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The advent of Massive Open Online Courses (MOOCs) has made high quality

education material accessible for all, at large scale and low cost. However, one of

the important open challenges is in providing personalized help to students who are

unable to solve a particular problem. Providing this personalized feedback manually

is infeasible on a large scale and hence domain-specific Intelligent Tutoring Systems

(ITS) are designed to automatically help guide the student.

In this thesis, we present a generic novel framework of ITS for automated (i)

solution generation, where we generate the complete solution of a given problem;

(ii) similar problem generation, where we search for other problems having solution

similar to that of a given problem; and (iii) parameterized problem generation, where

we create new problems satisfying given solution characteristics.

To achieve the above stated goals of solution and problem generation, we propose

a novel 4-staged methodology of building ITS where (i) we first abstract the original

problem into a symbolic representation, (ii) develop domain-specific system to solve

this abstract problem, by (iii) leveraging offline computed data-structures, and finally



iii

(iv) refine the abstract solution to the desired concrete solution.

We demonstrate this methodology by developing ITS targeting three diverse

domains of (a) Natural deduction proofs for propositional logic, (b) Interesting

starting positions of traditional board games, and (c) Compilation errors during

introductory programming. Our usage of efficient offline symbolic computation

achieves real-time solution and feedback generation, typically in the order of milli-

seconds. Our modelling of problem generation as reverse of solution generation

ensures that the hundreds of newly generated problems have the exact same abstract

solution.

The solutions produced by our ITS are not only accurate, but also relevant for

students; a metric often ignored in literature. We supplement the theoretical claim

of relevance by deploying our introductory programming feedback tools during a

live CS-1 (introductory to programming) course offering credited by 400+ novice

first-year undergraduates at IIT-Kanpur. During this large scale randomized user

study, we observed that students with access to feedback from our ITS tools are able

to resolve programming errors faster, compared to the distinct set of students without

similar access; with the performance advantage increasing with problem complexity.

This benefit achieved is primarily logistical since students receiving feedback from

ITS tools perform identical to human-tutored students when no feedback is provided.
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Chapter 1

Introduction

The advent of Massive Open Online Courses (MOOCs) has made high quality

education material accessible for all, at large scale and low cost. However, one of

the important open challenges in education at scale lies in providing personalized

information to students solving a specific problem [1]. Given a student’s attempt at

a problem, this personalized information can vary from a binary correct/incorrect

indicator to more involved feedback that hints at a solution. Manually generating

such personalized information for every student is infeasible on a large scale, and

hence domain-specific Intelligent Tutoring Systems (ITS) are designed to automate

these tasks.

Large number of Intelligent Tutoring Systems (ITS) have been proposed in

literature targeting variety of domains, ranging from elementary school subjects to

advanced engineering courses. Since the concepts covered and the mistakes made by

the students are often similar across course offerings, ITS tools can be designed to

help automate repetitive tasks in education such as grade student submissions [2,

3], clarify frequent student misconceptions [4], generate practice problems [1], and

generate feedback for incorrect solutions [5].
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1.1 Problem and Solution Generation

Multiple instructional principles have been evaluated for efficient learning in literature,

based on the complexity of the educational content [6]. Providing timely feedback is

one such important instructional principle, and studies on tutoring systems indicate

significant learning benefit when students are provided with some form of feedback [7].

Providing relevant feedback to students goes beyond indicating if their solution

is correct or incorrect. Students with incorrect attempts prefer (and perform better)

when provided with conceptual hints and counter-example based feedback (that

indirectly reveals relevant solutions), over binary (correct/incorrect) feedback [5].

Similarly, when a student makes an incorrect attempt, providing worked examples

for similar difficulty problems is a commonly recommended instructional principle

for efficient learning [8]. Automatically generating these domain specific conceptual

solutions and similar difficulty problems remains a challenging task.

In this thesis, we focus on the following repetitive tasks in education

1. Solution Generation: Given a student’s incorrect attempt, the goal of ITS is

to automatically generate a closest correct solution to the problem. This is

important for several reasons. First, the generated solution can be used to

provide feedback on the steps to fix the student’s incorrect attempt. Second, it

can be used to automatically grade a student’s attempt, based on its distance

from the closest correct solution. Third, it can be used to generate sample

solutions for automatically generated problems, and hence determine their

hardness level.

2. Similar Problem Generation: Given a student’s incorrect attempt, new practice

problems can be generated with solution similar to that of the original problem.

Students can be then expected to learn from these example problems and their

solutions, and transfer the knowledge to fix their original incorrect solution.

3. Parameterized Problem Generation: Given solution characteristics as input by
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the instructor, ITS can automatically create new problems satisfying them,

thereby saving teacher’s time and effort on a tedious task. Additionally, these

fresh problems can be used to prevent plagiarism in assignments where students

can be provided with different problems of same difficulty level.

Generating problems of a specified difficulty level that exercise a given set of

concepts can help create personalized workflows for students. On solving a

problem correctly, the student may be presented with another problem that

is more difficult than the previous one, or exercises a richer set of concepts.

Conversely, a simpler problem can be presented to the student who fails to

solve the previous one.

Recognizing this need, various ITS tools have been proposed to generate per-

sonalized feedback through means of solution generation, targeting K-8 arithmetic

problems [9], high school geometry constructions [10], deterministic finite automata

constructions [5], syntax errors in introductory programming [11], logical errors in

introductory programming [12].

Similarly, many automated problem generation tools exist in literature, targeting

various domains such as algebraic equations [13], high school trigonometry and

calculus [14], high school geometry proofs [15], mathematical word problems [16], de-

terministic finite automata constructions [5], compilation errors in programming [17].

Challenges

Developing such ITS tools is a challenging task for several reasons.

• The systems are domain-specific, requiring intricate knowledge of the domain.

• The feedback provided should be largely automated, requiring minimal human

intervention by expert instructor or novice student, for the ITS to scale at

large.

• The feedback must be provided in real-time to help students resolve their errors

in a live setting.
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• The feedback provided should be relevant to students’ specific mistake and

desired solution.

• The new practice problems generated should be relevant to students’ specific

mistake and the difficulty level of original problem.

• Measuring the pedagogical value provided by such ITS is non-trivial, requiring

usage of feedback tools by large number of students for long periods of time in

real world setting.

In this thesis, we address the above challenges by proposing a novel framework

of designing ITS, and developing problem and solution generation tools for three

different diverse domains utilizing it. Our design methodology ensures live automated

solution generation that works in real-time, and our modeling of problem generation

as reverse of solution generation enables large number of relevant examples. Finally,

we report on a large scale user study to measure the benefit of providing problem

and solution based feedback to novice students.

1.2 Novel Framework for ITS Design

We propose a generic novel framework of developing ITS for problem and solution

generation, consisting of the following common core components:

1. Abstraction: The original problem is first abstracted into a symbolic representa-

tion. Multiple different problems map to the same representation (many-to-one),

in order to reduce the solution search space.

2. Abstract Solver : Accurate solvers are then developed to solve the abstract

problem, which search for an abstract solution in the symbolic search space

with the help of offline computed data structures.

3. Offline Computed Data structure: The symbolic reasoning required to solve the

abstract problem is computed and stored in an offline phase. This reduces the
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Original Problem 

Abstraction

Abstract Solver

Concretization

Concrete Solution

Offline
Computed

Data Structure

Figure 1.1: Solution Generation Framework

cost of abstract solver at runtime, and helps generate problems by performing

reverse lookup on it.

4. Problem Search: A reverse search is performed on the offline computed data

structure, where new abstract problems are generated having the same abstract

solution as given input problem (or input characteristics).

5. Concretization: All representations in the abstract solution are replaced with

concrete instantiations, to obtain the concrete solution to original problem.

Concretization is an approximate process which is reverse of abstraction, where

a single abstract representation can be replaced with multiple concrete ones

(one-to-many).

Our framework enables real-time solution generation through usage of novel two-

phased methodology that first searches for an abstract solution and then refines it to

a concrete solution, combined with offline computed abstract reasoning. Figure 1.1

displays this arrangement of different solution generation components. Our Similar

problem generation module involves first solving the given problem using solution

generation module, followed by searching for new problems with similar solution

in the offline computed data structure. This framework is shown in Figure 1.2. In

the case of parameterized problem generation, the offline computed data structure
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Step Proposition Reason
P1 a ∨ (b ∧ c) Premise
P2 a → d Premise
P3 d → e Premise

1 (a ∨ b) ∧ (a ∨ c) P1, Distribution
2 a ∨ b 1, Simplification
3 a → e P2, P3, Hypothetical Syllogism
4 b ∨ a 2, Commutativity
5 ¬¬b ∨ a 4, Double Negation
6 ¬b → a 5, Implication
7 ¬b → e 6, 3, Hypothetical Syllogism
8 ¬¬b ∨ e 7, Implication

C b ∨ e 8, Double Negation

Table 1.1: Natural deduction proof example, with application of inference rules highlighted
in bold. The proof was generated by our solution generation module.

Premise 1 Premise 2 Premise 3 Conclusion
a ≡ b c → ¬b (d → e) → c a → (d ∧ ¬e)

Table 1.2: New natural deduction problem generated by our ITS, having same abstract
proof (bold highlighted steps) as Table 1.1.

is searched for new problems that satisfy the solution characteristics provided by

instructor, as shown in Figure 1.3.

1.3 Our Intelligent Tutoring Systems

We developed ITS for three diverse domains, utilizing the generic framework described

earlier. The solution generation modules of our ITS are not only accurate, but also

relevant to the student’s problem; a metric often ignored in literature. The problem

generation modules can generate a large number of new problems having the desired

solution.

Due to the domain-specific nature of each ITS, we cite relevant related work in

their corresponding chapters.
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1.3.1 ITS #1: Natural deduction for propositional logic

In this work, presented in Chapter 2 in detail, we developed an ITS to enable

computer aided education for natural deduction [18]. Natural deduction is a method

for establishing validity of propositional type arguments, where a conclusion is derived

from a set of premises through a series of inference and replacement rule applications.

It is typically taught as part of introductory course on logic.

Table 1.1 shows a natural deduction proof generated by our ITS, where conclusion

C is derived from premises P1, P2 and P3. The solution generation module involves

i) abstracting the propositions with their truth table bit vector representation,

ii) computing an offline data structure called Universal Proof Graph (UPG) which

records all possible inference rule applications on the abstractions,

iii) performing forward graph traversal search on the data structure, starting from

premises until the conclusion is reached, to obtain an abstract solution to the

problem, and lastly,

iv) refining the abstract proof to the desired concrete natural deduction proof by

inserting appropriate replacement rule transformations.

On 279 benchmark problems obtained from 5 different logic textbooks, our ITS could

solve 84% of them within 10 seconds.

Our ITS can also automatically generate hundreds of new problems having similar

solution to these benchmark problems, within few minutes. For example, our ITS

was able to automatically create 516 new natural deduction problems, whose proof

requires the exact same inference rule applications (abstract solution) as the original

problem in Table 1.1, albeit with different set of replacement rule transformations.

These similar problems were obtained by performing a reverse problem search of

abstract solution on the same offline computed data structure (UPG). Table 1.2 shows

one such problem generated by our ITS, which can be provided as an assignment or

a practice problem for students.
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O O
X X X
X O X
X X O X O
O O O X O

Table 1.3: Interesting starting board positions generated by our tool, for CONNECT-4
board game. Player 1 (X) has a guaranteed path to victory in 3 moves, if played efficiently.

1.3.2 ITS #2: Alternative starting positions for board games

Traditional board games, such as Tic-Tac-Toe and CONNECT-4 which have been

taught to children for generations, play an important role in development of logical

skills and social development. The traditional research question in such games has

focused on who is the winner and what are the optimal strategies, when starting

from the default empty board state. In this work, described in Chapter 3 in detail,

we instead focus on generating alternative starting positions, which can be useful for

teaching new board games to novitiates and make the plays more interesting.

Table 1.3 shows an interesting starting board positions for CONNECT-4, which

requires 4 consecutive pieces in row, column or diagonal to win. In this board position,

which was automatically generated by our tool, Player 1 (X) can win in 3 moves by

playing optimally, irrespective of the choices made by Player 2 (O). Providing such

fresh start states with customizable hardness and length of play, where strategies

cannot be memorized, can motivate children in practice and mastery of the board

game.

The problem generation module for this domain is built using the generic frame-

work described earlier. Given solution characteristics as input, such as board game

rules (board size, valid moves, winning condition) and #steps-to-win (j)

i) we first abstract all winning board position W0 with a boolean formula,

ii) construct an offline Binary Decision Diagram (BDD) representing the set of all

board positions Wj from which Player 1 (X) can win in j-moves,

iii) sample starting positions from Wj and search for interesting hard ones based on
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1 #include<stdio.h>

2 int main(){

3 int x,x1,d;

4 // ...

5 d=(x-x1) (x-x1);

6 return d;

7 }

1 #include<stdio.h>

2 int main(){

3 int x,x1,d;

4 // ...

5 d=(x-x1)*(x-x1);

6 return d;

7 }

Figure 1.4: Erroneous program attempt by student (left), and its automatically generated
repair (right) by our ITS. The compiler message read: Line-5, Column-11: error: called
object type ‘int’ is not a function or function pointer.

Line# Erroneous Example Repaired Example
5 amount = P (1 + T*R/100); amount = P*(1 + T*R/100);

Figure 1.5: Example problem suggested by our ITS, which suffers from the same error
and desires the same repair as program in Figure 1.4.

winning probability of Min-Max simulation.

Our proposed problem generation methodology is applicable for all directed graph

board games, and finds hundreds of interesting starting positions for various board

games. As an example, for CONNECT-4 5 × 5 board game which has more than

69 million unique board positions, our tool found within few hours of runtime more

than 200 interesting positions from which Player 1 can win in 4 moves by playing

optimally. These 200+ positions are interesting since they are hard to win even

with a depth-3 look ahead strategy. Since these number of interesting positions are

a very small percentage of overall state space, any other enumerative approach is

intractable on such large graph games.

1.3.3 ITS #3: Introductory programming compilation errors

Introductory programming is one of the most popular course offered, with the class

sizes reaching more than 1000 students in some universities. While attempting

programming assignments, novice students often encounter compile-time errors due

to incorrect usage of syntax and types. Although compilers locate and report

compilation errors in the program, their error messages are targeted towards expert

programmers and hence often appear cryptic to beginners who struggle in resolving
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them.

Figure 1.4 demonstrates an erroneous program, where the student has missed

an asterisk “*” operator between round parenthesis. The compiler error message,

which treats this error as an incorrect function invocation, is cryptic for beginners

in understanding the mistake or the required fix. Our solution generation ITS,

presented in Chapter 4, automatically generates the required “*” operator at the

correct position.

The repair solution is obtained as follows

i) The program specific tokens (variables/literals) are first abstracted with their

generic type tokens.

ii) An offline Recurrent Neural Network (RNN) is trained to predict a syntactically

correct sequence of abstract tokens.

iii) Our abstract solver then locates suspicious abstract sequences and translates

them to repaired abstract sequences (Seq2Seq), using the offline computed RNN.

iv) The resultant repaired sequence of abstract tokens is concretized, by replacing

generic type tokens with specific variables/literal instantiations, to obtain the

desired program repair.

The repairs performed by our solution generation ITS are not only accurate, but

also relevant to actual repair desired by student. The deep network is trained on

15,000+ code pairs and achieves about 80% error repair accuracy on 4,500+ held

out test set, with its top-3 predictions containing the exact same repair as students’

for 74% of the test cases.

Given an erroneous program as input, our problem generation module

i) First abstracts it with their generic types.

ii) Locates suspicious abstract sequences and labels them with an error-repair class,

using an offline trained dense neural network classifier, signifying the mistake

made and fix desired by student.
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Generation Stage Chapter 2 Chapter 4
Natural Deduction Compilation Error

Original problem
(Input)

Premises and conclusion
propositions

Erroneous program failing to
compile

Abstraction Propositions to truth-table
bit-vectors

Program tokens to generic
types

Offline computed
data-structure

Universal Proof Graph
(UPG)

Recurrent Neural Network
(RNN)

Abstract Solver Forward search on UPG Sequence-to-Sequence pre-
diction

Concretization Abstract proof to concrete
proof

Abstract repair to concrete
repair

Solution Natural deduction proof Repaired program which
(Output) compiles successfully

Table 1.4: Solution Generation Module

iii) Searches the 15,000+ training set repository for erroneous-repaired code pairs

that belong to the same error-repair class predicted earlier. The top frequent

such examples are then suggested as feedback to the student.

Our problem generation ITS, described in Chapter 5, can automatically suggest

dozens of example programs given an erroneous program as input, within few

milliseconds. On a held out test-set of 3,000+ programs, our ITS achieves 98%

accuracy in correctly predicting the error-repair class in its top-3 prediction, and

hence in suggesting the corresponding relevant examples. Figure 1.5 shows an

example problem generated by our ITS, which suffers from the same error and desires

same repair as program in Figure 1.4.

Summary

Tables 1.4, 1.5, and 1.6 summarize the unifying framework and the corresponding

components used in ITS design for all three domains to enable solution generation,

similar problem generation, and parameterized problem generation respectively.
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Generation Stage Chapter 2 Chapter 5
Natural Deduction Compilation Error

Original problem
(Input)

Premises and conclusion
propositions

Erroneous program failing to
compile

Abstraction Propositions to truth-table
bit-vectors

Program tokens to generic
types

Offline computed
data-structure

Universal Proof Graph
(UPG)

Dense neural network

Abstract solver Forward search on UPG Error-Repair class predic-
tion

Problem search Backward search on UPG Student code repository
search

Similar problems
(Output)

Propositions with similar ab-
stract solution

Programs with similar com-
pilation error and repair

Table 1.5: Similar Problem Generation Module

Generation Stage Chapter 2 Chapter 3
Natural Deduction Board Games

Parameters
(Input)

#variables, #premises, max-
imum formula size, rule-set
and #solution-steps

board size, valid moves, win-
ning condition, #steps-to-
win

Offline computed
data-structure

Universal Proof Graph
(UPG)

Binary Decision Diagram
(BDD)

Problem search Backward search on UPG Sample vertices of specified
hardness level

New problems
(Output)

Propositions of specified
characteristics

Interesting starting board
positions of specified charac-
teristics

Table 1.6: Parameterized Problem Generation Module
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1.4 A Large Scale User Study for ITS #3

We supplement the theoretical claim of our feedback tools being relevant by describing

results from deployment of our programming feedback tools (ITS #3) during a

live CS-1 (introduction to programming) course credited by 400+ novice first-year

undergraduates at IIT-Kanpur, a large public university. Students of the 2017–2018–

II semester course offering were randomly partitioned to receive feedback from our

two automated feedback tools of solution generation and example problem generation.

While students from previous semester offerings, where human teaching assistants

provided feedback, are used as baseline.

During this large scale randomized user study, we observed that students with

access to feedback from our ITS tools are able to resolve programming errors more

efficiently, compared to the distinct set of students without similar access; with the

performance advantage increasing with problem complexity. However, the benefit

achieved is primarily logistical since students receiving feedback from ITS tools

performed identical to human-tutored students when no form of feedback (automated

or manual) was provided. We also observed that feedback via repair solution and

example problem have distinct non-overlapping relative advantages, for different

categories of programming errors. Chapter 6 discusses these results in detail.

In the following Chapter 2, we describe our very first ITS #1 for natural deduction

proof, based on the design principles mentioned earlier.



Chapter 2

Natural Deduction

Natural deduction, a method for establishing validity of propositional type arguments,

helps develop important reasoning skills and is thus a key ingredient in a course on

introductory logic. In this chapter we present two core components, namely solution

generation and practice problem generation, for enabling computer-aided education

for this important subject domain [18].

The key enabling technology used is an offline-computed data-structure called

Universal Proof Graph (UPG) that encodes all possible applications of inference

rules over all small propositions abstracted using their bitvector-based truth-table

representation. This allows an efficient forward search in UPG for solution generation.

More interestingly, this allows generating fresh practice problems of given solution

characteristic by performing a backward search in UPG.

We report results on 279 natural deduction problems, obtained from various

textbook exercises. Our solution generation procedure can solve many more prob-

lems, compared to the traditional forward-chaining based procedure. While our

problem generation procedure can efficiently generate several variants with desired

characteristics.
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2.1 Introduction

Natural deduction [19] is a method for establishing the validity of propositional

type arguments, where the conclusion of an argument is derived from the initial

premises through a series of discrete steps. A proof in natural deduction consists

of a sequence of propositions; each of which is either a premise or is derived from

preceding propositions through application of some inference/replacement rule, and

the last of which is the conclusion of the argument.

From a pragmatic perspective, natural deduction helps develop reasoning skills

required to construct sound arguments and to evaluate the arguments of others. It

instills a sensitivity towards formal component in language, a thorough command

of which is necessary for clear, effective, and meaningful communication. Such a

logical training provides a fundamental defense against the prejudiced attitudes that

threaten the foundations of our democratic society [20].

From a pedagogical perspective, natural deduction gently introduces the usage of

logical symbols, which carries forward into other more difficult fields such as algebra,

geometry, physics, and economics. Natural deduction is typically taught as part of

an introductory course on logic, which is a central component of college education

and is generally offered to students of all disciplines regardless of their major. It is

thus unsurprising that an introductory course on logic is listed on various Massive

Open Online Course (MOOC) platforms, including Coursera [21], Open Learning

Initiative [22], and Khan Academy [23].

2.1.1 Novel Technical Insights

Our observations in this work include:

• Small-Sized Hypothesis: Propositions that occur in educational contexts

use a small number of variables and have a small size (Table 2.9). The number

of such small-sized propositions is bounded (Figure 2.6).

• Truth-Table Representation: A proposition can be abstracted using its
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truth-table, which can be represented using a bitvector representation [24].

This provides three key advantages: (i) It partitions small-sized propositions

into a small number of buckets (Figure 2.7). (ii) It reduces the size/depth of a

natural deduction proof tree, making it easier to search for solutions or generate

problems with given solution characteristics. (iii) Application of inference rules

over bitvector representation reduces to performing efficient bitwise operations.

• Offline Computation: The symbolic reasoning required to pattern match

propositions for applying inference rules can be performed (over their truth-

table bitvector representation) and stored in an offline phase. This has two

advantages: (i) It alleviates the cost of symbolic reasoning by a large constant

factor, by removing the need to perform any symbolic matching at runtime. (ii)

It enables efficient backward search for appropriate premises starting from a

conclusion during problem generation, which we model as a reverse of solution

generation.

2.1.2 Contributions

This work makes the following contributions.

• We propose leveraging the following novel ingredients for building an efficient

computer-aided education system for natural deduction: small-sized proposition

hypothesis, truth-table based representation, and offline computation.

• We present a novel two-phased methodology for solution generation that first

searches for an abstract solution and then refines it to a concrete solution.

• We motivate and define some useful goals for problem generation, namely

similar problem generation and parameterized problem generation. We present

a novel methodology for generating such problems using a process that is

reverse of solution generation.

• We present detailed experimental results on 279 benchmark problems collected

from various textbooks. Our solution generation algorithm can solve 84% of
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Rule Name Premise-1 Premise-2 Conclusion
Modus Ponens (MP) p → q p q
Modus Tollens (MT) p → q ¬ q ¬ p
Hypothetical Syllogism (HS) p → q q → r p → r
Disjunctive Syllogism (DS) p ∨ q ¬ p q
Constructive Dilemma (CD) (p → q) ∧ (r → s) p ∨ r q ∨ s
Destructive Dilemma (DD) (p → q) ∧ (r → s) ¬ q ∨ ¬ s ¬ p ∨ ¬ r
Simplification (Simp) p ∧ q q
Conjunction (Conj) p q p ∧ q
Addition (Add) p p ∨ q

Table 2.1: Inference Rules

these problems, while the baseline traditional algorithm could only solve 57%

of these problems. Our problem generation algorithm is able to generate few

thousands of similar problems and parameterized problems on average per

instance in a few minutes.

2.2 Problem Definition

Let x1,… , xn be n Boolean variables. A proposition over these Boolean variables is a

Boolean formula consisting of Boolean connectives over these variables.

Definition 2.1 (Natural Deduction Problem) A natural deduction problem is

a pair ({pi}mi=1, c) of a set of propositions {pi}mi=1 called premises and a proposition

c called conclusion. A natural deduction problem is said to be well-defined if the

conclusion is implied by all the premises, but not by any strict subset of those premises.

Definition 2.2 (Natural Deduction Proof) Let  and  be sets of inference

rules and replacement rules respectively. A natural deduction proof for a problem

({pi}mi=1, c) is a step-by-step derivation of conclusion c from premises {pi}mi=1, obtained

through application of some inference rule from  or some replacement rule from 

at each step.
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Rule Name Proposition Equivalent Proposition
De Morgan’s Theorem ¬ (p ∧ q) ¬ p ∨ ¬ q

¬ (p ∨ q) ¬ p ∧ ¬ q
Commutation p ∨ q q ∨ p

p ∧ q q ∧ p
Association p ∨ (q ∨ r) (p ∨ q) ∨ r

p ∧ (q ∧ r) (p ∧ q) ∧ r
Distribution p ∨ (q ∧ r) (p ∨ q) ∧ (p ∨ r)

p ∧ (q ∨ r) (p ∧ q) ∨ (p ∧ r)
Double Negation p ¬ ¬ p
Transposition p → q ¬ q → ¬ p
Implication p → q ¬ p ∨ q
Equivalence p ≡ q (p → q) ∧ (q → p)

p ≡ q (p ∧ q) ∨ (¬ p ∧ ¬ q)
Exportation (p ∧ q) → r p → (q → r)
Tautology p p ∨ p

p p ∧ p

Table 2.2: Replacement Rules

Inference and Replacement Rules

An inference rule I can be applied on one or more premises Premises(I) to derive a

new intermediate proposition Conclusion(I). Table 2.1 lists down the inference rules

commonly used in natural deduction textbook proofs. Unlike the inference rules,

which are basic argument forms, a replacement rule is expressed as pair of logically

equivalent statement forms, either of which can replace the other in a proof sequence.

Table 2.2 lists down the common replacement rules.

Our system does not leverage any knowledge specific to one inference/replacement

rule. The only interface that it requires of a rule is the capability to generate the

target proposition from source propositions.

Example 2.3 Consider the natural deduction problem ({a ∨ (b ∧ c), a → d, d →

e}, b ∨ e). Table 2.3 shows a natural deduction proof for it with inference rule

applications in bold.
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Step Proposition Reason
P1 a ∨ (b ∧ c) Premise
P2 a → d Premise
P3 d → e Premise

1 (a ∨ b) ∧ (a ∨ c) P1, Distribution
2 a ∨ b 1, Simplification
3 a → e P2, P3, Hypothetical Syllogism
4 b ∨ a 2, Commutativity
5 ¬¬b ∨ a 4, Double Negation
6 ¬b → a 5, Implication
7 ¬b → e 6, 3, Hypothetical Syllogism
8 ¬¬b ∨ e 7, Implication
9 b ∨ e 8, Double Negation

Table 2.3: Natural deduction proof example, with application of inference rules highlighted
in bold

2.3 Universal Proof Graph

We start out by describing our key data-structure that is used for both solution and

problem generation. It encodes all possible applications of inference rules over all

propositions of small size, abstracted using their truth-table representation.

Definition 2.4 (Truth-Table Bitvector Representation) Let q be a proposi-

tion over n Boolean variables. Its truth-table, which assigns a Boolean value to each

of the 2n possible assignments to the n Boolean variables, can be represented using a

2n bitvector [24]. We denote this bitvector by q̃.

For example, consider the proposition a → b over n = 3 Boolean variables

{a, b, c}. Table 2.4 lists its truth-table, by assigning 23 = 8 different possible

Boolean value assignments to the 3 variables. Note that a truth-table representation

does not distinguish between equivalent propositions such as a and ¬¬a.

Definition 2.5 (Abstract Proof) Let  be a set of inference rules. An abstract

proof tree for a natural deduction problem ({pi}mi=1, c) is any step-by-step deduction for

deriving c̃ from {p̃i}mi=1 using the abstract version of some inference rule from  at each

step. An abstract version of an inference rule Ĩ has premises {q̃ | q ∈ Premises(I)}
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a b c a → b
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

15 51 85 243

Table 2.4: Truth Table example of proposition a → b over n = 3 Boolean variables
{a, b, c}. The truth-table consists of 23 = 8 Boolean value assignments, with the last row
containing the 8-bit integer equivalent of the bit-vector representation; the bottom-most
row represents the Least Significant Bit (LSB).

Step Truth-table Reason
P1 �1 = 1048575 Premise
P2 �2 = 4294914867 Premise
P3 �3 = 3722304989 Premise

1 �4 = 16777215 P1, Simplification
2 �5 = 4294923605 P2, P3, Hypothetical Syllogism
3 �6 = 1442797055 1, 2, Hypothetical Syllogism

Table 2.5: Abstract proof with truth-tables shown using a 32-bit integer representation

and conclusion q̃′, where q′ = Conclusion(I). An abstract proof A is minimal if for

every other abstract proof A′, the set of truth-tables derived in A′ is not a strict

subset of A.

An abstract proof for a natural deduction problem is smaller than a natural

deduction proof. This is because an abstract proof operates on truth-tables, i.e.,

equivalence classes of propositions, and hence does not need to encode the replacement

steps to express equivalent rewrites within a class. Note that a natural deduction

proof for a given problem, over inference rules  and replacement rules , can always

be translated into an abstract proof for that problem over . However, translating

an abstract proof into natural deduction proof depends on whether or not  contains

sufficient replacement rules.

Example 2.6 Consider the problem mentioned in Example 2.3 and its natural
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n Total s
1 2 3 4 5

1

∞

2 10 1.3 × 102 2.4 × 103 4.6 × 104
2 4 52 1.5 × 103 5.9 × 104 2.5 × 106
3 6 126 5.8 × 103 3.3 × 105 2.1 × 107
4 8 232 1.4 × 104 1.1 × 106 9.8 × 107
5 10 370 2.9 × 104 2.8 × 106 3.1 × 108

Table 2.6: Number of propositions over n variables and size at most s, excluding those
with double or more negations.

n Total s
1 2 3 4 5

1 4 2 4 4 4 4
2 16 4 16 16 16 16
3 256 6 38 152 232 256
4 65,536 8 70 526 3,000 13,624
5 4,294,967,296 10 112 1,252 12,822 122,648

Table 2.7: Number of truth-tables over n variables and size at most s

deduction proof in Table 2.3. An abstract proof for the same problem is shown in

Table 2.5, which consists only of inference rules from  that were highlighted in

bold in its natural deduction proof, along with interpreting each proposition q as its

truth-table q̃.

Definition 2.7 (Size of a Proposition) We define Size(q), the size of a proposi-

tion q, as the number of variable occurrences (operands) in it.

Size(x) = 1

Size(¬q) = Size(q)

Size(q1 op q2) = Size(q1) + Size(q2)

For example, the size of proposition (a ∧ b) ∨ (¬a ∧ c) is 4.

Let Pn,s denote the set of all propositions over n variables that have size at most s.

