar and the corresponding high-level ASTs using ROSE. This grammar is similar to

the base language grammar. We added constructs to represent specific user-defined func-

tions, data-structures, user-defined types etc in the grammar. The compiler recognizes the

annotations within an application in much the same way it recognizes the syntax of the

base language.

26 CHAPTER 3. LANGUAGE DESIGN

� �
void SAXPY(f64Scalar &A, f64Array &X, f64Array &Y, f64Array &S){
S1: S = A * X + Y;
}

main(){
f64Array X(N);
f64Array Y(N);
f64Array S(N);
f64Scalar A;

...

/* Task call site */
#pragma jolokia gpuIn(X,Y,S) gpuOut(S) tile(BLK ,1,1)

SAXPY(A, X, Y, S); /* GPU Task */
}� �

Listing 3.1: Data Annotation Example

� �
void SAXPY(f64Scalar &A, f64Array &X, f64Array &Y, f64Array &S){

int xlen = X.length;
double *s = S.get_pointer();
double *x = X.get_pointer();
double *y = Y.get_pointer();
double a = A.get_data();

...

for (i = 0; i < xlen; i++){
s[i] = a * x[i] + y[i];

}
}� �

Listing 3.2: Semantic Interpretation of Statement S1 in Listing 3.1

3.1. DESIGN OF JOLOKIAC++ FRAMEWORK 27

3.1.2.1 Data Type annotations

Explicit data annotations like f32Array, f64Array, f32Scalar provide data abstraction for

vectors and scalars of primitive type. The implicit annotations array view and is array

are associated with data annotations. We associate attributes like dimension, length and

element using implicit annotation array view to create a view of an array in C space.

The scalar variable dimension holds the dimension of an array. The attributes length and

element are collection variables. The attribute length is used to hold the length of an

array in each dimension. Every occurrence of f32Array object is replaced by an element

which is indexed by integer parameters. This annotation replaces object reference in

Jolokia space to arrays in C by making use of the view created in C space. The is scalar

annotation is used to convey that f32Scalar has C scalar semantics with selem attribute.

The attribute selem is used to holds the value of scalar variable. The annotations for scalar

data types is created in order to provide flexibility in describing operator annotations.

Example 3.1: To exemplify the role of explicit data annotations, consider a JolokiaC++

code snippet given in Listing 1. Here X, Y, and S are declared as f64Array type variables

and A is declared as f64Scalar type variable. Semantically, each array object declared in

this code is interpreted as a single dimensional array of length N which can store N 64-bit

floating point elements. Based on the number of parameters passed to an array object, the

dimensions and the lengths corresponding to these dimensions are determined for each

dynamically created array of appropriate type (double for this example). For the scalar

object S in the code snippet, a 64-bit floating point (double) scalar variable is created.

To illustrate the significance of introducing scalar types, let us consider the statement

S1 in Listing 1. Here, a is the scalar element (selem) associated with A. Also, x, y

and s are the dynamic arrays associated with X, Y and S respectively. The semantic

interpretation of statement S1 is as shown in Listing 3.2. In order to interpret operations

applied between scalar and vector types (e.g * operation between A and X) we introduce

data type annotations for scalar variables. This allows us to carry out various operation

28 CHAPTER 3. LANGUAGE DESIGN

Annotation Semantics
dalloc Allocates memory on GPU space for the object passed as param-

eter to the annotation.
dcpy Annotation to copy data from CPU space to GPU space for the

object passed as parameter to it.
on entry Returns a device pointer associated with object passed as param-

eter to the annotation.
on exit Annotation to copy data from CPU space to GPU space for the

object passed as parameter to it.

Table 3.1: CPU-GPU Memory Space Management Annotations

between scalar and array type variables.

3.1.2.2 Operator annotations

Operator annotations describe the semantics of the functions that operate on the data

abstractions used for creating scalar and vector data types. For every function call that

follows a Jolokia pragma, a function operator entry is created in an annotation file. The

on entry and on exit annotations are placed within the function operator for each object

instance passed to the gpuIn and gpuOut parameter of a Jolokia pragma. The gpuIn

pragma specification provides information regarding the array object instance being read

by the kernel function. Similarly, gpuOut is used for providing information regarding the

writing of data into the array object instance. Using this information, we build a graph

based on the operations performed on objects of array type. This graph is similar to an

abstract syntax tree in a compiler. The graph provides sufficient information to optimize

the intermediate representation of the code for the target architecture.

The scratchpad annotation is provided to specify the size of shared memory and to

restructure memory access for coalesced global memory access. The aview operator an-

notation provides linearized access to multi-dimensional arrays for vectorization. The

stride and shift operators allow the programmer to specify different memory access pat-

terns. The modify array annotation is implemented to allow modifications to an alias

3.1. DESIGN OF JOLOKIAC++ FRAMEWORK 29

� �
#define BLK 256
/* Task definition */
void add(f64Array &A, f64Array &B, f64Array &C){

A = B + C
}

main(){
f64Array A(N);
f64Array B(N);
f64Array C(N);

...

/* Task call site */
#pragma jolokia gpuIn(A,B,C) gpuOut(A) tile(BLK ,1,1)

add(A,B,C); /* GPU Task */

}� �
Listing 3.3: Example for gpuIn, gpuOut and Tile annotation

created in C space. The alias annotation describes aliasing relationships between the in-

puts and results. The on entry annotation allows retrieval of an object’s view in GPU

space. The on exit annotation is concerned with reflecting the changes made in the GPU

space to an array created in C space. The kernel annotation is provided for composition

of GPU kernels in the code. The tile annotation provides sufficient information required

to launch a kernel on the GPU. The implicit CPU-GPU space mapping annotations and

their semantics is presented in Table 3.1.

Example 3.2: In the example shown in Listing 3.3, we illustrate the use of gpuIn and

gpuOut annotations associated with jolokia pragma. Each array type object can either

have associated dynamic arrays, one on device (GPU) and one on host (CPU) each or

it can have an associated dynamic array only on host. The dynamic array associated

with objects A, B and C are required for invoking the device kernel associated with add

function. This requires insertion of on entry annotation for each array object within the

30 CHAPTER 3. LANGUAGE DESIGN

� �
void stencil(f32Array &A, f32Array &B){

B = shift(A,-1) + shift(A,0) + shift(A,1)
}� �

Listing 3.4: Shift Operator Example� �
void stencil(f32Array &A, f32Array &B){

for(i = 0; i < len; i++){
B[i] = A[i-1] + A[i] + A[i+1];

}
}� �

Listing 3.5: Semantic Interpretation of Shift Operator

function annotation. This would allow us to obtain device pointer associated with the

every dynamic array existing on CPU. The result of vector addition stored in the device

array associated with A is returned back to the CPU by passing it as a parameter to

gpuOut.

Example 3.3: Listing 3.3 also demonstrates the use of tile annotation associated with

jolokia pragma. It is applied to define parameters (grid and block dimension) required to

launch the kernel on the GPU.

Example 3.4: Listing 3.4 illustrates the use of shift operator. Its semantic interpretation

on CPU space is shown in Listing 3.5.

3.1.3 Task-Level Data Flow Graph

Before describing the task-level data flow graph we present an example to motivate its

need. Listing 3.6 presents a snippet of JolokiaC++ implementation of data parallel code.

A naive translation that does not take into account the flow of data among the statements

executed on CPU and on GPU is presented in Listing 3.7. In this code the unnecessary

cudamalloc and cudamemcpy calls are generated which could be inefficient or incorrect.

Further, what we would like to generate the code similar to what a CUDA expert would

3.1. DESIGN OF JOLOKIAC++ FRAMEWORK 31

write. A sample of such a code is shown in Listing 3.8. To do so, we need to analyse the

flow of data in the JolokiaC++ program. This is done using the task-level data flow graph

as defined next, after a few helper definitions.

Definition 3.1. (GPU Task) The Jolokia pragma along with the function call that imme-

diately follows it is defined as a GPU task.

Definition 3.2. (CPU Task) Maximal set of consecutive statements which do not contain

any jolokia pragma is a CPU task. This set of statements are targeted for execution on the

CPU.

Definition 3.3. (Task-Level Data Flow Graph) Let P be a JolokiaC++ program. The

nodes in a task-level data flow graph of P represents CPU or GPU tasks, and the edges

represent flow of data from one node to another. An edge from node n1 to node n2 exists

in the task-level data flow graph of P , if n1 follows n2 in program order. Note that, even

though a GPU task is a function call, it represents a single node in the task-level data flow

graph.

Example 3.5: The task-level data flow graph for the JolokiaC++ code given in Listing

3.6 is shown in Figure 3.4. Here, add pragma and scale pragma nodes correspond to add

and scale functions that immediately follow a jolokia pragma. A node for the CPU task

print also exists in the graph. To analyse the body of the function corresponding to a GPU

task we use an operation-level data flow graph as described in the next section.

3.1.4 Operation-Level Data Flow Graph

The operation-level data flow graph for a GPU task function F is a graph where nodes

correspond to the statements of F , and the edges represent flow of data from one node

to other. We use operation-level data flow graph to analyze the operations performed on

32 CHAPTER 3. LANGUAGE DESIGN

� �
/* Task definition */
void add(f64Array &A,f64Array &B,f64Array &C){

A = B + C
}

void scale(f64Array &A,f64Scalar &S){
A = S * A;

}
main(){
...

/* Task call site */
#pragma jolokia gpuIn(A,B,C) gpuOut(A) tile(BLK1 ,1,1)

add(A,B,C); /* GPU Task */
print(A); /* CPU Task */
#pragma jolokia gpuIn(A,S) gpuOut(A) tile(BLK2 ,1,1)

scale(A,S); /* GPU Task */
}� �

Listing 3.6: Task-Level Data Flow Example

 add
 pragma

print

 scale
 pragma

gpu in (A)

 copy A to CPU

Reuse A
without any copying

Figure 3.4: Task-Level Data Flow Graph

3.1. DESIGN OF JOLOKIAC++ FRAMEWORK 33

� �
__global__ void add(float *A, float *B, float *C)
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if(idx < N){

A[idx] = B[idx] + C[idx];
}

}

__global__ void scale(float *A, float S)
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if(idx < N){

A[idx] = S * A[idx];
}

}

cudaMalloc((void **)&Device_A , N*sizeof(float));
cudaMalloc((void **)&Device_B , N*sizeof(float));
cudaMalloc((void **)&Device_C , N*sizeof(float));
//Copy Host array to Device array
cudaMemcpy(Device_A , Host_A , N*sizeof(int),

cudaMemcpyHostToDevice));
cudaMemcpy(Device_B , Host_B , N*sizeof(int),

cudaMemcpyHostToDevice));
cudaMemcpy(Device_C , Host_C , N*sizeof(int),

cudaMemcpyHostToDevice));

//Make a call to GPU kernel
add<<<gridDim , blockDim >>>(Device_A , Device_B , Device_C);
//Copy back to Host array from Device array
cudaMemcpy(Host_A , Device_A , N*sizeof(float),

cudaMemcpyDeviceToHost);
for(i = 0; i < N; i++)

printf("%f",Host_A[i]);
cudaMalloc((void **)&Device_A , N*sizeof(float));
cudaMemcpy(Device_A , Host_A , N*sizeof(int),

cudaMemcpyHostToDevice));
//Make a call to GPU kernel
scale <<< gridDim , blockDim >>>(Device_A , host_S);
//Copy back to Host array from Device array
cudaMemcpy(Host_A , Device_A , N*sizeof(float),

cudaMemcpyDeviceToHost);
//Free the Device array memory
cudaFree(Device_A);
cudaFree(Device_B);
cudaFree(Device_C);� �

Listing 3.7: A Naive Translation of Task-Level Data Flow Example

34 CHAPTER 3. LANGUAGE DESIGN

� �
__global__ void add(float *A, float *B, float *C)
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if(idx < N){

A[idx] = B[idx] + C[idx];
}

}

__global__ void scale(float *A, float S)
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if(idx < N){

A[idx] = S * A[idx];
}

}

cudaMalloc((void **)&Device_A , N*sizeof(float));
cudaMalloc((void **)&Device_B , N*sizeof(float));
cudaMalloc((void **)&Device_C , N*sizeof(float));
//Copy Host array to Device array
cudaMemcpy(Device_A , Host_A , N*sizeof(int),

cudaMemcpyHostToDevice));
cudaMemcpy(Device_B , Host_B , N*sizeof(int),

cudaMemcpyHostToDevice));
cudaMemcpy(Device_C , Host_C , N*sizeof(int),

cudaMemcpyHostToDevice));

//Make a call to GPU kernel
add<<<gridDim , blockDim >>>(Device_A , Device_B , Device_C);
//Copy back to Host array from Device array
cudaMemcpy(Host_A , Device_A , N*sizeof(float),

cudaMemcpyDeviceToHost);
for(i = 0; i < N; i++)

printf("%f",Host_A[i]);

//Make a call to GPU kernel
scale <<< gridDim , blockDim >>>(Device_A , host_S);
//Copy back to Host array from Device array
cudaMemcpy(Host_A , Device_A , N*sizeof(float),

cudaMemcpyDeviceToHost);
//Free the Device array memory
cudaFree(Device_A);
cudaFree(Device_B);
cudaFree(Device_C);� �

Listing 3.8: Translation after Task-Level Data Flow Analysis

3.1. DESIGN OF JOLOKIAC++ FRAMEWORK 35

objects of scalar and vector type. The analysis involves identifying the sequence of state-

ments that are called when instantiation of threads happen within a subtask. A subtask

corresponds to the subset of tasks targeted for execution on a streaming multiprocessor

of a GPU. It represents one iteration of the innermost implicit for loop indicated through

operator annotation. This operation flow analysis helps us to exploit data parallelism for

threads within a subtask.

36 CHAPTER 3. LANGUAGE DESIGN

Chapter 4

Regular Applications

Memory accesses which are linear combinations of loop index variables are quite com-

mon in a variety of applications like dense-matrix linear algebra, finite-difference PDE

solvers, image processing and scans/joins in relational databases. Array references with

such access are called affine array accesses. Loops with affine array accesses are a natural

consequence of the emergence of massively multi-threaded data-parallel computing plat-

forms. Today’s GPU computing platforms are designed with a heterogeneous memory

architecture comprising multiple memory spaces where each space has specific charac-

teristics. Mapping data arrays to the most appropriate memory space, based on their

associated memory access patterns, can have a huge impact on overall performance.

We present a technique that uses operator annotations to systematically characterize

affine access in loop nests. We present a methodology that optimizes memory perfor-

mance of data-parallel architectures. The goal is to convey implementation-specific in-

formation to the compiler in a simple declarative manner through the hints provided by

annotations, which helps to improve the performance of the given code. We evaluate the

performance of our framework by considering BLAS and stencil codes.

38 CHAPTER 4. REGULAR APPLICATIONS

 aview(A, width, i, row) or
 aview(A, width, i) = A[i * width + j]

aview(A, height, i, column) = A[j * height + i]

shift(A, 0, C) = A[i * width + (j +C)]

(a) Row major access of elements (b) Column major access of elements

(c) Row major shifted access of elements (d) Strided access of elements

stride(A, 1, C) = A[i * width + (C * j)]

Figure 4.1: Memory Access Patterns and their Respective Operator Annotations with
their Linearized Representation.

4.1 Memory Access Operators

In this section, we present operator annotations that capture the memory access pattern

present in a loop nest. The operator annotations aview, stride and shift are meant to

provide the necessary information to represent affine memory access patterns. This in

turn is used for optimizations presented in Section 4.2.2. Figure 4.1 presents examples of

memory access patterns along with the associated operator annotations.