Table 2.6 shows the number of propositions over n variables as a function of s. Note

that, even though the number of syntactically distinct propositions over n variables

is potentially infinite, the number of such propositions that have constant size is

bounded.
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For example, the 10 distinct propositions for n = 1 variable and s = 2 size are

a, ¬a, a ∧ ¬a, ¬a ∧ a, a ∨ ¬a, ¬a ∨ a, a → ¬a, ¬a → a, a ≡ ¬a, ¬a ≡ a.

Definition 2.8 (Size of a Truth-Table) We define the size of a truth-table t to be

the smallest size of a proposition q such that q̃ = t. We select one such smallest-sized

proposition as the canonical proposition for truth-table t.

Let Tn,s denote the set of all truth-tables over n variables that have size at most

s. Table 2.7 mentions statistics related to the number of truth-tables in Tn,s for

various values of n and s. Note that the cardinality of Tn,s is much smaller than the

cardinality of Pn,s.

For example, although n = 1 variable and s = 2 size has P1,2 = 10 unique

propositions, its number of unique truth tables is restricted to T1,2 = 4; specifically,

the truth-tables {0, 1, 2, 3} represented using 2-bit integer for canonical propositions

{a ∧ ¬a, a, ¬a, a ∨ ¬a} respectively.

Definition 2.9 (Universal Proof Graph (UPG)) A (n, s,) Universal Proof Graph

is a hyper-graph whose nodes are labeled with truth-tables from Tn,s and edges are

labeled with an inference rule from .

2.3.1 Algorithm

We now describe our algorithm for computing the (n, s,)-UPG, which makes use of

functions Eval and EvalS defined later.

1. The node set of (n, s,)-UPG is Tn,s, the set of all truth-tables of size s. We

compute Tn,s by enumerating all propositions q of size s over n variables

and adding q̃ to the node set. During this computation, we also maintain a

reverse mapping called Canonical that maps each truth-table to a canonical

proposition.

2. The edge set computation involves adding a hyper-edge  for each inference

rule I ∈ , for each state � that maps free variables in I to a truth-table in

Tn,s.
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For each inference rule I ∈ , where pi is the itℎ premise in Premises(I) and

q = Conclusion(I), the itℎ source node of the hyper-edge is Eval(pi, �) and the

target node is Eval(q, �). We add this edge only when

(i) Size(EvalS(q, �)) ≤ s and ∀i Size(EvalS(pi, �)) ≤ s, and

(ii) EvalS(q, �) and ∀i EvalS(pi, �) can be rewritten into the corresponding

canonical propositions using the given set of replacement rules.

This optimization avoids adding too many edges that result from too involved

reasoning on large-sized propositions, which could lead to failure in later stage

of solution generation (concretization) involving replacement rules. Each hyper-

edge  is annotated with the set of all tuples {[EvalS(p1, �),… , EvalS(pj , �)],

EvalS(q, �)} obtained from any inference rule I and any state � that yields  .

This set is referred to as PT uples().

Eval

The function Eval(q, �) substitutes each free variable x in q by �(x). Here &, ‖,∼

denote bitwise-and, bitwise-or, and bitwise-not operators respectively.

Eval(q1 ∧ q2, �) = Eval(q1, �) & Eval(q2, �)

Eval(q1 ∨ q2, �) = Eval(q1, �) ‖ Eval(q2, �)

Eval(¬q, �) = ∼ Eval(q, �)

Eval(x, �) = �(x)
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EvalS

The function EvalS(q, �) substitutes each free variable x in q by Canonical(�(x)).

That is:

EvalS(q1 ∧ q2, �) = EvalS(q1, �) ∧ EvalS(q2, �)

EvalS(q1 ∨ q2, �) = EvalS(q1, �) ∨ EvalS(q2, �)

EvalS(¬q, �) = ¬EvalS(q, �)

EvalS(x, �) = Canonical(�(x))

2.3.2 Example

For example, consider the Modus Ponens (MP) rule: ({p→q, p}, q). A (n = 4, s =

3, = {MP }) UPG has 526 bit-vector nodes ∈ Tn=4,s=3 (from row-4 column-3 in

Table 2.7). ∀i ∈ Tn=4,s=3 ∀j ∈ Tn=4,s=3, its hyper edges are from bit-vector nodes i→j

and i to j, provided the following condition is true ((i→j) ∧ i)→j.

An example of variable assignment which satisfies the above condition is when

i = 15 (representative proposition a), j = 51 (representative proposition b). Hence,

an edge is added from node i→j (15→51 = ¬15 ∨ 51 = 243, with representative

proposition a→b) and node i (15), to node j (51).

Since i and j are bit-vectors, efficient bit-wise and (∧), or (∨), not (¬) operations

are used to compute the satisfiability of above condition. Note that i→j is rewritten

as ¬i ∨ j.

2.3.3 Key Ideas of the Algorithm

Note that a naive approach of computing the node set, by enumerating all truth-

tables and filtering out truth-tables with size at most s, has two key challenges: (i)

It is not easy to identify whether a given truth-table has small size. (ii) Furthermore,

the total number of truth-tables over n variables is huge (22n). Instead we compute

Tn,s by enumerating all small propositions one by one.
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n # Edges Time (hours)
1 20 < 1
2 960 < 1
3 14,424 < 1
4 68,422 < 3
5 207,322 < 8

Table 2.8: UPG statistics for s = 4 and n ≤ 5

Similarly, note that the naive approach to computing the edge set, by enumerating

over all possible tuples of source nodes and target node and identifying if a given

inference rule is applicable, has two key challenges: (i)It is not easy to identify

whether a given inference rule is applicable at the truth-table representation, and (ii)

the number of such tuples is huge. Instead we enumerate all edges corresponding to

a given inference rule by enumerating over all possible applications of that rule.

2.3.4 Results

Table 2.8 describes the number of edges of UPGs and the time taken to compute

them for various values of n ≤ 5 and s = 4. We chose s to be 4 since most problems

in practice have s ≤ 4 (See Table. 2.9). We experimented with n ≤ 5 since it allows

use of standard 32-bit integer for bitvector representation of a truth-table.

2.4 Solution Generation

In this section, we discuss how to generate a solution (i.e., a natural deduction proof)

to a natural deduction problem.

Definition 2.10 (Traditional Algorithm) A naive approach for generating a

minimal natural deduction proof, which performs a breadth-first search by starting

from premises pi and applying some inference or replacement rule at each step to

generate a new proposition until the conclusion is reached.

We next present our two-phase UPG-based algorithm that first computes an

abstract proof using the UPG and then extends it to a natural deduction proof.
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2.4.1 Algorithm

Given the natural deduction problem ({pi}mi=1, c), with n variables and max proposition

size s, a set  of inference rules, and a set  of replacement rules, we do the following:

1. Construct an abstract proof for the problem ({pi}mi=1, c). This is done by per-

forming a forward search for conclusion c̃ starting from {p̃i}mi=1 in (n, s,-UPG.

A breadth-first search over UPG is undertaken to compute this minimal abstract

proof.

2. Concretize the abstract proof to a natural deduction proof. This is done by

generating a set of candidate propositions for each node � in the abstract proof

tree in a topological order as follows.

For each premise node, the set of candidate propositions contains only the

corresponding premise proposition. Let  be the hyper-edge from the UPG

whose target node yielded �, and let ([q1,… , qn], q) ∈ PT uples(). If for each

itℎ child node of �, any of the candidate propositions q′i associated with it can

be rewritten to qi, then q is added as a candidate proposition for �.

The rewriting of propositions is attempted by performing a bounded breadth-

first search over transitive applications of replacement rules from . [q′1,… , q′n]

is called the source-witness tuple for q and [q1,… , qn] is called the target-witness

tuple for q.

3. The natural deduction proof is now obtained by iteratively selecting a source

proposition and a target proposition for each node of abstract proof in reverse

topological order. These propositions are obtained respectively from the source-

witness tuple and target-witness tuple of the parent node. Each node in the

abstract proof is then expanded with a series of replacement rules that convert

the source proposition into the target proposition.
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Step Truth-table Reason
P1 �1 = 1048575 Premise
P2 �2 = 4294914867 Premise
P3 �3 = 3722304989 Premise

1 �4 = 16777215 P1, Simplification
2 �5 = 4294923605 P2, P3, Hypothetical Syllogism
3 �6 = 1442797055 1, 2, Hypothetical Syllogism

Figure 2.1: Abstract proof with truth-tables shown using a 32-bit integer representation

Node Candidate Target Source
Proposition Witness Witness

�1 qP1
�2 qP2
�3 qP3
�4 q2 [q1] [qP1]
�5 q3 [qP2, qP3] [qP2, qP3]
�6 q7 [q6, q3] [q2, q3]

Figure 2.2: Steps in converting abstract proof to natural deduction proof. Each source
witness needs to be rewritten into the corresponding target witness, using replacement
rules .

Step Proposition Reason
P1 a ∨ (b ∧ c) Premise
P2 a → d Premise
P3 d → e Premise

1 (a ∨ b) ∧ (a ∨ c) P1, Distribution
2 a ∨ b 1, Simplification
3 a → e P2, P3, Hypothetical Syllogism
4 b ∨ a 2, Commutativity
5 ¬¬b ∨ a 4, Double Negation
6 ¬b → a 5, Implication
7 ¬b → e 6, 3, Hypothetical Syllogism
8 ¬¬b ∨ e 7, Implication
9 b ∨ e 8, Double Negation

Figure 2.3: Natural deduction proof example, with application of inference rules high-
lighted in bold

2.4.2 Example

Consider the natural deduction problem mentioned earlier in Example 2.3 ({a ∨

(b ∧ c), a → d, d → e}, b ∨ e).
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n s
2 3 4 5 6

1 2 1
2 32 6 6 2
3 27 61 15 3 2
4 15 34 27 1
5 3 30 20 2
6 7 20 1 1
7 3 7 1
8 2 3 2
9 1 1 1

Table 2.9: 339 benchmark natural deduction problems obtained from 5 textbooks [25,
26, 27, 20, 28], distributed across number of Boolean variables n and max size s of each
proposition. Note that 82% of the problems have s ≤ 4 and n ≤ 5.

Figure 2.2 outlines how the above algorithm generates the natural deduction

proof in Figure 2.3 from the abstract proof in Figure 2.1. Column “Candidate

Proposition” lists a placeholder candidate propositions produced by step 2 of the

solution generation algorithm, which is later identified by step 3 of the algorithm

using the corresponding source/target witnesses.

2.4.3 Results

We report on results of our UPG-based algorithm over 279 benchmark problems

collected from various textbooks, that have n ≤ 5 and s ≤ 4 (Table 2.9). These

problems were picked across 21 different exercise sets, each requiring use of a specific

set  of inference rules. Some exercise sets asked for a proof by contradiction,

which we modeled into our framework by modifying conclusion to false and adding

the negation of the original conclusion as a premise. We obtained (n, s,)-UPG as
⋃

I∈
(n, s, {I})-UPG instead of having to compute the UPG for each given subset 

from scratch.

Our tool was able to generate an abstract proof for 88% of these problems, using a

timeout of 10 seconds. Among these 88% of problems, our tool was able to concretize

the abstract proof to a natural deduction proof for 96% instances, thereby achieving

an overall success rate of 84%. In contrast, the overall success rate of the traditional
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Total Avg # % Success Avg time Avg time
#Steps #Abstract Problems Traditional UPG Trad.

Steps (j) (sec) (sec)
1 0.6 18 100 0.0 0.0
2 0.9 21 100 0.0 0.2
3 0.9 25 100 0.0 0.9
4 1.2 23 70 0.0 1.2
5 1.8 16 69 0.1 0.2
6 2.0 19 47 0.1 0.6
7 1.7 14 71 0.9 0.6
8 1.9 20 70 1.2 0.3
9 2.0 14 29 0.2 1.9
10 2.7 6 33 0.2 1.5
11 2.5 6 17 1.9 0.0
12 2.6 10 60 4.4 2.0
13 2.7 6 33 3.0 0.1
14 3.0 2 50 0.4 4.4
15 3.1 8 13 2.9 0.1
16 2.6 8 38 1.0 0.4
17 2.8 6 17 2.2 0.1
19 3.3 3 33 3.0 0.1
20 2.0 2 0 0.3 -
21 4.0 1 100 6.4 8.7
22 3.0 2 0 1.4 -
23 3.0 1 0 4.3 -
24 2.0 1 100 1.3 0.1
25 4.0 1 0 8.7 -
27 4.0 1 0 9.3 -

Table 2.10: Solution generation results, with timeout of 10 sec. Only those problems
which UPG-based algorithm could solve overall (84% of 279 = 234) are listed here, grouped
by the total number of steps in overall natural deduction proof. The performance of
traditional algorithm against these problems is shown in column “% Success Traditional”.
The last two columns report on the average time-taken by both algorithms, only accounting
for problems which could be solved.
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breadth-first-search algorithm is 57%, using the same timeout of 10 seconds.

Table 2.10 shows the distribution of the 84% problems that the UPG-algorithm

is able to solve overall, with respect to the total number of steps required to solve

them. Column 4 “% Success Traditional” shows that the traditional algorithm is

unable to solve several of these problems, especially those requiring larger number of

steps, due to timing out. Column 2 shows that the average number of steps of the

abstract proof is significantly smaller than the total number of steps in Column 1 for

natural deduction proof; this partly explains the higher success rate of the UPG-based

algorithm.

There are a small number of instances where the traditional algorithm works

better than the UPG-based algorithm. This happens when the traditional algorithm

is able to find an overall shorter proof that has more number of abstract steps than

the proof found by the UPG-based algorithm (which has smallest number of abstract

steps, but involves significantly large number of replacement steps).

The UPG-based algorithm does fail to solve certain problems. This is because it

restricts its search to proofs where all the propositions have size s ≤ 4. However, for

certain problems, proofs involve intermediate propositions whose size is greater than

4. Note that this can happen even when the premises and conclusion have size at

most 4.

2.5 Similar Problem Generation

We now show how to generate fresh problems with given solution characteristic. The

key algorithmic insight here is to model problem generation as reverse of solution

generation, and this backward search is enabled through UPG. We consider two

goals, that of producing similar problems and parameterized problems.

Definition 2.11 (Similar Problems) Two problems Q1 and Q2 are called simi-

lar if they entail a similar minimal abstract proof tree. Two abstract proof trees are

said to be similar if they involve exactly the same order of inference rule applications.
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Generating similar problems can help address issues such as copyright and

plagiarism, as discussed earlier in Section 2.1.

2.5.1 Algorithm

Let P be a problem with n variables and maximum proposition size s that needs to

be solved using inference rules . Our algorithm for generating problems that are

similar to P involves the following steps.

1. Generate a minimal abstract proof A for P , by performing a forward breadth-

first search in the (n, s,)-UPG.

2. Find matches of A in the (n, s,)-UPG using a backtracking based backward

search.

3. Replace each truth-table node in the match by its canonical proposition, to

generate new problems with the same abstract solution as original problem P .

2.5.2 Results

Table 2.11 presents statistics on the number of similar (but well-defined) problems

that we produced, given a seed problem, along with the time taken to produce them

and number of abstract proof steps j required to solve these. We discount all trivial

problems generated, such as replacing a variable by any other variable or its negation.

2.5.3 Example

In Figure 2.4, we show 5 (out of 516) new similar problems generated for the

last problem in Table 2.11, which is the same original problem from Example 2.3.

Figure 2.6 shows a solution for the first new problem in Figure 2.4. Observe that

the abstract version of this solution (i.e., the bold steps) are similar to the abstract

version of the solution for the original problem, which is shown in Figure 2.5.
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Original Premises Original j #Similar Time
Conclusion Problems min:sec

a ∨ b, c, (c ∧ (a ∨ b)) → ¬d,
¬e → d ¬¬e 3 21,849 42:42

a, (a ∧ b) → (c ∧ d), b, d → e e 4 9,290 30:28

¬a, (¬a ∧ ¬b) → (c → d), ¬b,
d → e c → e 3 5,306 17:56

¬(a ∧ b), (a → ¬b) → (¬c ∧ ¬d),
e ∨ (c ∨ d) e 2 4,001 5:56

a → (b → c), ¬(b → c), ¬d ∨ a ¬d 2 2,908 0:06

a → (b → (c ∨ d)), b ∧ a, ¬d c 2 2,353 0:14

¬a → b, a → c, ¬c, b → d d ∨ e 4 1,248 5:17

(a → b) ∧ ¬c, (¬a → e) ∨ c,
(¬b → e) → d d 5 274 1:18

(c ∨ b) → ¬a, d ∨ a, b d 3 122 0:02

a ∨ (b ∧ c), a → d, d → e b ∨ e 3 516 1:52

Table 2.11: Number of similar problems generated and time taken to generate them for
a few representative selection of problems. shown along with the number of inference steps
j required to solve them. Note that the last row problem is the same as Example 2.3
problem, whose similar problem examples were shown in earlier Section 2.5.3.

2.6 Parameterized Problem Generation

Definition 2.12 ((n, m, s, j,)-problem) A (n, m, s, j,) problem is one that has

(i) m premises involving n variables of size at most s, and (ii) that has a minimal

abstract proof involving j steps, making use of only and all inference rules from set .

Generating parameterized problems can be used to generate personalized work-

flows as discussed in Section 2.1.

2.6.1 Algorithm

The algorithm for generating (n, m, s, j,)-problems that have n variables and maxi-

mum proposition size s involves performing a backtracking based backward search

in (n, s,)-UPG to find appropriate matches. To generate a concrete problem, we

replace each truth-table node in the match by its canonical proposition.
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Premise 1 Premise 2 Premise 3 Conclusion
a ≡ b c → ¬b (d → e) → c a → (d ∧ ¬e)
a ∧ (b → c) (a ∨ d) → ¬e b ∨ e (a ∨ d) → c
(a ∨ b) → c c → (a ∧ d) (a ∧ d) → e a → e
(a → b) → c c → ¬d a ∨ (e ∨ d) e ∨ (b → a)
a → (b ∧ c) d → ¬b (c ≡ e) → d a → (c ≡ ¬e)

Figure 2.4: 5 (out of 516) new similar problems generated, given the Example 2.3 problem
({a ∨ (b ∧ c), a → d, d → e}, b ∨ e) as seed.

Step Proposition Reason
P1 a ∨ (b ∧ c) Premise
P2 a → d Premise
P3 d → e Premise

1 (a ∨ b) ∧ (a ∨ c) P1, Distribution
2 a ∨ b 1, Simplification
3 a → e P2, P3, Hypothetical Syllogism
4 b ∨ a 2, Commutativity
5 ¬¬b ∨ a 4, Double Negation
6 ¬b → a 5, Implication
7 ¬b → e 6, 3, Hypothetical Syllogism
8 ¬¬b ∨ e 7, Implication
9 b ∨ e 8, Double Negation

Figure 2.5: Natural deduction proof of Example 2.3 problem ({a ∨ (b ∧ c), a →
d, d → e}, b ∨ e). Application of inference rules are highlighted in bold.

Step Proposition Reason
P1 a ≡ b Premise
P2 c → ¬b Premise
P3 (d → e) → c Premise

1 (a → b) ∧ (b → a) P1, Equivalence
2 a → b 1, Simplification
3 (d → e) → ¬b P3, P2, Hypothetical Syllogism
4 ¬¬b → ¬(d → e) 3, Transposition
5 b → ¬(d → e) 4, Double Negation
6 a → ¬(d → e) 2, 5, Hypothetical Syllogism
7 a → ¬(¬d ∨ e) 6, Implication
8 a → (¬¬d ∧ ¬e) 7, De Morgan’s
9 a → (d ∧ ¬e) 8, Double Negation

Figure 2.6: Natural Deduction Proof of a problem (first row of Figure 2.4) similar to
Example 2.3 problem ({a ∨ (b ∧ c), a → d, d → e}, b ∨ e). The abstract proof,
highlighted in bold, is the exact same as original problem (Figure 2.5)
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n m j  Num. of Time
problems min:sec

2 2 1 MP 4 0:00
2 2 2 Simp, MP 6 0:02
3 3 2 DS, HS 145 0:00
3 3 3 DD, MT, Conj 188 0:00
3 2 4 Simp, Conj, MP 279 0:09
4 2 3 Simp, MP, 2060 1:52
4 3 3 Conj, MP, HS 6146 1:29
4 4 3 HS, MP 18132 9:52
5 3 2 Simp, MP 5628 8:04
5 3 2 HS, DS 5838 7:39

Table 2.12: Number of (n, m, s, j,)-problems generated and time taken to generate them
for few representative choices of n, m, j,, with size s fixed to 4.

Premise 1 Premise 2 Premise 3 Conclusion
(a → c) → b b → c ¬c a ∧ ¬c

c → a (c ≡ a) → b ¬b a ∧ ¬c
(a ≡ c) ∨ (a ≡ b) (a ≡ b) → c ¬c a ≡ c

a ≡ ¬c b ∨ a c → ¬b a ∧ ¬c
c → a a → (b ∧ c) c → ¬b ¬c

Table 2.13: 5 (out of 145) new parameterized problems generated from the parameters
in the 3rd row in Table 2.12 (namely, n = 3, m = 3, s = 4, j = 2,  = {DS, HS}).

2.6.2 Results

Table 2.12 presents statistics on the number of well-defined (n, m, s, j,)-problems

produced for certain values of (n, m, j,), as obtained from some existing problems

and s = 4. As before, we do not count duplicate problems that can be obtained by

replacing a variable with any other variable or its negation.

2.6.3 Example

In Table 2.13, we show 5 (out of 145) new problems generated for n = 3, m = 3,

s = 4, j = 2, and  = {DS, HS}, which corresponds to the parameters in the third row

in Table 2.12. All of these problems can be solved in j = 2 inference steps, using

inference rule DS and HS.
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2.7 Related Work

Natural Deduction

Several proof assistants have been developed for teaching natural deduction: MacLogic [29],

Symlog [30], Jape [31], Hyperproof [32], Pandora [33], Proof Lab [34], and ProofWeb [35].

These tools primarily differ in proof checking, how proofs are visualized (notably

whether proofs are trees or sequences), whether both forward and backward reasoning

are supported, the availability of global, tactical and strategic help, and debugging

facilities. Ditmarsch et al. [36] provide a nice survey of these tools, and we discuss

few notable ones below.

Pandora [33] is a Java based tool that allows the user to reason both forwards

and backwards, checking the rule application at each stage and providing feedback.

Proof Lab [34] makes use of the AProS algorithm and can search for proofs using a

combination of forward chaining, backward chaining, and contradiction. In contrast,

we focus on generating proofs without contradiction, thereby staying true to what

the original problem asks for.

ProofWeb [35] makes use of a state-of-the-art proof assistant Coq [37], which

allows encoding of various tactics for proof generation. However, none of these

systems report on performance metrics as we do. More significantly, our work makes

an orthogonal point, namely how to speed up forward/backward and with/without

contradiction search 1, by using offline computation (which exploits the small formula

sized hypothesis) and a two-staged proof generation strategy that first computes an

abstract proof and then the natural proof. These optimizations also pave way for

generating fresh problems that is not addressed by any of these existing tools.
1Though we demonstrate this in the context of forward search without contradiction, our

methodology is applicable more broadly.
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Problem Generation

Singh et al. [14] describe a problem generation technology for generating problems

that are similar in structure to a given algebraic identity proof problem. Their

technology leverages continuity of the underlying domain of algebraic expressions,

and uses extension of polynomial identity testing to check the correctness of a

generated problem candidate on a random input. In contrast, the domain of Boolean

expressions is non-continuous or discrete, and hence requires a different technology

of checking the correctness or well-formedness of a problem candidate on all inputs.

Furthermore, unlike Singh et al. [14], our technology also enables solution generation.

Andersen et al.[38] describe a problem generation technology for procedural

domain, which includes problems commonly found in middle-school math curriculum

such as subtraction and greatest common divisor computation. Their underlying

technology leverages test input generation techniques [39] to generate problems that

explore various paths in the procedure that the student is expected to learn. In

contrast, we address problem generation for conceptual domain, where there is no

step-by-step decision procedure that the student can use to solve a problem, which

requires creative skills such as pattern matching.

Solution Generation

Gulwani et al. [10] describe a solution generation technology for ruler/compass

based geometric construction problems, using a search technique like ours with some

interesting similarities/differences. They perform a forward breadth-first search

(similar to us) by repeatedly applying ruler/compass operations to reach the desired

output geometric object from input geometric objects. The geometric object is

represented using a concrete representation, which constitutes its probabilistic hash,

in order to avoid symbolic reasoning. We similarly avoid symbolic reasoning, but

by using an abstract hash (i.e., truth-table representation). Since inference rules

cannot be directly applied on the abstract hash, we resort to leveraging offline

computation (UPG). This provides the additional benefit of generating problems
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with given solution characteristics.

2.8 Summary

Computer-aided instruction can raise the quality of education by making it more

interactive and customized. In this work, we have provided the core building blocks,

namely problem generation and solution generation, for the classic subject domain of

natural deduction taught in an introductory logic course. This can free instructors

from the burden of creating and generating sample solutions to assignment problems.

An instructor can create few interesting seed problems and our tool can automatically

generate variants of these problems with similar difficulty level.

The SAT solving and theorem proving communities have focused on solving

large-sized problem instances in a reasonable amount of time. In contrast, our work

innovates by developing techniques for solving small-sized instances in real-time. The

small-sized assumption allows use of offline computation, and use of bitvector data

structure helps alleviate the cost associated with symbolic reasoning. This paves way

for some new applications, namely generation of human-readable proofs and new

problems. Our solution generation technology can be extended to complete partial

proofs or fix buggy proofs submitted by students.

In the next Chapter 3, we present an approach for generating interesting starting

levels for traditional board games, with core components similar to parameterized

problem generation in this Chapter. In the following Chapters 4 and 5, we present

solution generation and problem generation feedback tools for programming, respec-

tively. Then in Chapter 6, we measure the productivity impact of these tools when

deployed in a real course offerings.



Chapter 3

Simple Traditional Board Games

Simple traditional board games, such as Tic-Tac-Toe and CONNECT-4, play an

important role not only in the development of mathematical and logical skills, but

also in the emotional and social development. In this chapter, we address the problem

of generating targeted starting positions for such board games. This can facilitate

new approaches for bringing novice players to mastery, and also leads to the discovery

of interesting game variants.

In this chapter, we present an approach [40] that generates starting states of

varying hardness levels for player 1 in a two-player board game, given rules of the

board game, the desired number of steps required for player 1 to win, and the

expertise levels of the two players. Our approach leverages symbolic methods and

iterative simulation to efficiently search the extremely large state space. We present

experimental results that include discovery of states of varying hardness levels for

several of these simple grid-based board games. The presence of such states for

standard game variants, like 4 × 4 Tic-Tac-Toe, opens up new games to be played

that have never been played as the default start state is heavily biased.

3.1 Introduction

Board games involve placing pieces on a pre-marked surface or board, according to a

set of rules in a turn based fashion. Some of these grid-based two-player games, like
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Tic-Tac-Toe and CONNECT-4, have a relatively simple set of rules and yet, they

are reasonably challenging for certain age groups. Such games that are easy to learn

but difficult to master have been immensely popular across centuries.

Studies have shown that board games can significantly improve a child’s mathe-

matical ability [41], and early differences in mathematical ability persists into later

stages of education [42]. Board games also assist with emotional and social develop-

ment of a child [43]. They instill a competitive desire to master new skills in order to

win, which could give a boost to their self confidence. Playing a game within a set of

rules helps them develop social etiquette; taking turns, and being patient. Strategy

is another huge component of games, where children learn causal effect by observing

that decisions they make in the beginning of the game have larger consequences later

on [44]. Playing board games can be beneficial for elderly people as well, helping

them stay mentally sharp and hence less likely to develop Alzheimer [45].

3.1.1 Significance of Generating Fresh Starting States

Board games are typically played with a default start state; for example, empty board

in case of Tic-Tac-Toe and CONNECT-4. However, there are following drawbacks in

starting from the default starting state, which we use to motivate our goals.

Customizing hardness level of a start state

The default starting state for a certain game, while being unbiased, might not be

conducive for a novice player to enjoy and master the game. Traditional board games

in particular are easy to learn but difficult to master because these games have inter-

twined mechanics and force the player to consider large number of possibilities from

the standard starting configurations. Players can achieve mastery most effectively if

complex mechanics can be simplified and learned in isolation. Csikszentmihalyi’s

theory of flow [46] suggests that we can keep the learner in a state of maximal

engagement by continually increasing difficulty to match the learner’s increasing

skill. Hence, we need an approach that allows generating start states of a specified
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hardness level. This capability can be used to generate a progression of starting

states of increasing hardness. This is similar to how students are taught educational

concepts like addition through a progression of increasingly hard problems [38].

Leveling the playing field

The starting state for commonly played games is mostly unbiased, and hence does

not offer a fair experience for players of different skills. The flexibility to start from

other starting states that is more biased towards the weaker player can allow for

leveling the playing field, and hence a more enjoyable game for both. Hence, we

need an approach that takes as input the expertise levels of players and uses that

information to associate a hardness level with a state.

Generating multiple fresh start states

A fixed starting state might have a well-known conclusion. For example, both

players can enforce a draw in Tic-Tac-Toe while the first player can enforce a win

in CONNECT-4 [47], starting from the default empty starting state. Players can

memorize certain moves from a fixed starting state and gain undue advantage. Hence,

we need an approach that generates multiple start states (of a specified hardness

level). This observation has also inspired the design of Chess960 [48] (or Fischer

Random Chess), which is a variant of chess that employs the same board and pieces as

standard chess; however, the starting position of the pieces on the players’ home ranks

is randomized. The random setup renders the prospect of obtaining an advantage

through memorization of opening lines impracticable, compelling players to rely on

their talent and creativity.

Customizing length of play

People sometimes might be disinterested in playing a game if it takes too much time

to finish. However, selecting non-default starting positions allow the potential of a

shorter game play. Certain interesting situations might manifest only in states that
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are typically not easily reachable from the start state, or require too many steps.

The flexibility to start from such states might lead to more opportunities for practice

of specific targeted strategies. Thus, we need an approach that can take as input a

parameter for the number of steps that can lead to a win for a given player.

Experimenting with game variants

While people might be hesitant to learn a new game with completely different rules,

it is quite convenient to modify the existing rules slightly. For example, instead

of allowing for straight-line matches in each of row, column, or diagonal (RCD)

in Tic-Tac-Toe or CONNECT-4, one may restrict the matches to say only row or

diagonal (RD). However, the default starting state of a new game may be heavily

biased towards a particular player ; as a result that specific game might not have

been popular. For example, consider the game of Tic-Tac-Toe (m = 4, n = 4, k = 3),

where the goal is to make a straight line of k = 3 pieces, but on a 4× 4 (m× n) board.

In this game, the person who plays first invariably almost always wins even with a

naive strategy. Hence, such a game has never been popular. However, there can be

non-default unbiased states for such games and starting from those states can make

playing such games interesting. Hence, we need an approach that is parameterized by

the rules of a game. This also has the advantage of experimenting with new games

or variants of existing games.

To summarize, we need an approach to generate multiple start states of specified

hardness levels, given expertise levels of the players and length of plays, for traditional

board games and their variants.

3.1.2 Technique Overview

In this chapter, we address the problem of automatically generating interesting

starting states (i.e., states of desired hardness levels) for a given two-player board

game. Our approach takes as input the rules of a board game variants and the desired

number of steps required for player 1 to win. It then generates multiple starting
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O O
X X X
X O X
X X O X O
O O O X O

Table 3.1: Interesting starting board positions generated by our tool, for CONNECT-4
board game. Player 1 (X) has a guaranteed path to victory in 3 moves, if played efficiently.

states of varying hardness levels (in particular, easy, medium, or hard) for player 1

for various expertise level combinations of the two players.

For example, Table 3.1 shows an interesting starting board positions for CONNECT-

4, which requires 4 consecutive pieces in row, column or diagonal to win. The moves

in CONNECT games are restricted by gravity; i.e, while a player has the freedom

to place their piece on any column, the selected row must be the bottom most

available empty cell. Player 1 (X) has the first turn to move followed by Player-2

(O), in an alternating fashion. In the Table 3.1 example, Player 1 (X) has only three

valid moves: C2R3, C3R1, C4R3; where C denotes column number and R denotes row

number of the empty cells. This board position was automatically generated by our

tool in which Player 1 (X) can win in 2 turns (3 moves of Player 1 and 2 moves of

Player 2) if they play optimally, irrespective of the choices made by Player 2 (O).

We formalize the exploration of a game as a strategy tree and the expertise level

of a player as depth of this strategy tree. The hardness of a state is defined in terms

of fraction of times player 1 will win, while playing a strategy of depth k1 against an

opponent who plays a strategy of depth k2.

Our solution employs a novel combination of symbolic methods and iterative

simulation to efficiently search for desired states. Symbolic methods are used

to compute the winning set of player 1. These methods work particularly well

for navigating a state space where the transition relation forms a sparse directed

acyclic graph (DAG). Which is the case for board games, such as Tic-Tac-Toe and

CONNECT-4, where a piece once placed on the board doesn’t move. Minimax

simulation is then used to identify the hardness of a given winning state. Instead of

randomly sampling the winning set to identify a state of a certain hardness level,
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we identify states of varying hardness levels in order of increasing values of k1 and

k2. The key observation is that hard states are much fewer than easy states, and for

a given k2, interesting states for higher values of k1 are a subset of hard states for

smaller values of k1.

3.1.3 Results Overview

While our general search methodology applies to any graph game, for our experimental

results we focus on generating interesting starting states for simple board games and

their variants. These are games whose transition relation forms a sparse DAG (as

opposed to an arbitrary graph).

Generating starting states in simple and traditional games, as compared to

games with complicated rules, is both more challenging and more relevant. First,

in sophisticated games with complicated rules interesting states are likely to be

abundant and hence easier to find, whereas finding interesting states in simple games

is more challenging. Second, games with complicated rules are harder to master,

whereas simple variants of traditional games (such as larger or smaller board size, or

changing winning conditions from RCD to RD) are easier to adopt.

We experimented with Tic-Tac-Toe, CONNECT, Bottom-2 (a new game that

is a hybrid of Tic-Tac-Toe and CONNECT) games and several of their variants,

with modified winning condition such as RD or RC instead of RCD. We were able

to generate several starting states of various hardness levels for various expertise

levels and number of winning steps. Two important findings of our experiments are:

(i) discovery of starting states of various hardness levels in these traditional board

games, especially in games such as Tic-Tac-Toe 4 × 4 where the default start state is

heavily biased; and (ii) these states are rare and thus require a non-trivial search

strategy like ours to find them.
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3.1.4 Contributions

• We introduce and study a novel aspect of graph games, namely generation of

starting states. These starting states are of varying hardness levels, parameter-

ized by look-ahead depth of the strategies of the two players, the graph game

description, and the number of steps required for winning.

• We present a novel search methodology for generating desired initial states. It

involves combination of symbolic methods and iterative simulation to efficiently

search a huge state space.

• We present experimental results that illustrate the effectiveness of our search

methodology. We produce a collection of initial states of varying hardness

levels for standard games as well as their variants (thereby discovering some

interesting variants of the standard games in the first place).

3.1.5 Chapter Outline

This chapter is organized as follows. We start out with a formal background of

graph games and then formally state our problem definition in Section 3.2. We

present our search methodology for generating desired initial states in Section 3.3.

We then present a framework for describing (rules of) new board games that are like

Tic-Tac-Toe or CONNECT-4 (or similar simple variants) in Section 3.4. We describe

experimental results for several instantiations of this framework in Section 3.5. We

describe related work in Section 3.6 and then conclude in Section 3.7.

3.2 Problem Definition

In this section, we first present some necessary background related to mathematical

model of graph games and recall some basic results in Section 3.2.1. We then

describe the notion of hardness in Section 3.2.2 and formally describe our problem

in Section 3.2.3.
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3.2.1 Background on Graph Games

Graph games

An alternating graph game (for short, graph game) G = ((V ,E), (V1, V2)) consists of

a finite graph G with vertex set V , a partition of the vertex set into player-1 vertices

V1 and player-2 vertices V2, and edge set E ⊆ ((V1 × V2) ∪ (V2 × V1)). The game is

alternating in the sense that the edges of player-1 vertices go to player-2 vertices

and vice-versa.

The game is played as follows: the game starts at a starting vertex u0; if the

current vertex is a player-1 vertex, then player 1 chooses an outgoing edge to move

to a new vertex; if the current vertex is a player-2 vertex, then player 2 does likewise.

The winning condition is given by a target set T1 ⊆ V for player 1; and similarly a

target set T2 ⊆ V for player 2. If the target set T1 is reached, then player 1 wins; if

T2 is reached, then player 2 wins; else we have a draw if no more moves are possible

(terminal state is reached).

Example

The class of graph games provides the mathematical framework to study board

games like Chess or Tic-Tac-Toe. For example in standard Tic-Tac-Toe, the vertices

of the graph represent the board configurations and whether it is the turn of player 1

(×) or player 2 (◦) to play next. The set T1 (respectively T2) is the set of board

configurations with three consecutive × (resp. ◦) in a row, column, or diagonal.

Classical game theory result

A classic result in the theory of graph games [49] shows that for every graph game

with target sets T1 and T2 for both players, from every starting vertex, exactly one

of the following three conditions hold:

1. Player 1 can enforce a win no matter how player 2 plays. That is, there is a

strategy for player 1 to ensure winning against all possible strategies of the
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opponent.

2. Player 2 can enforce a win no matter how player 1 plays.

3. Both players can enforce a draw; player 1 can enforce a draw no matter how

player 2 plays, and player 2 can enforce a draw no matter how player 1 plays.

In the mathematical study of game theory, the theoretical question (which ignores

the notion of hardness) is as follows: given a designated starting vertex u0, determine

whether case (1), case (2), or case (3) holds. In other words, the mathematical game

theoretic question concerns the best possible way for a player to play, to ensure the

best possible result.

Let the set Wj be the set of vertices such that player 1 can ensure win within

j-moves. The winning set W 1 =
⋃

j≥0Wj is the set of vertices of player 1, where

player 1 can win in any number of moves. Analogously, we define W 2. The classical

game theory question is then reiterated as follows: given a designated starting vertex

u0, decide whether u0 belongs to W 1 (player-1 winning set) or to W 2 (player-2

winning set) or to V ⧵ (W 1 ∪W 2) (both players draw ensuring set).

3.2.2 Notion of Hardness

The above game theoretic question ignores two critical aspects that we are interested

in. (1) The notion of hardness: the theoretic question is concerned with optimal

strategies irrespective of hardness; and (2) The problem of generating different

starting vertices. The hardness notion we consider for our purpose is the depth of

the search tree a player explores, which is a standard metric in artificial intelligence.

Search Tree

Consider a player-1 vertex u0. The search tree of depth 1 is a tree rooted at u0 of

player 1, whose children are vertices u1 of player 2. Further, every vertex u1 contains

vertices u2 of player 1 as its children; with these u2 vertices forming the leaves of
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search tree of depth 1. That is, for u0, u2 ∈ V1 and u1 ∈ V2, (u0, u1) ∈ E (there is an

edge from u0 to u1) and (u1, u2) ∈ E.

This gives us the search tree of depth 1, which intuitively corresponds to exploring

one round of the play. The search tree of depth k + 1 is defined inductively from

the search tree of depth k, where we first consider the search tree of depth 1 and

replace every leaf with a search tree of depth k. The depth of the search tree denotes

the depth of reasoning (analysis depth) of a player. The search tree for player 2 is

defined analogously.

Reward Function

For every vertex u of the game, we associate a reward r(v); a number that denotes

how “close” it is to the winning vertex of a player. This reward function r is game

specific.

For example, consider the standard Tic-Tac-Toe (m=3, n=3, k=3) game, where

the goal is to make a straight line of 3 consecutive pieces in row, column or diagonal,

on a 3 × 3 board. Given a board state of Tic-Tac-Toe (3,3,3), the reward function r

for player 1 is defined as:

1. If the board position is winning for player 1, then it is assigned reward +∞

2. Else if it is winning for player 2, then it is assigned reward −∞

3. Otherwise it is assigned the score as follows: let n1 (resp. n2) be the total

number of two consecutive pieces for player 1 (resp. player 2), which can be

extended to satisfy the winning condition. Then the reward is the difference

n1 − n2

Intuitively, the number n1 represents the number of possibilities for player 1

to win, n2 represents the number of possibilities for player 2, and their difference

represents how favorable the board position is for player 1.
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Figure 3.1: Illustration of depth k1 = 1 tree exploration for Tic-Tac-Toe, for the blank
starting state. The bottom-most leaves are assigned scores using reward function, and
their parent’s reward is calculated using min-max strategy. Since all possible moves for
k1 = 1 have equal score of +0, any valid board positions is chosen at random.

Search tree exploration

Given the current position vertex u, a depth-k strategy of a player constructs the

search tree of depth k rooted at u, and evaluates this tree bottom-up using the

classical min-max reasoning (or backward induction).

First, all the leaf vertices of depth k tree are assigned rewards, using a pre-

defined rewards function r. Then, each parent vertex is assigned the maximum (resp.

minimum) reward of its children, if the parent vertex is a player 1 (resp. player 2)

vertex. This process continues until we reach the root note u, where the strategy

chooses uniformly at random among its children with the highest reward.

For example, consider the standard Tic-Tac-Toe (3,3,3) with the blank starting

state, where no player has placed any piece on the 3 × 3 board. If we consider the

depth-1 strategy, then the strategy chooses all board positions uniformly at random;
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Figure 3.2: Illustration of depth k1 = 2 tree exploration for Tic-Tac-Toe, for the blank
starting state. The bottom-most leaves are assigned scores using reward function, and
their parent’s reward is calculated using min-max strategy. In this figure, every choice of
player 1 is followed by the optimal choice of opponent and they are collapsed to a single
state. Since the center position has a higher score of +0, the k1 = 2 strategy always chooses
this move and considers all other positions to be equal with score of −2.

a depth-2 strategy chooses the “center” position and considers all other positions to

be equal; a depth-3 strategy chooses the center and also recognizes that the next

best choice is one of the four corners. This example is illustrated in the Figure 3.1

and 3.2 for depth 1 and depth 2 strategy, respectively.

Figure 3.3 illustrates the depth-k1 strategy tree exploration, on an interesting
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(a) k1 = 1, column-2
fetches a reward of +5

(b) k1 = 1, column-3
fetches reward of +6

(c) k1 = 1, column-4
fetches a reward of +2

(d) k1 = 2, column-2
fetches a reward of +3

(e) k1 = 2, column-3
fetches a reward of +6

(f) k1 = 2, column-4
fetches a reward of +0

(g) k1 = 3, column-2
fetches a reward of +∞

(h) k1 = 3, column-3
fetches a reward of +0

(i) k1 = 3, column-4
fetches a reward of +0

Figure 3.3: Illustration of depth-k1 strategy exploration on a interesting CONNECT-4
RCD starting board position, with player × turn as current player. The figure shows how
different depth-k1 strategies choose the best available position to mark on a Connect-4
RCD. The three depth-k1 strategies (k1 = 1, 2, 3) play as player-× and assign a score to
each of the three available positions (column-2, 3, 4) by looking k1-turns ahead. In each
sub-figure, the position with yellow-background is the one chosen for exploration and the
positions with grey-background are the predicted moves of how the game might turn out
after k1-turns. As observed in Figure 3.3g, only k1 = 3 strategy is able to foresee that
marking column-2 would lead player-X to a winning state and also conclude that the other
column choices will lead to a draw. Where as, k1 = 1, 2 incorrectly choose column-3 as
the best position to mark, hence making this starting position a category-3 state (easy for
k1 = 3 but hard for k1 = 1, 2).

CONNECT-4 starting board position. Only k1 = 3 is able to foresee that column-2

is the correct winning choice, while k1 = 1, 2 choose sub-optimal column leading

to draw game. Note that the rewards assigned to leaf vertices are based on the

vertex itself, without using any look-ahead; and the look-ahead is captured by the

classical min-max tree exploration. As the depth increases, the strategies become

more intelligent for the game.
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Outcomes and Probabilities

Given a starting vertex u, a depth-k1 strategy �1 for player 1, and depth-k2 strategy

�2 for player 2, let O be the set of possible outcomes. In other words, O is the set of

possible plays given �1 and �2 from u, where a play is a sequence of vertices.

The strategies are randomized because they choose a random child with lowest-

/highest value (alternating min-max depending on player turn) during the search tree

exploration from starting vertex, and hence they define a probability distribution over

the set of outcomes denoted as Pr�1,�2u . That is, we define Pr�1,�2v (�) as the probability

of play � occurring in the set of outcomes O given the strategies, and this probability

distribution is used to formally define the notion of hardness we consider.

3.2.3 Formalization of Problem Definition

We consider several board games (such as Tic-Tac-Toe, CONNECT-4, and their

variants), and our goal is to obtain starting positions of different hardness levels,

which is characterized by strategies of different depths.

Hardness

Formally, we define hardness as follows. Consider a starting vertex u ∈ Wj that is

winning for player 1 within j-moves plus one winning move (i.e., j + 1 moves for

player 1 and j moves of player 2). Let �1 and �2 be a depth-k1 strategy for player 1 and

depth-k2 strategy for player 2, respectively. Let O1 ⊆ O be the set of plays that belong

to the set of outcomes and is winning for player 1. Let Pr�1,�2v (O1) =
∑

�∈O1
Pr�1,�2v (�)

be the probability of the winning plays.

Then, the (k1, k2) hardness classification of a starting vertex u is defined as follows:

1. if player 1 wins at least 2/3 times, i.e Pr�1,�2u (O1) ≥
2
3
; then we call the starting

vertex-u easy (E)

2. if player 1 wins at most 1/3 times, i.e Pr�1,�2u (O1) ≤
1
3
; then we call it hard (H)

3. otherwise, vertex u belongs to medium (M) hardness class.
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Remark 1. In the definition above, we set the probability boundaries at 1
3
and 2

3
,

to divide the interval [0, 1] symmetrically in regions of E, M, and H, and present

our results based on these. These probabilities could be easily changed and further

experimented with. Our goal is to consider various games and identify vertices

belonging to different categories, such as hard for depth-k1 vs. depth-k2 but easy for

depth-(k1+1) vs. depth-k2, for small values of k1 and k2.

Remark 2. In this work we consider classical min-max reasoning for tree exploration.

A related notion is Monte Carlo Tree Search (MCTS) which in general converges to

min-max exploration, but can take longer time. However, this convergence is much

faster in our setting, since we consider simple games that have great symmetry, and

explore only small-depth strategies.

3.3 Search Strategy

We now describe the search strategy used for generating starting positions of different

hardness levels.

3.3.1 Overall methodology

Generation of j-steps win set

Given a game graph G = ((V ,E), (V1, V2)) along with target sets T1 and T2 for

player 1 and player 2, respectively, our first step is to compute the set of vertices

Wj such that player 1 can win within j-moves. For this, we define two kinds of

predecessor operators: one predecessor operator for player 1, which uses existential

quantification over successors, and one for player 2, which uses universal quantification

over successors.

Given a set of verticesX, let EPre(X) (called existential predecessor) denote the set

of player-1 vertices that has an edge to X; i.e., EPre(X) = {u ∈ V1 ∣ there exists v ∈

X such that (u, v) ∈ E}. In other words, it is possible for player 1 to reach X from

EPre(X) in one step.
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And let APre(X) (called universal predecessor) denote the set of player-2 vertices

that has all its outgoing edges to X; i.e., APre(X) = {u ∈ V2 ∣ for all (u, v) ∈

E we have v ∈ X}. In other words, irrespective of the choice of player 2 the set X

can be reached from APre(X) in one step.

The computation of the set Wj is defined inductively as follows:

W0 = EPre(T1). Given a vertex of W0, player 1 can reach winning state T1 in a

single move.

Wi+1 = EPre(APre(Wi)). From Wi player 1 can win within i-moves, and from

APre(Wi) irrespective of the choice of player 2 the next vertex is in Wi; and hence

EPre(APre(Wi)) is the set of vertices such that player 1 can win within (i + 1)-moves.

Exploring vertices from Wj

The second step is to explore vertices from Wj, starting with small values of j.

Consider a vertex v ∈ Wj, a depth-k1 strategy for player 1 and a depth-k2 strategy

for player 2. Then, we play the game multiple times with the starting vertex as v,

to find out the hardness level of vertex v with respect to our (k1, k2)-classification

defined earlier.

Note that for vertices in Wj, player 1 has a guaranteed winning strategy with

j-moves; and hence starting states of desired game length can be generated by

changing the value of j.

Two key issues

There are two main computational issues associated with the above approach in

practice. The first issue is related to the large size of the state space (number of

vertices) of the game, which makes representing and analyzing the game graph

explicitly, using enumerative approaches, computationally infeasible. For example,

the size of the state space of Tic-Tac-Toe 4×4 game is 6,036,001; and a CONNECT-4

5 × 5 game is 69,763,700 (above 69 million). Any enumerative method would not

work for such large game graphs.
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The second issue is related to exploring the vertices from Wj . If Wj has a lot of

witness vertices, then playing the depth-k1 vs. depth-k2 game multiple times from

all of them will be computationally expensive. Hence we need a computationally

inexpensive initial metric, to guide the search of vertices from Wj .

We solve the first issue with symbolic methods, and the second one by iterative

simulation.

3.3.2 Symbolic methods

In this section, we discuss the symbolic methods used to analyze games with large

state spaces. The key idea is to represent the games symbolically using variables,

instead of explicit state space representation. In particular, we use BDD (binary

decision diagrams) [50], which can efficiently represent a set of vertices in terms

of boolean formula, which in turn can be represented as a rooted DAG. We used

the tool CuDD [51] for representing the board game state space symbolically using

BDDs, and the tool supports standard operations on BDDs, such as EPre and APre.

Symbolic representation of vertices

In symbolic methods, a game graph is represented by a set of variables x1, x2,… , xn

such that each one of them takes values from a finite set (e.g., ×, ◦, and blank symbol);

and each vertex of the game represents a valuation assigned to the variables.

For example, the symbolic representation of the game of Tic-Tac-Toe of board

size 3 × 3 consists of ten variables x1,1, x1,2, x1,3, x2,1… , x3,3, x10, where the first nine

variables xi,l denote the symbols in the board position (i,l) and the symbol is

either ×, ◦, or blank; and the last variable x10 denotes whether it is player 1 or

player 2’s turn to play. Note that the vertices of the game graph not only contains

the information about the board configuration, but also additional information such

as the turn of the players.

To illustrate how a symbolic representation is efficient, consider the set of all

valuations to boolean variables y1, y2,… , yn where the first variable is true, and the
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second variable is false. An explicit enumeration requires to list 2n−2 valuations, where

as a boolean formula representation y1 ∧ ¬y2 is succinct. Symbolic representation

with BDDs exploit such succinct representation for sets of vertices, and are used in

many applications, e.g. hardware verification [50].

Symbolic encoding of transition function

The transition function (or the edges) are also encoded in a symbolic fashion. Instead

of specifying every edge explicitly, the symbolic encoding allows to write a program

over the variables to specify the transitions. The tool CuDD accepts such a symbolic

description and constructs a BDD representation of the game.

For example, for Tic-Tac-Toe, a program to describe the symbolic transition

maintains a set U of positions on the board that are already marked. As the game

progresses, at every move it receives an input (i,l) from the set {(a, b) ∣ 1 ≤ a, b ≤

3} ⧵ U of remaining board positions, from the player of the current turn. This

position (i,l) is then added to the set U , and the variable xi,l is assigned value × or

◦ (depending on whether it was player 1 or player 2’s turn).

This gives the symbolic description of the transition function.

Symbolic encoding of target vertices

The set of target vertices T1 and T2 are encoded as a boolean formula as well. For

example in Tic-Tac-Toe, T1, the set of target vertices for player 1 is given by the

following boolean formula:

∃i,l. 1 ≤ i,l ≤ 3

((xi,l = × ∧ xi+1,l = × ∧ xi+2,l = ×)

∨ (xi,l = × ∧ xi,l+1 = × ∧ xi,l+2 = ×)

∨ (x2,2 = × ∧ ((x1,1 = × ∧ x3,3 = ×) ∨ (x3,1 = × ∧ x1,3 = ×))))

∧ Negation of above with ◦ to specify player 2 not winning

The above formula states that either there is some column (xi,l, xi+1,l and xi+2,l)
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that is winning for player 1; or a row (xi,l, xi,l+1 and xi,l+2) that is winning for

player 1; or there is a diagonal (x1,1, x2,2 and x3,3; or x3,1, x2,2 and x1,3) that is winning

for player 1; and player 2 has not won already.

To be precise, we also need to ensure that the BDD represents all valid board

configurations (reachable vertices from the empty board). This is achieved by taking

an intersection of the above formula BDD with valid board configurations BDD, to

obtain the target set T1.

Symbolic computation of Wj

The symbolic computation of Wj is as follows: given the boolean formula for the

target set T1, we obtain the BDD representation of T1. With the help of CuDD,

we designed a tool which takes as input a BDD representing set X and supports

the operation to return the BDD for EPre(X) and APre(X). Thus we obtain the Wj

symbolically, using the computation mentioned earlier in Section 3.3.1, in terms of

EPre and APre operations on target set T1.

3.3.3 Iterative simulation

In the previous section, we described how to use symbolic methods to deal with

the large state space problem. We now describe a computationally inexpensive (but

approximate) procedure to aid sampling of vertices as starting position candidates,

of a given hardness level.

Given a starting vertex v, a depth-k1 strategy for player 1, and a depth-k2

strategy for player 2, we need to consider the tree exploration of depth max{k1, k2}

to classify the hardness of v. Hence if either of the strategy is of high depth, then it

is computationally expensive to compute the hardness. Thus we need a preliminary

metric that can be computed relatively easily for small values of k1 and k2, as a

guide for vertices to be further explored in depth. We use a very simple metric for

this purpose. The hard vertices are rarer than the easy vertices, and thus we rule

out easy ones quickly using the following approach:
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If k1 is large

Given a strategy of depth k2, the set of hard vertices for higher values of k1 are a

subset of the hard vertices for smaller values of k1. Thus we iteratively start with

smaller values and proceed to higher values of k1, only for vertices that are already

hard for smaller values of k1.

For example, given Wj of a board game, to find the set of hard vertices for k1 = 3

against k2 = 1, we first find those states which are hard for k1 = 1 against k2 = 1.

That is, for each v ∈ Wj, a game of depth-k1 = 1 vs. depth-k2 = 1 is simulated

starting from v board state. Since the number of hard states are rare, all easy states

are filtered out and only the remaining few hard states for k1 = 1 are considered for

a new round of simulation, for k1 = 2 against k2 = 1. Similarly, only the hard states

for k1 = 2 are taken up for evaluation of k1 = 3 against k2 = 1 strategy.

Evaluating a board position for k1 = 1 against k2 = 1 takes few seconds due to

the very few paths to explore, and any state that is easy for k1 = 1 should be easy

for higher values of k1.

If k2 is large

In this case, the above subset rule is not applicable; since any state that is easy

against lower values of opponent k2, need not be easy against higher level of opponent

k2.

Here we exploit the following intuition: Given a strategy of depth k1, a vertex

which is hard for high value of k2 is likely to show indication of hardness in small

values of k2. Hence we consider the following approach. For each vertex in Wj, we

assign a number (called score), based on the performance of the depth-k1 strategy

and a small depth (such as k2 = 1) strategy of the opponent. This score indicates

the fraction of games won by the depth-k1 strategy against the opponent strategy of

small depth.

The vertices that have low score according to this metric are then iteratively

simulated against larger depth-k2 strategies of the opponent, to obtain vertices of
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different hardness level. This heuristic serves as a simple metric to explore vertices

for large value of k2, starting with small values of k2.

3.4 Framework for Board Games

We now consider the specific problem of board games. In this section, we describe

a framework to specify several variants of two-player grid-based board games such

as Tic-Tac-Toe, CONNECT-4, and several new variants. Note that, although our

implementation of symbolic methods works for the class of traditional board games

and their variants, our methodology is applicable to the general class of graph games.

3.4.1 Parameters

Our framework allows three different parameters to generate variants of board games.

1. Board Size: For example, the board size could be 3 × 3; or 4 × 4; or 4 × 5 and

so on.

2. Winning Condition: we experiment with 4 different cases of winning condition

(a) RCD: denoting the player wins if the moves are in a line along a row (R),

a column (C), or the diagonal (D).

(b) RC: line must be along a row or column, but diagonal lines are not

winning.

(c) RD: winning line must be along a row or diagonal, but not column.

(d) CD: winning line must be along column or diagonal, but not row.

3. Valid Moves: At any point in the game, the players can choose any available

column (i.e., column with at least one empty position); after which, they are

restricted according to the following setting

(a) Full gravity: once a player chooses a column, the move is fixed to be the

lowest available position in that column.
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(b) Partial gravity-l: once a player chooses a column, the move can be one

of the bottom-l available positions in the column. Note that full gravity

is a special case of partial gravity, with l = 1.

(c) No gravity: the player can choose any of the available positions in the

column.

Using the above parameters, standard Tic-Tac-Toe is described as (i) board size:

3 × 3; (ii) winning condition: RCD; and (iii) valid moves: no-gravity. Whereas in

CONNECT-4, the winning condition is still RCD but valid moves are restricted to

full-gravity.

Our framework allows describing multiple new variants of the previous classical

games, such as Tic-Tac-Toe in a board of size 4×4 but diagonal lines are not winning

(RC); and Bottom-2 (partial gravity-2) which is a crossover between Tic-Tac-Toe

and CONNECT games in terms of moves allowed.

Tic-Tac-Toe, Bottom-2 and CONNECT-3 require 3 consecutive positions to be

marked for a player to win, while CONNECT-4 requires 4 consecutive positions.

3.4.2 Features

In this work, we provide theoretical approach and implementation results for gen-

erating starting vertices (or board positions) of different hardness levels (if they

exist), for the class of board games described above. The main features that our

implementation supports are: (i) Generation of starting vertices of different hardness

level, if they exist; (ii) Playing against opponents of different levels.

We have experimented with opponent depth strategy of k2 = 1, 2 and 3 values.

Typically in the board games we considered, depth-3 strategies are sufficiently

intelligent and hence we do not explore larger values of k2. Thus, a learner (beginner)

can consider starting with our generated board positions of various hardness levels,

and play against opponents of different skill level; in order to hone her ability to play

the game, and be exposed to new combinatorial challenges of the game.
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3.5 Experimental Results

The main aim of our experimental results is to investigate the existence of interesting

starting vertices and their prevalence in simple traditional game variants, for various

combinations of expertise levels and winning rules (RCD, RC, RD, and CD), for j

small lengths of plays. Moreover, the computation time for searching these states

should be reasonable.

Our key finding is that while such vertices do exist, they are rare for most of

our game variants; thus their discovery is an important finding and illustrates the

significance of our non-trivial search strategy. Interesting starting vertices, which are

hard to win in j-steps against against a depth-k2 = 3 strategy of the opponent, exist

in Tic-Tac-Toe for depth-k1 = 1 strategies, in Bottom-2 for depth-k1 = 1, 2 strategies,

and in CONNECT-4 for depth-k1 = 1, 2, 3 strategies.

Furthermore, we observe the existence of interesting vertices in Tic-Tac-Toe game

variants over 4 × 4 board size, where the default blank start vertex is uninteresting

due to its heavy winning bias for player 1.

We next briefly describe our experimental results and important findings, along

with some example board configurations.

3.5.1 CONNECT Games

Table 3.2 presents results for CONNECT-3 and CONNECT-4 games, against depth-

3 strategies of the opponent. The first column represents the type of the game

(CONNECT-3 or CONNECT-4) and the board size (either 4 × 4 or 5 × 5). The

second column denotes the size of the overall state space of the game. The third

column j = 2, 3 denotes whether we explore from W2 or W3. In our experiments, we

explore vertices from W2 and W3 set only, as the set W4 (j = 4 turns from winning

state W0) is almost always empty. That is, if there is a winning starting position,

it belongs to either W1, W2 or W3; with W1 states being trivial for even a simple

k1 = 1 player 1 strategy.
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Game State j Win No. of Sampling k2 = 3
Space Cond States k1 = 1 k1 = 2 k1 = 3
|V | |Wj| E M H E M H E M H

CONNECT-3 4.1×104 2 RCD 110 All * 24 5 * 3 0 * 0 0
4 × 4 6.5×104 RC 200 All * 39 9 * 23 5 * 0 0

7.6×104 RD 418 All * 36 17 * 25 4 * 0 0
6.5×104 CD 277 All * 41 24 * 27 21 * 0 0

CONNECT-3 3 RCD 0 -
4 × 4 RC 0 -

RD 18 All * 0 0 * 0 0 * 0 0
CD 0 -

CONNECT-4 6.9×107 2 RCD 1.2×106 Random * 184 215 * 141 129 * 0 0
5 × 5 8.7×107 RC 1.6×106 Random * 81 239 * 70 186 * 0 0

1.0×108 RD 1.1×106 Random * 106 285 * 151 82 * 0 0
9.5×107 CD 5.3×105 Random * 364 173 * 209 96 * 0 0

CONNECT-4 3 RCD 2.8×105 Random * 445 832 * 397 506 * 208 211
5 × 5 RC 7.7×105 Random * 328 969 * 340 508 * 111 208

RD 8.0×105 Random * 398 1206 * 464 538 * 179 111
CD 1.5×105 Random * 146 73 * 171 110 * 120 72

Table 3.2: CONNECT-3 & CONNECT-4 results against depth-3 strategy of opponent. The third column (j) denotes whether we explore from W2
or W3. The sixth column denotes sampling method used, to select starting vertices; if |Wj| is small, “All” vertices are explored, else “Random”
sampling of first 5000 vertices from Wj are explored. The E, M, and H columns report the number of easy, medium, or hard vertices found among
the sampled vertices. For each k1 = 1, 2, 3 the sum of E, M, and H columns is equal to the number of sampled vertices, and * denotes the number of
remaining vertices; that is, E = |Wj| −M −H . Observe that |Wj| is small fraction of |V |, which illustrates the significance of our symbolic methods
in finding these. Also, observe that vertices labeled medium and hard are a small fraction of the sampled vertices, which illustrates the significance of
our efficient iterative sampling strategy.