4.1. MEMORY ACCESS OPERATORS 39

Operator aview

The row linear and column linear memory access patterns refer to accesses in which a di-

mension of an array is contiguously accessed with respect to iteration space as shown in

Fig. 4.1a and Fig. 4.1b respectively. The aview operator provides composition for row/-

column linear memory access patterns. It provides a linearized view of array elements

associated with the object and has the following four parameters:

1. The collection object.

2. The limiting condition for the implicit loop iterator.

3. Iterator associated with the direction of access.

4. The direction of access.

The signature of the aview operator is as follows:

aview(DataType objectName, int numberOfColumns,

int explicitIterator, int accessDirection)

Operator shift

A shifted memory access pattern refers to an access in which a dimension of an array is

contiguously accessed with respect to the iteration space, but this contiguous access is

shifted by some constant. The use of the shift operator and its access pattern is shown

in Fig. 4.1c. The first parameter corresponds to the collection object. The second and

third parameters are used to provide the amount of shift in the row and column directions

respectively. The signature of shift operator is as follows:

shift(DataType objectName, int rowShift, int colShift)

40 CHAPTER 4. REGULAR APPLICATIONS

Operator stride

The use of the stride operator allows non-unit stride memory access. Fig. 4.1d illustrates

its use. The first parameter corresponds to the collection object. The second and third

parameters are used to provide the stride value for specific directions. The signature of

the stride operator is as follows:

stride(DataType objectName, int rowStride, int colStride)

Example 4.1: The operators shift and stride can be combined to generate different access

patterns. Listing 4.1 demonstrates some interesting combinations of these operators.

Example 4.2: To describe our programming model, we start with the matrix multipli-

cation code example provided in Listing 4.2. The framework parallelizes a loop nest by

associating one logical thread with some number of points in the iteration space of the

nest. It then partitions and maps the logical threads onto physical ones, guided by an-

notations that the programmer employs to tune the code. The annotated code, using the

aview operator and the data parallel for loop, is shown in Listing 4.3. The data parallel

for loops (i and j) in the code get mapped to threads when parallelized. When used in

conjunction with the tile operator, these loops correspond to a 2D thread configuration.

Example 4.3: The transformation framework provides linearized access for each aview

operator as shown in Listing 4.4. Using aview and tile results in inter-thread and intra-

thread access of elements in block ((i - tx)/BLOCK SIZE X, (j - ty)/BLOCK SIZE Y))

by thread (tx, ty) for array A, B and C as shown in Figure 4.2. The high level semantic

interpretation of column linear memory access operation (memory access of B in Listing

4.3) results in coalesced global memory access by threads in a warp. The use of the

data parallel for loop iterators (i and j) for accessing the elements of C indicates each

thread accessing one element of the matrix. The row linear memory access of A leads

to uncoalesced global memory access by threads in the warp. Using these interpretations

our code generator generates naive CUDA code for GPU.

4.1. MEMORY ACCESS OPERATORS 41

� �
shift(stride(A,2,3),0,-4) = A[2*i][3*j-4] = A[(2*i)*width+(3*j-4)]� �

Listing 4.1: Combination of Shift and Stride operator annotations� �
for(int i = 0; i < M; i++)

for(int j = 0; j < N; j++)
for(int k = 0; j < N; j++)

C[i][j] += A[i][k] * B[k][j];� �
Listing 4.2: Serial matrix multiplication code

� �
void matrix_mult(f64Array &A,f64Array &B,f64Array &C){
f32Scalar pval;
_for(int i = 0; i < M; i++)
_for(int j = 0; j < N; j++){

pval += aview(A, N, i, row) * aview(B, P, j, column);
C(i,j) = pval;

}
}
#pragma jolokia gpuIn(A,B,C) gpuOut(C) tile(16,16,1)

scratchpad(A,16,16,1) scratchpad(B,16,16,1)
matrix_mult(A,B,C);� �

Listing 4.3: Annotated Matrix-Multiplication Code

� �
aview(A,N,i,row) = A[i * N + k]
aview(B,P,j,column) = B[k * P + j]
C(i,j) = C[i * M + j]� �

Listing 4.4: Linearized access of annotations for A, B, and C shown in Listing 4.3

I

J

K

I
K

J

X=

BAC

t0t1t2t3

t0t1t2t3
t0 t1 t2 t3

t0t1t2t3
t0 t1 t2 t3

(t4..t15)

Block p-1

Block p

Block p-1

Block p

Figure 4.2: Inter and Intra-thread access of elements in absence of scratchpad annotation

42 CHAPTER 4. REGULAR APPLICATIONS

CI

CJ

AK

AI BK

BJ

X=

aview(B,j,P,column)
aview(A,i,N,row)

Figure 4.3: Inter and Intra-thread access of elements in presence of scratchpad annotation

Example 4.4: The provision of scratchpad along with aview and tile introduces intra-

thread memory access composition for shared memory access. The inter and intra-thread

access of elements in the presence of scratchpad annotations is shown in Figure 4.3. The

use of scratchpad annotation allows coalesced global memory access of A, B and C by

threads in the warp. The high level semantic interpretation of row and column linear

memory access operations in the presence of scratchpad annotations lead to coalesced

global memory access by threads in the block in their respective direction.

4.2 Compiling high level JolokiaC++ constructs

In this section, we discuss the translation performed by JolokiaC++ guided by implicit

and explicit annotations. The compiler performs task-level data flow analysis to opti-

mize the communication between CPU and GPU. This is discussed in subsection 4.2.1.

The operation-level data flow analysis, discussed in subsection 4.2.2, allows composition

of the memory hierarchy optimization in the kernel functions. The operation-level data

flow analysis used in the transformation framework is based on the work presented by

Vegdoolaege et. al. [74].

4.2. COMPILING HIGH LEVEL JOLOKIAC++ CONSTRUCTS 43

Algorithm 4.1: Determining Block and Grid Dimension for linearized array
Input: num of elem, array data type
Output: BLOCK SIZE, GRID ’DIM
Retrieve SHARED MEM SIZE, MAX NUM THREAD at runtime
if ∃tile operator annotation then

BLOCK SIZE← tile(BLOCK X,...)
else

if ∃Scratchpad annotation with stride parameter then
BLOCK SIZE← min(MAX NUM THREAD, num of elem, Scratchpad
Parameter) SHARED SIZE← scratchpad(Obj,SBLOCK,...)

else
if SHARED MEM SIZE/sizeof(array date type) > MAX NUM THREAD)
then

BLOCK SIZE← min(DEFAULT SIZE(), MAX NUM THREAD,
num of elem)

else
BLOCK SIZE← min(DEFAULT SIZE(),
SHARED MEM SIZE/sizeof(array data type), num of elem)

GRID DIM← (num of elem + BLOCK SIZE - 1)/BLOCK SIZE
return;

44 CHAPTER 4. REGULAR APPLICATIONS

� �
float sum = 0;
for(int j = 0; j < width; j++)

sum += A[i][j] * X[j];
X[i] = sum;

}� �
Listing 4.5: Matrix-Vector Multiplication using C

� �
void stencil(float A[][], float B[][], int N){
int i, j;
for(int i = 0; i < N; i++){

for(int j = 0; j < N; j++){
B[i][j] = A[i-1][j] + A[i+1][j] + A[i][j]

+ A[i][j-1] + A[i][j+1];
}

}
void copy(float A[][], float B[][],int N){
for(int i = 0; i < N; i++){

for(int j = 0; j < N; j++){
A[i][j] = B[i][j];

}
}

// Function call site
for(t = 0; t < iter; t++){

stencil(A,B,N);
copy(A,B,N);

}� �
Listing 4.6: Stencil code using C

Example 4.5: To illustrate the significance of both analyses we start with the Matrix-

Vector multiplication and Stencil code written in C shown in Listings 4.5 and 4.6 re-

spectively. The corresponding JolokiaC++ code is shown in Listings 4.7 and 4.8. Note

that both codes do not have low level details of target architecture. The code written in

JolokiaC++ is similar to C code except for one or more pragmas. The compiler analyzes

the annotated function and identifies the parameters for kernel invocation by the process

given in Algorithm 4.1. It also checks the off-chip memory access patterns, and opti-

mizes memory accesses through coalescing and shared memory to achieve high data ac-

4.2. COMPILING HIGH LEVEL JOLOKIAC++ CONSTRUCTS 45

� �
_for(int i = 0; i < height; i++){

f32Scalar sum = 0;
sum = sum + aview(A,i,width) * X;
X(i) = sum;

}� �
Listing 4.7: Matrix-Vector Multiplication using JolokiaC++

� �
// Function definition
void stencil(f32Array &A, f32Array &B, int N){
int i, j;
_for(int i=0; i< N; i++){

_for(int j=0; j < N; j++){
B(i,j) = shift(A,-1,0) + shift(A,1,0) + shift(A,0,0)

+ shift(A,0,-1) + shift(A,0,1);
}

}
void copy(f32Array &A, f32Array &B){

A = B;
}
// Function call site
for(t = 0; t < iter; t++){

#pragma jolokia gpuIn(A,B) gpuOut(B) tile(32,8,1)
stencil(A,B,N);

#pragma jolokia gpuIn(A,B) gpuOut(B) tile(32,8,1)
copy(A,B);

}� �
Listing 4.8: Stencil code using JolokiaC++ Shift Operator Annotation

cess bandwidth. The parameter required for kernel invocation is generated by the process

described in Algorithm 4.1 at runtime. The input required for this process is provided

through explicit annotations specified by the pragmas. The vectorized access patterns

specified by the aview operators provide necessary information for optimizing the GPUs

memory hierarchy.

Note that both the program (Listing 4.7 and Listing 4.8) do not have low level details

of target architecture. The code written in JolokiaC++ is similar to C code except for an

extra pragma. The compiler analyzes the pragma annotated function and identifies the

46 CHAPTER 4. REGULAR APPLICATIONS

parameters for kernel invocation by the process given in Algorithm 4.1. It also checks the

off-chip memory access patterns, and optimizes memory access through coalescing and

shared memory to achieve high data access bandwidth. The parameter required for kernel

invocation is generated by the process described in Algorithm 4.1 at runtime. The input

required for this process is provided by explicit annotations specified by the pragmas. The

vectorized access patterns specified by aview operators provide the necessary information

for optimizing the GPU’s memory hierarchy.

4.2.1 Task-Level Data Flow Analysis for Optimizing Communication

The communication between CPU-GPU is a common source of errors for manual paral-

lelization of code and limits the applicability of automatic parallelization. To add to this,

cyclic communication dramatically increases the execution time of a program by an order

of magnitude. It prevents the system from efficiently parallelizing programs that launch

many GPU functions. A global task-level data flow analysis is performed on the task-

level data flow graph to identify cyclic communication patterns in the input code. The

analysis of the task-level data flow graph also helps in preserving the semantics of the

data flow between tasks. It takes off with a sequential JolokiaC++ code calling parallel

GPU codes without any CPU-GPU communication. All variables share a single common

Jolokia namespace with no distinction between GPU and CPU memory spaces. For each

function that immediately follows Jolokia pragma, the compiler creates a list of live-in

array objects. An array object is live-in if it is passed to the gpuIn annotation directly or

is a global variable used by the GPU. It makes use of in-built def-use analysis and liveness

analysis to compose the decision for allocation and transfer of data between the CPU and

GPU. The basic steps performed in task-level data flow analysis are presented in Algo-

rithm 4.2. It uses the task-level data flow variables determined by task-level data flow

variable analysis presented in Algorithm 4.3. For each array object in the ALLARRAY set,

an implicit annotation dalloc for allocation of memory on the device is inserted before the

4.2. COMPILING HIGH LEVEL JOLOKIAC++ CONSTRUCTS 47

first Jolokia pragma. An on entry annotation is inserted for each parameter of the gpuIn

annotation before the kernel annotation within the function annotation. The on entry

annotation allows access to the device memory by returning a pointer to the device mem-

ory location. The entries dalloc, dcopy and on exit for allocation and data transfer are

created through task-level data flow analysis. The compiler constructs a task-level data

flow graph (TFG) and uses the task-level data flow variables (TFVs) information gathered

through the process presented in Algorithm 4.3 to identify the communication pattern for

optimization. Further, a postorder traversal on TFG is performed to identify the program

points which can hoist the dalloc and dcopy out of the loop bodies and up in the task

graph. If the Jolokia pragma exists within a loop the compiler promotes the allocation

and copy operation for the variables that exist in the COPYIN set by placing the dalloc

and dcopy above the loop. An implicit on exit annotation is inserted after the loop for

each object passed as parameter to the gpuOut annotation. Further, the memory allocated

to all the arrays associated with array objects in the ALLARRAY set is released through

the release operator.

4.2.2 Operation-Level Data Flow Analysis for Optimizing Memory

Access

In this section, we discuss operation-level data flow analysis to enable efficient use of the

memory hierarchy. The compiler, after performing task-level data flow analysis, resorts to

operation-level flow analysis for mapping non-scalar data to different memory locations

in the device. The use of operator annotations within a loop allows the framework to

extract information about regional array accesses. The operation-level data flow analysis

captures frequent usage of an array by keeping track of its reads and writes, thus exhibit-

ing temporal locality. This concept is based on the work presented in [74]. It scans the

immediate representation from memory access operators and applies the corresponding

transformation using a pattern matching approach. The use of the aview operator in a data

48 CHAPTER 4. REGULAR APPLICATIONS

Algorithm 4.2: Global Task-Level Data Flow Analysis
Input: Global program information of AO(Array Objects), set of JPP(Jolokia

pragma points) τ

Output: Task-Level Data flow variables(TFVs)
Perform postorder traversal of TFG to insert dmalloc ∀ALLARRAY
Insert dcopy ∀GIN(1)∪GOUT (1)
ALLMODEF(1) = φ

for t = 2→ τ do
if GPU task p ∈ Pred(t) then

COPYOUT(t) : The GPU array objects which need to be copied on CPU
COPYOUT (t) = GOUT (p)∩USE(t)
ALLMODEF(t) : The array objects modified on or before CPU task t
ALLMODEF(t) = ALLMODEF(t−1)∪MODEF(t)

if GPU task s ∈ Succ(t) then
COPYIN(s) : The GPU array objects which need to be copied on GPU
COPY IN(t) = GIN(s)∩ALLMODEF(t)
ALLMODEF(t) = ALLMODEF(t)\COPY IN(t)

return

Algorithm 4.3: Task-Level Data Flow Variables Analysis
Input: Set of Task-Level Data Flow Graph(TFG) CPU nodes ω, Set of Task-Level

Data Flow Graph(TFG) GPU nodes τ, Global program information of
Array Objects(AO)

Output: Local Flow Variables (LFVs)
ALLARRAY = {φ}
for t = 1→ τ do

GIN(t) : The array objects passed as parameters to gpuIn in t.
GOUT(t) : The array objects passed as parameters to gpuOut in t.
ALLARRAY : All array objects that exist on GPU memory

ALLARRAY = ALLARRAY ∪GIN(t)
for k = 1→ ω do

MODEF(k) : The array objects modified/defined in or before k
USE(k) : The array objects used in k

return

parallel for loop is interpreted as inter-thread memory access of an array within a loop

indicating the reuse of an array. The aview operator when used in conjunction with the

scratchpad annotation results creation of subarray being read in the shared memory. The

4.2. COMPILING HIGH LEVEL JOLOKIAC++ CONSTRUCTS 49

optimizer performs a def-use analysis to retrieve information about when to transfer data

between on-chip and device memory.