63

Game State j Win No. of Sampling k2 = 3
Space Cond States k1 = 1 k1 = 2 k1 = 3
|V | |Wj| E M H E M H E M H

3 × 3 4.1×103 2 RCD 20 All * 5 0 * 1 0 * 0 0
4.3×103 RC 0 -
4.3×103 RD 9 All * 2 1 * 3 0 * 0 0
4.3×103 CD 1 All * 0 0 * 0 0 * 0 0

3 × 3 3 RCD 0 -
RC 0 -
RD 0 -
CD 0 -

4 × 4 1.8×106 2 RCD 193 All * 12 26 * 0 2 * 0 0
2.4×106 RC 2709 All * 586 297 * 98 249 * 0 0
2.3×106 RD 2132 All * 111 50 * 18 16 * 0 0
2.4×106 CD 1469 All * 123 53 * 25 8 * 0 0

4 × 4 3 RCD 0 -
RC 90 All * 37 31 * 0 0 * 0 0
RD 24 All * 1 2 * 0 0 * 0 0
CD 16 All * 6 4 * 1 0 * 0 0

Table 3.3: Bottom-2 results against depth-3 strategy of opponent. The third column (j) denotes whether we explore from W2 or W3. The E, M,
and H columns report the number of easy, medium, or hard vertices found among the sampled vertices. For each k1 = 1, 2, 3 the sum of E, M, and H
columns is equal to the number of sampled vertices, and * denotes the number of remaining vertices; that is, E = |Wj| −M −H . Observe that |Wj|

is small fraction of |V |, which illustrates the significance of our symbolic methods in finding these. Also, observe that vertices labeled medium and
hard are a small fraction of the sampled vertices, which illustrates the significance of our efficient iterative sampling strategy.
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Game State j Win No. of Sampling k2 = 3
Space Cond States k1 = 1 k1 = 2 k1 = 3
|V | |Wj| E M H E M H E M H

3 × 3 5.4×103 2 RCD 36 All * 14 2 * 0 0 * 0 0
5.6×103 RC 0 -
5.6×103 RD 1 All * 0 0 * 0 0 * 0 0
5.6×103 CD 1 All * 0 0 * 0 0 * 0 0

3 × 3 3 RCD 0 -
RC 0 -
RD 0 -
CD 0 -

4 × 4 6.0×106 2 RCD 128 All * 6 2 * 0 0 * 0 0
7.2×106 RC 3272 Lowest-100 * 47 22 * 0 0 * 0 0
7.2×106 RD 4627 Lowest-100 * 3 2 * 0 0 * 0 0
7.2×106 CD 4627 Lowest-100 * 3 2 * 0 0 * 0 0

4 × 4 3 RCD 0 -
RC 0 -
RD 4 All * 0 0 * 0 0 * 0 0
CD 4 All * 0 0 * 0 0 * 0 0

Table 3.4: Tic-Tac-Toe results against depth-3 strategy of opponent. The third column (j) denotes whether we explore from W2 or W3. The sixth
column denotes sampling method used, to select starting vertices; if |Wj| is small, “All” vertices are explored, else “Lowest-100” sampling of 100 least
scored vertices (according to iterative simulation score) from Wj are explored. The E, M, and H columns report the number of easy, medium, or hard
vertices found among the sampled vertices. For each k1 = 1, 2, 3 the sum of E, M, and H columns is equal to the number of sampled vertices, and *
denotes the number of remaining vertices; that is, E = |Wj| −M −H . Observe that |Wj| is small fraction of |V |, which illustrates the significance of
our symbolic methods in finding these. Also, observe that vertices labeled medium and hard are a small fraction of the sampled vertices, which
illustrates the significance of our efficient iterative sampling strategy.
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The fourth column denotes the winning condition (RCD, RD, RC, CD). The fifth

column denotes the number of starting states found in Wj. The last three columns

describe the analysis of the Wj states with respect to depth-k1 = 1, 2, 3 strategies

for player 1, and depth-3 strategy of the opponent. The sixth “sampling” column

describes whether we analyzed all the states in Wj , or a random 5000 starting states

from it owing to large size of Wj .

Starting states from Wj are classified into Easy (E), Medium (M) or Hard (H)

categories, by simulating a game between the depth-k1 vs the depth-k2 strategy, for

30 different runs. If player 1 wins

1. More than 2
3
times (20 times), then the starting state is counted under Easy

(E)

2. Less than 1
3
times (10 times), then the starting state is counted under Hard

(H)

3. Otherwise, the starting state is identified as Medium (M)

An interesting finding from these results is that in CONNECT-4 games with

board size 5 × 5, for all winning conditions (RCD, RD, CD, RC), starting vertices

exist for easy, medium, and hard categories, for k1 = 1, 2 and 3, when j = 3. That

is, even in much smaller board size (5 × 5 as compared to the traditional 7 × 7),

we discover interesting starting positions for CONNECT-4 games and its simple

variants.

3.5.2 Bottom-2 Games

Table 3.3 shows the results for Bottom-2 (partial gravity-2) against depth-3 strategies

of the opponent. The meaning of the entries are similar to the ones described earlier

for CONNECT games. In contrast to CONNECT games, we observe that interesting

starting vertices (medium or hard) do not exist for depth-k1 = 3 strategies of player 1.
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3.5.3 Tic-Tac-Toe Games

The results for Tic-Tac-Toe games are shown in Table 3.4. For Tic-Tac-Toe 4 × 4

games, the strategy exploration is expensive since a tree of depth-3 requires analysis

of 106 nodes. Hence using the iterative simulation techniques, we first assign a score

to all vertices and further explore only the bottom hundred vertices; that is, hundred

vertices with the lowest score according to our iterative simulation metric.

In contrast to CONNECT games, we observe that interesting vertices exist only

for depth-k1 = 1 strategies, but not for depth-k1 = 2 and depth-k1 = 3 strategies.

3.5.4 Results Summary

Game Category-1 Category-2 Category-3 Category-4
Tic-Tac-Toe All variants 3x3: only RCD

4x4: All j=2
variants

Bottom-2 All variants 3x3: only RD
4x4: All variants

4x4: All j=2
variants

CONNECT-3 All variants All j=2 variants All j=2 variants
except RCD

CONNECT-4 All variants All variants All variants All j=3
variants

Table 3.5: Summary of interesting states for various games

In Table 3.5, we summarize the different games and the existence of category i

states in such games. A state is denoted as category-i state if it is easy for depth-i

strategy, but not easy for depth-(i−1) strategy.

Our first key finding is the existence of vertices of different hardness levels in

various traditional board games. We observe that in Tic-Tac-Toe games, only board

positions that are hard for k1 = 1 (Category-2) exist. In particular, and more

interestingly, such states also exist in board of size 4 × 4. Since the default (blank)

starting vertex in 4 × 4 Tic-Tac-Toe games is heavily biased towards the player 1

who starts first, they have been believed to be uninteresting for ages; the discovery
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of interesting starting vertices by us could make them playable for enthusiasts. With

the slight variation of allowable moves (Bottom-2), we obtain board positions that

are hard for k1 = 2. In Connect-4 we obtain vertices that are hard for k1 = 3, even

on our smaller board size variant of 5 × 5.

The second key finding of our results is that the number of interesting vertices is

a negligible fraction of the huge state space. For example, while Bottom-2 RCD game

with board size 4 × 4 has state space size |V | of over 1.8 million, it has only two

positions which are hard for k1 = 2. Similarly, CONNECT-4 5 × 5 RCD games with

state space of more than sixty-nine million has around two hundred hard vertices for

k1 = 3, among the five thousand vertices sampled randomly from W3. Since the size

of Wj in this case is 2.8 × 105, the potential number of hard vertices could be twelve

thousand (among the sixty-nine million overall state space size). In other words,

since the interesting positions are quite rare, a naive approach of randomly generating

positions and measuring its hardness would be impractical, akin to searching for a

needle in a haystack. Thus there is need for a non-trivial search strategy like ours

(Section 3.3), which we implement and demonstrate.

We remark that the default (blank) starting vertex of Tic-Tac-Toe 3 × 3 and

Connect-4 5 × 5, does not belong to any winning set Wj. However in Tic-Tac-Toe

4 × 4, it belongs to the winning set W2 and is easy for all depth strategies.

Additional results for depth-k2 = 2 strategy of the opponent are provided in the

Appendix A.1.

Running Time

The generation of Wj for j = 2 and j = 3 took between 2–4 hours per game variant.

Note that this is a one-time computation for each game. The evaluation time to

classify a starting state as E, M, or H for depth-k1 = k2 = 3 strategies of both players,

playing 30 times from a board position takes on average

• 12 seconds for CONNECT-4 games with board size 5 × 5

• 47 seconds for Bottom-2 games with board size 4 × 4
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• 25 minutes for Tic-Tac-Toe games with board size 4 × 4

Note that the size of the state space is around 108 for CONNECT-4 games with

board size 5 × 5, and testing the winning nature of a state takes at least few seconds.

Hence an explicit enumeration of the state space cannot be used to obtain Wj in

reasonable time; in contrast, our symbolic methods succeed to compute Wj efficiently.

Figure 3.3 lists a category-3 state for CONNECT-4 RCD, which is easy for k1 = 3

strategy, but hard for k1 = 1, 2 strategies of player 1.

3.5.5 Example board position

O X
X O X

X O
O X O

(a) Tic-Tac-Toe RC, k1 = 1

X
X

O
O X O

(b) Tic-Tac-Toe CD, k1 = 1

X
O X

O
(c) Bottom-2 RCD, k1 = 2

X
X O

O O X
(d) Bottom-2 RC, k1 = 2

O O
X X X
X O X
X X O X O
O O O X O

(e) CONNECT-4 RCD, k1 = 2

O O
X X X
O O X
O O X
O X O X X

(f) CONNECT-4 RD, k1 = 3

Figure 3.4: Some “Hard” starting board positions generated by our tool, for variety of
games and different expertise level k1 of player 1. The opponent expertise level k2 is fixed
at 3. Player 1 (X) can win in 2 steps for games (a)-(e) and in 3 steps for game (f).

In Figure 3.4, we present examples of several board positions that are hard to win

(winning probability < 1
3
) for strategies of certain depth. In all the figures, player-X

is the current player against opponent of depth-3 strategy. All these board positions

were discovered automatically through our experiments.
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3.6 Related Work

Tic-Tac-Toe and Connect-4

In prior work, Tic-Tac-Toe has been generalized to different board sizes, match

length [52], and even polyomino matches [53], to find variants that are interesting

from the default blank start state. Existing research has focussed on establishing

which of these games have a winning strategy [54, 55, 56]. In contrast, we show

that even simpler variants can be interesting if we start from certain specific states.

Existing Connect-4 research has focussed on establishing a winning strategy from

the default starting state for the first player [47]. In contrast, we study how easy

or difficult it is to win from new winnable starting states, given different expertise

levels. BDDs have been used earlier to represent board games [57], and perform

Monte Carlo Tree Search (MCTS) run with Upper Confidence bounds applied to

Trees (UCT). In such usage, BDDs are instantiated to find the number of states

explored by a single agent. In our setting we have two players, and use BDDs to

compute the winning set.

Level generation

Our proposed technique, which generates starting states given certain parameters

(namely, expertise levels of players, number of steps to win and search tree depth),

can be used to generate different game levels by simply varying the choice of the

parameters along some partial/total order. Here we discuss some related work from

the area of level generation.

The problem of level generation has been studied for specific games. Goldspin-

ner [58] is a level generation system for KGoldrunner, a puzzle game with dynamic

elements. It uses a genetic algorithm to generate candidate levels, and uses simulation

to evaluate dynamic aspects of the game. We similarly use simulation to evaluate

the dynamic aspect, but use symbolic methods instead to generate candidate states;

also, our system is parameterized by game rules.
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Most other related work has been restricted to games that lack opponent and

dynamic content, such as Sudoku [59, 60]. Smith et al. [61] used answer-set program-

ming to generate levels for Refraction, an educational puzzle game, that adhered to

pre-specified constraints written in first-order logic. Similar approaches have also

been used to generate levels for platform games [62]. In these approaches, designers

must explicitly specify constraints on the generated content; e.g., the tree needs to be

near the rock and the river needs to be near the tree. In contrast, our system takes

as input rules of the game and does not require any further help from the designer.

A similar model is used by Andersen et al. [38], which applies symbolic methods

(namely, test input generation techniques) to generate various levels for DragonBox

(an algebra-learning video game that became the most purchased game in Norway

on the Apple App Store [63]). In contrast, we use symbolic methods for generating

valid start states, and use simulation for estimating their hardness level.

Problem Generation

Automatic generation of fresh problems can be a key capability in intelligent tutoring

systems [1]. The technique for generation of algebraic proof problems [14] uses

probabilistic testing to guarantee the validity of a generated problem candidate (from

abstraction of the original problem) on random inputs, but offers no guarantee of

the hardness level. In our work, simulation can be linked to this probabilistic testing

approach with hardness level guarantee, where validity is guaranteed by symbolic

methods.

The technique for generation of natural deduction problems, presented in previous

Chapter 2, and the work on geometry proof problems [15] involves a backward

existential search over the state space of all possible proofs for all possible facts to

generate problems with a specific hardness level. In contrast, we employ a two-phased

strategy of backward and forward search; backward search is necessary to identify

winning states, while forward search ensures hardness levels. Furthermore, our

state transitions alternate between different players, thereby necessitating alternate
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universal vs. existential search over transitions.

3.7 Summary

In this chapter, we study a novel aspect of graph games, namely automatically

generating interesting starting states (Wj) of varying hardness levels (E, M, H),

parameterized by look ahead depth of both player 1 (k1 = 1, 2, 3) and player 2

(k2 = 1, 2, 3), the graph game description and number of winning steps (j = 2, 3).

Our novel search methodology, a combination of symbolic methods and iterative

simulation, allows us to efficiently search the vast search space of our board game

variants. Our experiment results report on the two important findings: (i) the

existence of vertices of different hardness levels in various traditional board games,

and (ii) the number of interesting vertices is a negligible fraction of the huge state

space. Thus, there is a need for non-trivial search strategy such as ours, to find these

rare starting states.

Interesting starting states that require few steps to play and win are often

published in newspapers for sophisticated games like Chess and Bridge. These

are usually obtained from database of past games. In contrast, we show how to

automatically generate such states, albeit for simpler traditional games that form a

Directed Acyclic Graph. This is an important result in itself since the existence of

such states, even in simple traditional games, has not been explored before. Such

interesting states can aid novitiates master the popular traditional games by keeping

them engaged, given the customizable length of play and guarantee of a win if played

efficiently.



Chapter 4

Compilation Error Repair

CS–1, the Introductory to Programming course, is one of the most popular courses

with class sizes reaching 1000+ students in some universities [64], and up to hundreds

of thousands on Massive Open Online Courses (MOOCs) [65]. The Taublee survey [66]

reports that the number of undergraduates enrolling for computer-science (CS) majors

in the United States (US) universities has steadily increased for ten consecutive

years, with an additional 11.4% new students added in the 2017–2018 year per

university on average. This double-digit growth is estimated to continue for the

near future. At the same time, an increasing number of non-CS major students are

opting for lower-level (such as introductory programming) CS courses as well [66].

This increased enrollments is reportedly overwhelming the CS faculties on how to

effectively impart quality education for all, requiring them to either raise significant

amount of resources to meet the demand, or turn away enthusiastic students [67].

One of the fundamental challenge when operating at such massive class sizes lies in

providing personalized feedback to students who are completely new to programming.

These students are also referred to as novice programmers in the rest of our thesis.

While attempting their programming assignments, students run into compilation

errors and logical errors. Compilation errors are those errors that are detected and

reported by a compiler, usually when the program does not confine to the syntax

of programming-language grammar. While logical errors are those errors due to

which the program does not match some pre-defined specification, such as test-cases
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containing input and its desired output. In order to help students who get stuck while

programming, dozens of automated code repair tools are proposed every year [68].

These tools take the incorrect student solution (also referred to as erroneous or buggy

code), and provide a complete or partial hint to help repair the error. This hint

is typically in the form of direct code-edits, or textual/visual feedback to aid in

identifying the error or fix.

The field of automated code repair has traditionally focused on fixing logical

errors, upon being given requirement specifications (such as test-suites), while not

paying much attention to compilation errors [69]. This was deemed acceptable, given

advancements in compiler techniques which made identifying and fixing compile-time

errors by experienced developers relatively straight-forward. However, compile-time

errors pose a major learning hurdle for students of introductory programming courses.

Compiler error messages, while accurate, are targeted at seasoned programmers and

seem cryptic to beginners [70], thereby being an impediment to effective programming.

Also, the error messages returned by standard compilers are often generic and only

with experience do programmers figure out the common causality of such errors

and the appropriate repair. Unfortunately, this issue has been largely ignored by

compiler designers and better error messages are usually a low priority feature [70].

For those beginning to learn a new language, and hence unfamiliar with programming

constructs of that language, compile time errors can be very confusing and time

consuming to fix [71]. This is especially true for those who lack prior experience in

any form of programming, learning their very first language.

Figures 4.1 and 4.2 illustrate actual attempts by students in the very first lab

session of an introductory course on C programming, as well as the actual fixes

proposed by our method TRACER. The captions list the messages returned by the

Clang compiler [72], a popular compiler for the C language. It is clear that the

compiler error messages in these examples are not very informative for a student

who has just been introduced to the concepts of formal programming with datatypes

and operators.
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1 #include<stdio.h>

2 int main(){

3 int a;

4 scanf("%d", a );

5 printf("ans=%d",

6 a+10);

7 return 0;

8 }

1 #include<stdio.h>

2 int main(){

3 int a;

4 scanf("%d", &a );

5 printf("ans=%d",

6 a+10);

7 return 0;

8 }

Figure 4.1: Left: erroneous program, Right: fix by TRACER. The compiler message read:
Line-4, Column-9: warning: format ‘%d’ expects argument of type ‘int *’, but argument 2
has type ‘int’.

1 #include<stdio.h>

2 int main(){

3 int x,x1,d;

4 // ...

5 d=(x-x1) (x-x1);

6 return d;

7 }

1 #include<stdio.h>

2 int main(){

3 int x,x1,d;

4 // ...

5 d=(x-x1)*(x-x1);

6 return d;

7 }

Figure 4.2: Left: erroneous program, Right: fix by TRACER. The compiler message read:
Line-5, Column-11: error: called object type ‘int’ is not a function or function pointer.

In the first case, the error message does not provide any valuable feedback to a

student unfamiliar with the concept of pass-by-reference vs pass-by-value. It may

be frustrating to the student that a format that is valid for printf (%d, followed by

variable name) is being flagged as an error for the scanf invocation. In the second

case, the compiler error message may actually mislead the student since the error in

the program is the trivial omission of an arithmetic operator whereas the compiler

is interpreting it as an illegal function invocation, simply because parentheses are

involved.

These gaps arise since compiler error messages are written for expert programmers

and assume that the programmer has a thorough understanding of advanced concepts

such as variable addresses, pointers and function invocation. However, these concepts

are generally covered much later in a programming course. Thus, a novice programmer

is unable to comprehend the error message or the cause of the error. In our course

offering at IIT Kanpur, around half of the students made similar errors and although

the fix is simple in all these cases, students did require the help of a teaching assistant
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to understand the error messages and apply the fixes.

We do observe in our course offerings that the time taken by students to fix

common compile-time errors decreases over time, as they get more comfortable with

grammar of the language and adapt to the compiler messages. However, this takes a

considerable amount of effort and supervision from teaching assistants who have to

not only help students correct mistakes, but also help them understand the cause of

the error.

With a move towards Massive Open Online Courses (MOOCs) where thousands

of students may enroll, it is infeasible to provide human assistance in this manner,

even in the initial phase. Moreover, there is evidence [71, 73] that across such

programming courses, the errors made by students in the initial phases are quite

similar. This points to a lucrative potential for automating this repetitive and

monotonous role played by teaching assistants.

The work of Traver [70] attempts to address this problem by offering more

informative error messages that would aid programmers in easier diagnoses. There

has also been work on designing custom compilers for novice users [74]. These

compilers aim for better error recovery and correction than standard compilers, so

as to offer better feedback. However, these require a significant amount of effort

from compiler designers, and the effort has to be replicated for every compiler being

used. Moreover, some studies [75] have shown that additional information in the

form of enhanced error messages does not seem to be very helpful, especially for

novice programmers.

In this chapter, we address the problem by proposing a pedagogically-inspired

program repair tool called TRACER (Targeted RepAir of Compilation ERrors) [76],

a system for performing repairs on compilation errors, aimed at introductory pro-

grammers.
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4.1 Chapter Outline

This chapter is organized as follows: We start by outlining our proposal and contri-

butions in this Section 4.1. Then in Section 4.2 we describe the processes adopted

to prepare data to train the learning algorithms present in TRACER. Section 4.3

presents details of various modules that constitute TRACER. Section 4.4 presents a

brief overview of the deep learning techniques used by TRACER. Section 4.5 explains

the experimental setup, followed by Section 4.6 which presents the results of an

extensive evaluation of TRACER on programs taken from an actual introductory

programming course. Section 4.7 then concludes the discussion by presenting a more

detailed literature review and outlining some future directions for this effort.

4.1.1 Technique Proposal

In this chapter we present TRACER, a method for automatically generating template

repairs for buggy programs that face compilation errors. This problem has generated

significant interest recently. However, the guarantees offered by existing works [11,

73, 77] are rather modest and simply offer compilable code in a large fraction of

instances.

In comparison, the design of TRACER is based on a realization that the goal of

program repair in pedagogical settings is not to simply eliminate compilation errors

using any means possible (such as performing trivial fixes by deleting the error lines),

but rather to reveal the omissions to the students, so that they may learn how to

correct similar errors by themselves in the future [78]. In fact, it may be argued that

offering the exact repair to the student, in the form of a compilable program which

many existing works do [73, 11, 17], defeats the purpose of learning and may even

pose challenges in course evaluations.

To ameliorate the problem, TRACER offers targeted corrections that pinpoint

the source of the error, as well as recommend the fix actually desired by the stu-

dent, thereby offering compilable code as a by-product. The techniques adopted by
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TRACER for program repair are motivated by a common observation [17, 73] that in

practice, programmers (especially novice programmers) use a rather small subset of

rules and productions of the entire programming language grammar. Thus, it should

be possible to repair an erroneous program by mapping it to a similar program (past

code obtained from students themselves) that is known to be compilable, and hence

(at the very least) syntactically correct. Figures 4.1 and 4.2 demonstrate some of the

fixes TRACER can successfully apply to actual programs.

To this end, TRACER adopts a modular, four-phased methodology for code

repair which involves

1. Repair Localization: TRACER locates the line(s) where repair must be

performed.

2. Code Abstraction: TRACER abstracts the erroneous code lines, by replacing

program specific tokens with their generic types.

3. Abstract Code Repair Prediction: TRACER attempts to identify the

intent of student and recommends an abstracted form of the repair to the

erroneous line(s), based on sequence-to-sequence prediction techniques that

use recurrent-neural-networks (RNNs).

4. Concretization: TRACER finally converts the abstract repair into actual

code that can be compiled.

4.1.2 Our Contributions

The above described approach presents a significant departure from existing works [11,

73, 77], which also adopt deep learning techniques such as recurrent-neural-networks

(RNNs), but in a very monolithic manner. It is common in existing works to simply

feed the entire erroneous program into a deep network and expect repairs as an

output. In contrast, TRACER’s modular approach to error repair offers several key

advantages over the current state-of-the-art.
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1. To the best of our knowledge, TRACER is the first system to be able to

successfully reproduce the exact fix expected by the student on an erroneous

program, and not merely reduce compilation errors.

2. Even when comparing compilation repair accuracy, TRACER offers success

rates that are far superior to the state-of-the-art.

3. TRACER offers repairs in both abstract and concretized forms. Depending on

the learning objectives set by the instructor, either may be offered to students.

In particular, the concretized code may be redacted and just the abstract form

offered if it is desired that the student identify the form of the error from this

feedback rather than simply receive corrected code. This is not possible with

existing techniques.

4. Each of the four phases can be improved upon independently, or be replaced

with a different technique, to increase the overall accuracy of the system.

The modular structure of TRACER also helps it harness the power of deep

learning techniques in a focused manner. In particular, the abstraction phase

implicitly performs a vocabulary compression step that greatly eases the working of

neural networks.

Note that although the TRACER system is presented for a C-programming

environment, versions of TRACER may be readily developed for other languages

as well. As we shall see in future sections, the language specific components of the

system are minimal, as is the manual effort required to port the system to a new

programming language.

4.2 Data Preparation

TRACER learns to recommend error repairs by observing real student mistakes and

fixes. To train TRACER, we obtained student programming submissions from the

2015–2016 fall semester offering of an Introductory to C programming course (CS1)
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at the Indian Institute of Technology Kanpur (IIT-K). Below we describe the steps

taken to create a training subset for TRACER from these submissions.

4.2.1 Raw Data Collection

Our data was collected using Prutor [79], an online system that captures intermediate

versions of student program/code, in addition to the final submissions. These pro-

grams are recorded while students attempt weekly assignments under the invigilation

of teaching assistants. Prutor is capable of taking snapshots of the student code at

every compilation request, as well as at regular intervals. Thus, the system gives us a

sequence of programs that tracks the progress of each student in solving a question.

4.2.2 Source-Target Pair Identification

Given this raw data, we filtered the sequence of programs to obtain source-target

program pairs as follows. We identified successive snapshots of the student code (say

Ct and Ct+1) such that

1. Ct is a code attempt by student at time t

2. Ct+1 is the code attempt by same student for the same question, at time t + 1

(immediately following Ct)

3. Compilation of Ct resulted in at least one compilation error

4. Compilation of Ct+1 did not produce any compilation errors

Then, Ct is called the Source Program and Ct+1 is called the Target Program. The

difference between the target and source program is the set of changes performed by

the student on source (buggy) program, in order to compile the program successfully.

These program pairs were further categorized into those pairs where the programs Ct

and Ct+1 differ at a single line (single-line edits) and those that differed on multiple

lines (multi-line edits). Ostensibly, the former correspond to programs where the

error was confined to a single line whereas in the latter, the error (and hence the
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Lab # Programs Topic

Lab 1 524 Hello World
Lab 2 1,643 Simple Expressions
Lab 3 1,015 Simple Expressions, printf, scanf
Lab 4 901 Conditionals
Lab 5 1,104 Loops, Nested Loops
Lab 6 1,098 Integer Arrays
Lab 7 1,232 Character Arrays (Strings) and Functions
Lab 8 1,023 Multi-dimensional Arrays (Matrices)
Lab 9 660 Recursion
Lab 10 466 Pointers
Lab 11 453 Algorithms (sorting, permutations, puzzles)
Lab 12 726 Structures (User-Defined data-types)
Exam 3,427 Mid-term and End-term programming tests
Practice 9,003 Practice problems released regularly

ALL 23,275 Total # single-line error programs

Table 4.1: Single-line compilation error dataset (singleL)

student edits) were present on multiple lines. For single-line edit program pairs, the

line in Ct that was modified is called the Source Line and the corresponding line in

Ct+1 is called the Target Line.

For example, in Figure 4.1 (respectively 4.2), line number 4 (respectively line

number 5) in the left and the right hand programs is the source and the target

line for that pair of programs. While we only use single-line edit program pairs in

training TRACER, Section 4.3.5 reports on the technique to handle multi-line edit

programs as well.

We observe that while we train TRACER only on genuine source-target pairs

(actual attempts by students), other learning approaches such as DeepFix [73] use

program pairs created by artificially introducing errors into a correct program. This

alternate approach can be tedious to create and manage. Moreover, it is not clear if

this helps the system predict realistic corrections desired by students.

4.2.3 Dataset Statistics

The 2015–2016 fall semester offering of CS1 was credited by 400+ first year under-

graduate students at IIT–K university. One of the main graded component of the
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course was weekly programming assignments (termed Labs). These assignments had

a specific theme every week, as described in Table 4.1, so as to test the concepts

taught in the class so far. We saved the progressive versions of the attempts students

made, towards the goal of passing as many pre-defined test-cases as possible. Multiple

submission attempts were allowed, with only the last submission being graded.

For each of these labs, we pick (Ct, Ct+1) program pairs as our (source, target)

dataset, where Ct is a version of a student program that fails to compile (source), and

Ct+1 is a later version of the attempt by the same student that compiles successfully

(target). The second column of Table 4.1 lists the number of such program pairs

found in our dataset requiring single-line edit/repair, for each corresponding lab in

first column.

From student submissions across the entire run of the semester-long course, we

obtained 23,275 and 17,451 source-target program pairs having single-line and multi-

line edits respectively. As mentioned before, we utilize only single-line edit pairs for

the training phase. These correspond to programs that require edits to a single line

in the erroneous program. However, despite being trained on only single-line edit

pairs, TRACER is able to seamlessly handle programs requiring repairs on multiple

lines as well by simply invoking TRACER repeatedly to fix each individual line

separately, as described in Section 4.3.5.

We refer the reader to Table 4.2 for an overview of the compilation errors

encountered in our dataset of 23,275 program pairs requiring single-line edits, and

Figure 4.3 for an initial look at the performance of TRACER on this dataset.

Table 4.2 lists the different types of compilation errors that were present in at least 50

submissions in our dataset, ranked in decreasing order of frequency. Each compilation

error code refers to a generalized error message returned by Clang [72] compiler.

For example, individual error messages (returned by Clang) such as “Expected ⬚”,

“Expected ⬚ after expression”, “Expected ⬚ at the end of declaration”, … are all

subsumed by the error-code E1 – expected ⬚. Where, ⬚ is a placeholder for program

specific token such as ‘{’, ‘;’, variable-name, …
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Code Error Message

E1 expected ⬚
E2 undeclared ⬚
E3 expected expression
E4 extraneous ⬚
E5 incorrect assignment
E6 re-definition of ⬚
E7 invalid operands
E8 incorrect pointer/struct

Code Error Message

E9 too few args to func call
E10 expected decl or statement
E11 called object not a func
E12 invalid digit in const
E13 too many args to func call
E14 return from a void function
E15 statement not in loop/switch
OTH Others

Table 4.2: Top frequent compilation error codes
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Figure 4.3: Compilation error accuracy plot, with y-axis in log-scale. TRACER has high
accuracy across different kinds of compilation errors.

Figure-4.3 then charts the frequency of various error types in the entire single-line

training set (blue ◦) and the held out test set (red ▵). The compilation success (green

∗) plot depicts what number of errors of each type was TRACER able to successfully

rectify in the test set, such that the resultant code compiles. The orange plot (□)

indicates how many times the top recommendation of TRACER was the same exact

match as the (abstracted) fix expected by the student for that error. In other words,

exact match ⊆ compilation success ⊆ test set 1. Despite this extremely stringent

criterion of exactly matching with the students’ fix, TRACER’s top recommended
1This holds true assuming perfect concretization module. In practice, a small percentage of

abstract predictions, some of which exactly match students’ abstract fix, cannot be successfully
converted to a compilable concrete code by our concretization module (refer Section 4.3.4).
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fix has an exact match accuracy (also referred to as abstraction match or prediction

accuracy in the thesis) of more than 40% for most error types. If we consider its

top-3 recommendations instead, TRACER predicts the exact same fix for a much

higher 74% of errors, on average across error types. We also note that TRACER

excels not only on frequent error types such as missing identifiers (E1), but also

on rare error types that have less than 200 instances in the dataset (Eg, E11: 78%

correct, E12: 90% correct).

4.3 TRACER

In this section, we describe the technical details of the TRACER system. Most of this

discussion will focus only on program pairs that have single-line edits. Section 4.3.5

will describe on how to adapt TRACER to handle multi-line edit programs. To

recollect, in single-line edit program pairs we can identify a source and a target line,

with target line being the fix that student applied to rectify the error in source line.

TRACER treats compilation-error repair as a sequence prediction problem. Given

a source line, TRACER interprets it as a sequence of tokens, and attempts to predict

a new sequence of tokens, that hopefully correspond to the target line. The framework

of recurrent neural networks (RNNs) is utilized to implement this. However, several

augmentations are required for this strategy to succeed.

In particular, given a faulty program, the task of localizing the repair is in itself

a non-trivial task. Some of the existing work, such as DeepFix [73], expect a neural

network to jointly perform localization and correction. However, our results show that

this monolithic approach can overwhelm the underlying neural network architecture.

To remedy this, TRACER performs localization as a separate, modular step. A side

advantage of delinking repair localization from error correction is that TRACER is

able to use different techniques for localization and correction, which gives it more

freedom for fine tuning.



84

4.3.1 Repair Localization

While the compiler error messages does report the exact line number of the code

which resulted in an error state during compilation, this isn’t necessarily the same

line where repair needs to be performed. This problem has been addressed by prior

work in different ways: HelpMeOut [17] targets the exact line number reported

by compiler, sk_p [77] performs a brute force replacement starting from the first

statement to the last, while DeepFix [73] trains a deep-network on the entire buggy

source-program (encoded with line-numbers) to generate a ranked list of potential

lines to focus their repair on.

The strategy adopted by TRACER for repair localization is based on a useful

observation: in our dataset of introductory C programs where single-line edits were

performed by students, the location of the edits lay very close to the line where the

compiler flagged an error. In 87.79% of the cases, the students’ source-target pairs

were located at a distance of <= 1 from the line number reported in the compiler

error message i.e. immediately above, immediately below, or at the compiler-reported

line. This suggests a surprisingly simple strategy for repair localization: obtain a line

number l from the compiler error message (recall that we are considering single-line

edit programs for now) and simply consider the line numbers l−1, l, l+1 as candidate

lines to attempt repair.

What is more surprising is that this simple approach achieves almost the same

repair localization accuracy as much more involved techniques in literature. For

instance, DeepFix [73] utilize a deep network to perform repair localization and

report 87.5% accuracy in correctly identifying the location of the error (in one of the

top-5 predicted lines). TRACER achieves slightly higher accuracy of 87.79% on the

same dataset, using a simpler technique.

We observe that majority of the ~ 12% repair localization failures are due to

incorrect opening/closing of braces and variable undeclared issues. That is, for these

two cases, the erroneous lines reported by compiler (error-localization) need not

align with those lines where the repair is performed (repair-localization). Figure 4.4
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1 #include<stdio.h>

2

3 int main(){

4 printf("Hello");

5 }

6

7 return 0;

8 }

Line # Error ID Compiler Message
7 E1 expected identifier or “(”
8 E4 extra closing brace “}”

Figure 4.4: Repair localization failure example. Line 5 in the above buggy program
contains a spurious closing brace, which needs to be removed to repair it. Compiler reports
the line 7 and 8 as erroneous instead, which doesn’t match with the repair location.

demonstrates one such buggy program.

4.3.2 Source and Target Abstraction

The second point of departure that TRACER makes from the state-of-the art is in

applying a pre-processing step before feeding the sequence of tokens to deep neural

networks, and a post-processing step after prediction. That is, TRACER is trained

to identify and predict the fixes over abstracted program tokens, instead of learning

over the original student programs.

Techniques such as recurrent neural networks operate with a static vocabulary. As

a result, supplying student programs directly to these networks requires all possible

identifier/literal names possibly used by students to be included in the vocabulary.

This not only blows up the vocabulary size, but also creates problems for extending

the approach to newer offerings of the course where students may use hitherto unused

identifier names and literals.

To remedy this problem, TRACER takes source-target line pairs and processes

them by replacing all literals and identifier/variables with abstract tokens representing

their corresponding types. The types are inferred using LLVM [72] (the back-end for

the Clang compiler suite), a standard static analysis tool.

However, there are exceptions to the above rule. The names of keywords and some
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standard identifiers/library-functions such as {printf, scanf, malloc, NULL} are

retained during abstraction. User defined function names are replaced by a generic

token FUNC. A special token called INVALID is used for those literals and identifiers

for which static analysis is unable to reveal the type.

The character/string literals are abstracted out to remove all text. Single/double

quotes {', "}, as well as any format specifiers such as {%d, %s, %f} and character

escape-sequences such as {\n, \\} are retained. For example, line number 5 in

Figure 4.1 would be abstracted out as

printf("ans=%d", a + 10); → printf("%d", INT + LITERAL_I);

These exceptions to the abstraction rule exist since several errors made by

students, especially in the initial days, involve the printf and scanf functions where

it is crucial to retain the format string as is, to be able to identify and fix the error.

For instance, for the programs in Figure 4.1, the source and target lines would be

abstracted as follows

Line Abstraction
Source scanf("%d",a); ←→ scanf("%d",INT);

Target scanf("%d",&a); ←→ scanf("%d", & INT);

These abstracted lines are called respectively, the Abstract Source Line and the

Abstract Target Line. For sake of simplicity, we will often refer to them as simply

the Source and the Target. Table 4.3 lists several actual source and target pairs from

our dataset.

We note that this technique of abstracting out literals and variables is prevalent in

literature. However, previous works such as DeepFix [73] replace all identifiers/vari-

ables, including string-literals, with generic distinct tokens (an un-typed ID_x). This

precludes their ability to fix semantic-errors (which may be type-specific) and errors

involving formatted strings (e.g. {printf,scanf} errors) which are very commonly

faced by beginners. TRACER performs a much more nuanced abstraction that

retains type-specific information which helps it address a much wider range of errors.

For example, consider the buggy program statement printf("%f",);. Due to
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# Source-line and Target-line and
Source-abstraction Target-abstraction

1 d = (x-x1)(x-x1); d = (x-x1)*(x-x1);

INT = (INT - INT)(INT - INT); INT = (INT - INT)*(INT - INT);

2 p + 'a' = p; p = p + 'a';

CHAR + 'LITERAL_C' = CHAR; CHAR = CHAR + 'LITERAL_C';

3 printf(,c,); printf(c);

printf(,INT,); printf(INT);

4
if(a[i]==a[j] && i!(==)j) if(a[i]==a[j] && !(j==i))

if(ARRAY[INT] == ARRAY[INT] if(ARRAY[INT] == ARRAY[INT]

&& INT !(==) INT) && !(INT == INT))

5
printf("%d", a + b/6)); printf("%d", a + (b/6));

printf("%d",INT + printf("%d",INT +

INT/LITERAL_I)); (INT/LITERAL_I));

6 { while(a > 0){ while(a > 0){

{ while(INT > LITERAL_I){ while(INT > LITERAL_I){

Table 4.3: Examples of source-target pairs for single-line errors. Each row describes an
actual error case found in our data. The first column (#) lists the row-index, and second
column describes the (erroneous) source line and its abstraction. The third column describes
the target line (extracted from repairs attempted by the student) and its abstraction.

the presence of format specifier %f, TRACER correctly predicts the insertion of a

float type variable after the comma (,). While methods, such as DeepFix [73], which

ignore the additional information present inside string-literals, predict the insertion

of a variable of most commonly observed type in their training dataset (typically

integer).

4.3.3 Abstract Source-Target Line Translation

As mentioned before, TRACER performs repair by treating the abstract source line

as sequences of tokens and attempting to predict the abstract target sequence using it.

The abstracted tokens include reserved keywords such as {while, double}, standard

library functions such as {printf, scanf} and abstract tokens such as {INT, FUNC,

FLOAT} as discussed in the previous subsection. This sequence translation is performed

using Recurrent Neural Networks (RNNs) which are described in detail in Section 4.4.

In fact, for any source sequence, the RNN architecture is able to provide multiple
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suggestions for the target sequence.

This is beneficial in allowing a graceful degradation of the system. In our

experiments, we observed that even if the top-ranked repair presented by the RNN

is not the most appropriate, usually the second or the third ranked suggestions do

correspond to the most appropriate fix. TRACER uses a finely tuned encoder-decoder

model with attention and Long Short-Term Memory (LSTM) mechanisms enabled.

Details of parameter settings and tuning for our method are described in Section 4.6.

4.3.4 Target Recommendation and Concretization

TRACER offers recommended repairs in two formats – abstract and concrete. The

abstract recommendations are obtained directly from the RNN framework by em-

ploying a beam search to obtain 5 target sequences with the highest scores. Note

that these abstract sequences still contain abstract tokens like {INT, FUNC, FLOAT}.

Now, the abstract recommendations may themselves be offered to students as

hints and constitute valuable feedback. It may be argued that if given the actual

corrected code, the student has no incentive to explore why did s/he make an error

and what was the key to fixing the error. However, if only the abstract form of

the repair/solution is provided as a hint, then the student is compelled to map the

abstraction onto his/her own program which, in many cases, reveals what was the

error in the source program, thus fulfilling several didactic goals.

However, TRACER can go one step further. Given recommended repairs in

abstract form, TRACER can generate non-abstract versions of these repairs that can

be applied to the original buggy program to produce compilable code. This is done

by performing concretization, a process which approximately reverses the abstraction

step. This has potential application in auto-grading, where marks can be given to

incorrect student program attempts that fail to compile, based on some “distance”

metric from closest compiling program.

For concretization, TRACER uses standard map-and-store based techniques to

put back literals and identifiers of appropriate type into the abstract recommenda-
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tion to obtain a program that can be compiled. For this purpose, the Edlib [80]

tool is used to compute the sequence alignment of the source-abstraction with

recommended-abstraction (by the RNN framework), based on edit distance. This

sequence alignment is represented as a cigar string, a compact representation consist-

ing of a chain of operators; primarily Match (=), Insert (I), Delete (D) and

Mismatch/Replace (X).

Once TRACER generates the recommended-abstraction, this is aligned with the

source-abstraction of student program to generate the cigar string. Each successful

match (=) in recommended-abstraction is replaced with corresponding concrete-code

(non-abstract) from source-line. For mis-matches (X) and inserts (I), TRACER

replaces the recommended-abstract type with the closest concrete variable of the

corresponding type, encountered earlier in the program. To achieve this, TRACER

maintains a symbol table which stores the association of types and variable/literals.

When an abstract token is marked as mis-match (X) or insert (I), the symbol table

lookup returns the most recently used/declared concrete token, just before the error

was encountered. An example of the concretization step is presented in Table 4.4.

Note that, inserting/replacing the abstract tokens with previously concrete code

tokens is an approximate process, and there is no guarantee that the resultant code

will compile, even if TRACER generates the exact same abstraction as the students’

abstract target line (fix). For eg, a FUNC abstract token doesn’t capture additional

information such as the number of arguments required by the user-defined function.

If this FUNC is replaced by a concrete function invocation with incorrect number of

parameters, then the resultant code will fail to compile. The concretization success

rate can be taken closer to 100% in future by maintaining extra meta-information

during the abstraction stage, to handle such corner case issues. We observe that our

concretization technique is able to convert the abstract target line (abstraction of

students’ fix) to compilable code for 95% of cases in our dataset.
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source-line xyz = 4

source-abstraction INVALID = LITERAL_I

recommended-abstraction INT = LITERAL_I ;

Cigar (alignment path) X = = I

concrete-line i = 4 ;

Table 4.4: An example of the concretization process. The incorrect source line is xyz=4
where xyz has not been declared and a semi-colon is missing. TRACER correctly generates
the abstract form of the repair INT = LITERAL_I;. However, multiple concretizations, all
of whom produce valid compilable code, are possible. For example, if the identifiers i,j
were declared as integer variables, then i=4; and j=4; are both valid concretizations.

4.3.5 Multiple Error Lines

Although the discussion so far has focused on programs where the fix is required on

a single line, TRACER can be adapted to repair programs with errors present across

multiple lines as well.

In our dataset, we observed that a large portion of programs having errors on

multiple lines can be interpreted as multiple instances of single line errors, i.e. the

errors in multiple lines of these programs are not correlated and fixes may be applied

to the lines individually. Hence, given a multi-line error program, TRACER does

the following

1. Repair Localization: TRACER fetches all the source-lines flagged by com-

piler for error, as well as the lines just above and just below those lines.

2. Code Abstraction: TRACER obtains source-abstractions for the above

source-lines.

3. Abstract Code Repair Prediction: TRACER executes the RNN model on

these source-abstractions to get the top-5 recommended-abstractions for each

line.

4. Concretization: TRACER finally refines each of the recommended-abstractions

to generate concrete, repaired code, and checks if the compiler error associ-

ated with that particular line disappears on applying the repair. If so, the

concrete-code is retained as the fix for the corresponding source-line.
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Performance
Metric

Description

Prec@k Percentage of abstract source-target pairs where the top–k ab-
stract recommendations by TRACER contains the abstract
target line.

SPrec@k Percentage of abstract source-target pairs where the top–k ab-
stract recommendations by TRACER contains any abstract
target line that has the same abstract source line.

Table 4.5: Performance Metric Description. TRACER uses some of the most stringent
performance metrics to ensure that students receive relevant recommendations to correct
the actual mistake they are making, and not merely remove compilation errors.

We consider a multi-line repair done as outlined above to be successful only if

all compiler errors are resolved as a result. While we test and report on results of

TRACER on programs with errors in multiple lines, only the single line (singleL)

dataset of program pairs is used during training stage.

4.3.6 Performance Measures

We evaluate TRACER’s performance with the metrics used in information retrieval

and recommendation systems. These are some of the most unforgiving performance

measures and we are not aware of their prior use in the program repair domain. The

first performance measure we use is Precision at the Top (dubbed Prec@k). For every

source-target pair, Prec@k gives a unit reward if the abstract target line is a part of

the top–k abstract recommendations returned by TRACER. Note that Prec@1 is an

extremely stringent measure that accepts nothing but the exact solution expected

by the student (in abstract form).

We also report performance on Smoothed Precision at the Top (SPrec@k). This

performance measure takes into account the fact that upon abstraction, multiple

source lines may map to the same abstract source line and consequently, that abstract

source line may now map to multiple abstract target lines. Table 4.5 describes these

performance measures.
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Figure 4.5: The schematic of a recurrent neural network [76].

4.4 Recurrent Neural Networks

Recurrent neural networks (RNNs) have emerged as the preferred learning model

in several areas that involve sequence modelling tasks such as natural language

processing, speech recognition, image captioning, etc [81]. RNNs differ from classical

neural networks by maintaining an internal state and feedback loops into the network.

This statefullness of the model and the ability to pass that state onto itself allow

RNNs to effectively model sequences of data. Figure 4.5 shows the schematic of an

RNN performing sequence translation [76].

Let X = {x1, x2,… , xT } and Y = {y1, y2,… , yT } denote the input and output

sequence of tokens for RNN, respectively, over a shared alphabet set Σ. That is, for

any sequence number t ≥ 1, we have xt, yt ∈ Σ. In their simplest form, RNNs are

trained to learn a language model by predicting the next token in a sequence correctly.

An output token yt is predicted as a function of the input sequence observed so far

X = {x1, x2,… , xt}.

In order to perform this prediction, the RNN maintains an internal state ℎt ∈ H .

Usually H ⊂ ℝk is a set of real vectors of dimensionality k. Let the size of the

vocabulary be |Σ| = S. Each token xt ∈ Σ is represented as a d-dimensional vector

(which we also denote as xt by abusing notation). This representation is usually

learned using techniques such as Word-to-Vec [82].

The prediction yt is defined as a function of the hidden state ℎt, and the hidden
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state ℎt itself evolves as a function of the previous hidden state ℎt−1 and the current

input xt. This is formally defined as follows:

ℎt = fH (Wℎxxt +Wℎℎℎt−1)

yt = SELECT(fO(W ⊤
yℎℎt)),

where fO and fH encode activation functions that map reals to reals (when applied to

vectors, the activation functions act in a coordinate-wise manner), and Wyℎ ∈ ℝS×k,

Wℎℎ ∈ ℝk×k, Wℎx ∈ ℝk×d are matrices. The SELECT operation simply chooses the

coordinate of a vector with the largest value. Since fO(W ⊤
yℎℎt) is a |Σ| = S-dimensional

vector, the SELECT operation returns a token in Σ. For a more detailed introduction

to the RNN framework, we refer the reader to blogs by Britz [83] and Karpathy [81].

Unequal Sequence Lengths

A specific hurdle encountered while using RNNs for program repair is the input

and output sequences being of unequal lengths. This can arise due to the fix in

incorrect program requiring insertions and/or deletions of tokens (for example, see

Figures 4.1 and 4.2). The Encoder-Decoder model [84, 85, 86] is a generic solution to

this problem that employs two components, an encoder and a decoder. The encoder

operates by using the input sequence to generate a sequence of hidden states.

ℎt = fH (Wℎxxt +Wℎℎℎt−1)

At the end of the sequence, an intermediate representation, known as the context

vector is computed as a function of the hidden state sequence {ℎt}.

c = q(ℎ1,… , ℎT )

The decoder generates a fresh sequence of (still hidden) states {st} using the context

vector and previous hidden states. These states are then used to generate an output
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sequence {yt}

p(yt|y1,… , yt−1, c) = gO(yt−1, st, c)

until a special delimiter token ⟨eos⟩ is generated, indicating a termination (or end)

of the output sequence.

Handling Long Sequences

Another significant hurdle to training RNNs on long sequences, such as those we

encounter in our program repair application, is the problem of vanishing or exploding

gradients [87]. An elegant fix to this problem is the Long Short Term Memory (LSTM)

model [88] and its variants that overcome the problem by replacing hidden states with

a gating mechanism, which allows gradients to flow freely in the backpropagation-

through-time algorithm.

The problem emerges in a different form when dealing with long output sequences,

where a single context vector becomes insufficient to predict an output sequence of

arbitrary length. Attention mechanisms [89] overcome this problem by identifying

for each output token yt, a specific part of input sequence that is most relevant for

predicting yt. This is done by employing a separate context vector ct for predicting

the output token yt instead of a uniform one. These context vectors are generated

by a separate neural network that is trained jointly with the RNN. Typically, a

weighted combination of the hidden states of the encoder are used to generate these

context vectors. For more details, we refer the reader to some excellent tutorials on

LSTMs [90] and attention mechanisms [91].

Usefulness of the Repair Localization Step

Even with attention mechanisms, we found RNNs with Encoder-Decoder models

to struggle when trained on entire programs. This is because the decoder in such

situations is heavily stressed to identify the relevant subset of the input sequence for

every output token, thereby decreasing performance while increasing training and

prediction time. However, the modular approach adopted by TRACER, that first
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identifies a very small (often 3) set of sentences to focus on, greatly improves the

ability of the RNN framework to analyze and suggest relevant local fixes.

4.5 Experimental Setup

All experiments were performed on a system with an Intel® Core™ i7 CPU 930 @

2.80GHz × 8 CPU with 8GB RAM, and an NVIDIA GeForce® GTX 760 GPU with

2GB GPU Memory.

Dataset

Our dataset contained a total of 23, 275 source–target single line pairs (refer Table 4.1),

which were further divided into training (70%), validation (10%) and test (20%) sets.

Validation and test examples were randomly picked from the dataset. The most

frequent 150 and 140 tokens were chosen for the source and target vocabulary,

respectively for training the RNN i.e. |Σ| = 150 for the input vocabulary and 140

for the output vocabulary. Tokens not in vocabulary were replaced by a special

token UNK. The maximum length of source and target sequences was set to 80 and

82, respectively.

Training

We trained a supervised Encoder-Decoder model with attention mechanism to

translate the source (abstract) line to target (abstract) line. This model was built

using an open source Torch implementation of a standard sequence-to-sequence

model, where the encoder-decoder are LSTMs2.

The models were trained by minimizing the class negative likelihood loss. We

conducted an extensive grid search to set various hyper-parameters: number of hidden

layers for both Encoder and Decoder in {1, 2, 3, 4}, size of the LSTM hidden state in

{50, 100, 200, 250, 300, 350}, and word embedding size in {50, 100, 150, 200, 250, 300}.

Word embeddings were learnt jointly with network parameters. We tried both
2https://github.com/harvardnlp/seq2seq-attn

https://github.com/harvardnlp/seq2seq-attn
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unidirectional and bidirectional RNNs with reverse source side setting. The best

model based on validation perplexity was found to be a bidirectional Encoder with

2 hidden layers, a hidden state size of k = 300, word embedding size d = 100.

Reversing the source sequence gave poor results.

Apart from this, we used a mini-batch size of 32 for training, standard stochastic

gradient descent with an initial learning rate 1 and learning rate decay of 0.5 after

the 9tℎ epoch for a total of 35 epochs. We initialized the hidden state of the Decoder

at time 0 with the last hidden state of the Encoder, initialized other parameters

randomly in range [−0.1, 0.1], clipped gradients at magnitude 5, and used a dropout

probability of 0.3 between LSTM layers.

Prediction

We performed a beam search with beam size 50 to select the best 20 target sequences.

Out of these 20 the top 5 unique predictions were used for measuring performance

according to the measures described in Section 4.3.6. We also performed these

experiments in cross validation mode with 5 random train-validation-test splits of

the data, and the result was found to be very similar to the one reported below.

4.6 Evaluation

In this section, we report on the prediction accuracy (how close are the repairs to

students’ fix), overall accuracy (how many programs from test-set could be repaired to

compile successfully), and the time taken (for generating these repairs) by TRACER.

Prediction Accuracy

Table 4.6 reports the prediction accuracies of TRACER on a test set of 4, 578

programs, obtained from the ~20% held out set of our overall collection of 23, 275

source-target single line pairs (refer Section 4.5). TRACER is able to correctly

predict the exact abstract target repair as its top suggestion (Prec@1) in 59.60% of
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k Prec@k SPrec@k

1 59.60 68.61
2 64.90 72.73
3 66.61 73.85
4 67.85 74.73
5 68.32 75.15

Table 4.6: Prediction accuracy of TRACER on 4, 578 (~20%) held out test set programs.
TRACER excels on the challenging Prec@k and SPrec@k metrics (refer Section 4.3.6).

the instances. If we include the top 3 recommendations of TRACER, then this figure

increases to 66.61% for Prec@3 and further to 73.85% for SPrec@3.

Figure 4.3 shows that TRACER consistently achieves high levels of Prec@1

accuracy in predicting the exact student repair, across various kinds of compilation

errors. It has lower success rate on just a few error types among the top-15 frequent

ones, such as E9: too few args to function call and E13: too many args to function

call. This is because presently, TRACER cannot predict the correct number of

parameters required by function calls in the target. Extending TRACER to maintain

additional meta-information can fix this limitation (refer Section 4.3.4).

Table 4.7 lists a few interesting examples from our dataset on which TRACER

was able to provide correct and relevant fixes as its top-recommendation. For the

first two examples, TRACER makes an accurate prediction, correctly suggesting the

insertion of an arithmetic operator in example #1, and swapping the Left and Right

operands of assignment expression in example #2. For rest of the examples, its top

recommendation does not match the students’ fix. However, notice that TRACER’s

recommendation is still an appropriate fix that produced compilable code in most

cases.

For instance, consider the example in row #3. Although the target code (students’

fix) will compile successfully with warnings, TRACER’s top suggestion is the most

appropriate fix for the corresponding error. The target code results in a compiler

warning: incompatible integer to pointer conversion passing ‘int’ to parameter of

type ‘const char *’. While TRACER’s suggestion does not generate any compiler

warnings and captures the students’ intent better. However, our evaluation metric
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# Source-line and Target-line and TRACER’s EM CS

Source-abstraction Target-abstraction Top Prediction

1

d = (x-x1)

(x-x1);

d =

(x-x1)*(x-x1);

d =

(x-x1)*(x-x1);

INT = (INT -

INT)(INT - INT);

INT = (INT -

INT)*(INT - INT);

INT = (INT -

INT)*(INT - INT);

3 3

2
p + 'a' = p; p = p + 'a'; p = p + 'a';

CHAR +

'LITERAL_C' =

CHAR;

CHAR = CHAR +

'LITERAL_C';

CHAR = CHAR +

'LITERAL_C';

3 3

3 printf(,c,); printf(c); printf("%d",c);

printf(,INT,); printf(INT); printf("%d",INT);
7 3

4

if(a[i]==a[j] &&

i!(==)j)

if(a[i]==a[j] &&

!(j==i))

if(a[i]==a[j] &&

i!=(j))

if(ARRAY[INT] ==

ARRAY[INT] &&

if(ARRAY[INT] ==

ARRAY[INT] &&

if(ARRAY[INT] ==

ARRAY[INT] &&

INT !(==) INT) !(INT == INT)) INT != (INT))

7 3

5

printf("%d", a +

b/6));

printf("%d", a +

(b/6));

printf("%d", a +

b/6);

printf("%d",INT +

INT/LITERAL_I));

printf("%d",INT +

(INT/LITERAL_I));

printf("%d",INT +

INT/LITERAL_I);

7 3

6
{ while(a > 0){ while(a > 0){ { while(a > 0){

{ while(INT >
LITERAL_I){

while(INT >
LITERAL_I){

{ while(INT >
LITERAL_I){

7 7

Table 4.7: Examples of source-target pairs for single-line errors. Each row describes an
actual error case found in our data. The first column (#) lists the row-index, and second
column describes the (erroneous) source line and its abstraction. The third column describes
the target line (extracted from repairs attempted by the student) and its abstraction. The
fourth column describes the abstract and concrete versions of the top-ranked repair
suggested by TRACER. Finally, the last 2 columns indicate whether TRACER’s top
recommendation Exactly Matches the target-abstraction (EM) and whether the resultant
concrete-code Compiled Successfully (CS). Note that in rows #4 and #5, although TRACER’s
top recommendation is semantically equivalent to the target, the (EM) metric still counts it
as failure for not exactly matching student’s repair.
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Figure 4.6: Accuracy of TRACER across labs, on single-line test dataset. TRACER
is robust in handling compilation errors occurring across all labs. Even on erroneous
programs dealing with advanced concepts such as pointers and recursion, TRACER is able
to consistently achieve high repair rate.

still considers it a failure due to mismatch with the student’s repair.

In examples #4 and #5, TRACER predicts an abstract fix that is semantically

equivalent to the desired fix but we nevertheless penalize it due to our stringent

evaluation criteria of an exact match with the student repair. TRACER arguably

produces a simpler fix than what the student devised for examples #4 and #5, since it

learns from frequent error patterns found in multiple student submissions. In future,

better scoring mechanisms can be developed to evaluate the predictions. Nonetheless,

even with such stringent metrics, TRACER is able to achieve high accuracy of 59.6

% for prediction@1 (Prec@1).

For the example #6 in Table 4.7, TRACER produces the source verbatim since it

is unable to figure out the desired number of opening braces from local context. In

future, we plan to incorporate global context as well to predict such fixes.

End-to-End Repair

Apart from reporting the success rate of TRACER using our pedagogically relevant

metrics of Prec@k and SPrec@k, we also report on TRACER’s overall End-to-End

repair accuracy. This overall accuracy is a conventional metric commonly used in
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Dataset #Programs #Compiler-Errors TRACER Repair %
Single–Test 4, 578 4, 853 79.27
Multiple 17, 451 24, 255 43.67
DeepFix 6, 971 16, 743 43.97

Table 4.8: Overall repair accuracy of TRACER on three different datasets. Single–Test
is the held out test set of program pairs requiring edit on a single line. Multiple is the set
of programs requiring repairs on multiple lines. DeepFix is the test dataset used by tool
DeepFix [73]. On all three datasets, TRACER gives compilable code on a large fraction of
programs.

literature, indicating the percentage of programs that the tool repaired to compile

successfully. In the context of TRACER, it is referred to as End-to-End since it is

the overall accuracy achieved after performing all 4 stages of repair: Localization →

Abstraction → Prediction → Concretization.

Table 4.8 reports the compilation success rates of the multiple-error approach,

outlined in Section 4.3.5, on our single-line (errors requiring fix at a single line),

multiple-line (errors requiring fix at multiple different lines), and on the dataset

obtained from DeepFix3 [73]. TRACER is able to fix 79.27% of the single-line test set

(referred to as Single–Test), while being relevant at the same time (as demonstrated

by predication accuracy in Table 4.6). TRACER is also able to successfully repair

about 44% of programs with multiple-line errors obtained from our course (denoted

as Multiple in Table 4.8) and on the collection of programs used in DeepFix [73]. Note

that DeepFix, the previous state-of-the-art, was able to achieve only 27% compilation

success rate on the same set of programs.

In Figure 4.6, we demonstrate the overall end-to-end repair accuracy of TRACER

on our dataset of single-line errors, across weekly lab assignments (refer to Table 4.1

for individual lab topic). The Abstraction–Match legend denotes how many times our

recommended-abstraction exactly matched with the target-abstraction (abstraction of

fix performed by same student). Concrete–Compile denotes what % of the erroneous

programs was TRACER able to repair (End-to-End) and compile.
3https://www.cse.iitk.ac.in/users/karkare/prutor/prutor-deepfix-09-12-2017.db.gz

https://www.cse.iitk.ac.in/users/karkare/prutor/prutor-deepfix-09-12-2017.db.gz
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Time Taken

During our experiments, invoking the deep-network takes the maximum amount of

time in this entire setup, while the abstraction/concretization and compilation steps

take an order of milli-seconds time on average. Hence to ameliorate this, we cache

the frequently looked-up abstraction translations during testing phase. This reduces

the time taken for the overall repair process to just 1.66 seconds on average per

erroneous program. Although the training phase requires order of few hours time to

train the deep-network, this a one time process (per programming language).

4.7 Discussion

To the best of our knowledge, TRACER is the first approach to perform targeted

repair where we learn and predict the exact fix desired for a students’ programming

error, instead of predicting it as a side-effect of not matching with a generic correct

grammar. Prior works [73, 11, 77] first create a (deep neural network) model by

observing a large number of generic correct programs. Then given a new erroneous

program, they attempt to generate a repair which requires minimal changes to the

source program, utilizing the generic correct program model. Also, these prior work

do not use strong criterion (such as Prec@k used by TRACER) to evaluate the

quality of repairs generated. For example, simply deleting the erroneous line or

replacing it with a trivially correct statement will make the error go away in a large

fraction of buggy programs, but this may not be an acceptable fix in a pedagogy

setting.

The approach used by DeepFix [73] to repair common C programming errors

comes closest to TRACER [76]. DeepFix learns a sequence-to-sequence neural

network on the entire concrete program and features a repair localization module

which, with the help of an Oracle, can attempt to resolve multi-line errors by making

multiple passes. TRACER on the other hand focuses on multiple instances of single-

line errors and achieves a high compilation accuracy, while being relevant to the
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students’ own target fix. In fact on the very dataset used by DeepFix, with errors

occurring on multiple different lines, TRACER offers significantly higher compilation

success rates than DeepFix.