The operator annotations in the source code aid the compiler front end to generate the

equivalent Abstract Syntax Tree (AST) fragment to be substituted into the application’s

AST. This allows test codes containing operator annotations for the transformations to be

built separately, which in turn helps us to introduce optimizing transformations into the

applications. This involves performing operation-level data flow analysis on the transfor-

mations represented through operator annotations for extracting reuse information from

array accesses. The operation-level data flow analysis makes use of in-built data depen-

dence analysis, def-use analysis and liveness analysis of ROSE to decide whether it is safe

for a loop nest to parallelize or not. The data dependence analysis in ROSE implements

the transitive dependence analysis algorithm published by Yi, Adve and Kennedy [77].

We discuss the data structure used for operation flow analysis in the next section.

4.2.2.1 Operation-Level Data Flow Tree (OFT)

In this section, we introduce the basic terms and the data structure that play a key role

in analyzing and transforming kernel codes. The annotation based code is parsed into a

high level intermediate representation, called the Operation-Level Data Flow Tree (OFT).

Each node of the OFT corresponds to a perfectly nested loop (which are loop nests in

which all assignment statements are contained in the innermost loop) statement in the

code. The innermost loops represent the leaf nodes. An imperfectly nested outer and

inner loop become parent and child nodes respectively. Each data parallel node (Explicit

loop or EL) records the loop iterators and their ranges using the information provided

through the tile operator or through default parameters. It also records the loop body as

a sequence of code statements using linearize access for the array portions. Compared

to the AST in compilers whose leaf nodes are individual operators and operands, the

OFT representation works at a much higher level. OFT encapsulates knowledge about

50 CHAPTER 4. REGULAR APPLICATIONS

Algorithm 4.4: Memory Access Optimization
Input: Local program information of Array Objects(AO), Memory Access

Pattern(MAP), Read and Write access of AO
Output: Memory Location(ML)
if ∃ scratchpad annotation then

Let R be the set of AO passed as parameters to scratchpad annotations
Let T denote the program points to insert shared memory load and store
if The loop is completely nested with single IL then

Load data from global memory to shared memory before the first access of
any AO∈R
Store data from shared memory to global memory at or after the last write
in the sequence

else
Perform postorder traversal of OFT and determine T using inter-loop data
dependences

else
Let G be the group of AO’s at the leaf nodes
Enumerate the MAP of the leaf node to determine the average reuse of AO
if ∃ shift operator with average reuse greater than 1 and read only access then

Use texture fetch for each access of AO
else

Use global memory access

return

flexibilities in the code structure and performance related behaviors through high level

operator annotations. Algorithm 4.4 presents the process to identify the different memory

access points used for optimizing the memory accesses.

To illustrate its applicability, let us reconsider the C code of Matrix-Vector multipli-

cation shown in Listing 4.5. The corresponding JolokiaC++ code shown in Listing 4.7.

It shows the use of the aview operator to generate vectorized code for a GPU. The code

generated by JolokiaC++ code generator, without scratchpad annotations, is shown in

Listing 4.9. In this code, the vectorization is across multiple rows, which would result in

each thread processing one row at a time. This is pictorially shown in Figure 4.4 where all

the array accesses are from global memory. However, we note that instead of each thread

processing a single row, vectorizing within a single row will improve the performance

4.2. COMPILING HIGH LEVEL JOLOKIAC++ CONSTRUCTS 51

� �
int i = blockIdx.x * BLOCK_SIZE + threadIdx.x;
float sum = 0;
if(i < height){

for (j = 0; j < width; j++)
sum = sum + A[i * width + j] * X[j];

Y[i] = sum;
}� �

Listing 4.9: Naive Matrix-Vector Multiplication CUDA Code

t0
t1
t2
t3

Amxn XnYm

=
x

Figure 4.4: Memory Access Pattern of Naive Matrix-Vector Multiplication without
Scratchpad Annotation

for this program. Adding a scratchpad annotation enforces that multiple threads process

a tiled shaped subtask using shared memory. This requires explicit synchronization be-

tween the threads of the tiled block loaded on the Streaming Multiprocessor (SM). The

optimized code with shared memory access is generated using the array access analysis

provided by Algorithm 4.4. It uses the OFT shown in Figure 4.6 to identify the program

point to compose shared memory accesses. The memory access pattern of coalesced

global memory access code generated with the scratchpad annotation is shown in Figure

4.5. Adding the annotation scratchpad(A,16,16,1) to the code in Listing 4.7 generates the

code shown in Listing 4.10.

An important use of the shift operator is in stencil computations as shown in Listing

52 CHAPTER 4. REGULAR APPLICATIONS

� �
__shared__ float shared_A[TILE][TILE];
i = blockIdx.x * BLOCK_SIZE + threadIdx.x
itx = threadIdx.x

if(i < height){
for (j = 0; j < width; j = j + TILE){

for(ii = 0; ii < TILE; ii = ii+1)
shared_A[ii][itx]=A[(ii+i-itx)*width+(j+itx)];

__syncthreads();
for (k = 0; k < TILE; k = k+1){

float a = shared_A[itx*TILE+k];
float x = X[k+j];
sum += a * x;

}
__syncthreads();

}
Y[i]=sum;

}� �
Listing 4.10: Matrix-Vector Multiplication Code with Coalesced Access of A

t0 t1 t2 t3

Amxn XnPYm

t0
t1
t2
t3

=
x

Figure 4.5: Memory Access Pattern of Matrix-Vector Multiplication using Scratchpad
Annotation

4.8. Multiple occurrences of the shift operator applied on the same array is interpreted as

the reuse of that array in stencil code. The use of the shift operator allows the compiler to

extract data dependence information from the OFT. The OFT of Listing 4.8 is shown in

Figure 4.7. Performing postorder traversal of the operation-level data flow tree allows the

JolokiaC++ optimizer to optimize the use of the memory hierarchy through identifications

4.2. COMPILING HIGH LEVEL JOLOKIAC++ CONSTRUCTS 53

root

EL

IL
_for

Rs

RO R
for

Ws

EL - Explicit Data parallel loop
IL - Implicit for loop

R - Read

RO - Read through aview operator

RS - Read through shift operator

RD - Read through stride operator

W - Write

AT - Assignment Task

(a) Operation-level data flow graph for
 matrix vector multiplication

OFT - GPU Operation Flow Task

Rs - Scalar Read

Rw - Scalar Write

W

Rs

Figure 4.6: Operation-Level Data Flow Tree for Matrix-Vector Multiplication

of program points for different types of accesses.

54 CHAPTER 4. REGULAR APPLICATIONS

root

L

EL

for

_for

_for

OFT AT AT AT

RS RS RS RS RS W

 Operation-level data flow tree

(b) Task-level data flow graph and Operation-level
 data flow tree for Stencil code

Figure 4.7: Composed Task and Operation-Level Data Flow Tree

Chapter 5

Irregular Data Applications

Many scientific and engineering applications use sparse data structures or indirect mem-

ory references which leads to dynamic irregular memory accesses. Dynamic irregular

memory accesses are a special class of irregular data references whose access patterns

are not known at compile time. In this work, we deal with a class of dynamic irregulari-

ties with irregular memory access in loops that may cause cross-iteration dependences at

runtime.

Example 5.1: Figure 5.1 shows an example having irregular memory accesses. The

memory access patterns of Y[left[i]] and Y[right[i]] is determined from the run-

time values of of left[i] and right[i]. Here, there is a possibility of dynamic cross-

iteration dependence when Y is read in one iteration and written in another. Since the

memory access patterns are unknown at compile time, it is not possible to identify the

dynamic dependences at compile time. Therefore, it is not possible for the compiler to

parallelize it. Being dynamic, these references are especially hard to tackle, making ef-

fective exploitation of GPUs difficult.

The massively parallel architecture of a GPU makes it possible to extract enormous

computational performance but at the cost of complex programmability. At any time,

hundreds or thousands of threads may try to issue reads or writes, and these accesses

56 CHAPTER 5. IRREGULAR DATA APPLICATIONS

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

left[] = {4, 0, 5, 5, 2, 1, 2, 3}

i :

D1 D2 D3 D4 D5 D6

right[] = {1, 4, 0, 2, 5, 2, 4, 1}

...
for(i = 0; i < iter; i++) {
 Y[left[i]] += (X[left[[i]] + X[right[i]])/4;
 Y[right[i]] -= (X[left[i]] + X[right[i]])/4;
 }
...

Y[] :

i :

Figure 5.1: Irregular Memory Access

are serialized if the threads generate access patterns that are not optimized for the given

memory organization. This makes applications running on data-parallel architectures ex-

tremely sensitive to irregularity in memory access patterns. Our framework (see fig. 5.2)

maps concurrent language constructs of JolokiaC++ to CUDA enabled GPUs for irregu-

lar data applications.

We have built JolokiaC++ compiler framework for GPU based on a perspective to

handle dynamic irregularities such as those illustrated in Example 1, with a motive to

overcome inferior mapping between threads and data. This perspective leads to enhanc-

ing the thread-data mappings at runtime. We have developed a compile-time and runtime

system that automatically orchestrate communication and computation, maps data to the

GPU memory hierarchy, and tunes the kernel code to deliver considerable end-to-end

performance. To support the system, we accurately identify the non-contiguous memory

access points, called scatter and gather, in the computational kernel using compile time

data flow analysis. Our composition involves simulating the shared memory of GPU as a

cache. Further, we perform program transformations using Sparse Polyhedral Framework

57

to facilitate the actual data communication and computation through the introduction of

uninterpreted function symbols. We also exploit situations to reuse communication sched-

ules for amortizing the cost of the runtime data-flow analysis. We developed and tested

various scheduling policies to eliminate cross-iteration dependences to provide coalesced

access to threads of GPU to improve efficiency . To the best of our knowledge, the integra-

tion of compile time scatter and gather operation through program flow analysis for data

dependence abstraction and program transformation is the first attempt towards automatic

parallelization of irregular application on GPUs.

We now introduce the properties of GPU memory access which are of concern for

irregular applications. The global memory in modern GPUs comprises of a large number

of continuous segments. A typical global memory read or write operation takes 400

to 800 clock cycles. Therefore, coalescing global memory accesses is one of the most

important optimizations. The load or store instructions will lead to coalesced accesses by

a set of threads if these threads are within a warp and the words accessed by them lie in

a single segment. An irregular reference refers to a load or store instruction, at which,

the data requested by a warp happens to lie on multiple memory segments, causing more

memory transactions than necessary. Because a memory transaction incurs a latency

of hundreds of cycles, irregular references often degrade the effective throughput of a

GPU significantly. We try to overcome this problem by generating schedules which can

regroup data and iterations of loop kernels in such a way that the number of consecutive

independent iterations is maximized for execution on streaming multiprocessors. The

work presented in this chapter shows how a JolokiaC++ programmer can harness the

computational capability of a GPU without writing complex low-level code for irregular

kernels.

58 CHAPTER 5. IRREGULAR DATA APPLICATIONS

JolokiaC++ Code
 with Extensions
 for GPU

Program Analysis
 for
Irregular Accesses

Target CUDA

CUDA Code Generator

Identify non-contigous memory access points
 for
 SCATTER and GATHER

 Enforces Data and iteration
 Reordering transformations

 Compile Time Composition
 of Inspector-Executor
 Code using
 Sparse Polyhedral Framework

Figure 5.2: Compiler Framework for Optimizing Irregular Applications

5.1 Preliminaries of the Framework

First, we define some concepts used in the transformation framework. These concepts are

explained using Examples 5.3 and 5.5 later in this chapter.

Definition 1 (Array Part). An array part (AP) A[B(1:n)] consists of the array A and

index array B with lower bound 1 and upper bound n.

Definition 2 (Loop Flow Graph (LFG)). A loop flow graph G = (N ,E) of the program

P is a control flow graph, where the node n ∈ N represents a loop with indirectly ac-

cessed arrays or an entry/exit pad node. The edge e ∈E denotes flow of control from one

node to another.

Definition 3 (Wavefront). The set of concurrently executable loop iterations is a wave-

5.2. OPTIMIZATION OF IRREGULAR APPLICATIONS 59

front.

Example 5.2: Listing 5.1 shows a code example. In this code, we have

• two inner loops l1 and l2;

• one entry and one exit pad, l0 and l3;

• two array names, x and y;

• six array parts: x1 = x[IDENTITY[1:numMol]], x2 = x[left[1:numIter]], x3 =

x[right[1:numIter]], y1 = y[IDENTITY[1:numMol]], y2 = y[left[1:numIter]], y3

= y[right[1:numIter]].

Here IDENTITY is an array1 with the property IDENTITY[i] = i. The LFG for this code

is shown in Figure 5.3.

5.2 Optimization of Irregular Applications

The transformation framework bears similarities with the work presented in [38] for dis-

tributed memory parallel machines, in which flow analysis is performed on the loop flow

graph for communication of array parts. We use this framework to generate the execu-

tor’s communication call for GATHER and SCATTER operations. We also enable the

specification of run-time reordering transformations at compile time through the Sparse

Polyhedral Framework [43]. This involves representing indirect memory references and

run-time generated data together with iteration reordering using uninterpreted function

symbols [54] which allow the composition of inspector and executor code.

In summary, we compose the runtime data and iteration reordering at compile time

after analyzing the loop flow graph for communicating array parts. We perform loop

1Note that IDENTITY is only a conceptual entity used for consistency of notations.

60 CHAPTER 5. IRREGULAR DATA APPLICATIONS

� �
for i = 1 to numIter
l0:
#pragma jolokia tile(512,1,1) gpuIn(x,y)

_for j = 1 to numMol nowait
l1: x[j] = y[j]

endfor
#pragma jolokia tile(256,1,1) gpuIn(x,y,left ,right) gpuOut(y)

_for k = 1 to numInter wait
l2: y[left[k]] += (x[left[k]] + x[right[k]])/4

y[right[k]] -= (x[left[k]] + x[right[k]])/4
endfor

l3:
endfor� �

Listing 5.1: Simplified MOLDYN Kernel

Start

Stop

x1 = y1

y2 = y2 + (x2 + x3)/4
y3 = y3 - (x2 + x3)/4

l1

l2

exit :

entry : l0

l3

Figure 5.3: Loop Flow Graph for the Code in Listing 5.1

5.2. OPTIMIZATION OF IRREGULAR APPLICATIONS 61

dependence analysis at compile-time in order to accomplish this. The compiler transforms

the kernel, after analyzing the kernel’s data access patterns using flow analysis algorithms

covered in this section.

At run-time, wavefronts of concurrently executable loop iterations are identified by

the inspector code. Using this wavefront information, loop iterations are reordered to in-

crease parallelism. We use topological ordering to implement the scheduling mechanisms

that perform run-time reordering transformations. This leads to partitioning of the index

set into disjoint subsets of wavefronts, such that work pertaining to all indices in a wave-

front may be carried out in parallel. We perform data reordering to provide spatial locality

and to reduce non-coalesced access of global memory. The executor code generator is re-

sponsible for scheduling explicit memory communications between the global memory

and the shared memory. We base the generation of the inspector and executor code on the

specification of irregular computations and run-time reordering transformations presented

in [43].

5.2.1 Flow Analysis Framework for GPU

We implement the analysis framework using a lattice of bit vectors. We obtain compo-

nents of data flow equations by application of local flow analysis (Algorithm 5.1). The

application of global flow analysis (Algorithm 5.2) leads to propagation of knowledge

about the communication characteristics of the loops in the flow graph. Further, result

flow variables are computed to describe the parts to be gathered before entering loop l or

after leaving loop l.