HelpMeOut [17] is another related tool for helping students fix compilation

errors. Instead of providing the actual fix desired by student, HelpMeOut suggests

relevant examples of errors and repairs. This is achieved by searching a database of

similar errors previously encountered by other students. It provides both the original

erroneous line of the previous student, as well as the new repaired line that resulted

in successful compilation. However, unlike TRACER, this repair is picked from

a database and is not tuned to the erroneous source program. TRACER instead

learns the repair from the submissions of the other students, and suggests the exact

abstract/concrete fix tuned for the erroneous source program.

A recent user study [78] demonstrates that offering semantic/logical program

repairs to expert human graders (teaching assistants) can help decrease the grading

time. A similar positive impact on (automated) grading of erroneous programs with

compilation errors is reported by GradeIT [2], which uses simple rewrite rules to

repair compilation errors. The repairs generated by TRACER, along with systems

such as GradeIT, can further aid such automated grading tasks.

It will be worth to investigate in future if re-write rules can be learnt automatically

from the dataset, so that they are automatically applied on future incorrect programs

to repair them.

Limitations

Our experiments confirm that TRACER performs very well on errors where repair

can typically be obtained by looking at a local context; for example, on restructuring

an expression. However, TRACER does not yet take into account the global context;

for example, the number of arguments of a function defined away from its call,

opening/closing an unmatched brace, undeclared variables etc. A separate new

technique can then be developed to run in tandem with TRACER, to handle some
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of these frequently occurring global context errors. Future versions of TRACER are

planned to have these features to widen its scope.

Also, our evaluation metrics currently do not discount minor syntactic variations,

e.g. {a != b} vs {!(a == b)}, while computing the mismatch between tool repair

and the student repair. We believe a more moderate performance measure will

give us a more realistic picture of the performance of TRACER and other such

error-correction tools. Finally, it is worthwhile to combine TRACER with semantic

repair tools such as Prophet [92] to further refine the repairs.

4.8 Summary

In this chapter, we presented TRACER, a tool to generate targeted compilation

error repairs aimed at novice programmers. TRACER invokes a novel combination

of tools from programming language theory and deep learning to offer accurate

recommendations for fixes. On 4,500+ test programs with single-line errors, its top

three recommendations include the students’ desired repair 74% of the time. Even

on 17,000+ programs with errors on multiple lines, TRACER offers a compilation

success rate of more than 40%, requiring only several milliseconds to make its

recommendations.

Although this chapter focused on the C programming language, TRACER can

be easily ported to other programming languages such as C++, Java, Python; given

sufficient training data. TRACER’s performance on stringent correctness criterion

strengthens our claim that repairs suggested by it are close to the fixes performed

by the students themselves. As a result, these targeted repairs are of more didactic

value than the compiler produced error messages, and repairs returned by previous

tools that merely offer a certain compilation success rate.

High accuracy and real-time feedback generation make TRACER suitable for

live deployment as a virtual teaching assistant for programming courses offered

at a massive scale. In Chapter 5, we present another compilation error feedback

tool called TEGCER, which aids students in fixing compilation errors by providing
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generative feedback in the form of examples. In Chapter 6, we deploy both TRACER

(discriminative feedback tool), and TEGCER (generative feedback tool) in a live

offering of the C programming course, and compare their efficacy in helping novice

programmers.



Chapter 5

Compilation Error Example

Generation

In the previous Chapter 4, we talked about TRACER; a compilation error repair tool

whose code repairs are not only accurate, but also relevant to students’ own fix. The

automated repair tools that exist in literature typically generate the correct concrete

code as their final output [69]. Going a step further, TRACER can offer the repair

solution either as concrete code (the correct code which compiles) or abstract code

(where the variables and literals are replaced with their type information instead).

While revealing either of these correct solutions could be invaluable as a feedback to

students in certain situations, such as in the case of automated grading, it is unclear

if providing it during the programming exercise could aid in effective learning.

In this chapter, we propose a new feedback tool called TEGCER (Targeted

Example Generation for Compilation ERrors) [93]. The goal of TEGCER is to

provide an alternative feedback to students who encounter compilation errors in

their program. This feedback is in the form of examples of fixes performed by other

students, albeit on a different program, when faced with similar error previously.

Such an approach is a departure from most of the recent work in literature, which

instead tend to focus on producing the desired repair/solution [73, 11, 17], help

improve the descriptive error message [94], or vary the error message’s structure and
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1 #include<stdio.h>

2

3 int main(){

4 int c, a=3, b=2, i;

5 c = (a-b) (a+b);

6

7 for(i=0, i<c, i++)

8 printf("%d" i);

9

10 return 0;

11 }

Compiler Message
5 E15 Called object type ‘int’ is not

a function
7 E7 expected ‘;’ in ‘for’ statement

specifier
8 E1 expected ‘)’

(a) Buggy program and error message

1 #include<stdio.h>

2

3 int main(){

4 int c, a=3, b=2, i;

5 c = (a-b)*(a+b);

6

7 for(i=0; i<c; i++)

8 printf("%d", i);

9

10 return 0;

11 }

(b) TRACER’s repair

Figure 5.1: Sample buggy program and its fix generated by TRACER.

Line# Eg# Buggy Examples Repaired Examples

5 1 amount = P (1+T*R/100); amount = P*(1+T*R/100);

2 ke = 1/2*m (v1*v1-v2*v2); ke = 1/2*m*(v1*v1-v2*v2);

7 1 for(i=0, i<n; i++){ for(i=0; i<n; i++){

2 for(i=0; i++){ for(i=0;; i++){

8 1 printf("%s" str); printf("%s", str);

2 printf("%d" c); printf("%d", c);

Figure 5.2: Example feedback by TEGCER, on Figure 5.1a buggy program.

placement [75].

Figure 5.1a reports an erroneous code attempt by student, and Figure 5.1b

presents its fix generated by TRACER repair tool. The buggy program in Figure 5.1a

encounters the following errors. In line #5 and #8, the student forgets to use an

asterisk operator ‘*’ and comma separator ‘,’, respectively. While in line #7, the

student mistakenly uses comma separator, instead of the semi-colon separator ‘;’

demanded by for-statement syntax. TRACER’s output correctly predicts these fixes,

and generates a compilable code after applying the repair.

However, if the student is provided with concrete repair output of TRACER
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as feedback, then it is plausible for the student to simply copy the answer without

understanding the error causation or its fix. Providing the abstract code repair of

TRACER could help mitigate some of these concerns. But instead, if students were

provided with multiple examples of source code (code with similar error) and target

code (its repaired code) generated by TEGCER as feedback, then the students can

be expected to learn the general cause of that particular compilation error and its

potential fixes. After which they can proceed to apply the acquired knowledge on

his/her own code and repair it.

Figure 5.2 lists top-2 buggy-repaired example pairs suggested by TEGCER for

the same buggy program in Figure 5.1a, for each erroneous line. These examples are

from different programs, albeit having similar error and desired repair as the original

buggy program in Figure 5.1a.

There have been extensive studies in literature on how providing relevant worked

examples can help students learn effectively in a pedagogical setting, for example by

Renkl et al. [95]. This idea of using code examples from other students as compilation

error feedback is not new. The closest related work to ours is HelpMeOut [17], where

students can query a central repository to fetch example erroneous-repaired code

pairs of other students, that suffer from compilation errors similar to their own

code. This repository of errors is created and maintained manually by students

themselves. In contrast, TEGCER passively learns from mistakes made by students

of previous offerings, and provides feedback for students in new future offerings of

course. Although TEGCER does not offer an explanation for compilation error, such

as the human generated one in HelpMeOut, it suggests the closest relevant erroneous-

repaired code pairs automatically, without requiring any manual contribution. Also,

the distance metric used by both differ significantly. HelpMeOut ranks the set of

examples based on the error similarity and user provided ratings. While TEGCER

ranks the examples based on the similarity of mistake made and ideal fix desired by

the student.
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5.1 Chapter Outline

This chapter is organized as follows: Section 5.2 starts by describing our dataset of

15, 000+ buggy programs, obtained from novice student programmers, and highlights

the different kinds of compilation errors encountered in them. Then in Section 5.3,

we provide further insight into our aligned dataset of buggy-repair pairs, so as to

identify the abstract line and its error-repair class, for each buggy program.

Section 5.4 presents an overview of the deep learning techniques used by TEGCER,

which learns and predicts labelled error-repair class given an abstract error line. The

accuracy of our classifier is reported here as well. Section 5.5 then describes the

working of TEGCER in its entirety, and the various modules that it comprises of.

We also demonstrate TEGCER’s relevant example feedback on buggy programs of

actual students, along with explanations. Section 5.6 then concludes the discussion

and outlines some future directions for this effort.

Technique Proposal

The design of TEGCER is largely inspired by the methodology of TRACER [76],

where the neural network component is changed to predict the class of repairs instead

of the exact repair. This class of repair denotes the set of abstract program tokens

that need to be added/removed from the erroneous code to correct it. Since TEGCER

has to only predict the class of fix required, as opposed to generating the complete

fix at the exact position by TRACER, its precision-recall scores are considerably

higher.

To achieve this end, TEGCER adopts a modular, four-phased methodology for

generating code examples which involves

1. Repair Localization: TEGCER first locates the line(s) where repair must

be performed.

2. Code Abstraction: TEGCER then abstracts the erroneous code lines, by

replacing program specific tokens with their generic types.
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3. Error-Repair Class Prediction: TEGCER classifies the abstract error code

lines, based on the fixes required in terms of insertion/deletion of abstract

program tokens. The classifier used is a dense neural network, trained to

identify the intent of students on being given error code lines.

4. Example Suggestion: TEGCER finally suggests the top frequent erroneous

programs and their repaired code, as observed in its training dataset, requiring

the same class of fixes.

Contributions

Our main contribution is the theory and implementation of TEGCER, a tool to

automatically suggest relevant programming examples as feedback to students,

without requiring any human assistance. To the best of our knowledge, TEGCER is

the first automated tool of this kind. In the extremely challenging task of predicting a

single correct label for buggy program from 212 unique error-repair classes, TEGCER

achieves very high accuracy of 87% on its first prediction (Pred@1).

From a dataset of 15,000+ buggy programs, we identified 6,700+ unique com-

pilation error-groups (EGs) made by novice students, and 200+ different class of

error-repairs (Cs) performed by them to fix the errors. This dataset will be released

in public domain to help further research.

5.2 Compilation Errors

Compilation errors can occur due to a variety of reasons, ranging from syntax errors

which occur when the source-code does not follow the pre-defined rules/grammar of

language, to linker errors where a compiler is unable to resolve references to other

source-files/libraries.
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Error ID Message ⬚1 ⬚2

E1 Expected ⬚1 )
E2 Expected ⬚1 after expression ;
E3 Use of undeclared identifier ⬚1 sum
E4 Expected expression
E5 Expected identifier or ⬚1 (
E6 Extraneous closing brace (⬚1) }
E7 Expected ⬚1 in ⬚2 statement ; for
E8 Expected ⬚1 at end of declaration ;
E9 Invalid operands to binary expression (⬚1 and ⬚2) int * int
E10 Expression is not assignable

Table 5.1: The top–10 frequent individual compilation errors (Es), listed in the decreasing
order of frequency, as observed in our course offering. Program specific tokens have been
replaced with ⬚, and the last columns shows a sample concrete value for the same.

5.2.1 Unique Errors

During our course offering of Introductory to C Programming at Indian Institute of

Technology Kanpur (IIT–K) university, where 400+ students attempt 40+ different

programming assignments, students’ code attempts trigger 250+ unique kinds of

compilation error messages. Table 5.1 lists the top-10 frequent error messages

returned by Clang compiler [72], a popular compiler for C programming language.

The messages are generalized by replacing any program specific tokens (demarked by

Clang within single/double quotes) with ⬚. One example substitution for each ⬚ is

provided in the table as well.

Note that the arrangement of top-frequent error-IDs in Table 5.1 is slightly

different compared to the one listed earlier in Table 4.2. Since TRACER does not

utilize the compiler reported error-messages for predicting the repair, the error-

messages were grouped together in previous chapter based on common keywords

(refer Chapter 4.2.3) for ease of presentation to the reader. We found that passing

the compiler reported error messages as input to the neural network of TEGCER

(refer Section 5.4.1) helps increase its prediction accuracy. Table 5.1 hence retains

the individual compiler reported errors instead of clustering them based on similarity.

We plan to incorporate this improvement in the next version of TRACER as well.
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1 #include<stdio.h>

2

3 int main(){

4 int x,y,;

5

6

7 return 0;

8 }

Compiler Message
4 E5 expected identifier or “(”

(a) EG10

1 #include<stdio.h>

2

3 int main(){

4 printf("Hello");

5 }

6

7 return 0;

8 }

Compiler Message
7 E5 expected identifier or “(”
8 E6 extra closing brace “}”

(b) EG7

Figure 5.3: Example programs for (a) error-group EG10 containing error E5 (b) error-
group EG7 containing errors E5 ∧ E6

5.2.2 Error Groups

A buggy program can contain one or more compilation errors, a collection of which

is called compilation Error Group (abbreviated as EG). We define an error-group

primarily for ease of presentation to the reader, where a single Error-Group (EG)

ID can be used interchangeably to represent the set of Error (E) IDs present in a

buggy program.

The bug in the program (and hence its fix) is characterized by the combination

of errors occurring together. For example, consider the two erroneous code attempts

in Fig 5.3 which fail to compile. Fig 5.3a program has an additional comma “,” on

line-4 before the semi-colon, and the compiler reports error E5 on line-4. While

Fig 5.3b program has an additional closing brace “}” on line-5, and the compiler

reports 2 different errors – E5 and E6 on line-7 and line-8 respectively. Even though

the individual error of Fig 5.3a program (E5) is a subset of errors (E5 ∧E6) found in

Fig 5.3b program, the bug and hence its fix is unrelated.

During our course offering, students made on average 35,000+ code attempts with

compilation failure, encountering 250+ unique individual compilation errors (Es) and

6700+ unique error-groups (EGs). Table 5.2 lists the top frequently observed EGs.

EG1 (resp EG100) is the top-frequent (resp 100tℎ frequent) compilation error-group,
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Error Group ID Error IDs #Programs
EG1 E3 5,965
EG2 E4 4,156
EG3 E1 3,488
EG4 E2 3,018
EG5 E35 1,135
EG6 E3 ∧ E4 949
EG7 E5 ∧ E6 777
EG8 E9 763
EG9 E1 ∧ E4 762
EG10 E5 603
…
EG19 E7 339
…
EG100 E3 ∧ E4 35

ALL – 35,000+

Table 5.2: The top frequent compilation error-groups (EGs), observed in our course
offering. EGi represents the itℎ frequent error-group.

encountered by 5,965 (resp 35) programs compiled by students. We demonstrate

later, in Chapter 6, that feedback tool performance (and hence student performance)

is affected by the set of errors (EGs) that a program triggers, rather than individual

errors (Es). For example, we show that feedback tools have higher accuracy on buggy

programs with error E5 (EG10), than those programs where both E5 and E6 are

encountered together (EG7).

As observed in Figure 5.4, the frequency of the error groups (EGs) encountered

by novice programmers in our course offering follows a heavy tailed distribution. In

other words, there is a sharp decrease in the number of programs affected by an error

group (EGs), as we proceed through a list of EGs sorted by their frequency count.

Similar observation has been made by others as well [71, 17]. In our entire course

offering where students made 35,000+ failure code attempts, the top-8 frequent

EGs accounted for more than 50% of all the student programs failing to compile.

Out of the 6700+ unique EGs, only the top-240 EGs repeat in 10 or more different

programs.
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Figure 5.4: Frequency distribution of compilation error-groups (EGs). The plot depicts
the number of buggy program (y-axis, in log10 scale) attempts by students in our course
offering, that failed to compile due to presence of EG ID (x-axis).

5.3 Error Repair Classes

The previous section gave an overview about the different kinds of compilation errors

encountered by novice students in our entire course offering. In this section, we

present the different kinds of repairs performed by the same students to fix their

program. These repairs are in the form of insertion/deletion 1 of program tokens

until all compilation errors are resolved.

Single-Line Dataset

In order to identify the different kinds of repairs students make, we train TEGCER

on the same single-line edit dataset as TRACER, described earlier in Section 4.2.3.

This single-line edit dataset, obtained from the 2015–2016 fall semester offering

of CS1 at IIT–K university, consists of buggy-repaired program pairs that require

editing a single line to fix the compilation error. Programs requiring multiple-line

edits can often be treated as multiple instances of single-line edits, as mentioned

earlier in Section 4.3.5.

This single-line edit dataset is obtained from the collection of failure code attempts
1replacement is treated as insertion+deletion of program tokens
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by 400+ students, who attempted 12 weekly guided labs, 2 different exams, and few

practice problems of their own, as shown earlier in Table 4.1. A total of 23, 275 buggy

programs were found from the entire semester such that (i) the student program

failed to compile and (ii) the same student edited a single-line in the buggy program

to repair it. The single-line of buggy program that was changed is referred to as

source-line and the corresponding line in repaired program is referred to as target-

line. The source-line and target-line program tokens are then replaced with generic

type tokens, using the abstraction technique described in Chapter 4.3.2, to obtain

source-abstraction and target-abstraction respectively. For the sake of simplicity,

source-abstraction and target-abstraction are henceforth referred to as source and

target respectively.

Repair Tokens

Given the source and target abstract line, we can define the repair tokens (Rs) in

terms of the set of insertion and deletion of tokens required in source, to obtain the

desired target.

Source Target
Line printf("Ans=%d",a) ←→ printf("Ans=%d",a);

Abstraction printf("%d",INT) ←→ printf("%d",INT);

Repair +;

Table 5.3: Example source-target pair, requiring insertion of “;” as repair. The compiler
reports error E2 (expected ⬚1 after expression) for the source-line.

For example, consider the source and target abstraction shown in Table 5.3. The

difference between the target and source tokens is a single “;” (semi-colon) token.

That is, a “;” was added by student in the source/buggy program to obtain the

target/repaired program. Hence, its repair tokens are {+;}, with the “+” indicating

an insertion of token in source.

Consider another example shown in Table 5.4. Here, the student has made a

compilation error by using an undeclared variable “xyz”, and rectifies the error by

replacing it with an integer variable “a” instead. In other words, an INVALID token
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Source Target
Line b=xyz; ←→ b=a;

Abstraction INT=INVALID; ←→ INT=INT;

Repair +INT -INVALID

Table 5.4: Example source-target pair, requiring replacement of “INVALID” token with
“INT” token as repair. The compiler reports error E3 (use of undeclared identifier ⬚1) for
the source-line.

was replaced in source with an INT token, to get the desired target. Hence, the repair

tokens are {+INT -INVALID}, with the “-” indicating deletion of token in source.

We use difflib 2, a standard python programming library package, to obtain the

repair tokens in terms of difference between source and target pairs. Note that,

repeated insertion (or deletion) of a unique token is accounted for only once. For

example, even if a program requires two separate semi-colons to be inserted, its set

of repair tokens consists of a single semi-colon {+;}.

Identifying Error Repair Class

Given a buggy source program with compilation errors (Es), and requiring a set

of repair tokens (Rs) to fix it, its error-repair class (C) is simply the merged set of

errors and repairs {Es Rs}.

1 #include<stdio.h>

2

3 int main(){

4 int i=0;

5

6 for(i=0; i<10, i++){

7 printf("%d",i);

8 }

9 }

Compiler Message
6 E7 expected ‘;’ in ‘for’ statement

(a) Buggy program with error E7

1 #include<stdio.h>

2

3 int main(){

4 int i=0;

5

6 for(i=0; i<10; i++){

7 printf("%d",i);

8 }

9 }

Class
C10 {E7 +; -, }

(b) Correct program, with fix ∈ C10

Figure 5.5: Example buggy program and its fix belonging to error-repair class C10.

Figure 5.5 lists an example buggy program and its class. In this example, the
2https://docs.python.org/2.7/library/difflib.html#difflib.SequenceMatcher

https://docs.python.org/2.7/library/difflib.html#difflib.SequenceMatcher
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Class ID Class (C) #Programs
C1 E2 +; 3,888
C2 E3 +INT -INVALID 731
C3 E1 +} 519
C4 E1 +) 475
C5 E5 ∧ E6 -} 418
C6 E8 +; 404
C7 E1 +, 389
C8 E10 +== -= 309
C9 E1 +; 305
C10 E7 +; -, 299

…
C211 E47 -, -INT 10
C212 E1 ∧ E5 ∧ E47 -; 10

ALL – 15,579

Table 5.5: Top frequent Error-Repair Classes (Cs) from single-line repair dataset. The
class is a combination of error-ID (Es) and repair tokens (Rs). A total of 212 repair classes
having at least 10 buggy programs are considered.

source program has an error in line-6, where a student mistakenly uses “,” in place

of “;” inside the for-statement specifier, triggering a compilation error E7 (the 7tℎ

most frequent error). The program in Figure 5.5 is then labelled with class {E7 +;

-, }. Since this class is the 10tℎ most frequent one encountered in our dataset of

single-line edits, it is labelled as C10.

In a similar fashion, we labelled our entire dataset of 23, 275 programs, that

require repairs on a single-line, with their error-repair classes (Cs). This was done

automatically by obtaining the compilation errors (Es) using Clang compiler [72]

and the repair tokens (Rs) using difflib python package.

Table 5.5 lists the top frequent error-repair classes (Cs), along with the number

of buggy programs belonging to that C. A total of 212 Cs were found having 10 or

more buggy programs. From our single-line dataset of 23, 275 buggy programs, a

total of 15, 579 programs belong to one of these 212 Cs. In other words, only these

15, 579 buggy programs and their 212 Cs form the training dataset for TEGCER.

While the remaining classes are unused due to lack of sufficient training examples.

As seen from Table 5.5, C1 {E2 +; } is the top frequent class, containing 3, 888
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EGID #Cs Top-3 CID Top-3 Classes (C) #Programs

EG1 24
C2 E3 +INT -INVALID 731
C11 E3 +ARRAY -INVALID 286
C16 E3 +LITERAL_INT -INVALID 150

EG2 38
C15 E4 +INT 190
C17 E4 +LITERAL_INT 145
C18 E4 -[ -] 138

EG3 28
C3 E1 +} 519
C4 E1 +) 475
C7 E1 +, 389

EG4 5
C1 E2 +; 3,888
C58 E2 +if 52
C79 E2 +; -: 36

EG7 2 C5 E5 ∧ E6 -} 418
C78 E5 ∧ E6 +{ 41

EG10 3
C22 E5 -, 109
C205 E5 -; 10
C206 E5 -int 10

Table 5.6: Top-3 Classes (Cs) for few of the frequent error-group (EGs)

buggy programs which encounter compilation error E2 (expected ⬚1 after expression)

and require one or more insertion of semi-colon “+;” to fix it. C212 {E1∧E5∧E47 -; }

is the least frequent class, containing 10 buggy programs which encounter compilation

errors E1 ∧ E5 ∧ E47 and require one or more deletion of semi-colon “-;” to fix it.

Table 5.6 then lists the classes (Cs), grouped by frequent compilation error

groups (EGs). For each EG, the second column (#Cs) denotes the total number of

different repairs possible, with the third and fourth column listing the top-3 frequent

class ID (C-ID) and class (C) respectively. Finally, the number of buggy programs

(#Programs) belonging to each C is provided in the last column.

As seen from Table 5.6, the top frequent compilation error group (EG1), consisting

of error E3 (use of undeclared identifier ⬚1), has 24 different unique classes. Its top-3

frequent classes, C2, C11 and C16, suggest replacing an undeclared variable of type

INVALID with a variable/literal of type INT, ARRAY and LITERAL_INT respectively.

Similarly, the 2nd (EG2) and 3rd (EG3) most frequent compilation error groups require

a wide variety of repairs; a total of 38 and 28 classes respectively. Where, EG2
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consists of error E4 (expected expression) and EG3 consists of error E1 (expected

⬚1). In comparison, the 4tℎ most frequent error group (EG4), consisting of error E2

(expected ⬚1 after expression), has just 5 different types of unique repairs. Almost

all of these small number of classes suggest insertion of “;” (semi-colon) to the buggy

program, with some variation.

Additional examples of classes are presented later in the discussion Section 5.6.

5.4 Error-Repair Classifier

We experimented with various neural network setups which given a source (buggy

abstract line), predicts the relevant error-repair class it belongs to. In this section, we

report on the data pre-processing techniques used, different arrangements of neural

network layers, and their precision-recall scores.

5.4.1 Data Preparation

Recall that (Section 5.3) we obtained 15, 579 source-target program pairs labelled

with 212 unique classes. Although both abstracted source (buggy) and target

(repaired) lines are available in this single line dataset, only the source lines were used

for training and testing the classifier. In other words, TEGCER generates example

based feedback, given only the buggy source program of students as input.

The labelled dataset of 15, 579 source programs is split in the ratio of 70% ∶

10% ∶ 20% for training, validation and testing purposes respectively. Before the

abstracted source line is supplied to neural network for learning, we apply different

pre-processing techniques to help the network generalize better.

Input Tokens

Firstly, the source sequence is split into unigram and bigram tokens. For exam-

ple, consider the source line in Table 5.4. The source “INT=INVALID;” contains

four unigram tokens {INT, =, INVALID, ;} and three bigrams {INT_=, =_INVALID,
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INVALID_;}. Special character tokens such as “\n”, “!”, “!=”, … are all retained.

Neural networks trained on natural languages typically ignore special symbols, but

these are important from programming language perspective.

The compilation errors (Es) associated with each source line are passed to the

neural network as well. These are prefixed to the original source line, separated by

a special separator-token. For the example source line in Table 5.4, which suffers

from error E3, the sequence of input tokens passed to neural network are: {<ERR>,

E3, <UNI>, INT, =, INVALID, ;, <BI>, INT_=, =_INVALID, INVALID_;, <EOS>}.

In our dataset of 15, 579 source lines, the vocabulary size is observed to be 1, 756.

That is, a total of 1, 756 unique input tokens (unigrams, bigrams and Es) exist in

our dataset.

Input Encoding

Each input token is then vectorized using tokenizer 3, a text pre-processor provided

by the Keras deep learning library [96]. Depending on the type of neural network

used, the input tokens are either replaced with a unique decimal integer indicating

word sequence number, or with a binary representation indicating existence of token.

More involved encoding techniques such as frequency or tf-idf [97] gave poor

results, due to the extreme paucity of data for most classes; More than 30% of the

212 classes have just 10 examples to train and test from. For more information on

data encoding techniques, we refer the reader to Brownlee’s blog [98].

When an integer encoding is used, the sequences are padded by dummy values

using the pad_sequence 4 pre-processor provided by Keras. This is done to ensure

that the length of sequences is the same for all input encodings. Since the maximum

sequence length in our dataset was found to be 277 tokens, all examples are padded

up to contain 277 tokens.
3https://keras.io/preprocessing/text/#tokenizer
4https://keras.io/preprocessing/sequence/#pad_sequences

https://keras.io/preprocessing/text/#tokenizer
https://keras.io/preprocessing/sequence/#pad_sequences
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Output Encoding

Similar to the input encoding, output labels require encoding with numbers as well,

for neural network to be able to predict them. The goal of the neural network is to

predict a single class, out of the 212 different labels available, that the buggy program

belongs to. Hence, the class labels are encoded with one-hot binary encoding, using

the to_categorical 5 utility provided by Keras.

5.4.2 Neural Network Layers

The goal of the neural network classifier is to predict the correct label, given the buggy

source. It achieves this by fine tuning the weight assignment between the various

visible and hidden layers of network, until a pre-defined loss metric is minimized [99].

There has been extensive study in literature on finding the neural network setup best

suited to represent computer programs. The survey by Allamanis et al. [100] lists a

large number of such networks designed by prior work for different tasks, categorized

on multiple metrics.

For our classification task, we experimented with some of the popular complex deep

networks, such as Long Short Term Memory (LSTM) models with embeddings [88]

and Convoluted Neural Network (CNN) models with max-pooling [101]. These

complex models need to train a large number of parameters, in the order of millions

of different weights, capturing patterns in the entire sequence of source tokens.

For which, massive amounts of training data is required, typically in the order of

thousands per class.

However, in our labelled dataset of 15, 000+ programs tagged with 212 labels,

only the largest class has more than 1, 000 programs. 67 of these classes (31% of

total 212) have just 10 examples each, for both training and testing the classifier.

Due to which all the complex neural networks fail to generalize on this (relatively)

tiny dataset of student errors, recording prediction accuracy in the range of 30−40%.
5https://keras.io/utils/#to_categorical

https://keras.io/utils/#to_categorical
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Figure 5.6: Dense Neural Network of 512 hidden units with 20% dropout, used to classify
1, 756 input tokens with 212 class labels.

Dense Neural Network

To overcome the issue of small class size, we turn towards simpler neural network

model for our class predictions. In particular, we found that a dense neural network

with single hidden layer is best suited for our task. A dense network is a fully

connected network, where each neuron is connected to all the neurons of previous

layer.

Figure 5.6 describes the network arrangement of our dense classifier. The first

layer is an input layer, which consists of 1756 binary encoded input source tokens

(refer to Section 5.4.1). The second layer is the single hidden layer of 512 units,

densely connected with the previous input layer. This is followed by a dropout

layer [102], which randomly drops 20% of the input neurons to 0 during the training

stage, to avoid overfitting the model on training dataset. Finally, our last layer is an

output layer containing 212 units (one for each class). This output layer is densely

connected with the previous hidden layer.
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Parameters

The Keras [96] framework was used to build our dense neural network 6 classifier.

The following parameters, including the hidden layer size, were selected based on the

performance of classifier on the 10% validation set.

We used Rectified Linear Unit (ReLU), a non-linear activation function, between

the hidden layers. A softmax activation function is used in the last output layer to

predict the probabilities of all 212 classes, given the set of input tokens. For more

information on the dense network and various activation functions, we refer the

reader to the CS-231n Stanford course notes [103].

The training phase of classifier involves assigning weights between the input–

hidden and hidden–output layers. These weights are learnt using a stochastic gradient

descent algorithm, which minimizes a pre-defined objective/loss function over the

70% training data set. We used categorical cross-entropy loss function, a standard

logarithmic loss function for multi class problem. Also, Adam [104], an adaptive

moment estimator function, was chosen to optimize the learning process, leading to

faster and stable convergence.

The peak accuracy of our model on the 10% validation data set was obtained

after training for 6 epochs. Beyond which, the model begins to heavily overfit on

training dataset, due to the small number of examples for most classes. The training

phase typically lasts a few seconds, while predicting a class during the testing phase

requires few milliseconds.

5.4.3 Accuracy

We report on the overall accuracy of classifier, as well as precision-recall scores of

individual classes, on our held out 20% test dataset. The latter analysis is necessitated

due to the highly skewed distribution of classes in our dataset, where the top-10

classes, out of the 212 unique ones, account for 50%+ of the total test-cases.
6https://keras.io/layers/core/

https://keras.io/layers/core/


123

Classifier Pred@1 Pred@3 Pred@5

Dense Neural Network 87.06% 97.68% 98.81%

Table 5.7: Pred@k accuracies for the Dense Neural Network classifier

Overall Accuracy

We measure the overall performance using a Pred@k metric, which denotes the

percentage of test-cases where the top-k class predictions contains the actual class.