At compile time, the data-flow framework analyzes the input kernel to build the mem-

ory communication schedule for transfer of data between the global memory and the

shared memory. To accomplish this, the compiler has to transform the kernel after ana-

lyzing the data access patterns. Our framework for GPU targets analyzes the high level

code to determine the points in the program for memory communication. This involves

62 CHAPTER 5. IRREGULAR DATA APPLICATIONS

Algorithm 5.1: Loop Flow Analysis
Input: Set of Loop Flow Graph LFG G = (N ,E) basic nodes N , Global Program

Information of Array Parts(AP)
Output: Local flow variables (LFV)
Let l stands for an arbitrary loop
p denotes a part of an array e.g. x(left(lb:ub))
for l = 1→ τ do

GET(l) : The parts read in l from shared memory.
{p : stmt in l reads part p}

PUT(l) : The parts written by l to shared memory.
{p : stmt in l writes to part p}

TILE(l) : The parts tiled into blocks. They are large compared
to the shared memory available on each streaming multiprocessor.
{p : parts in l require memory more than block size in l}

BUFF(l) : The parts buffered in shared memory while exit from l
BUFF(l) = (GET (l)∪PUT (l))∩T ILE(l)
KILL(l) : The parts that may be made invalid in l by modifying partial

or full section of the array.
{p : statements in l invalidate part p}

return

analyzing the loop flow graph for communication of array parts. The local flow analysis

within the framework determines the prefetch and store candidates for a particular loop.

As an outcome of this flow analysis, one can accurately describe the array parts to gather

before entering loop l and scatter after leaving l. The result variables, i.e. GAT HER and

SCAT T ER, determine where the gather and scatter operations should be placed. For the

given example we only use SCAT T ERADD operation.

To accomplish shared memory optimization, the compiler has to transform the ker-

nel after analyzing the data access patterns. The JolokiaC++ framework analyzes the

high level code to determine the points in the program for memory communication.

The framework then composes executor code for shared memory access at the identi-

fied points. During program execution, the executor code composition examines the data

references made by processor and calculates which off-processor data needs to be fetched

from global memory and where this data will be stored once it is received in shared mem-

5.2. OPTIMIZATION OF IRREGULAR APPLICATIONS 63

Algorithm 5.2: Global Flow Analysis
Input: Set of LFG Basic Nodes τ, Local Flow Variables (LFV), Global Program

Information of AP
Output: Result flow variable
for l = 1→ τ do

Global Flow Variable Analysis:
LIVEany/all(l) : The part of array needed in l along any/all paths starting in l.
GET (l)∪

⋂
sεsucc(l)

(LIV Eall(s))\KILL(l))

GET (l)∪
⋃

sεsucc(l)
(LIV Eany(s))\KILL(l))

BUFFD(l) : The parts of arrays that are already available when entering l.
BUF(l)∪

⋂
pεpreds(l)

(BUFFD(p)\KILL(l))

HOIST(l) : The arrays for which a GATHER should be hoisted for l⋂
pεpreds(l)

(LIV Eall(p)∪BUFFD(p))

FETCH(l) : The part of arrays that are needed in l or in some later
loop. It can be hosted before l.

GET (l)∪
⋂

sεsuccs(l)
(HOIST (s)∩FETCH(s))

Result Flow Variable Analysis:
1≤ k ≤MAXSM
GATHER(l) : It describes parts of array to be gathered before entering l

f oreach SMk, ∀i < SHARED SIZEx(SMk)
sharedx[i]← x[σBLK(SMk, i)]

SCATTER(l) : It describes parts of array to be scattered after leaving l.
f oreach SMk, ∀i < SHARED SIZEy(SMk)

y[σBLK(SMk, i)]← y[σBLK(SMk, i)]+ sharedy[i]
return

64 CHAPTER 5. IRREGULAR DATA APPLICATIONS

Algorithm 5.3: Automatic Shared Memory Tiling
Input: Program points for GAT HER and SCAT T ERADD with input data arrays
for Each array A do

Partition all the wavefronts into maximal disjoint sets such that each partition
has a subset of elements each of which is non-overlapping with any element in
other partitions
for Each partition of elements do

Find the lower bound of elements in the partition which is an affine
function of thread Index and Block Index.
Define the local storage for a partition accessed by elements of array A,
with size based on the structure of the data array.

return

ory.

Example 5.3: When given an irregular kernel as shown in Listing 5.1, the result flow

analysis determines the candidates for GAT HER and SCAT T ERADD operations. Per-

forming local flow analysis on the LFG shown in Figure 5.3, the bits corresponding to

le f t and right part of array x and y are set to ‘1’ for loop l2. This allows identification of

program points for composition of GAT HER and SCAT T ERADD. Performing result flow

analysis on the LFG shown in Figure 5.3, we get x and y as the candidates for GAT HER

and SCAT T ERADD respectively. Since, the bits corresponding to array x are set to ‘1’ in

the GAT HER set of loop l2, a gather operation for the array x is placed at the beginning

of loop l2. Similarly, the bits corresponding to array y are set to ‘1’ in the SCAT T ERADD

set of loop l2. This indicates placement of the scatter operation for the array y after loop

l2. This is shown in Figure 5.4. We introduce shared memory optimization at program

points (1) and (2) as shown in Listing 5.2 using uninterpreted function symbols. We cre-

ate local memory storage for each non-overlapping region of the data space of an array

that is accessed in a program block, thereby ensuring that data dependence relationships

are preserved.

The GAT HER operation at program point (1) performs global memory read of data

5.2. OPTIMIZATION OF IRREGULAR APPLICATIONS 65

� �
for i = 1 to numIter

_for j = 1 to numMol nowait
S1: x[i] = y[i]

endfor
GATHER(x) //-----------(1)
_for k = 1 to numInter wait

S2: y[left[k]] += (x[left[k]] + x[right[k]])/4
S3: y[right[k]] -= (x[left[k]] + x[right[k]])/4

endfor
SCATTERADD //-----------(2)
endfor� �

Listing 5.2: Modified Kernel after Flow Analysis

array x. Localizing the computation and data to one SM (streaming multiprocessor) will

tend to improve the performance of the code. Thus, localizing the data array x in the

shared memory of each SM will allow the computations in each wavefront to reuse the

data stored in shared memory. The result of the computation is stored in the shared mem-

ory of each SM to reduce global memory accesses for the store operation. We introduce

shared memory reduction at program point (2) to combine the partial result computed by

each SM via SCAT T ERADD. The GAT HER and SCAT T ERADD operations are performed

using shared memory tiling, which is expected to improve the performance. However, if

the shared memory is not big enough to accommodate sufficient data, it will lead to global

memory access. The detailed description on tiling for shared memory is covered in Sec-

tion 5.3.

5.2.2 Code Generation using Sparse Polyhedral Framework

Existing loop transformation frameworks for GPUs [17] represent and manipulate itera-

tion spaces as polyhedra and/or unions of polyhedra, which is restricted to loop bounds

that are affine functions of outer iterators and symbolic constants. The limitations of

this framework leads to conservative decisions of dependence on non-affine memory

references occurring in important applications like sparse matrix and unstructured mesh

computations. Fortunately, the Kelly and Pugh framework describes non-affine memory

66 CHAPTER 5. IRREGULAR DATA APPLICATIONS

Gather(X)

Global Memory Read

Global Memory Write

X
Shared
Memory

SM1

Scatter (Y)

X
Shared
Memory

SM2

X
Shared
Memory

SMn

Y
Shared
Memory

SM1

Y
Shared
Memory

SM2

Y
Shared
Memory

SMn

Computation

ADD

Figure 5.4: Scatter/Gather for Simplified MOLDYN Kernel

references of the type A[B[i]] by using Presburger arithmetic with uninterpreted function

symbols. We exploit this ability to specify data mappings between loop iterations and data

locations, and dependences between loop iterations when non-affine memory references

are involved. We base the generation of the inspector and executor on the specification of

irregular computations and run-time reordering transformations using the Sparse Polyhe-

dral Framework. This involves compile time composition of the inspector and executor

based on identification of GATHER/SCATTER using the TILE data structure.

5.2.2.1 Compile Time Composition of Inspector

We use the formalization of run-time data and iteration ordering proposed by Strout et. al

[69] to compose inspector code for GPUs in our framework. The composition involves

exploiting wavefronts for the data parallel for set iterator. The for set iterator with

wait clause enforces the use of the lock-free barrier described in Section 5.2.4. We

collect the data mapping and dependence information via the flow analysis framework

covered in Subsection 5.2.1. We then apply intra-loop run-time data and iteration re-

ordering transformations. We explain this process for the simplified MOLDYN kernel

5.2. OPTIMIZATION OF IRREGULAR APPLICATIONS 67

(Listing 5.1) in the remainder of this Section.

5.2.2.1.1 Data and Run-time Transformations Mapping The unified iteration space

I0 for the program is the following set:

I0 = {[i,1, j,1] | 1 ≤ i ≤ numIter ∧ 1 ≤ j ≤ numMol}

∪ {[i,1,k,q] | 1 ≤ i ≤ numIter ∧ 1 ≤ k ≤ numMol ∧ 1 ≤ q ≤ 2}

The data spaces associated with the simplified example is given by:

x0 = {[j] | 1≤ j ≤ numMol}

y0 = {[j] | 1≤ j ≤ numMol}

le f t0 = {[k] | 1≤ k ≤ numInter}

right0 = {[k] | 1≤ k ≤ numInter}

The data mappings for the MOLDYN example is as follows:

MI0→x0 = {[i,1, j,1]→ [j]}

∪ {[i,2,k,q] → [le f t(k)]}

∪ {[i,2,k,q] → [right(k)]}

MI0 → y0 = {[i,1, j,1] → [j]}

∪ {[i,2,k,1] → [le f t(k)]}

∪ {[i,2,k,2] → [right(k)]}

MI0 →le f t0 = {[i,2, j,q]→ [k]}

MI0 →right0 = MI0→le f t0

The dependences DI′→I′ of the new iteration space are given by:

DI′→I′ = {TI→I′(p1) → TI→I′(p2) | p1 → p2 ∈ DI→I}

where for each {p1 → p2} ∈ DI→I, TI → I′(p1) must be lexicographically earlier than

68 CHAPTER 5. IRREGULAR DATA APPLICATIONS

TI → I′(p2). The new data mapping MI′ → a for each array a is given by :

MI → a′ = {q → R(m) | m ∈ MI →a(q)}

Run-time Data Reordering for GPU We use the topological ordering mechanism

(First Touch Policy) introduced by Ding and Kennedy [31] for run-time data reordering.

Given a loop with indirect memory references like the k loop in Listing 5.2, run-time data

reordering using FT (First Touch) policy can improve the spatial locality, which in turn

provides coalesced global memory access. The FT policy traverses the iteration space of

the loop in lexicographic order. The first time a loop touches a piece of data, that data is

packed into the next location for the new data mapping. The First Touch Policy special-

ized for the original data mapping MI0→x0 is given in Algorithm 5.4. It is composed as

part of inspector code to perform run-time data reordering. Here, σFT records the new

permutation order of the elements of array x according to the first touch policy. The new

data mapping is specified as follows.

MI0→x0 = {[i,1, j,1] → [σFT (j)]}

∪ {[i,2,k,q] → [σFT (le f t(j))]}

∪ {[i,2,k,1] → [σFT (right(j))]}

The above mapping leads to run-time data reordering of x and y array which is given

by Rx0→y0 = {i→ σFT (i)}.

Example of Run-time Data Reordering Composition for GPU The executor code

after applying the data reordering transformation on the simplified MOLDYN kernel is

as shown in Listing 5.3. Here, each occurrence of x[...] and y[...] in the original

code is replaced by nx[σFT[...]] and ny[σFT[...]] respectively. Applying first

5.2. OPTIMIZATION OF IRREGULAR APPLICATIONS 69

Algorithm 5.4: First Touch Policy
Input: left, right
Output: Data Reordering
Initialize tag f irstTouch array to all -1 and count to 0
for i = 1→ numInter do

index1← left[i]
index2← right[i]
if tag firstTouch[index1] = -1 then

tag firstTouch[index1]← count
if tag firstTouch[index2] = -1 then

tag firstTouch[index2]← count
count← count + 1

for j = 1→ numMol do
if tag firstTouch[j] = -1 then

tag firstTouch[j]← count
count← count + 1

return

touch requires additional code given in Listing 5.4 for the inspector. It is introduced to

enforce pointer update, data alignment and iteration alignment. The executor code after

the alignment and update is shown in Listing 5.5.

Run-time Iteration Reordering for GPU Iteration-level parallelism is achieved when

different iterations from a loop are executed in parallel. However, to ensure that the se-

mantics of the code is retained, execution of the loop iterations must be in accordance

with their inter-iteration dependences. Thus, inter-iteration dependences inhibit iteration

parallelization. We propose an iteration-level loop parallelization technique with loop

transformation to maximize loop parallelism. Our basic idea is to migrate inter-iteration

data dependences by regrouping iterations of a loop kernel in such a way that the num-

ber of consecutive independent iterations is maximized. We perform iteration reordering

at runtime to extract iteration-level parallelism after exploiting spatial locality using the

data reordering mechanism. The run-time iteration reordering involves exploiting data

parallelism through wavefront generation. This involves modeling the data dependence

70 CHAPTER 5. IRREGULAR DATA APPLICATIONS

� �
// Copy data to reordered location
for i = 1 to numMol

nx[σFT [i]] = x[i]
ny[σFT [i]] = y[i]

endfor

// simplified MOLDYN computation
for i = 1 to numIter

_for j = 1 to numMol nowait
nx[σFT [i]] = ny[σFT [i]]

endfor
_for k = 1 to numInter wait

ny[σFT [left[k]]] += (nx[σFT [left[k]]] + nx[σFT [right[k]]])/4
ny[σFT [right[k]]] -= (nx[σFT [left[k]]] + nx[σFT [right[k]]])/4

endfor
endfor

// Copy data to original location
for i = 1 to numMol

x[i] = nx[σFT [i]]
y[i] = ny[σFT [i]]

endfor� �
Listing 5.3: Executor Code for Simplified MOLDYN using FT

� �
for i = 1 to numInter

σle f t[i] = σFT [left[i]]
σright[i] = σFT [right[i]]

endfor� �
Listing 5.4: Additional code for inspector

among the iterations in a loop by converting a single dimension interaction list to a two

dimensional interaction list. Pseudo code for wavefront generation is shown in Algorithm

5.5. The modified iteration domain contains iterations in each wavefront which can be

executed in parallel. The barrier (shown as dotted line) separates the iteration domain

of each pair of consecutive wavefronts. The overall process of wavefront generation is

shown in Figure 5.5. The iteration reordering of the j loop and the k loop based on their

mappings to the data arrays x and y is specified as follows.

5.2. OPTIMIZATION OF IRREGULAR APPLICATIONS 71

� �
// Copy data to reordered location
for i = 1 to numMol

nx[σFT [i]] = x[i]
ny[σFT [i]] = y[i]

endfor

// simplified MOLDYN computation
for i = 1 to numIter

_for j = 1 to numMol nowait
nx[i] = ny[i]

endfor
_for k = 1 to numInter wait

ny[σle f t[k]] += (nx[σle f t[k]] + nx[σright[k]])/4
ny[σright[k]] -= (nx[σle f t[k]] + nx[σright[k]])/4

endfor
endfor

// Copy data to original location
for i = 1 to numMol

x[i] = nx[σFT [i]]
y[i] = ny[σFT [i]]

endfor� �
Listing 5.5: Executor Code for Simplified MOLDYN after Alignment and Update

TI0→I1 = {[i,1, j,1]→ [i,1,σFT (j),1]

∪ [i,2,k,q]→ [i,2,σWF(k),q]}

However, the data mappings after wave-front generation remains unchanged for the given

example code.