The classifier returns a probability score for each class on being given a buggy source,

Pr(y = Cj|X). Which can be sorted in descending order to select the top-k results

as predicted classes.

Table 5.7 reports on the accuracy of dense network in predicting one of the 212

classes on 20% held out test-set of 3, 098 buggy source lines, for various values of

k. When we consider only the top prediction (Pred@1) by the dense classifier, the

predicted class is exactly same as the actual class in 87.06% of the cases. If we are to

sample the top-3 predictions instead, then the actual class is present in one of these

three predictions for 97.68% of the cases. In other words, for majority of the test

cases (3026 out of 3098), dense neural network predicts the correct class in its top-3.

Top Frequent Classes

The dense neural network achieves high accuracy across majority of the 212 classes.

In order to demonstrate this, we look at the precision-recall scores of individual

classes. The precision score indicates that when the classifier labels a source line

with a class Cj , then how reliable is that class-j labelling. While the recall score of a

class Cj is used to measure, out of all the Cj labelled data in test set, how many of

them were misclassified. Note that these precision-recall scores consider only the top

prediction (Pred@1) of classifier.

More formally, the precision and recall scores of a class Cj are defined as follows:

Precision(j) = #Cases where both Predicted and Actual class is j
#Cases where Predicted is j
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CID Error-Repair Class (C) #Train #Test Precision Recall Top Incorrect Prediction
Incorrect Class #Test

C1 E2 +; 3,110 778 0.99 0.99 E2 +if 4
C2 E3 +INT -INVALID 585 146 0.79 0.79 E3 +LITERAL_INT -INVALID 7
C3 E1 +} 415 104 0.91 0.95 E1 -{ 2
C4 E1 +) 380 95 0.77 0.84 E1 -( 10
C5 E5 ∧ E6 -} 334 84 1.00 1.00 –

C6 E8 +; 323 81 0.97 0.95 E8 +; -, 4
C7 E1 +, 311 78 1.00 0.96 E1 +} 3
C8 E10 +== -= 247 62 0.97 0.98 E10 +( +) 1
C9 E1 +; 244 61 0.97 0.98 E1 +) 1
C10 E7 +; -, 239 60 1.00 0.97 E7 +; 2

…
C211 E47 -, -INT 8 2 1.00 1.00 –
C212 E1 ∧ E5 ∧ E47 -; 8 2 1.00 1.00 –

Table 5.8: Precision and Recall Scores of Dense Neural Network on top frequent Cs. The columns #Train and #Test indicates the total number of
source lines used for training/validation and testing of the classifier, respectively. For each actual class C, Top Incorrect Prediction column lists the
top incorrectly predicted class, along with the count of test-cases in which this mis-classification occurred.
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Recall(j) = #Cases where both Predicted and Actual class is j
#Cases where Actual class is j

In Table 5.8, we list the precision and recall scores of the dense neural network

for the top frequent classes (C). As seen from the table, the dense classifier enjoys

high precision and recall scores, of greater than 0.9, across most of the listed classes.

Further, even on the extremely rare classes of C211 and C212, that offer just 8

buggy examples to train and validate from, the neural network is able to generalize

successfully and achieve 100% precision/recall score.

Out of the total 12 repair classes listed in Table 5.8, only two of them, C2 and C4,

suffer from (relatively) weaker recall scores of 0.79 and 0.84, respectively. In other

words, out of the 146 (resp. 95) test cases having label C2 (resp. C4), the classifier

is able to correctly predict 79% (resp. 84%) of them. The last column, which lists

the top most incorrect prediction made by classifier, suggests that this is a valid

confusion due to the nature of compilation error and its repair. There are multiple

different ways to repair a buggy source program, and hence the source can belong to

multiple classes. However from our error-repair dataset (Section 5.3), we can observe

only the single class of repair performed by actual student, and hence we treat the

student’s repair as the unique correct solution. This limitation of allowing only a

single correct label causes a decrease in precision/recall scores, when multiple repair

classes are applicable for a buggy source.

From Table 5.8, the class C2 {E3 +INT -INVALID} is most confused with {E3

+LITERAL_INT -INVALID}. This is intuitive since, in C programming language, a

variable is often interchangeable with a literal of the same type. Similarly, the

class C4 {E1 +)} is incorrectly predicted as class {E1 -(} 10 different times, since

the repair for incorrectly balanced parenthesis could be to either add more closing

parenthesis, or remove few of the existing open ones. While choice of the repair is

dictated by logical correctness, either of these two can fix the compilation error.

This suggests a larger issue, where an erroneous line can belong to multiple classes,

since it can be repaired in multiple different ways. Since our erroneous-repaired
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Figure 5.7: Dense neural network recall scores for 212 classes

dataset captures only one form of repair performed by actual student, we are forced

to treat the problem as multi-class, instead of multi-label. This limitation accounts

for the lower precision/recall scores observed, in few of the classes.

Individual Classes

In Figures 5.7a and 5.7b, we analyze the recall scores across all 212 classes. From

Figure 5.7a it is seen that, our dense neural classifier achieves high accuracy, across

majority of the classes. The recall score is >= 0.5 for more than 80% (171∕212) of

classes, and >= 0.9 for more than 100 classes.

Figure 5.7b then presents the recall scores of all 212 classes, plotted against their

training sample size. While the classifier achieves 100% recall score on classes across

multiple training sizes, including those with just 8 training examples, the recall

scores drop to <= 0.5 (resp. 0.0), only when the training size is below 200 (resp.

20). In other words, having more training examples for small sized classes could help

improve their prediction scores.

5.5 TEGCER

In this section, we present TEGCER (Targeted Example Generation for Compilation

ERrors) in its entirety. Given a buggy program, TEGCER uses a four-phased
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methodology to generate example buggy programs having similar error and repair as

the original one.

5.5.1 Repair Localization

Given an erroneous code, TEGCER locates the line(s) where repair must be per-

formed, by relying on the exact line number reported by the compiler, similar to

related example generation work of HelpMeOut [17]. While TEGCER is trained only

on single-line edit program dataset, during the testing phase, programs with errors

on multiple-lines are treated as multiple instances of single-line errors

This is a departure from existing state-of-art repair tools, such as TRACER

(Section 4.3.1) and DeepFix [73], which employ a “search, repair & test” strategy to

achieve localization accuracy of 86%. Such a strategy is not applicable for example

generation, due to its very nature of being subjective. TEGCER achieves localization

accuracy of 80% on the same dataset, by focusing on only compiler reported lines.

For example, consider the buggy program in Figure 5.5. Here, the compiler

reports an error in the for-statement, present on line number 6. TEGCER relies on

the compiler reported line number, and generates examples having similar error-repair

pairs as the original for-statement.

5.5.2 Code Abstraction

As a second step, TEGCER pre-processes the compiler reported erroneous code lines,

by replacing variables/literals with their abstract generic types. This stage greatly

reduces the load on neural networks and helps it generalize better, by performing

implicit vocabulary compression. The neural network is better equipped to predict

repairs based on type information, instead of finding loose patterns through user

defined names.

The abstraction module used by TEGCER is exactly similar to the one employed

by TRACER, as described in Chapter 4.3.2. Tables 5.3 and 5.4 list two examples of

this abstraction process.
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5.5.3 Error-Repair Class Prediction

In the third step, TEGCER assigns one of the 212 error-repair class (C) to each

of the abstract code lines, obtained in previous step. This is done using the dense

neural network classifier, trained offline as described in Section 5.4.2. The class label

indicates the closest type of error in buggy program and its desired fix, in terms of

insertion/deletion of abstract program tokens.

TEGCER is able to achieve significantly higher prediction score of 97.68% as

opposed TRACER’s 66.61%, when considering the top-3 suggestions (Pred@3) of

both the compilation feedback tools. This is because TEGCER only needs to only

predict the type of tokens that should be inserted/deleted from buggy code, as

opposed to the additional challenging task that TRACER has to perform in figuring

out the exact position where the edit should be applied.

5.5.4 Example Suggestion

Given an erroneous student program, TEGCER assigns error-repair class label for

each compiler reported line, and suggests N number of relevant examples for each

class. These example programs are chosen as follows: (i) from our dataset of 15, 579

buggy programs, we filter all those programs that have the same class of error-repair

as student’s buggy program, and (ii) The top-N frequent erroneous programs per

class are suggested back to the student.

For each example, only the error code, or only the repaired code, or both error–

repair code pairs, can be provided to the student depending on the instructor

preference. In prior work of HelpMeOut [17], both the error and its repair example

are provided as feedback to the student. Also, the choice of number of examples,

N , is parameterized and should typically be set to 3 or more, since students might

need to observe multiple different examples in order to learn the general pattern of

mistake made and its desired fix.

Table 5.9 lists few buggy source lines, and the top example feedback provided
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# Source-Line and Predicted TEGCER’s Top Example Relevant
Target-Line Class Erroneous and Repaired

1 d = (x-x1) (x-x1); C32 {E15 +* } amount = P (1+T*R/100);
3

d = (x-x1)*(x-x1); amount = P*(1+T*R/100);

2 printf("Ans=" a); C7 {E1 +, } printf("%s" str);
3

printf("Ans=%d", a); printf("%s", str);

3 if (a!(==)0) C148 {E1 +!= -! } while (n ! 0)
3

if (a!=0) while (n != 0)

4 for(j=0, j<10, j++) C10 {E7 +; -, } for(i=0, i<n; i++){
3

for(j=0; j<10; j++) for(i=0; i<n; i++){

5 b=xyz+1; C2 {E3 +INT -INVALID } scanf("%d", &a);
3

b=a+1; scanf("%d", &n);

6 printf("%d", a)); C40 {E19 -) } printf("(%f,%f"), x,y);
3

printf("%d", a); printf("(%f,%f)", x,y);

7 printf["%d", a]; C210 {E62 +( +) -[ -] } sort[rsum, n];
3

printf("%d", a); sort(rsum, n);

8 } else { C71 {E5 ∧ E6 +{ } else
3

else { else {

9 p+'a' = p; C8 {E10 +== -= } if (a = b)
7

p = p+'a'; if (a == b)

Table 5.9: Sample buggy source lines and the top example generated by TEGCER. The second column lists erroneous source lines and actual repairs
performed by the same student. The third and fourth column then describe the top class and top example predicted by TEGCER, respectively.
Finally, the last column indicates whether the predicted example feedback is relevant to the student’s buggy program.
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by TEGCER. Both the error (source-line) and its repair (target-line) are provided

in the second column. Similarly, the before repair and after repair code lines are

provided for the suggested example, belonging to the predicted class.

In the first two rows #1 and #2 of Table 5.9, the student fails to realize that that

an asterisk ‘*’ operator and a comma separator ‘,’, respectively, is required between

the two expressions. While in rows #3 and #4, the student has misunderstood the

inequality operator ‘!=’ and semi-colon separator in “for” statement, respectively.

The suggested examples by TEGCER for these top four rows reflects the same

confusion and desired repair, as the given student’s buggy source line. The compiler

reports cryptic error messages for row #1 E15: called object type "int" is not

a function, row #2 E1: expected ')', and row #3 E1: expected ')'. Hence,

providing TEGCER’s examples as feedback to novice students could be more useful

over these compiler messages, which are neither relevant to student’s error nor to

the desired repair.

For row #5, the student uses an undeclared variable whose fix, as suggested by

the top example, is to replace the undeclared variable with an integer variable.

Rows #6 and #7 deal with bracketing issues in printf function call. For row

#6, the student has mistakenly added an additional closing parenthesis “)”, and

TEGCER’s example suggests its deletion. While in row #7, a student unfamiliar

with the correct type of bracketing in “printf” function call, used square brackets “[

]” instead of the round-brackets/parenthesis “( )”. TEGCER’s example, of replacing

the parenthesis in a user-defined function call “sort”, is highly relevant with the

exact same confusion and desired repair.

And in row #8, TEGCER recognizes that the error is to do with unmatched

braces. Although its predicted class, and hence suggested example, suggests adding

an additional brace, the student in test dataset removed a brace instead. We still

count this example as relevant, since either solution is valid and it does point to the

student the need to adjust the braces.

Row #9 demonstrates the limitation of our dense neural network, which relies on
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unigrams, bigrams and compilation error messages to predict the class. In this case,

the buggy source line is p+'a'=p;, and the student is confused between the lvalue

(left) and rvalue (right) of assignment operator. The input tokens passed to the

neural network are {<ERR>, E10, <UNI>, CHAR, +, ', LITERAL-CHAR, ', =, CHAR, ;, <BI>,

CHAR_+, +_', '_LITERAL-CHAR, LITERAL-CHAR_', '_=, =_CHAR, CHAR_;, <EOS>}.

As we can see, there is very little indication from these unigram and bigram

tokens, that the issue is due to presence of multiple tokens in lvalue of assignment.

In fact, examples belonging to a frequently occurring class, C8, have very similar

unigram/bigram tokens, where the confusion is between usage of assignment “=” and

equality “==” operator. Hence, the classifier incorrectly predicts the class C8 {E10

+== -=} for the row #9 source line, suggesting replacement of “=” with “==”. Using

more complex neural networks, which capture the entire sequence information, could

help resolve this issue. However, these would require much larger training dataset.

5.6 Discussion

In this section, we discuss some of the important features and limitations of TEGCER,

our approach to generate example based feedback for compilation errors.

Class as Error-Repair pair

Since TEGCER’s aim is to ultimately provide relevant examples through which

students can learn and transfer the repair, it is important for the class to capture

both the type of repair as well as the type of error. If classes are assigned to programs

on the sole basis of repair tokens, then programs suffering from different mistakes

will be incorrectly grouped together.

Consider the two erroneous programs in Table 5.10. In both the programs, the

repair tokens suggest replacing comma ‘,’ with semicolon ‘;’. However, the relevant

examples that can be used as feedback are different for both. Program #1 requires

examples which teaches about the necessity of semicolon separator, at the end of

every statement. Where as program #2 requires examples that refresh the student on
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Program #1 Program #2
Erroneous int a=0, for(i=0, i<10; i++)

Repaired int a=0; for(i=0; i<10; i++)

Compilation Error E8: expected ‘;’ at the end
of declaration

E7: expected `;' in for

statement specifier

Repair Tokens -, +; -, +;

Table 5.10: Compilation error and repair tokens of two erroneous programs.

syntax of for-statement specifier, with semicolon separators between each component.

Both of these errors belong to different class of examples, and hence the compilation

error is an integral part of the class.

Unseen Error

Further, the design of class is flexible in accommodating new kinds of mistakes that

students would make, unobserved in our training dataset. To further elaborate,

consider an unlikely buggy line “printf("%d" xyz!0);”, where the student has

made 3 different mistakes. Namely, a comma separator ‘,’ is missing between both

expressions, the inequality operator ‘!=’ is incorrectly written as ‘!’, and “xyz” is an

undeclared variable of type “INVALID”. The compiler reports just a single error E1:

expected `)' on this particular line.

Our neural network classifier has never come across this combination of errors

during its entire learning phase. Nonetheless, it is able to capture the errors better

than a standard compiler, and predict relevant classes for all 3 mistakes individually.

The top-4 classes predicted by TEGCER are C148 {E1 +!= -! }, C2 {E3 +INT

-INVALID}, C35 {E12 +INT -INVALID}, and C7 {E1 +, }. Hence, TEGCER can

be used to successfully generate relevant feedback on unseen errors, by sampling

multiple top-N classes. Notice that TEGCER does not restrict itself to the (incorrect)

compiler reported error E1, and this freedom allows it to match buggy program with

relevant repair, by borrowing from those repairs observed in different errors E3 and

E12.
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1 #include<stdio.h>

2

3 int main(){

4 int i;

5 i = 10

6 }

Compiler Message
5 E2 expected ⬚1 after expression

(a) Buggy program with error E2

1 #include<stdio.h>

2

3 int main(){

4 int i;

5 i = 10;

6 }

Class
C1 {E2 +; }

(b) Correct program, with fix ∈ C1

Figure 5.8: Example buggy program and its fix belonging to class C1.

1 #include<stdio.h>

2

3 int main(){

4 int i

5 i = 10;

6 }

Compiler Message
4 E8 expected ⬚1 at end of declara-

tion

(a) Buggy program with error E8

1 #include<stdio.h>

2

3 int main(){

4 int i;

5 i = 10;

6 }

Class
C6 {E8 +; }

(b) Correct program, with fix ∈ C6

Figure 5.9: Example buggy program and its fix belonging to class C6.

Local Context

Compiler Line Number: Note that, matching braces is a tricky issue due to its global

context, and TEGCER’s performance is directly dependant on compiler. In some

cases, the compiler reports the line number where it encountered brace error, which

is not the same as the line to perform the repair. In which case, TEGCER would

fail to predict the correct class, and hence the error-repair examples.

Duplicate Classes

In Figures 5.8 and 5.9, the compiler reports different errors E2 and E8, based on

whether the line is an expression or declaration (respectively). However, both these

buggy programs require an insertion of “;” at the end of line, whose error-repair

could be understood by students on being given the same set of examples. Similar
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classes such as these can be merged together, to achieve improved precision/recall

and hence suggest more relevant examples to students. In future, we plan to develop

an automated (or semi-automatic) technique to achieve this.

Note that such a technique would be non-trivial and cannot rely solely on the

desired repair (insertion/deletion of token). For example, the fix in Figure 5.5, which

requires a additional “;” token inside the for-statement, is different in nature from

that required in Figures 5.8 and 5.9. Hence, the examples suggested to student as

feedback should be different as well.

Multi Label

Conversely, erroneous programs can belong to multiple classes as well. Since the input

erroneous program is an incomplete specification of the desired repair, predicting

the students’ intention can become intractable in certain situations. Consider the

buggy-repaired code pairs in Figure 5.10 and 5.11, where both the buggy programs

are exactly the same. While both the repairs (Figure 5.10b and 5.11b) are valid, the

desired fix (and hence the relevant example) depends on student’s intention.

Treating this problem as multi-label, as opposed to multi-class problem, can

help ameliorate this issue. However, the exponential number (power-set) of possible

labels makes this a challenging problem, typically leading to a decrease in classi-

fication accuracy [105]. Multiple methods, such as by Guo et al. [106] and Zhang

et al. [105], have been proposed to increase the multi-label accuracy by capturing

inter-dependencies among labels. We plan to explore the same in a future version of

TEGCER.

Unigram and Bigram Features

Our usage of (relatively simpler) unigram/bigram features sometimes fails to capture

the error-repair class that an erroneous program belongs to; as demonstrated in row

#9 example in Table 5.9.

Using more complex neural network models, such as LSTMs which capture the
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1 #include<stdio.h>

2

3 int main(){

4 int i=0;

5 int j=;

6 }

Compiler Message
5 E4 expected expression

(a) Buggy program with error E4

1 #include<stdio.h>

2

3 int main(){

4 int i=0;

5 int j=i;

6 }

Class
C15 {E4 +INT }

(b) Correct program, with fix ∈ C15

Figure 5.10: Example buggy program and its fix belonging to class C15.

1 #include<stdio.h>

2

3 int main(){

4 int i=0;

5 int j=;

6 }

Compiler Message
5 E4 expected expression

(a) Buggy program with error E4

1 #include<stdio.h>

2

3 int main(){

4 int i=0;

5 int j=0;

6 }

Class
C17 {E4 +LITERAL_INT }

(b) Correct program, with fix ∈ C17

Figure 5.11: Example buggy program and its fix belonging to class C17.

entire sequence of tokens and long term dependencies between them, can help resolve

such issues in future. However, the added complexity would require 100s of additional

training examples for each individual class, to learn the general pattern of error. Our

current dense network trained on unigram-bigram tokenization achieves a Pred@3

accuracy of 97.68% on our dataset of 15, 000+ erroneous programs, indicating that

such long term dependencies affect a very small number of classes. Hence we believe

our proposed modeling is one of the best suited for the task of example generation,

until a significantly larger dataset can be collated.

5.7 Summary

In this chapter, we presented TEGCER, a new kind of feedback tool that auto-

matically suggests relevant examples to novice programmers, who are struggling

with compilation errors. TEGCER’s example generation does not require manual
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intervention, unlike prior related work of HelpMeOut [17] which require manual

tagging by students. Also, the different examples provided compel the student

to learn from the general pattern of error and its repair, in order to transfer the

knowledge to fix their own erroneous program. This is a paradigm shift compared to

repair tools such as TRACER, which attempt to directly fix the student’s erroneous

program and provide the generated repair as feedback, potentially loosing out on the

pedagogical value of automated feedback.

The automated example generation by TEGCER is based on the realization that,

while students make multiple types of compilation errors on various programming

assignments, the kind of repairs performed by them is limited to addition/deletion of

few abstract program tokens. To this end, we first collate a large dataset of 15, 000+

aligned student programs with compilation errors, and automatically label all with

their error-repair class C, which represents the combination of error and desired

repair type. Next, a simple dense neural network classifier is trained to predict

the desired class, using the unigram tokens, bigram tokens and compilation error

messages of buggy programs. In the challenging task of predicting a single label out

of 212 different classes, our trained classifier achieves high Pred@3 accuracy score of

97.68%, indicating that the labelling is sound and error patterns are generalizable.

Finally, the top representative examples, that suffer from the same error-repair class

as student’s, are suggested back as feedback.

We believe that similar example generation based feedback tool can be developed

for the logical mistakes made by students, using the novel framework proposed in

this thesis. Given a buggy program that suffers from logical errors, a repository of

error-repair can be searched for semantically equivalent repairs desired by the buggy

program. These filtered repairs, undertaken by other students on their own programs,

can then be provided as hints. The primary challenge in such an approach would

be to define the semantic (or abstract) representation and semantic equivalence of

programs.

In the next Chapter 6, we undertake a large user study of 400+ first year
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undergraduate students. Both TRACER, a state-of-the-art program repair tool, and

TEGCER, a state-of-the-art example generation tool, are deployed live for an entire

course offering of introductory programming (CS-1) course. The performance of

students with access to these feedback tools is compared against a baseline, in order

to analyze which tool has better pedagogical value.



Chapter 6

User Study of Novice

Programmers

In this chapter, we report empirical results from a randomized controlled experiment,

performed to assess the efficacy of automated feedback tools in helping novice

programmers. Our experimental group consists of 480 students, who were randomly

assigned to receive feedback from two separate automated tools – TRACER and

TEGCER. These feedback tools were designed using well known instructional principle

for efficient learning, where feedback is provided either through (i) relevant solution,

or through (ii) generated examples that guide towards the solution. We compare

the performance of students with access to these automated tools, against student

performance when tutored by human teaching assistants, albeit from a different

offering of the same course at the same university.

We found that automated feedback allows students to resolve errors in their code

more efficiently than students receiving manual feedback. This advantage disappears

when all forms of feedback are withdrawn, and therefore does not correspond to

improved conceptual understanding of compiler errors and its resolution. In other

words, the advantage appears to correspond with timely instructional delivery via

repair and examples.

We also found that the performance advantage of automated feedback over
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human tutors increases with problem complexity, and that feedback via example

and via specific repair have distinct, non-overlapping relative advantages for different

categories of programming errors.

6.1 Introduction

There is active interest in aiding students struggling with compile-time errors (also

known as compiler or compilation errors). These errors are caught and reported by

the compiler, before the program is even executed. They typically occur due to the

incorrect use of language syntax, or on importing incorrect files/libraries. These are,

in fact, the types of errors most likely to be made by novitiates into programming and

therefore, are of prime interest for instruction support in introductory programming

courses.

Compiler errors are considered trivial to locate and fix by expert programmers,

since the compiler reports the line-number in code where the error occurs and a

short message explaining the error it encountered. Likely for this very reason, text in

compiler error messages are targeted towards experienced programmers, and appear

cryptic to beginners [70]. Multiple studies have shown that students who have just

begun to learn programming often struggle with compilation errors [107, 71].

Recognizing the need to help novices, multiple approaches have been proposed

to enhance the error messages, to make them more informative and suitable for

novice programmers. As seen in the systematic literature review by Reilly et al. [108],

these enhancements are typically achieved by manually analyzing the top frequent

errors made by students and the erroneous code associated with it. Then additional

information is added to the existing compiler error message by an expert, such as the

usual causation of its fixes, with the process being repeated for different programming

languages.

These techniques typically suffer from coverage, with a large number of infrequent

errors being left out due to the manual effort involved. Moreover, the effect of

enhanced error messages on student performance is inconclusive [109]. While some
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studies demonstrate lower number of student errors per enhanced error message [110],

other conflicting studies claim that improved messages are ineffective in helping

students [109, 111], with no significant measurable effect being observed. Lack of

attention to the error messages could be one of the reasons for this effect [109],

with another study [112] proposing to make the error messages more engaging by

introducing humour in them.

Owing to the above limitations in enhancing error messages, alternative forms of

feedback have been explored which are scalable in nature. In particular, there has

been significant interest recently in automatically suggesting fixes for compilation

errors to students [76, 73, 77, 11], thus providing feedback by the way of repair.

These tools learn from the repeated mistakes made by historical student submissions

and eliminate manual effort in the current offering, making it possible to scale-up to

massive class sizes.

While such automated program feedback efforts are all conceptually laudable, it

is not empirically clear whether they actually help students learn better or not. As

we discuss in greater detail below, empirical data differ in direction of the learning

effect, and measure different and incompatible metrics. The existing studies reporting

positive effects are typically small scale (N < 50), and report on average time-taken

metrics, which fails to capture whether student performance gains are truly correlated

with student learning.

To address these limitations in the literature surrounding automated feedback

systems for learning programming, we conducted a large (N = 480) randomized

controlled experiment, replacing human tutors with automated feedback systems for

the first seven weeks of the introductory programming course at Indian Institute of

Technology Kanpur (IIT-K), a large public university. We measured programming

performance improvement using multiple metrics longitudinally. We found significant

gains in error-resolution during programming assignments as a consequence of this

intervention, over human-assisted baselines. The extent of improvement observed

was greater for difficult errors than easier ones. We also found that programming
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performance improvements seen during feedback tool use remained intact, once the

tools were withdrawn at the midway point of the course. The remainder of this

chapter describes our methods and results in more detail.

6.2 Feedback Tools

A program can have one or more compilation errors, a collection of which is called

error group. Fig 6.1 shows a student code having 3 different errors. As observed in

our course and prior work [76, 71, 110], the frequency count of the kind of errors

novice programmers make is an exponentially decreasing function. During our course

offerings, students make 100s of different kinds of errors, with the top-8 frequent

error groups accounting for more than 50% of them.

There have been multiple instructional principles evaluated for efficient learning

in literature, based on the complexity of the educational content [6]. Providing

timely feedback is one such important instructional principle, and studies on tutoring

systems for programming language indicate significant learning benefit when students

are provided some form of feedback [7].

In this chapter, we focus on two particular feedback strategies relevant for novice

programmers; i) error correction, and ii) example-based feedback where learners

solve problems by analogy [95].

6.2.1 Discriminative Feedback: Repair

Students with compilation errors are provided discriminative feedback in the form of

correct code, known as repair. To generate this code repair we used TRACER [76], the

current state-of-the-art compilation error repair tool, presented in earlier Chapter 4.

Given an erroneous program, TRACER (i) locates the error lines (ii) abstracts the

variables and literals with their types (iii) predicts the relevant abstract repair using

a deep learning sequence-to-sequence model, and (iv) converts back the repair from

abstract representation to concrete code.
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TRACER boasts 80% repair accuracy for single-line errors, and 44% accuracy on

multiple-line errors, while being relevant - its top recommended fix is the exact same

as students’ 68% of the times.

6.2.2 Generative Feedback: Examples

Motivated by the approach used in TRACER, we designed a feedback tool called

TEGCER, as described earlier in Chapter 5. TEGCER predicts examples of incorrect-

correct code pairs, which suffers from the same mistake and desires same repair as

the given erroneous program. Given an erroneous program, TEGCER (i) locates the

error lines (ii) abstracts the error line (iii) predicts the class of error-repair which

this abstract line belongs to (iv) suggests back the top frequent training examples

observed for this particular class.

In the challenging task of predicting a single correct label of erroneous program,

out of 212 different classes representing the error and repair, TEGCER achieves high

Pred@3 accuracy score of 98%. TEGCER has high recall scores across majority of

the classes, with recall score >= 0.9 for about half of the them; even on the classes

that had just 8 code examples to learn from.

Figure 6.1 demonstrates the feedback generated by both these tools on a sample

program having multiple errors. Both the tools typically generate relevant feedback

within 1 second. Although the course and feedback tools are targeted towards C

programming language, our approach and results generalize to other programming

languages as well.

6.3 Experimental Setup

We conducted our study as a randomized controlled trial (RCT) at IIT-K, large

public university, during the 2017–2018–II (spring-semester) course offering of the

first programming course (CS-1). This is a common core course at this university,

offered across two semesters to all first-year undergraduates. One of the major
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Figure 6.1: Our custom IDE Prutor [79] deployed for programming assignments, with repair and example feedback tools integrated. Top-right
editor pane contains the erroneous student code, and bottom-right console pane displays the compiler errors reported by Clang [72]. Only one of the
feedback types (left pane: top or bottom) is shown in tutor pane, depending on the students’ group assignment.
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Lab # Topic Sample Question
LAB-01 Input/Output Compute simple interest
LAB-02 Conditionals Check leap year
LAB-03 Iterations Check prime
LAB-04 Nested Iterations Sum of primes
LAB-05 Functions Predict day
LAB-06 Arrays Remove duplicates
LAB-07 Matrices Compute determinant

Table 6.1: Weekly programming lab topics

components of this course are weekly programming assignments, where students

attempt 3 programming questions of varied difficulty every week, from the university

computer lab. These labs are conducted from 14:00 to 17:15 hours (~3 hours long)

on one particular day of the week. The students are not allowed to discuss among

themselves, or use the internet to solve these questions. Only hand-written notes are

allowed for reference. The score/marks allotted to students’ submission is directly

proportional to the number of instructor-designed test-cases they pass. In the

regular running of the course, 40+ tutors, who are CS post-graduate students at

the same university, remain physically present during these labs to help guide the

undergraduates.

Table 6.1 lists the topic of assignments, along with one sample assignment

question, during the first seven weekly labs.

6.3.1 Prutor: Online Programming Editor

At this university, the CS-1 course assignments are developed and submitted by

students on Prutor [79]; an internal website accessible through a web-browser (client),

with the majority of the computations such as program compilation and execution

occurring on a dedicated server. This website hosts a custom built Integrated Devel-

opment Environment (IDE) targeted for education, along with various administrative

features including account management, display of grading rubric etc.

Specifically appropriate for our purpose, Prutor maintains a complete record of

compilation requests by each student, including a unique anonymized ID per student,
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week # of the course, student code, compilation errors it triggered (if any), and the

timestamp.