Example of Run-time iteration Reordering Composition for GPU Given a loop with

the access pattern shown in Figure 5.5(b) the wavefront generation process transforms the

iteration domain to contain the wavefront shown in Figure 5.5(d). We apply a regulariza-

tion function given in Algorithm 5.6 on the wavefronts to reduce non-coalesced global

memory access for the threads within a block. This is applied before generating sched-

ules for shared memory access.

72 CHAPTER 5. IRREGULAR DATA APPLICATIONS

Algorithm 5.5: Wavefront Generation
Input: left, right, maxWavefronts
Output: wf
for i = 1→ numInter do

w f [i]← -1
σWF [i]← -1

for i = 1→ maxWave f ronts do
maxIndexEachWF[i]← -1

for i = 1→ numInter do
if σWF[left[i]] > σWF[right[i]] then

currentWF← σWF [left[i]] + 1
else

currentWF← σWF [right[i]] + 1
wf[i]← currentWF;
σWF [left[i]]← currentWF
σWF [right[i]]← currentWF
maxIndexEachWF[currentWF]++

return

Algorithm 5.6: Wavefront Regularization
Input: σWF , maxIndexEachWF
Output: nσle f t , nσright
for i = 1→ numMol ∗w f Formed do

nσle f t[i]← 0
nσright[i]← 0
temp[i]← 0

for i = 1→ numInter do
currentWf← σWF [i]
tempMaxEachWf← maxIndexEachWF[currentWf] + 1
idx← σle f t[i]
temp[currentWf*numMol + idx]← σright[i]
maxIndexEachWF[currentWf]← tempMaxEachWf

for i = 0→ w f Formed do
p← 0
for j = 0→ numMol do

if temp[i* numMol + j] != 0 then
nσle f t[i*numMol + p]← j
nσright[i*numMol + p]← temp[i*numMol + j]
p← p + 1

return

5.2. OPTIMIZATION OF IRREGULAR APPLICATIONS 73

left[10] = {2, 6, 5, 4, 7, 3, 1, 6, 7, 4};
right[10] = {3, 8, 6, 5, 1, 7, 3, 2, 8, 5};

1 --> 8
2 --> 1
3 --> 2
4 --> 6
5 --> 5
6 --> 3
7 --> 7
8 --> 4

(c) Data Reordering using First touch policy

(d) Transformed Domain (Wavefront Generation)

1

Iteration

Data

7 820 3 4 5 6 9

D1 D2 D3 D4 D5 D6 D7

D3 D6 D8 D5 D4 D7 D1D2

D8

1
2

3
4

Wavefront 0

Wavefront 1

Wavefront 2

Wavefront 3

7
8

 0
 0

6
5

 0
 0

3
5

7
2

1
3

6
5 4

7 8
2

(a) Original iteration list

(b) Original Data and Iteration Access Pattern

Figure 5.5: Compile Time Composition of Inspector

5.2.3 Executor Code Generation

Generating executor code for the transformed computation requires determining loop

bounds for the new loop iterators and determining new array access functions within the

context of the transformed iteration space. Each for loop is transformed to a kernel for

execution on the GPU using Algorithm 5.6 and 5.7. To illustrate the process, we consider

the iteration space of the code shown in Listing 5.1 for generating executor code for the

transformed computation. The kernel surrounded by GATHER and SCATTER as shown

in Listing 5.2 is the candidate for transformation of indirect references performed in x and

y. The original iteration space specification for the single “statement” associated with this

74 CHAPTER 5. IRREGULAR DATA APPLICATIONS

Algorithm 5.7: Intra-Loop Memory Access Mechanism
for i = 1→ numForall do

if loop(i) is without Indirect access then
Generate Regular Blocked code for GPU

else if loop(i) contains Indirect access then
Use Algorithm 5.3 to generate shared memory tiled code

return

loop is

I = {[i,k] : (0≤ i < numIter)∧ (0≤ k < numInter)}

The iteration space set specification after applying data and iteration reordering and par-

titioning is

I′ = {[i,GAT HER,w,k,SCAT T ER] :

(0≤ i < numIter)∧GAT HER

∧ (0≤ w < w f Number)}

∧ (0≤ k < σ(SMp))∧SCAT T ER}

The proposed framework generates the executor code as shown in Listing 5.6.

5.2.4 Inter-Block synchronization using lock-free barrier

We experimented by implementing the wait clause composition using both lock-free and

lock-based barriers. Both implementations provide inter-block synchronization that does

not involve the host CPU and thus eliminates the overhead of switching back and forth

between the GPU and CPU.

5.2. OPTIMIZATION OF IRREGULAR APPLICATIONS 75

� �
for i = 1 to numIter

GATHER(x)
for w = 1 to wfNumber

forall k such that wf[k] = w
foreach element in GATHER and SCATTER

t = g(SM)
if(t in SHARED_X RANGE)

t1 = SHARED_X[t]
else

t1 = x[t]
endforeach

endforall
endfor
SCATTER(y)

endfor� �
Listing 5.6: Executor code

The basic idea of GPU lock-based synchronization [75] is to use a global mutex vari-

able to count the number of thread blocks that reach the synchronization point. The

leading thread will then repeatedly compare the global mutex variable to a target goal

value. If it is equal to the goal value, the synchronization is completed and each thread

block can proceed with its next wave-front. The goal value is set to MAXSM ∗w f Number

in the kernel when the barrier function is first called. Our lock-free barrier is outlined in

Algorithm 5.8. Our algorithm uses an array barrCounter to coordinate synchronization

requests from various thread blocks. We map each array element to a thread block to

keep track of all the blocks. This mechanism is expected to scale well with increase in the

number of thread blocks. We compared our lock-free implementation with the lock-based

barrier proposed by Xiao et. al. [75]. We found that our lock-free barrier implementation

performs equally well when compared to the lock-based implementation, and is expected

to do better with increased contention.

76 CHAPTER 5. IRREGULAR DATA APPLICATIONS

Algorithm 5.8: Lock-free Interblock Barrier
Require: gNumber
Ensure: Inter Block synchronization

if threadIdx = 0 then
barrCounter[blockIdx]← gNumber

end if
if threadIdx < gridDim then

Counter←&barrCounter[threadIdx]
repeat
{...}

until Counter 6= gNumber
end if

5.3 Empirical Search for Selection of Optimal Tile Size

and Scheduling Policy

In this section, we discuss the choice of system parameters such as threads/block used for

execution, and the availability of GPU local resources such as shared memory and regis-

ters. The number of active threads per block at a given time depends on the amount of

shared memory and registers available for execution. We performed tiling for exploiting

temporal locality across thread blocks and threads, which in turn reduces the number of

loads/stores from global memory. We did an empirical search to find an optimal tile size

of threads per block for the tiled loops associated with shared memory access for localiz-

ing the access to shared memory. We varied the parameters tile and scratchpad operator

to determine the optimal grid dimension and shared memory size. We found that a shared

memory size of 1024 and 512 resulted in optimal performance, with grid dimensions

based on the total number of elements for processing. We evaluated 1D and 3D im-

plementation of all the benchmarks with different block dimensions and concluded with

512 threads per block as the most suitable block dimension. We improve the paralleliza-

tion capability of the GPU by using run-time data and computation ordering performed

by the composed inspector. We employ empirical search to pick the optimal scheduling

5.3. EMPIRICAL SEARCH FOR SELECTION OF OPTIMAL TILE SIZE AND
SCHEDULING POLICY 77

policy out of various scheduling policies like Random Scheduling, Regularized Block

Scheduling, Locality Based Scheduling to model the set iterator for iteration reordering.

In Random Scheduling the threads associated with the set iterator access the data placed in

random order. We regularize the data access of threads associated with the set iterator by

padding the wave-fronts with ‘0’ in the interaction list where molecules are not involved

in the interaction. This would lead to coalesced global memory access and reduction in

bank conflicts. Further, bringing frequently used data into shared memory allows us to

localize the access of data which in turn results in improving performance.

78 CHAPTER 5. IRREGULAR DATA APPLICATIONS

Chapter 6

Performance Measurement

In this chapter, we evaluate the functioning of our framework on benchmarked codes with

regular and irregular access kernels. We present and discuss the performance of the codes

using the overall execution time and speedup.

6.1 Experimental Methodology and Performance Results

for Regular Access Kernels

We implemented the proposed framework using ROSE [56], a source-to-source compiler

infrastructure available for C, C++, FORTRAN programs. The output of JolokiaC++

compiler is compiled by the CUDA compiler, nvcc[2], to generate an executable file for

the GPU. We evaluated the effectiveness of our framework using CUDA driver version

6000 on an NVIDIA GeForce GTX 770 using CUDA version 5.5. The test set used for

demonstrating the effectiveness of the framework is shown in Table 6.1. We evaluated

all the benchmarks with and without scratchpad annotations. The Jolokia-C++ naive

indicates an evaluation without scratchpad annotations, while the Jolokia-C++ shared is

with scratchpad annotations. We compare the execution time of the code generated by our

framework with the OpenACC implementation to determine the speedup over the sequen-

80 CHAPTER 6. PERFORMANCE MEASUREMENT

Test set Time step Hints for Reuse Access pattern& Size of Input Pattern
Blackscholes 4000000 No reuse Linear access
Matrix-Vector 131072 * 1024 Implicit loop through

Row Linear access
Multiplication 4096 x 4096 aview operator
Matrix-Matrix 1024 x 1024 Implicit loop through Row and Column
Multiplication 2048 x 2048 aview operator Linear access
Vector Addition 9000000 No reuse Linear

Jacobi 1-D 65536 x 65536
Multiple access through

Shifted Access
shift operator

Jacobi 2-D
10 X 4096 x 4096 Multiple access through

Shifted Access
100 x 4096 x 4096 shift operator

Heat 2-D
20 x 4096 x 4096 Multiple access through

Shifted Access
100 x 4096 x 4096 shift operator

Convolution
2048 x 2048 Multiple access through

Shifted Access
4096 x 4096 shift operator

Table 6.1: Test Set and their Configuration

tial CPU implementation. We also compare the execution time with the codes available

in CUDA-SDK. The sequential implementation is tested on Intel(R) Core(TM) i7-3770K

CPU @ 3.50GHz with 32GB RAM, and 8MB L3 shared cache, running UBUNTU 10.04.

We used PGI compiler version 13.10 to compile OpenACC codes for evaluation. We in-

vestigated eight kernels: one from the PARSEC [7] benchmark suite, three from BLAS

and four stencil based codes from the Chombo [26] toolkit, Rodinia [24, 23] benchmark

suite and PolyBench [9]. The Blackscholes benchmark from the PARSEC benchmark

suite solves a partial differential equation that describes the price of an option over time.

Vector-Addition(AXPY), Matrix-Vector multiplication (GEMV) and Matrix-Matrix mul-

tiplication (GEMM) are Basic Linear Algebra Subprograms (BLAS) kernels. We have

considered 2D heat conduction, Jacobi and Convolution which are stencil-based codes,

as the applications to run on the GPU. We chose these applications primarily because the

computation to communication ratio is quite high. The computation portion is intensive

and it can be distributed to several threads.

6.1. EXPERIMENTAL METHODOLOGY AND PERFORMANCE RESULTS
FOR REGULAR ACCESS KERNELS 81

The 1-D and 2-D Jacobi solvers are from the Rodina benchmark suite used to deter-

mine Lagrangian’s of a wide variety of nonlinear differential equations. 2D-Heat Bench-

mark is from the Chombo toolkit used for modeling heat conduction. It uses the Gauss-

Seidel (GS) method for modeling. The GS kernel is repeated until the standard deviation

between adjacent 2D matrices is less than a predefined convergence value. In image pro-

cessing, many operators are based on applying some function to the pixels within a local

window. That is, to find the value of an output pixel a window is centered at that location

and only pixels falling within this window; are used to calculate the value of that out-

put pixel. 2-D Convolution from PolyBench suite is one such operator which performs

weighted average of the pixels within the window to calculate the value of the output

pixel.

6.1.1 Ease of Programming

Our goal here is to address those issues that prevent programmers from exploiting the

full potential of GPUs. This requires developing programming language constructs and

paradigms to express parallelism without explicitly understanding the underlying archi-

tecture. We developed an annotation based language constructs that makes GPU program-

ming simpler and less error-prone. To support these annotations we integrate optimiza-

tions to shield the programmer from the complexity of the underlying architecture. The

input code given in Listing 6.1 illustrates the simplicity of our annotation based language

constructs. We asked two programmers, each having one year of CUDA programming

experience to evaluate the simplicity and performance of our framework. Programmers

appreciated the productivity gains and ease of use associated with the framework. Con-

trolled experiments with more number of users need to be performed to claim the ease of

JolokiaC++ over CUDA.

82 CHAPTER 6. PERFORMANCE MEASUREMENT

� �
blackscholes(f32Array &cRes , f32Array &pRes , f32Array &sPrice ,

f32Array &oStrike , f32Array &oYears , float rFactor ,
float vol, int optN){

...
sqrtoYears = sqrt(oYears);
d1 = logf(sPrice/oStrike) +

(rFactor + 0.5 * vol * oYears)/(vol * sqrtoYears);
d2 = d1 + Volatility * sqrtOptionYears;
k1 = 1/(1 + 0.2316419f * abs(d2));
k2 = (k1 * (X1 + k1 * (X2 + k1 * (X3 + k1 * (X4 + k1 * X5)))));
cnd1temp = rsqrt2PI * expf(-0.5f * d1 * d1) * k2;
cnd2temp = rsqrt2PI * expf(-0.5f * d2 * d2) * k2;
_if (d1 > 0.0f){

CND1 = cnd1temp;
}
else {

CND1 = 1.0 - cnd1temp;
}
_if (d2 > 0.0f){

CND2 = cnd2temp;
}
else {

CND2 = 1.0 - cnd2temp;
}
expRT = expf(-rFactor * oYears);
cRes = sPrice * CND1 - oStrike * expRT * CND2;
pRes = oStrike * expRT * (1.0f - CND2)

- sPrice * (1.0f - CND1);
}
int main(int argc , char **argv)
{

...
#pragma jolokia gpuIn(sPrice ,oStrike ,oYear)

gpuOut(pRes ,cRes) tile(BLOCK ,1,1)
blackscholes(cRes ,pRes ,sPrice ,oStrike ,oYear ,

RiskFactor ,Volatility ,optN);

}� �
Listing 6.1: Blackscholes Code Snippet in JolokiaC++

6.1. EXPERIMENTAL METHODOLOGY AND PERFORMANCE RESULTS
FOR REGULAR ACCESS KERNELS 83

Benchmark Dimensions CPU JolokiaC++ OpenCL OpenACCNaive Shared
Convolution 2048 x 2048 55.35 28.75 20.58 29.84 51.24

4096 x 4096 220.94 59.67 45.34 49.18 117.3
Matrix-Matrix 1024 x 1024 6500.55 52.21 29.11 70.21 95.57
Multiplication 2048 x 2048 156338.2 257.39 36.85 273.51 297.18
Matrix-Vector 131072 x 1024 375.23 9.55 9.61 30.43 31.61
Multiplication 4096 x 4096 47.18 16.69 6.03 29.12 31.45
Jacobi 2-D 10 x 4096 x 4096 1695.21 113.28 97.4 413.38 711.54

100 x 4096 x 4096 16822.56 288.11 179.34 420.12 11261.39
Jacobi 1-D 65536 x 65536 14089.1 447.75 578.34 300.23 282.64
Blackscholes 4000000 785.79 20.95 - 358.99 311.29
Vector-Addition 9000000 42.62 47.87 - 99.41 9.57
Heat 2-D 20 x 4096 x 4096 2500.28 44.02 42.67 429.02 781.13

100 x 4096 x 4096 16248.29 168.93 134.25 439.43 10681.4

Table 6.2: Execution time of benchmarks in milliseconds

Benchmark Dimensions JolokiaC++ OpenCL OpenACCNaive Shared
Convolution 2048 x 2048 1.925 2.689 1.855 1.080

4096 x 4096 3.702 4.873 4.492 1.884
Matrix-Matrix 1024 x 1024 124.508 223.295 92.587 68.019
Multiplication 2048 x 2048 607.384 4242.212 571.600 526.081
Matrix-Vector 131072 x 1024 39.299 39.057 12.331 11.869
Multiplication 4096 x 4096 2.826 7.830 1.620 1.500
Jacobi 2-D 10 x 4096 x 4096 14.965 17.405 4.101 2.382

100 x 4096 x 4096 58.389 93.803 40.042 1.494
Jacobi 1-D 65536 x 65536 31.466 24.361 46.928 49.849
Blackscholes 4000000 37.511 - 2.189 2.524
Vector-Addition 9000000 0.890 - 0.429 4.454
Heat 2-D 20 x 4096 x 4096 56.800 58.596 5.828 3.201

100 x 4096 x 4096 96.182 121.030 36.976 1.521

Table 6.3: Speedup of the benchmarks over sequential CPU implementations

84 CHAPTER 6. PERFORMANCE MEASUREMENT

6.1.2 Performance Results and Discussion

The graph based analysis performed on the input and output set passed as a parameter

to the gpuIn and gpuOut annotation in Blackscholes allows our framework to completely

parallelize the code. Figure 6.6 shows the execution times of Blackscholes. The execu-

tion time of code generated by our framework is compared with the implementation that

comes with Nvidia CUDA SDK, OpenACC and OpenCL implementations. The OpenCL

code used for comparison is without the use of shared memory. The execution time and

speedup of all the benchmarks is as shown in Table 6.2 and 6.3 respectively. It is observed

from the results that there is minimal overhead of accessing memory through object in-

stantiation.

BLAS kernels

In this experiment, we tuned the performance of AXPY, GEMV and GEMM on NVIDIA

GeForce GTX 770. The GEMV and GEMM kernels are tested with and without scratch-

pad annotations. The parallel JolokiaC++ version contains jolokia parallelization direc-

tives with necessary parameters to launch and tune the kernel for transformation of code.

The experimental results shown in Figure 6.2 demonstrate the performance in terms of

execution time for GEMV and GEMM respectively. Here, the unit used to measure the

performance is in terms of milliseconds. The corresponding speedup for GEMV and

GEMM is shown in Figure 6.1. The y axis in all the graphs is plotted using log scale.

The performance gain of JolokiaC++ shared memory implementation of GEMM outper-

forms the OpenACC, JolokiaC++ naive and CUDA-SDK implementations. However,

this is not the case with AXPY as seen in Figure 6.6. It has been observed that OpenACC

outperforms most codes when there is a single loop. The JolokiaC++ shared memory im-

plementation of GEMV gives reasonably good performance in comparison to the hand-

coded CUDA implementation. The handcoded CUDA implementation outperforms the

6.2. EXPERIMENTAL EVALUATION OF IRREGULAR ACCESS KERNELS 85

Parameters GeForce GTX 480 Tesla C1060 Tesla K20c
Global Memory (MB) 1536 4096 4800
GPU clock rate (GHz) 1.40 1.30 0.71
Memory clock rate (MHz) 1848 800 2800
Compute Capability 2.0 1.3 3.5

Table 6.4: Configuration of GPUs

JolokiaC++ shared memory implementation due to lack of loop unrolling support in our

composition.

Stencil Codes

Most stencils exhibit a high degree of temporal locality because each update operation

accesses neighboring values on the grid. Typically, in an n-dimensional stencil there is

data reuse along all n dimensions. Since each time step sweeps over the same data grid,

stencils also exhibit data locality in the time dimension. A multiple appearance of the

array accessed through the shift operator in the source code is also considered as temporal

reuse of an array. We evaluated the applicability of the shift operator on stencil codes like

Heat 2-D, Jacobi and Convolution codes using our framework. The execution time for

Heat, Jacobi and Convolution is shown in Figure 6.4a,6.3a and 6.5a. The JolokiaC++

shared memory implementations of Heat 2-D, Jacobi 2-D and Convolution outperforms

the OpenACC implementations as shown in Figure 6.4b, 6.3b and 6.5b. However, there is

scope to further optimize the code by reusing data through the efficient use of Registers.

6.2 Experimental Evaluation of Irregular Access Kernels

We evaluated our framework on a multicore CPU and manycore GPUs. We present the

experimental results from compiling the three kernels (IRREG, MOLDYN and NBF) for

86 CHAPTER 6. PERFORMANCE MEASUREMENT

Dimensions Number of IRREG NBF MOLDYN
Molecules Seq Par Seq Par Seq Par

1D
10000 20.56 18.23 40.53 28.33 318.88 112.37
100000 263.55 168.88 518.19 261.61 3342.74 1074.89
1000000 9789.39 4042.23 16303.55 5052.27 44198.76 12827.68

3D
10000 54.77 45.49 223.59 113.81 224.59 173.05
100000 661.37 335.15 2420.62 852.28 2463.78 1301.87
1000000 21764.79 9734.17 43529.65 13627.44 57806.82 17464.79

Table 6.5: Execution time of Sequential (Seq) and Parallel (Par) hand-coded CPU imple-
mentation in milliseconds

execution on GeForce GTX 480, Tesla K20c and Tesla C1060. Their configurations are

listed in Table 6.4. We use, Intel(R) Core(TM) i3@3.20 GHz with 4 GB RAM and 4 MB

(L3 Cache) to measure the performance of sequential and parallel CPU versions of the

code.

We evaluated the performance of our framework by generating synthetic data for ag-

gregation benchmarks: MOLDYN, IRREG and NBF. MOLDYN is a computational ker-

nel extracted from the CHARMM simulation package. CHARMM [22] simulates the

properties of atoms and molecules in liquid and solid systems. MOLDYN is the main

computational kernel which iterates over all interacting atoms and molecules, and up-

dates the forces acting on both interacting entities. IRREG [38] models the unstructured

meshes, which are represented by nodes and edges. This benchmark finds application in

computational fluid dynamics(CFD). The kernel is an iterative PDE solver. NBF belongs

to the GROMOS molecular dynamics code. The NBF [38] kernel extracted from GRO-

MOS tracks the evolution of the n-body particle system based on the force that is applied

between the molecule and its interacting partner. An irregular reduction form of access

pattern is present in all these benchmarks.

The With Shared plot in the graph corresponds to a composition which uses shared

memory for GATHER and SCAT T ERADD operations. The Without Shared plot in the

graph corresponds to a composition without the use of shared memory. The Parallel

6.2. EXPERIMENTAL EVALUATION OF IRREGULAR ACCESS KERNELS 87

Benchmarks Dimensions Number of Geforce Tesla C1060 Kepler K20cMolecules GTX 480

IRREG

1D

Without Shared
10000 40.14 149.95 213.27
100000 215.62 933.39 780.77
1000000 2238.77 10426.44 5719.97

With Shared
10000 34.89 120.69 202.23
100000 175.77 782.67 622.35
1000000 1507.13 6032.54 4995.82

3D

Without Shared
10000 69.43 338.2 281.08
100000 524.38 3088.58 1644.53
1000000 5414.6 37273.48 15156.28

With Shared
10000 53.91 236.97 244.87
100000 279.89 1737.26 1595.26
1000000 4645.51 15899.41 14633.69

Table 6.6: Execution Time of IRREG in milliseconds

CPU plot corresponds to execution of OpenMP parallel code on the CPU. The execution

time of sequential and OpenMP based parallel implementation of IRREG, MOLDYN and

NBF is given in Table 6.5. The execution time of IRREG, MOLDYN and NBF is given in

Table 6.6, 6.7 and 6.8 respectively. A scatter plot of a sample data with 1000 molecules

is shown in Figure 6.7.

Performance

The speedup of IRREG, MOLDYN, and NBF on the test platforms used for experimen-

tation is shown in Figure 6.8, 6.9, and 6.10 respectively. The speedup of execution on

GPUs is measured by taking into consideration the runtime data and iteration reordering

overhead along with the data transfer and kernel invocation overhead. The data transfer

overhead incurred in the overall execution time is shown in Figure 6.11. The reordering

overhead incurred in the overall execution time is shown in Table 6.9. The low data trans-

88 CHAPTER 6. PERFORMANCE MEASUREMENT

Benchmarks Dimensions Number of Geforce Tesla C1060 Kepler K20cMolecules GTX 480

MOLDYN

1D

Without Shared
10000 40 149.59 213.18
100000 225.85 924.46 794.19
1000000 2361.6 9430.16 5740.76

With Shared
10000 35.88 120.13 202.23
100000 178.515 782.13 622.35
1000000 1516.81 6030.35 4995.82

3D

Without Shared
10000 79.02 373.66 285.38
100000 543.92 3095.13 1666.53
1000000 5423.4 37249.3 15160.88

With Shared
10000 52.85 236.09 244.87
100000 275.91 1736.13 1595.26
1000000 4634.23 15900.41 14633.69

Table 6.7: Execution Time of MOLDYN in milliseconds

fer overhead along with higher clock speed in Fermi GTX 480 appears to be the reason

for the high speedup compared to the other test platforms used in the experiments.

From the graph shown in Figure 6.8, 6.9, and 6.10, we can infer that the performance

of With Shared composition is better than Without Shared composition. One of the main

reasons behind the performance improvement is the introduction of a scheduling mecha-

nism for iteration reordering to expose temporal locality. This involves regularizing one

of the two interaction lists and reordering the second interaction list accordingly. The

regularized iteration reordering results in coalesced access to one interaction list and its

associated data. This plays an important role in providing spatial locality and in turn

improves the performance compared to the irregular access implementation on the GPU.

The shared memory tiling exploits temporal locality to gauge the performance on the

GPU. However, shared memory size imposes a limitation on achievable performance.

Unavailability of data in shared memory results in non-coalesced global memory access,

6.2. EXPERIMENTAL EVALUATION OF IRREGULAR ACCESS KERNELS 89

Benchmarks Dimensions Number of Geforce Tesla C1060 Kepler K20cMolecules GTX 480

NBF

1D

Without Shared
10000 41.47 150.48 211.65
100000 213.63 931.74 782.04
1000000 2105.93 10372.95 5730.01

With Shared
10000 35.32 120.13 202.23
100000 173.86 782.18 622.35
1000000 1451.34 6031.69 4995.82

3D

Without Shared
10000 72.55 338.01 284.64
100000 541.26 3094.27 1669.8
1000000 5546.46 37229.42 15386.37

With Shared
10000 52.8 237.87 244.87
100000 282.43 1737.15 1595.26
1000000 4638.25 15900.41 14633.69

Table 6.8: Execution Time of NBF in milliseconds

Molecules/Interactions Reorder Time
10000 1.54
100000 20.81
1000000 310.25

Table 6.9: Average Reordering Time in milliseconds

which can lead to significant performance degradation. However, maximizing the locality

based access in the memory hierarchy of the GPU helped us in bridging the memory wall

problem to a large extent.

We developed a framework to efficiently and easily port irregular scientific and en-

gineering applications with subscripted subscript. The framework showed appreciable

speedup on many-core processors with minimal effort from the programmer. The current

implementation is limited to loops with no loop-carried dependences except those used

for accumulation of results.

90 CHAPTER 6. PERFORMANCE MEASUREMENT

 10

 100

 1000

1024*1024 2048*2048

E
x
ec

u
ti

o
n
 T

im
e

(m
il

li
se

co
n
d
s)

Matrix Dimensions

Exection time for Matrix multiplication

OpenACC
OpenCL

JolokiaC++-Naive
JolokiaC++-Shared

CUDA-SDK

95.57

297.185

70.21

273.51

52.21

257.39

29.11

36.85
30.27

57.45

(a) Execution time of Matrix Multiplication

 100

 1000

 10000

1024*1024 2048*2048

S
p
ee

d
u
p
 o

v
er

 s
eq

u
en

ti
al

 C
P

U

Matrix Dimensions

Speedup of Matrix multiplication

OpenACC
OpenCL

JolokiaC++-Naive
JolokiaC++-Shared

CUDA-SDK

68.02

526.08

92.59

571.6

124.51

607.38

223.29

4242.21

214.72

2721.29

(b) Speedup of Matrix Multiplication

Figure 6.1: Performance of Matrix Multiplication

6.2. EXPERIMENTAL EVALUATION OF IRREGULAR ACCESS KERNELS 91

 1

 10

 100

131072*1024 4096*4096

E
x
ec

u
ti

o
n
 T

im
e

(m
il

li
se

co
n
d
s)

Matrix Dimensions

Exection time for Matrix-Vector Multiplication

OpenACC
OpenCL

JolokiaC++-Naive
JolokiaC++-Shared
Handcoded-CUDA31.61 31.4530.43 29.12

9.55

16.69

9.61

6.03

7.65

2.40

(a) Execution time of Matrix Vector Multiplication

 1

 10

 100

131072*1024 4096*4096

S
p
ee

d
u
p
 o

v
er

 s
eq

u
en

ti
al

 C
P

U

Matrix Dimensions

Speedup of Matrix-Vector Multiplication

OpenACC
OpenCL

JolokiaC++-Naive
JolokiaC++-Shared
Handcoded-CUDA

11.87

1.50

12.33

1.62

39.30

2.83

39.06

7.83

49.02

19.69

(b) Speedup of Matrix Vector Multiplication

Figure 6.2: Performance of Matrix Vector Multiplication

92 CHAPTER 6. PERFORMANCE MEASUREMENT

 100

 1000

 10000

 100000

10*4096*4096 100*4096*4096

E
x
ec

u
ti

o
n
 T

im
e

(m
il

li
se

co
n
d
s)

Iterations x Matrix Dimensions

Exection time for Jacobi-2D

OpenACC
OpenCL

JolokiaC++-Naive
JolokiaC++-Texture

711.53

11261.39

413.38 420.12

113.28

288.11

97.40

179.34

(a) Execution Time of Jacobi 2D

 1

 10

 100

 1000

10*4096*4096 100*4096*4096

S
p
ee

d
u
p
 o

v
er

 s
eq

u
en

ti
al

 C
P

U

Iterations x Matrix Dimensions

Speedup of Jacobi-2D

OpenACC
OpenCL

JolokiaC++-Naive
JolokiaC++-Texture

2.38

1.49

4.10

40.04

14.96

58.39

17.40

93.80

(b) Speedup of Jacobi 2D

Figure 6.3: Performance of Jacobi 2D

6.2. EXPERIMENTAL EVALUATION OF IRREGULAR ACCESS KERNELS 93

 100

 1000

 10000

 100000

20*4096*4096 100*4096*4096

E
x
ec

u
ti

o
n
 T

im
e

(m
il

li
se

co
n
d
s)

Iterations x Matrix Dimensions

Exection time for Heat2D

OpenACC
OpenCL

JolokiaC++-Naive
JolokiaC++-Texture

781.13

10681.42

429.02 439.43

44.01

168.93

42.67

134.25

(a) Execution Time of Heat 2D

 1

 10

 100

 1000

20*4096*4096 100*4096*4096

S
p
ee

d
u
p
 o

v
er

 s
eq

u
en

ti
al

 C
P

U

Iterations x Matrix Dimensions

Speedup of Heat2D

OpenACC
OpenCL

JolokiaC++-Naive
JolokiaC++-Texture

3.20

1.52

5.83

36.98

56.80

96.18

58.60

121.03

(b) Speedup of Heat 2D

Figure 6.4: Performance of Heat 2D

94 CHAPTER 6. PERFORMANCE MEASUREMENT

 10

 100

 1000

2048*2048 4096*4096

E
x
ec

u
ti

o
n
 T

im
e

(m
il

li
se

co
n
d
s)

Matrix Dimensions

Exection time for Convolution

OpenACC
OpenCL

JolokiaC++-Naive
JolokiaC++-Texture

CUDA-SDK

51.236

117.3

29.84

49.18

28.75

59.674

20.58

45.34

28.66

65.45

(a) Execution Time of Convolution

 0.1

 1

 10

2048*2048 4096*4096

E
x
ec

u
ti

o
n
 T

im
e

(m
il

li
se

co
n
d
s)

Matrix Dimensions

Speedup of Convolution

OpenACC
OpenCL

JolokiaC++-Naive
JolokiaC++-Texture

CUDA-SDK

1.08

1.881.85

4.49

1.93

3.70

2.69

4.87

1.93

3.38

(b) Speedup of Convolution

Figure 6.5: Performance of Convolution

6.2. EXPERIMENTAL EVALUATION OF IRREGULAR ACCESS KERNELS 95

 1

 10

 100

 1000

B
lackscholes

V
ector-A

ddition

Jacobi-1D

E
x
ec

u
ti

o
n
 t

im
e(

m
il

li
se

co
n
d
s)

Benchmarks

JolokiaC++
OpenACC

OpenCL
CUDA-SDK

20.95

47.87

447.75
311.29

9.57

282.64
358.99

99.41

300.23

35.78

56.46

(a) Execution Time of 1D Benchmarks

 0.1

 1

 10

 100

B
lackScholes

V
ector-A

ddition

Jacobi-1D

S
p
ee

d
u
p
 o

v
er

 s
eq

u
en

ti
al

 C
P

U

Benchmarks

Jolokia-C++
OpenACC

OpenCL
CUDA-SDK

37.51

0.89

31.47

2.52

4.45

49.85

2.19

0.43

46.92

21.96

0.75

(b) Speedup of 1D Benchmarks

Figure 6.6: Performance of 1D Benchmarks

96 CHAPTER 6. PERFORMANCE MEASUREMENT

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

<
--

--
--

 Y
 -

--
--

->

<------ X ------>

Scatter Plot of Molecules

Figure 6.7: Scatter plot of 1000 molecules

6.2. EXPERIMENTAL EVALUATION OF IRREGULAR ACCESS KERNELS 97

 0

 1

 2

 3

 4

 5

 6

 7

 10000

 100000

 1e+06

S
p
ee

d
u
p
 o

v
er

 s
eq

u
en

ti
al

 C
P

U

Molecules/Interactions

Performance of IRREG 1D for 100 iterations

Parallel CPU
Without Shared GTX 480 Fermi

With Shared GTX 480 Fermi
Without Shared Tesla C1060

With Shared Tesla C1060
Without Shared Tesla K20c

With Shared Tesla K20c

(a) Speedup of IRREG 1D

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10000

 100000

 1e+06

S
p
ee

d
u
p
 o

v
er

 s
eq

u
en

ti
al

 C
P

U

Molecules/Interactions

Performance of IRREG 3D for 100 iterations

Parallel CPU
Without Shared GTX 480 Fermi

With Shared GTX 480 Fermi
Without Shared Tesla C1060

With Shared Tesla C1060
Without Shared Tesla K20c

With Shared Tesla K20c

(b) Speedup of IRREG 3D

Figure 6.8: Performance of IRREG kernel

98 CHAPTER 6. PERFORMANCE MEASUREMENT

 0

 5

 10

 15

 20

 25

 30

 10000

 100000

 1e+06

S
p
ee

d
u
p
 o

v
er

 s
eq

u
en

ti
al

 C
P

U

Molecules/Interactions

Performance of MOLDYN 1D for 100 iterations

Parallel CPU
Without Shared GTX 480 Fermi

With Shared GTX 480 Fermi
Without Shared Tesla C1060

With Shared Tesla C1060
Without Shared Tesla K20c

With Shared Tesla K20c

(a) Speedup of MOLDYN 1D

 0

 2

 4

 6

 8

 10

 12

 14

 10000

 100000

 1e+06

S
p
ee

d
u
p
 o

v
er

 s
eq

u
en

ti
al

 C
P

U

Molecules/Interactions

Performance of MOLDYN 3D for 100 iterations

Parallel CPU
Without Shared GTX 480 Fermi

With Shared GTX 480 Fermi
Without Shared Tesla C1060

With Shared Tesla C1060
Without Shared Tesla K20c

With Shared Tesla K20c

(b) Speedup of MOLDYN 3D

Figure 6.9: Performance of MOLDYN kernel

6.2. EXPERIMENTAL EVALUATION OF IRREGULAR ACCESS KERNELS 99

 0

 2

 4

 6

 8

 10

 12

 10000

 100000

 1e+06

S
p
ee

d
u
p
 o

v
er

 s
eq

u
en

ti
al

 C
P

U

Molecules/Interactions

Performance of NBF 1D for 100 iterations

Parallel CPU
Without Shared GTX 480 Fermi

With Shared GTX 480 Fermi
Without Shared Tesla C1060

With Shared Tesla C1060
Without Shared Tesla K20c

With Shared Tesla K20c

(a) Speedup of NBF 1D

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 10000

 100000

 1e+06

S
p
ee

d
u
p
 o

v
er

 s
eq

u
en

ti
al

 C
P

U

Molecules/Interactions

Performance of NBF 3D for 100 iterations

Parallel CPU
Without Shared GTX 480 Fermi

With Shared GTX 480 Fermi
Without Shared Tesla C1060

With Shared Tesla C1060
Without Shared Tesla K20c

With Shared Tesla K20c

(b) Speedup of NBF 3D

Figure 6.10: Performance of NBF kernel

100 CHAPTER 6. PERFORMANCE MEASUREMENT

 10

 100

 1000

 10000

 100000

 1e+06

T
im

e
(m

il
li

se
co

n
d
s)

Molecules/Interactions

Average Data Transfer Time for 1D data

Fermi GTX 480
Tesla C1060

Tesla K20c

(a) Average Data Transfer Time(1D Data)

 10

 100

 1000

 10000

 100000

 1e+06

T
im

e
(m

il
li

se
co

n
d
s)

Molecules/Interactions

Average Data Transfer Time for 3D data

Fermi GTX 480
Tesla C1060

Tesla K20c

(b) Average Data Transfer Time(3D Data)

Figure 6.11: Data Transfer Overhead

Chapter 7

Conclusion and Future Work

We presented an annotation based compiler framework which generates CUDA code for

GPU. The results show that our framework yields performance within an acceptable range

of hand optimized CUDA programs. The annotation based language support is simple

enough for a naive programmer to get acquainted with writing code for CUDA enabled

GPU. We also investigate improving compiler and run-time support for irregular reduc-

tions on GPU. Experimental results indicate that our framework can help domain experts

to achieve good performance using GPUs without knowing the details of the architec-

ture and programming intricacies. Improvements provided by JolokiaC++ in run-time

data and iteration reordering significantly improve the memory system performance of

irregular applications due to improved spatial and temporal locality for the GPU.

We have developed a prototype framework for JolokiaC++ and used it to evaluate

the performance on standard benchmarks. While the initial results are promising, the

implementation requires work in many aspects to become a finished product. Some of the

areas for future investigations are as follows:

• Our current implementation is limited to providing support to two-dimensional ar-

ray through linearized access using aview operator. We would like to extend our

framework to provide full-fledged support for using multi-dimensional array.

102 CHAPTER 7. CONCLUSION AND FUTURE WORK

• Our current implementation does not support jolokia pragmas inside conditional

statements (switch-case, if-then-else statement). We would extend the support for

it in our language.

• In absence of GPU, our framework generates a sequential code for CPU. We would

also like to extend it for generating an efficient parallel code for CPU and other

architectures like FPGA, Intel Xeon PHI.

• In practice, many loop nests are imperfectly-nested and existing compilers use

heuristics that find a sequence of transformations that convert such loop nests into

perfectly-nested ones. These heuristics do not always succeed. We would like to

work on designing approaches for tiling imperfectly-nested loop nests. Our current

implementation for such loops is restricted to optimizing stencil code using texture

fetch. In future, we plan to implement temporal blocking using shared access for

better performance.

• Our current implementation for irregular applications is limited to accesses with

two level of indirection. In future, we would like work on developing runtime

support to handle other categories of irregular applications .

Appendices

Appendix A

Annotation Grammar Specification

The production rules for the annotation based language, JolokiaC++ is given below. The

annotation grammar is used to parse the annotations present in annotation file which in

turn is used to parse the source code given by the user.
Annotations → Annotation

| Annotation ; Annotations
Annotation → class Class anns

| operator Operator ann
Class anns → Class name { Class ann }
Class ann → Class ann1

| Class ann1 Class ann
Class ann1 → is scalar { Scalar };

| is array { Array };
Array → array view { Array def };

| array opt { define { Statements } Array def };
| array has value { Value def };

Scalar → scalar define { Scalar attribute };
Operator ann → modify { Var list }

| read{ Var list }
| on entry (Name)
| on exit (Name)
| dcopy (Name)
| dalloc (Name)
| release (Name)
| alias { Var list }

106 APPENDIX A. ANNOTATION GRAMMAR SPECIFICATION

| allow alias{ Var list }
| modify array(Name) { Array def }

Array def → Array attributes
| Array attributes Array def

Array attributes → Array attribute = Expression ;
Array attribute → dim

| length(Param)
| elem(Param list)

Scalar attribute → slem

Bibliography

[1] MARYLAND: CHAOS Library. http://www.cs.umd.edu/projects/hpsl/

compilers/base_chaos.html. Retrived: Dec 2012.

[2] Nvidia CUDA. http://www.nvidia.com. Retrieved on: June 2013.

[3] NVIDIA CUDA Programming Guide,Version 2.3.1. http://developer.

download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA\

_Programming_Guide_2.3.pdf. Retrieved on: Jan 2013.

[4] OpenACC: Directives for Accelerators. http://www.openacc-standard.org/.

Retieved on: Dec 2013.

[5] OpenMP Application Program Interface. http://www.openmp.org/

mp-documents/OpenMP4.0.0.pdf. Retrieved on: Sep 2014.

[6] OpenMP Application Program Interface, Examples. http://openmp.org/

mp-documents/OpenMP4.0.0.Examples.pdf. Retrieved on: Sep 2014.

[7] PARSEC Benchmark Suite. http://parsec.cs.princeton.edu/index.htm. Retieved on:

Dec 2013.

[8] PIPS: Automatic Parallelizer and Code Transformation Framework. http://

pips4u.org/. Retieved on: Jan 2014.

108 BIBLIOGRAPHY

[9] PolyBench/GPU: Implementation of PolyBench codes for GPU processing. Re-

trived on: Dec 2013.

[10] The OpenACC Application Programming Interface version 2.0. http://www.

openacc.org/sites/default/files/OpenACC.2.0a_1.pdf. Retieved on: Dec

2013.

[11] The OpenCL Specification version 2.0. http://www.khronos.org/registry/

cl/specs/opencl-2.0.pdf. Retrieved on: Dec 2013.

[12] Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Architectures: A

Dependence-based Approach. Morgan Kaufmann Publisher.

[13] J. Anantpur and R. Govindarajan. Runtime dependence computation and execution

of loops on heterogeneous systems. In Code Generation and Optimization (CGO),

2013 IEEE/ACM International Symposium on, pages 1–10, Feb 2013.

[14] Eduard Ayguadé, Rosa M. Badia, Francisco D. Igual, Jesús Labarta, Rafael Mayo,

and Enrique S. Quintana-Ortı́. An Extension of the StarSs Programming Model for

Platforms with Multiple GPUs. In Proceedings of the 15th International Euro-Par

Conference on Parallel Processing, pages 851–862, 2009.

[15] Muthu M. Baskaran, Uday Bondhugula, Sriram Krishnamoorthy, J. Ramanujam,

Atanas Rountev, and P. Sadayappan. A Compiler Framework for Optimization of

Affine Loop Nests for GPGPUs. In In Proceedings of the 22nd annual international

conference on Supercomputing, pages 225–234, New York, NY, USA, 2008. ACM.

[16] Muthu Manikandan Baskaran, Uday Bondhugula, Sriram Krishnamoorthy, J. Ra-

manujam, Atanas Rountev, and P. Sadayappan. Automatic Data Movement and

Computation Mapping for Multi-level Parallel Architectures with Explicitly Man-

aged Memories. In PPoPP, pages 1–10, New York, NY, USA, 2008. ACM.

BIBLIOGRAPHY 109

[17] Muthu Manikandan Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-to-

CUDA Code Generation for Affine Programs. In CC, pages 244–263, 2010.

[18] Pramod K. Bhatotia, Sanjeev K. Aggarwal, and Mainak Chaudhuri. A Compilation

Framework for Irregular Memory Accesses on the Cell Broadband Engine, 2009.

[19] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A Practical

Automatic Polyhedral Parallelizer and Locality Optimizer. In Proceedings of the

2008 ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, PLDI ’08, pages 101–113, New York, NY, USA, 2008. ACM.

[20] Uday Bondhugula, J. Ramanujam, and et al. PLuTo: A practical and fully automatic

polyhedral program optimization system. In IN: PROCEEDINGS OF THE ACM

SIGPLAN 2008 CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND

IMPLEMENTATION (PLDI 08, 2008.

[21] Pierre Boulet, Alain Darte, Georges-André Silber, and Frédéric Vivien. Loop Par-

allelization Algorithms: From Parallelism Extraction to Code Generation. Parallel

Comput., 24(3-4):421–444, May 1998.

[22] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and

M. Karplus. CHARMM: A Program for Macromolecular Energy, Minimization,

and Dynamics Calculations. J. Comp. Chem., 4:187–217, 1983.

[23] Shuai Che, M. Boyer, Jiayuan Meng, D. Tarjan, J.W. Sheaffer, Sang-Ha Lee, and

K. Skadron. Rodinia:Accelerating Compute-Intensive Applications with Accelera-

tors . Retieved on: Dec 2013.

[24] Shuai Che, M. Boyer, Jiayuan Meng, D. Tarjan, J.W. Sheaffer, Sang-Ha Lee, and

K. Skadron. Rodinia: A Benchmark Suite for Heterogeneous Computing. In Work-

load Characterization, 2009. IISWC 2009. IEEE International Symposium on, pages

44–54, Oct 2009.

110 BIBLIOGRAPHY

[25] MichałCierniak and Wei Li. Unifying Data and Control Transformations for Dis-

tributed Shared-memory Machines. In Proceedings of the ACM SIGPLAN 1995

Conference on Programming Language Design and Implementation, PLDI ’95,

pages 205–217, New York, NY, USA, 1995. ACM.

[26] P. Colella, D. T. Graves, J. N. Johnson, H. S. Johansen, N. D. Keen, T. J. Ligocki,

D. F. Martin, P. W. McCorquodale, D. Modiano, P. O. Schwartz, T. D. Sternberg,

and B. Van Straalen. Chombo Software Package for AMR Applications Design

Document. Retieved on: Dec 2013.

[27] R. Das, P. Havlak, J. Saltz, and K. Kennedy. Index Array Flattening Through Pro-

gram Transformation. In Supercomputing, 1995. Proceedings of the IEEE/ACM

SC95 Conference, pages 70–70, 1995.

[28] Raja Das, Mustafa Uysal, Joel Saltz, and Yuan-Shin Hwang. Communication opti-

mizations for irregular scientific computations on distributed memory architectures.

J. Parallel Distrib. Comput., 22:462–478, September 1994.

[29] Mara J. Martn David E. Singh and Francisco F. Rivera. Automatic Generation of

Optimized Parallel Codes for N-body Simulations, 2004.

[30] Peng Di, Ding Ye, Yu Su, Yulei Sui, and Jingling Xue. Automatic Parallelization of

Tiled Loop Nests with Enhanced Fine-Grained Parallelism on GPUs. In Proceedings

of the 2012 41st International Conference on Parallel Processing, ICPP ’12, pages

350–359, Washington, DC, USA, 2012. IEEE Computer Society.

[31] Chen Ding and Ken Kennedy. Improving Cache Performance in Dynamic Applica-

tions through Data and Computation Reorganization at Run time. In Proceedings of

the ACM SIGPLAN 1999 conference on Programming language design and imple-

mentation, pages 229–241, 1999.

BIBLIOGRAPHY 111

[32] Paul Feautrier. Some Efficient Solutions to the Affine Scheduling Problem: I. One-

dimensional Time. Int. J. Parallel Program., 21(5):313–348, October 1992.

[33] Min Feng, Rajiv Gupta, and Laxmi N. Bhuyan. Speculative parallelization on gpg-

pus. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Prac-

tice of Parallel Programming, PPoPP ’12, pages 293–294, New York, NY, USA,

2012. ACM.

[34] Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and Susan J. Eg-

gers. DyC: An Expressive Annotation-directed Dynamic Compiler for C. Theor.

Comput. Sci., 248(1-2):147–199, October 2000.

[35] Kronos Group. The Open Standard for Parallel Programming of Heterogeneous

Systems. http://www.khronos.org/opencl/. Retrieved on: Dec 2013.

[36] Manish Gupta and Rahul Nim. Techniques for Speculative Run-Time Parallelization

of Loops. In In Supercomputing 98, 1998.

[37] Samuel Z. Guyer and Calvin Lin. An Annotation Language for Optimizing Software

Libraries. In Domain-specific languages, DSL ’99, pages 39–52, New York, NY,

USA, 1999. ACM.

[38] Reinhard von Hanxleden, Ken Kennedy, Charles Koelbel, Raja Das, and Joel H.

Saltz. Compiler Analysis for Irregular Problems in Fortran D. In Proceedings of the

5th International Workshop on Languages and Compilers for Parallel Computing,

pages 97–111, London, UK, UK, 1993. Springer-Verlag.

[39] Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick P. Johnson, Stephen R.

Beard, and David I. August. Automatic CPU-GPU Communication Management

and Optimization. SIGPLAN Not., 46(6):142–151, June 2011.

112 BIBLIOGRAPHY

[40] Byunghyun Jang, Dana Schaa, Perhaad Mistry, and David Kaeli. Exploiting Mem-

ory Access Patterns to Improve Memory Performance in Data-Parallel Architec-

tures. IEEE Transactions on Parallel and Distributed Systems, 22(1):105–118,

2011.

[41] Henry Kasim, Verdi March, Rita Zhang, and Simon See. Survey on Parallel Pro-

gramming Model. In Proceedings of the IFIP International Conference on Net-

work and Parallel Computing, NPC ’08, pages 266–275, Berlin, Heidelberg, 2008.

Springer-Verlag.

[42] Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. SD3: A Scalable Approach

to Dynamic Data-Dependence Profiling. In Proceedings of the 2010 43rd An-

nual IEEE/ACM International Symposium on Microarchitecture, MICRO ’43, pages

535–546, Washington, DC, USA, 2010. IEEE Computer Society.

[43] Alan LaMielle and Michelle Strout. Enabling Code Generation within the Sparse

Polyhedral Framework. Technical report, Computer Science Department, Colorado

State University, Fort Collins, CO 80523-1873, March 2010.

[44] Seyong Lee and Rudolf Eigenmann. OpenMPC: Extended OpenMP Programming

and Tuning for GPUs. In Proceedings of the 2010 ACM/IEEE International Confer-

ence for High Performance Computing, Networking, Storage and Analysis, SC ’10,

pages 1–11, Washington, DC, USA, 2010. IEEE Computer Society.

[45] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to GPGPU: A Com-

piler Framework for Automatic Translation and Optimization. In Proceedings of

the 14th ACM SIGPLAN symposium on Principles and practice of parallel pro-

gramming, PPoPP ’09, pages 101–110, New York, NY, USA, 2009. ACM.

[46] Wei Li and Keshav Pingali. A Singular Loop Transformation Framework Based on

Non-singular Matrices. International Journal of Parallel Programming, 1992.

BIBLIOGRAPHY 113

[47] Deepak Majeti, Rajkishore Barik, Jisheng Zhao, Max Grossman, and Vivek

Sarkar. Compiler-driven data layout transformation for heterogeneous platforms.

In Dieter Mey, Michael Alexander, Paolo Bientinesi, Mario Cannataro, Carsten

Clauss, Alexandru Costan, Gabor Kecskemeti, Christine Morin, Laura Ricci, Julio

Sahuquillo, Martin Schulz, Vittorio Scarano, StephenL. Scott, and Josef Weiden-

dorfer, editors, Euro-Par 2013: Parallel Processing Workshops, volume 8374 of

Lecture Notes in Computer Science, pages 188–197. Springer Berlin Heidelberg,

2014.

[48] John Mellor-Crummey, David Whalley, and Ken Kennedy. Improving Memory Hi-

erarchy Performance for Irregular Applications Using Data and Computation Re-

orderings. Int. J. Parallel Program., 29:217–247, June 2001.

[49] Jiayuan Meng, Vitali A. Morozov, Venkatram Vishwanath, and Kalyan Kumaran.

Dataflow-driven GPU Performance Projection for Multi-kernel Transformations. In

Proceedings of the International Conference on High Performance Computing, Net-

working, Storage and Analysis, SC ’12, pages 82:1–82:11, Los Alamitos, CA, USA,

2012. IEEE Computer Society Press.

[50] Ravi Mirchandaney, Joel H. Saltz, Joel H. Saltz, Doug Baxter, and Doug Baxter.

Run-Time Parallelization and Scheduling of Loops. IEEE Transactions on Comput-

ers, 40, 1991.

[51] R. Nasre, M. Burtscher, and K. Pingali. Data-Driven Versus Topology-driven Ir-

regular Computations on GPUs. In Parallel Distributed Processing (IPDPS), 2013

IEEE 27th International Symposium on, pages 463–474, May 2013.

[52] Cosmin E. Oancea and Lawrence Rauchwerger. Logical Inference Techniques for

Loop Parallelization. In PLDI, PLDI ’12, pages 509–520, New York, NY, USA,

2012. ACM.

114 BIBLIOGRAPHY

[53] Matthew Papakipos. Peakstream many-core computing platform. http://www.

stanford.edu/class/ee380/Abstracts/070926-PeakStream.pdf. Retrieved

on: June 2013.

[54] William Pugh and David Wonnacott. Nonlinear Array Dependence Analysis, 1991.

[55] D. Quinlan, M. Schordan, R. Vuduc, and Qing Yi. Annotating user-defined abstrac-

tions for optimization. In Parallel and Distributed Processing Symposium, 2006.

IPDPS 2006. 20th International, pages 8 pp.–, April 2006.

[56] Daniel Quinlan, Markus Schordan, Richard Vuduc, Qing Yi, Thomas Panas, Chun-

hua Liao, and Jeremiah J. Willcock. ROSE Compiler Infrastructure. http:

//rosecompiler.org. Retrieved on: Jan 2012.

[57] Daniel J. Quinlan. ROSE: Compiler Support for Object-Oriented Frameworks. Par-

allel Processing Letters, 10(2/3):215–226, 2000.

[58] RapidMind Inc. Writing Applications for the GPU Using the RapidMindT M

Development Platform. http://www.cs.ucla.edu/˜palsberg/course/cs239/

papers/rapidmind.pdf.

[59] L. Rauchwerger and D.A. Padua. The LRPD test: speculative run-time paralleliza-

tion of loops with privatization and reduction parallelization. Parallel and Dis-

tributed Systems, IEEE Transactions on, 10(2):160 –180, feb 1999.

[60] Lawrence Rauchwerger, Nancy M. Amato, and David A. Padua. A Scalable Method

for Run-Time Loop Parallelization. IJPP, 26:26–6, 1995.

[61] Lawrence Rauchwerger, Nancy M. Amato, and David A. Padua. Run-time methods

for parallelizing partially parallel loops. In Proceedings of the 9th international

conference on Supercomputing, pages 137–146, 1995.

BIBLIOGRAPHY 115

[62] Lawrence Rauchwerger and David Padua. The Privatizing DOALL Test: Run-Time

Technique for DOALL Loop Identification and Array Privatization. In IN PRO-

CEEDINGS OF THE 1994 INTERNATIONAL CONFERENCE ON SUPERCOM-

PUTING, pages 33–43, 1994.

[63] Silvius Rus, Lawrence Rauchwerger, and Jay Hoeflinger. Hybrid analysis: static &

dynamic memory reference analysis. In Proceedings of the 16th international con-

ference on Supercomputing, ICS ’02, pages 274–284, New York, NY, USA, 2002.

ACM.

[64] Amit Sabne, Putt Sakdhnagool, and Rudolf Eigenmann. Effects of compiler opti-

mizations in openmp to cuda translation. In Proceedings of the 8th International

Conference on OpenMP in a Heterogeneous World, IWOMP’12, pages 169–181,

Berlin, Heidelberg, 2012. Springer-Verlag.

[65] Joel Saltz, Kathleen Crowley, Ravi Mirchandaney, and Harry Berryman. Run-time

Scheduling and Execution of Loops on Message Passing Machines. J. Parallel Dis-

trib. Comput., 8(4):303–312, April 1990.

[66] Mehrzad Samadi, Amir Hormati, Janghaeng Lee, and Scott Mahlke. Paragon: Col-

laborative Speculative Loop Execution on GPU and CPU. In Proceedings of the 5th

Annual Workshop on General Purpose Processing with Graphics Processing Units,

GPGPU-5, pages 64–73, New York, NY, USA, 2012. ACM.

[67] Mehrzad Samadi, Amir Hormati, Mojtaba Mehrara, Janghaeng Lee, and Scott

Mahlke. Adaptive Input-Aware Compilation for Graphics Engines. In Proceed-

ings of the 33rd ACM SIGPLAN conference on Programming Language Design and

Implementation, PLDI ’12, pages 13–22, New York, NY, USA, 2012. ACM.

[68] Vivek Sarkar and Radhika Thekkath. A General Framework for Iteration-

Reordering Loop Transformations (Technical Summary). In In Proceedings of the

116 BIBLIOGRAPHY

ACM SIGPLAN ’92 Conference on Programming Language Design and Implemen-

tation, pages 175–187, 1992.

[69] Michelle Mills Strout, Larry Carter, and Jeanne Ferrante. Compile-time composition

of run-time data and iteration reorderings. In Proceedings of the ACM SIGPLAN

2003 Conference on Programming Language Design and Implementation, PLDI

’03, pages 91–102, New York, NY, USA, 2003. ACM.

[70] Sumesh Udayakumaran and Rajeev Barua. Compiler-decided dynamic memory al-

location for scratch-pad based embedded systems. In Proceedings of the 2003 inter-

national conference on Compilers, architecture and synthesis for embedded systems,

pages 276–286, 2003.

[71] Sain-Zee Ueng, Melvin Lathara, Sara S. Baghsorkhi, and Wen-Mei W. Hwu. Lan-

guages and Compilers for Parallel Computing. chapter CUDA-Lite: Reducing GPU

Programming Complexity, pages 1–15. Springer-Verlag, Berlin, Heidelberg, 2008.

[72] Manuel Ujaldon and Joel Saltz. The GPU on irregular computing: Performance

issues and contributions. Computer Aided Design and Computer Graphics, Interna-

tional Conference on, pages 442–450, 2005.

[73] Didem Unat, Xing Cai, and Scott B. Baden. Mint: Realizing CUDA Performance

in 3D Stencil Methods with Annotated C. In Proceedings of the International Con-

ference on Supercomputing, ICS ’11, pages 214–224, New York, NY, USA, 2011.

ACM.

[74] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian

Tenllado, and Francky Catthoor. Polyhedral Parallel Code Generation for CUDA.

ACM Trans. Archit. Code Optim., 9(4):54:1–54:23, January 2013.

BIBLIOGRAPHY 117

[75] Shucai Xiao and Wu chun Feng. Inter-block GPU communication via fast barrier

synchronization. In Parallel Distributed Processing (IPDPS), 2010 IEEE Interna-

tional Symposium on, pages 1–12, April 2010.

[76] Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. A GPGPU compiler for

memory optimization and parallelism management. In Proceedings of the 2010

ACM SIGPLAN conference on Programming language design and implementation,

PLDI ’10, pages 86–97, New York, NY, USA, 2010. ACM.

[77] Qing Yi, Vikram Adve, and Ken Kennedy. Transforming loops to recursion for

multi-level memory hierarchies. In Proceedings of the ACM SIGPLAN 2000 Con-

ference on Programming Language Design and Implementation, PLDI ’00, pages

169–181, New York, NY, USA, 2000. ACM.

[78] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and Xipeng Shen. On-the-fly

Elimination of Dynamic Irregularities for GPU Computing. SIGARCH Comput.

Archit. News, 39(1):369–380, March 2011.

118 BIBLIOGRAPHY

Publications

Selected/Communicated International Journal Articles

1. Vibha Patel, Sanjeev K Aggarwal, “A Compiler Framework for Optimization of
Irregular Applications on GPGPUs” partially accepted in IET Software Journal.

Selected/Communicated International Paper/Poster

1. Patel Vibha, Sanjeev Aggarwal and Amey Karkare, “JolokiaC++ : A Annotation
based Compiler Framework for GPGPUs”, accepted for publication in the Sixteenth
IEEE Conference on High Performance Computing and Communications (HPCC
-2014).

2. Bhavin Patel, Patel Vibha, “GPU based Space Partitioning with Image Recogni-
tion” accepted for publication in the Seventh International Conference on Contem-
porary Computing (IC3 - 2014).

3. Patel Vibha, Bhavin Patel, “Indexing SURF Features By SVD Based Basis On
GPU With Multi-Query Support” accepted for publication in Proceedings of 10th
International Conference on Intelligent Computing (ICIC 2014), LNAI, Springer
Verlag, Taiyuan, China, August 2014

4. Patel Vibha, Sanjeev K Aggarwal, “ArCUDA: An ArBB to CUDA Translator”
International Supercomputing Conference 2013, Leipzig, Ger many, June 2013

5. Monika Shah,Vibha Patel,“ An Efficient Sparse Matrix Multiplication for Skewed
Matrix on GPU” 14th IEEE International Conference on High Performance Com-
puting and Communication & 9th IEEE International Conference on Embedded
Software and Systems, HPCC-ICESS 2012, Liverpool, United Kingdom, June 25-
27, 2012. HPCC-ICESS 2012: 1301-1306