6.3.2 Experimental Groups

480 students credited the course during 17–18–II semester offering, and they were

divided into 2 experimental groups randomly using odd-even roll numbering. During

the weekly lab conducted from 14:00 to 17:15 on any one particular day, 242 of these

students received feedback from TRACER, our repair-hint tool; while the remaining

238 students received feedback from TEGCER, our example-hint tool. The number

of students with odd roll numbering is not equal to those with even roll numbering

due to administrative reasons, such as course drops. Human tutors were asked to

desist from helping students resolve compilation errors, unless they had been unable

to resolve them using our automated feedback suggestions for more than 5 minutes.

For 7 weeks, these students continued to receive immediate feedback from the same

tool that they initially received from.

Figure 6.1 shows a screenshot of the user-interface when a student compiles an

erroneous program resulting in compiler errors. The right-pane is an editor where

students write their code. The bottom-pane contains the console tab where compiler

errors and warnings from a standard C compiler are displayed. The left-pane contains

the tutor tab which displays feedback from our hint tool, depending on the students’

control group. In the tutor tab, the first set of feedback are the repair-hints for

the sample code, and second set of feedback right below it shows the example-hints

for the same sample code. Note: Only one of these hints is shown to a student,

depending on his/her control group. We have shown both these feedback together in

this figure for ease of comparison.

The compilation errors encountered by the sample program of Figure 6.1 are

listed in the console tab. The error messages for line #5 and line #8 are cryptic,

with the compiler treating them as an incorrect function invocation and misplaced

bracket, respectively. This can be even more confusing for novice students, learning
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Semester Feedback Type #Students
16–17–II Manual 439
17–18–I Manual 453
17–18–II Repair 242
17–18–II Example 238

Table 6.2: # Students enrolled in different course offerings

their first programming language, who would then require human tutor assistance to

understand the error and then fix it. On the other hand, as seen in the tutor tab,

both our repair and example tool produce relevant feedback for all three erroneous

lines; with TRACER directly suggesting the desired repair by student, and TEGCER

suggesting multiple examples of correct syntax that hint at the desired repair.

Whenever a compilation error occurs, the console and tutor tabs are activated

automatically. By default, either a single fix (per line) or the single best example

(per line) is shown to students belonging to the repair or example groups respectively.

Further, students who receive the example hints can choose to generate the next

best examples, up to a maximum of 10 per line, by clicking on the button under

More? column. For instance, in the Figure 6.1, for the example hints (second set of

compilation hints in tutor pane), the student has requested one additional example

for line #7 and two additional examples for line #9, by utilizing the More? option.

6.3.3 Control Groups

The previous two offerings of the course at the same university, albeit by different

instructors, are used as baseline. Students in these two semesters used the same

browser based IDE, Prutor, to complete their programming tasks, but without any

feedback tool deployed. They relied on the compiler error messages and manual help

by human tutors in order to resolve both compilation and logical errors. Table 6.2

lists the number of students enrolled in all three offerings.

All course offerings followed the same syllabus and weekly lab settings, as shown in

Table 6.1. Different sets of lab assignments were framed for each offering. That is, the

repair and example group students received the same questions, which were different
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from other baselines. After the students get 7 labs (or weeks) of programming

practice, they appear for a mid-semester lab examination where they submit their

code on the same browser-based editor. For this exam event, neither feedback-tools

nor human tutors provided any help on compilation errors. Students wrote their

code under the invigilation of tutors, where discussion with other students or usage

of any reference materials was disallowed.

6.4 Results

In this section, we measure the utility of automated feedback tools using a suite

of existing metrics. Further, we propose a pair of new measurements that provide

additional clarity on the value of these tools to novice programmers.

Previously proposed metrics for assessing feedback efficacy include the number

of errors students make over time [17], and the average time-taken by students to

fix the errors [78]. Both metrics, in isolation, are inadequate to demonstrate true

feedback efficacy.

Multiple factors unrelated to feedback tools can attributed to improvements, such

as problem difficulty. Since our experimental and control groups had to work on

different set of assignment problems, comparing only the overall average results for

these groups would be insufficient, since the set of errors made could be different.

Also, the existing average metrics could be dominated by frequently occurring errors,

such as semi-colon missing which is trivial to solve; or by top student performers,

who do not need any additional feedback to resolve their errors. We show below how

we engage with these concerns in our analysis.

6.4.1 Number of Errors over Time

RQ1: Do students with access to feedback tools make lesser #errors over time?

In the top row of Figure 6.2, we report the number of errors that students make

in the 16-17-II, 17-18-I course offerings (without feedback) and the 17-18-II course
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Figure 6.2: Plot depicting the #errors per 100 Lines of Code (y-axis) that students make over time (x-axis), during weekly lab event scheduled
between 14:00 to 17:15 hours. The bottom row of plots depict the difference between #errors made by students with access to feedback tools and the
average #errors of both previous offerings.
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offerings (with repair and example feedback tools deployed). Each sub-plot focuses

on one of the seven weekly labs, held between 14:00 to 17:15 hour (x-axis). The

topic of these labs are mentioned in Table 6.1.

Each point in the seven subplots in the top row of Figure 6.2 refers to the

#errors (y-axis) that students made for that particular tool/semester, in a 30 minute

window at a particular time (x-axis) during lab. These #errors are normalized over

#Lines-Of-Code (LOC) written by student, since the questions and total #students

vary across offerings.

For example, consider the Lab-01 of 16-17-II course offering, where students

made a total of 9,217 compilation requests between 14:00 to 14:30, out of which

1,523 programs had compiler errors. The programs that failed to compile had a

total of 12,930 lines of code, which gives us 0.118 #normalized-errors (1523/12930).

This is represented by the left-most purple dot in Figure 6.2, where x-axis=14 and

y-axis=11.8. The second purple dot at y-axis=10.5 represents the #normalized-errors

for the time-frame 14:15 to 14:45. The rest of the plot proceeds similarly.

From Figure 6.2, it can be observed that students tend to make more #errors

at the beginning of lab, which steadily decreases until the end of lab. There is

also a natural endogenous decline in errors across labs, where students eventually

reach an average of 2-4 errors per 100 LOC, through practice and tutor assistance.

Not only does this trend hold in our experimental group sample during 17-18-II,

but students seem to be reaching the stable 2-4 errors per 100 LOC state faster,

suggesting that our feedback tools are adequately replacing human tutor assistance

in previous offerings.

The seven plots in the bottom row of Figure 6.2 depict the difference between

#errors made by students with access to feedback tools and the average #errors

of both the previous offerings. For example, for Lab-01 plot at 14:00 hour, the

number of normalized-errors per 100 lines of code is 10.0, 9.7, 9.8 and 11.8 for repair,

example, 17-18-I and 16-17-II groups respectively. That is, the average number of

normalized-errors for the baseline group is 10.8, with the average difference between
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repair and baseline being 10.0 − 10.8 = −0.8 and 9.7 − 10.8 = −1.1 between example

and baseline group. The same is depicted as orange and green point (respectively)

on the bottom plot for Lab-01, x-value = 14. Generally speaking, negative values of

the Y-axis for the bottom row graphs indicate circumstances where the experimental

groups appear to have an advantage over the human-tutored control groups, in terms

of the number of errors manifested per 100 lines of code.

From these plots, a strong protective effect is seen for automated feedback tools at

the outset of the course. During Lab-1 and Lab-2, students with feedback tools make

an average of 1-2 fewer errors per 100 lines of code, as compared to human-tutored

controls. This difference is no longer prominent beyond the second week, with

automated feedback groups performing statistically identical with the human-tutored

controls thereafter.

6.4.2 Time-Taken and Number of Attempts

RQ2: Do students with access to feedback tools resolve errors faster?

From the logs recorded by Prutor, our web-browser based IDE, we can calculate

the time-taken by students to fix their compilation errors. This is defined as the

time elapsed from the first occurrence of a compilation error, to the next successful

compilation made by student. Similarly, we also extract the number of attempts it

took to fix this error, defined as the number of unsuccessful compilation requests

made by student before finally resolving all compilation errors.

For example, consider a student’s code which ran into compilation errors E1 and

E2, i.e E1 ∧ E2 at 14:10. Further, let us assume that the student made 3 different

compilation requests after this, which resulted in errors E1 ∧E2 at 14:11, E1 at 14:12,

and finally ∅ (a successful compilation) at 14:13. Then we conclude that the student

took 180 seconds and 3 attempts to resolve the compilation error which occurred at

14:10. In other words, the intermediate errors are accounted for by the #attempts

and their individual time-stamps are ignored.

Table 6.3 summarizes cohort level statistics for our control and experimental
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Semester 16–17–II 17–18–I 17–18–II 17–18–II

Feedback Type Manual Manual Repair Example
#Students 439 453 242 238
#Success Compile 155,135 161,326 99,445 97,763
#Failure Compile 13,454 15,026 7,306 8,624

Time-Taken (AVG) 85 103 75 78
Time-Taken (SD) 137 155 123 132

#Attempt (AVG) 2.11 2.20 1.88 1.99
#Attempt (SD) 1.95 2.10 1.69 1.86

Table 6.3: Total # successful and failure compilation-requests made by students during
the 7-week labs across various offerings, along with the time-taken and #attempts to fix
the failures.

groups. We only consider attempts with time taken lower than 15 minutes, to filter

out cases where human tutors or other external events intervened in the problem

solving process, such as student moving away from desk.

The cohort level statistics are directionally consistent with the hypothesis that

automated feedback tools allow students to fix compilation errors more efficiently -

using lesser time, and taking fewer attempts. Pairwise t-tests evaluating differences

between the experimental and control cohorts, for both time taken and attempt

counts, are all statistically significant at p < 10−5; after Bonferroni correction to

account for multiple comparisons.

While the differences point in the right direction and are heavily statistically

significant, the size of the effects range from 0.05 to 0.19 for time taken, and 0.06 to

0.16 for attempt count. Thus, these conventional cohort-level analyses, by virtue

of the large sample size of our study, reliably demonstrate a small improvement

in resolving compilation errors for automated feedback tools, when compared to

performance while assisted by human tutors.

In other words, while the average number of errors over time (Section 6.4.1) made

by experimental group (students with access to our feedback tools) is similar to that

of the control group after 2 weeks of deployment, the time-taken analysis (reported

in this Section) demonstrates that the tools are indeed helpful in resolving the errors



152

Time-Taken (t) #Errors Survived S(t)

0 100 100∕100 = 1.00
25 70 70∕100 = 0.70
75 30 30∕100 = 0.30
100 0 0∕100 = 0.00

Table 6.4: Survival probability estimate for time-taken on hypothetical data.

faster.

6.4.3 Error Survival Probability for Time-Taken

RQ3: Do students with access to feedback tools have a lesser probability of their

errors surviving, after spending an equivalent amount of time?

Seeking to go beyond summary assessments of cohort-level performance, we

turned to survival analysis for better representation and analysis of the tens of

thousands of compilation errors which students made in our course offerings. In

particular, we estimate an error survival function that models the probability of an

error surviving beyond a specified time. Survival functions are commonly used in

the areas of system reliability, social sciences and medical research. For example,

they are used to model the probability of a cancer patient surviving at time t, while

under the effect of a treatment-X [113].

Survival probability function, commonly denoted as S, is formally defined as

S(t) = Pr(T > t)

where Pr stands for probability, T is a random variable denoting the time of “death” of

an event, and t is a specified time. We used the popular Kaplan-Meier estimator [114]

from lifelines [115] Python package to model this survival function on our data.

For example, consider a hypothetical scenario where students make a total of

100 compilation errors during a lab. 30 of these errors are resolved at 25th second,

40 of them are resolved at 75th second, and the remaining 30 errors take exactly

100 seconds to resolve. Then, the survival probabilities for this example are defined
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according to Table 6.4. Survival probability at time 0 second, S(t = 0), is 1.00 since

all errors persist when student has spent 0 seconds to fix the error. S(t = 25) is 0.70

since 30 of the errors got resolved at 25th second, and hence 70 errors survived after

25 seconds. Similarly, S(t = 75) is 0.30 since only 30 errors survived after 75 seconds.

Finally, S(t = 100) is 0.00 since in our small hypothetical dataset, all observed errors

got resolved within 100 seconds.

Figure 6.3a plots the survival function of time-taken data, for all errors from all

students in the experiment, where survival probabilities (y-axis) are shown against

time-taken (x-axis) to resolve compiler errors in different control groups. The top-left

plot depicts the probability of an error surviving beyond certain time during the

7-week labs. The survival probability reaches 0.5 for repair, example, 17-18-I and

16-17-II groups at time 29.5, 28.7, 43.1 and 32.3 seconds respectively. In other words,

students of these particular cohorts require at least this amount of time to resolve

50% of the compiler errors. The top-right plot depicts the survival probability of

an error during the exam event, when no feedback (tool or human) was provided to

students.

The bottom row graphs represents the difference of survival probabilities between

repair/example (feedback) group and the average of previous semesters (baseline).

From the bottom-left plot of Figure 6.3a, it can be observed that the feedback group

of students have lower error survival probabilities than the baseline, averaged across

all labs. In other words, as compared to the students in baseline group, the students

with access to feedback tools have a lesser probability of their errors surviving after

spending an equivalent amount of time to resolve them. To interpret the graphical

result concretely, for example, the repair group students have a 7.5% additional

chance of resolving a compiler error after having spent 50 seconds on the problem,

compared to human tutored students. While we had expected a priori that feedback

using examples would require more time on task than pointed repair suggestions,

this analysis reveals that, for our domain at least, feedback using examples is equally

time-effective as feedback using specific repair suggestions.
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(a) Error survival probability against Time-Taken
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(b) Error survival probability against #Attempts

Figure 6.3: Error survival-probability (y-axis) plots against (a) time-taken and (b)
#attempts (x-axis) to resolve compiler errors, across various control groups. For both the
figures, the left-side plot depicts that when feedback tools are active during labs event, the
survival probability of time and #attempts required to resolve compiler errors is slightly
lower for repair (orange-line) and example (green-line) feedback tools. When the feedback
tools were withdrawn during exam event, no side effect was observed.
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From the bottom-right plot, it can be observed that all groups have a similar

survival probability (y-axis) for any given time-taken (x-axis) during the exam event.

This is in a way reassuring, in that the identical performance of the experiment

and control group students, once the feedback tools are removed, suggest that the

groups are ability-matched to a considerable degree. It is also revealing, and from a

pedagogical perspective perhaps disappointing, that the advantages of automated

feedback appear to be primarily logistical. Students who received automated feedback

for seven weeks seem to be no better at diagnosing and repairing compilation errors

on their own than students with human tutoring. The advantage seen during lab

events, therefore, does not appear to correspond with improved understanding of

compiler errors. In other words, the performance improvement during labs appears

to correspond simply with effective delivery of repair instructions and example

suggestions via automated feedback, and not with conceptual improvement.

On the other hand, it is also reassuring that automated tools which provide

relevant feedback can substitute human tutoring without negative effects. Especially

when there is lack of expert human tutors at scale, for example in a MOOC setting

with thousands of student enrollments.

6.4.4 Error Survival Probability for Attempt Count

RQ4: Do students with access to feedback tools have a lesser probability of their

errors surviving, after equivalent number of attempts?

The top-left graph in Figure 6.3b depicts the survival probabilities (y-axis) against

the #compilation-attempts to resolve the error (x-axis) by students from various

groups, during the 7-week lab event. For the repair, example, 17-18-I and 16-17-II

groups, the survival probability of an error after one compilation attempt is 0.4, 0.42,

0.48 and 0.45 respectively. In other words, the repair (respectively example) feedback

group has 6.5% (respectively 4.5%) higher chance of resolving an error in a single

attempt, as compared to the average survival probability of students in baseline

group.
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Figure 6.4: Error survival probability (y-axis) against time-taken (x-axis) plots for specific
errors which display large divergence.

Thus, Figure 6.3b tells a similar story as Figure 6.3a, with number of attempts

at error correction per problem as the unit of measurement, instead of time-taken.

This reinforces the benefit of the tool since we reach the same conclusion from two

different metrics. Also, as in the case of time-taken analysis, no significant change is

observed in the survival probability of different groups during the exam event, when

all forms of feedback are disallowed.

6.4.5 Survival probability of Specific Error Types

RQ5: What are some of the interesting errors, where one group performs better

over the others?

Based on the earlier analysis, it is apparent that automated feedback tools do

help students resolve compilation errors. In this section, we further analyze the

specific types of errors wherein our feedback tools help the most (or least) as opposed

to the baseline. Such findings could potentially assist in tailoring feedback type to

error category in adaptive tutoring systems in future. The large sample size and

longitudinal design of our study permits us to answer questions about individual
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1 #include<stdio.h>

2

3 int main(){

4 printf("Hello");

5 }

6

7 return 0;

8 }

Compiler Message
7 E5 expected identifier or “(”
8 E6 extra closing brace “}”

Repair Feedback
8 “Delete this line”

Example Feedback
8 “Delete this line”
8 // }

(a) EG7

1 #include<stdio.h>

2

3 int main(){

4 int x,y,;

5

6

7 return 0;

8 }

Compiler Message
4 E5 expected identifier or “(”

Repair Feedback
4 int x,y;

Example Feedback
4 int n;

4 float a, b;

(b) EG10

1 #include<stdio.h>

2

3 int main(){

4 for(int j=0, j<10; j++)

5 printf("%d", j);

6

7 return 0;

8 }

Compiler Message
4 E7 expected “;” in “for” state-

ment

Repair Feedback
4 for(int j=0; j<10; j++)

Example Feedback
4 for(i=0; i<n; i++)

4 for(i=1; i<=n; i++)

(c) EG19

Figure 6.5: Sample programs for specific errors - (a) EG7 where feedback tools perform
poorly, (b) EG10 where both tools have lower error survival, and (c) EG19 where examples
seems to work better. The top repair tool fix prediction, and the top-2 example suggestions
are also shown for each case.
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error categories with statistical confidence.

To this end, we plot the error survival probability against time-taken for each

individual error separately. The concept of error (E) and error-groups (EG) has been

defined earlier, in Chapter 5.2.1 and 5.2.2 respectively. Fig 6.4 shows the survival

probability graphs for the most frequent error group EG1, and for three error groups

which demonstrate some of the largest divergence between the feedback and baseline

groups - EG7, EG10, EG19.

EG1, the most frequent error group, contains the error E3: use of undeclared

identifier “ID”. This is typically triggered when students use a variable without

declaring it first, and the students are able to resolve this comfortably with or without

feedback (for time-taken t = 50 seconds, the survival probability is 0.23 for almost

all groups).

From Figure 6.4, students with repair tool feedback seem to demonstrate higher

survival probability for error group EG7. This error group is typically encountered

when students inadvertently add extra closing brace “}”. Figure 6.5a shows a simple

code that triggers these errors, along with the compiler message and feedback from

tools. One of the major drawbacks of both the repair and example tool is that

they focus only on the compiler reported line-number, and hence they are unable to

pinpoint the correct fix: deletion of spurious “}” on line #5. Instead, both incorrectly

suggest deleting the brace on line #8. This seems to affects repair group students

adversely.

For the EG10 error group in Fig 6.4, both feedback tools demonstrate faster error

resolution. At time t=50 seconds, the error survival probability is 0.15 for repair

tool as compared with 0.46 average probability for baseline semesters. That is, there

is a 31% lower chance for EG10 errors to survive for repair group, after 50 seconds of

effort. Fig 6.5b shows a sample code which encounters this error. In this example,

the student has a stray comma on line #4, but the compiler message seems cryptic

while suggesting to either add another variable after the comma or to delete it. The

top-2 examples proposed suggest both these scenarios, while the repair tool suggests
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deletion of this comma.

EG19 is another interesting error group, where the example control group demon-

strates the lowest survival probability, performing considerably better than the repair

group and baseline. Fig 6.5c lists a simple example code for this error group, where

the student is confused about for-loop syntax. While both the compiler message and

repair feedback suggest the replacement of comma “,” with a semi-colon “;” after loop

initialization, example feedback tool suggests this using similar examples, along with

a variety of other ways to write a for-loop specifier. The top-2 examples demonstrate

the concept of 0-to-(N-1) and 1-to-N iteration. On requesting further examples,

example tool suggests different ways of writing loops with empty-initialization, empty-

condition or empty-increment mode, which is perhaps helping students master the

for-loop syntax better, as compared to the other groups.

A general hypothesis congruent with these case samples seems to be that, feedback

by example appears to work better for compiler errors by commission, viz. errors

generated because of ignorance of the correct syntax; while feedback by specific repair

suggestions appears to be better for compiler errors by omission, viz. situations where

the student already knows the correct syntax, but has inadvertently made a mistake.

Further investigation is naturally needed to concretely test this hypothesis, both in

this specific context and more generally. In its general form, this hypothesis could

be of considerable interest to education research in natural and artificial language

learning, where the difference between learning from positive examples and from

corrective feedback is extremely salient [116].

6.4.6 Potential Performance Improvement

RQ6: What is the improvement provided by feedback tools, analyzed across individ-

ual errors of varying difficulty?

As seen in Section 6.4.3, the survival analysis of our data quantifies the extent

of improvement for the average compilation of the average student at 5-10% over

the controlled baselines. But this average picture glosses over the heterogeneity in
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Figure 6.6: Area Under Curve (AUC) for hypothetical data. The blue curve has lesser
error survival probability, and hence is easier compared to the red curve. This performance
improvement is quantified as the difference between their AUCs.

problem difficulty involved. Some compilation errors are harder to find and debug

than others. This matters because any form of feedback, even a cursory self-check,

should prove adequate in resolving simple errors, for example a missing ‘;’ at the end

of a statement. The true test for a feedback mechanism lies in its ability to assist

programmers resolve more complex errors.

In order to view the overall picture of performance improvement across the

different error groups, we developed a new metric based on the Area-Under-Curve

(AUC) of the error survival probability curves. The basic intuition here was that,

errors which are intrinsically harder to resolve will have shallower error survival

probability curves, and hence a larger area under this curve. Thus, we use survival

probability AUC as a proxy for problem hardness. A hypothetical survival probability

plot and its AUC calculation is shown in Fig 6.6.

Concretely, let AUCB represent the average AUC of survival probability plots

against time-taken for 16-17-II and 17-18-I baselines semesters. Let AUCF represent

the best (minimum) AUC of survival curves for repair and example tool, when tools

were deployed during 17-18-II semester. Then, the area under survival curve for

baseline AUCB represents the hardness of a compiler-error.
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Figure 6.7: Analyzing potential performance improvement of feedback tools on 17-18-II
semester students for time-taken to resolve Top-100 frequent compilation-errors, against
the hardness of the error.

Also, as we have already seen above, large differences in performance would

correspond with large divergences of the survival function curves between the control

and test groups; with the test group survival probability curve lower than the control

group curve if the feedback tools are effective. The larger the gap between these

two curves, the greater the potential performance improvement offered by the tools.

And hence we can quantify the difference between the baseline and feedback survival

curve area, AUCB − AUCF , to represent the potential performance improvement of

students when feedback tools was deployed.

Having defined these two variables, we select the top-100 frequent compiler error-

groups: EG1 to EG100. These error groups occur at a frequency of between 5964 to

35 times on average, in the 3 offerings of our course during 7-week lab event. Then,

we plot survival probability curves (y-axis, 0.0 to 1.0) against time-taken (x-axis. 0s

to 200s) for each of these individual compiler error group (EG) separately.
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The relationship between problem hardness and improvement attributable to

automated feedback is plotted in Figure 6.7, with potential hardness on y-axis

against potential performance improvement on x-axis. Positive x-axis indicates that

the compiler-error has a lower survival chance for students with feedback-tools, as

compared to their previous semester peers.

To translate between this graph and our earlier results, consider the Figure 6.4

denoting error survival curve for EG10. The AUC for repair, example, 17-18-I

and 16-17-II is 28.03, 61.78, 82.47 and 74.46 respectively. Then, AUCB = (82.47 +

74.46)∕2 = 78.46 and AUCF = min(28.03, 61.78) = 28.03. Hence, EG10 is represented

in the performance improvement Figure 6.7 by a blue-diamond point, at y-value

= AUCB = 78.46 and x-value = AUCB − AUCF = 50.43.

From Figure 6.7, we observe that there is performance improvement on usage of

either repair or example feedback tool, across most compiler error groups. But more

importantly, improvements are greater for the harder errors, suggesting that tool

usage is more helpful than human tutor help for errors that are more complex.

6.5 Related Work

D’antoni et al. [5] develop and deploy an Intelligent Tutoring System which provides

automated feedback for teaching automata construction to students. Three different

types of feedback are provided when student designs an incorrect automata; binary

(correct/incorrect), conceptual hints which propose strategies for fixing it, and counter-

example hints which suggests specific string inputs that the students’ automata

should/shouldn’t accept. They report that the students prefer and perform better

on conceptual and counter-example based feedback over binary feedback (N=377,

1-week session). We observe similar effect in the programming domain for fixing

compilation errors. While the compiler provides with additional details such as

line-number and error message, in those instances where the message is cryptic for

beginners, its utility is closer to just binary correctness.

Given the commonality of CS1 courses and growing enrollment on MOOCs, a
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variety of feedback systems have been published to aid novice programmers at large

scale. Some systems such as CodeOpticon [4] propose user-interfaces that aid tutors

to manually intervene in live coding sessions, when they observe students making

mistakes (N=226, 30 minute session). Other systems such as OverCode [117] propose

visualizers to semi-automatically clusters the submissions, which the instructors can

use later to provide personalized feedback per cluster, after the students have turned

in their assignments (N=12, 60 minute session). Since the instructors or tutors have

to manually analyze the code and provide feedback, scaling these systems requires

additional effort by experts.

In the work by Yi et al. [78], state-of-the-art automated semantic repair tools

designed for expert programmers are used to provide feedback on student assignments.

These tools are able to generate only partial repairs on majority of the student

assignments, and handing out these partial repairs doesn’t seem to help them resolve

logical bugs in other students’ code (N=263, 15 minute session). In comparison, we

provide relevant repair (or example) feedback on students’ own code, using tools

specialized in fixing compilation errors of introductory programming.

On the compilation error repair front, there is active research on how to better

enhance error messages to suit novice programmers [94]. Meanwhile, other studies

claim that additional information doesn’t help students significantly [109], and that

placement and structuring of the message is more crucial [75]. We believe these

techniques are complementary to ours.

In terms of the underlying example feedback tools’ algorithm, an approach very

similar to ours was proposed under the name of HelpMeOut [17], where a social

recommender system is proposed in which students can contribute to a growing

database of error-repair example pairs, for each unique compilation error. These

before-after examples, along with students’ explanation, are then fetched from a

database when another student encounters the same error message. The authors use

self-reported survey after 39 person hours and # database hit/miss metrics to gauge

performance gain.
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6.6 Discussion

As we see above, existing user studies on the effectiveness of automated feedback

are frequently conducted on relatively small study groups, or on sizeable groups

over short period of time (order of minutes); primarily in observational settings and

usually to make a case for the tool developed by the same authors conducting the

user study. Thus, the generalizability of such user studies is difficult to assess.

In this chapter, we conduct a user study impervious to such challenges, so as

to rigorously verify the pedagogical value of automated feedback in introductory

programming. Our randomized controlled experiment involved 10,000+ person

hours of user-study. Additionally, in an improvement over existing studies which

frequently report isolated measures of efficacy, we report a comprehensive panel of

both conventional and novel metrics to verify the efficacy of automated feedback

tools.

The large size of our study sample, the RCT nature of our experimental design

and the granular nature of our analysis permits a more nuanced appreciation of

the value and limitations of automated feedback tools. Specifically, we find that

these tools assist students in fixing compilation errors more rapidly than human

tutors, but that this advantage is primarily logistical. In the absence of these tools,

students learning programming assisted by these tools are no more effective at

repairing compilation errors than human-tutored students. Thus, we conclude that

such automated feedback tools cannot, standing alone, be considered effective from

a pedagogical perspective.

At the same time, these tools have their own advantages in the actual task

appointed to them - helping students fix errors in their code. As we show in our

analyses, these tools prove increasingly superior to human tutors precisely in helping

students solve rare, complex errors. This is a reasonable finding, since the rarity of

such complex errors reduces the probability that any individual human tutor will

have seen them before, whereas the computational resources of the automated tool
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suffers from no such experiential limitation.

Finally, our results also open the tantalizing possibility of designing systems to

rationally adapt feedback modalities to individual students’ needs. While we have

not established this conclusively, our results do suggest that feedback by example

is a superior technique when a student’s error is caused by ignorance of syntax,

whereas feedback by repair suggestion is better when errors are inadvertent. Further

investigating this hypothesis and finding ways to categorize programming errors

into these two categories automatically should lead to the design of such adaptive

interface feedback systems.

Limitations

While we have sought to minimize possible confounds in our experimental design, it

is appropriate to point out some that we could not control. Most importantly, our

baseline/control group are students of a different offering, from the experimental

cohort. Due to administrative reasons and ethical concerns, we could not deny all

forms of feedback to a new third group of students, randomly picked from the same

offering. Given our time improvements observed, lack of automated feedback could

put these students at relative academic disadvantage, compared to other groups.

Nonetheless, we believe that the baseline comparisons are valid and provide valuable

insights, owing to compulsory nature of CS-1 course at our university, having the

same syllabus and teaching material across offerings. Where applicable, we take

precaution in normalizing the metrics, such as with #students or #Lines-of-Code, to

account for variance in #students and problem difficulty. The identical performance

observed between experimental and control groups during exam event, once feedback

tools are removed, suggests that our groups are ability-matched to a considerable

degree.

The student cohort from semester 2017-2018-I seems to in general have higher

error survival probabilities. This could partially be explained by the fact that they

undertake this programming course in their very first semester at the university, as
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opposed to students from the other control and test groups, who took this course in

their second semester at the university. Students in the second semester might be

expected to have more experience in the use of computer basics, as well as be better

adjusted to scholastic expectations in college.

Also, our time-taken definition might not always accurately reflect the time-taken

to resolve compilation error, since the student could be making logical improvements

along with fixing the compilation bugs, in the same time-period. However, this is a

random effect across control and baseline groups and hence should not affect our

conclusions.



Chapter 7

Conclusion and Future Work

Recent advances in Intelligent Tutoring Systems (ITS) have made personalized

education for the masses a reality in the near future. While significant effort is

required in building ITS for each domain, we have proposed core building blocks

to aid in the design and development of solution and problem generation modules.

These modules are not only indispensable in MOOCs (Massive Open Online Courses)

setting, but are also useful in traditional classroom setting. The problem and solution

generation modules can automate the repetitive and tedious task of instructors in

creating assignment problems, grading student submissions, and providing feedback

on incorrect solutions. From the students’ point of view, solution generation modules

can provide real-time hints on incomplete solutions, and problem generation modules

can create hundreds of alternate fresh practice problems.

Some of the ideas presented in this work are more broadly applicable. Breaking

solution search in two parts (abstract solution and its refinement) is a general

concept that might apply to many other subject domains. Our modeling of problem

generation as reverse of solution generation is a general concept that might apply

to problem generation in other subject domains. Our usage of offline computed

data structures is a general concept that is applicable in other educational settings,

enabled by our small-sized hypothesis; an observation that problems and solutions are

typically small in educational setting. Hence all abstract solutions can be observed

and recorded in an offline phase. We demonstrate the practicality of these ideas by
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developing ITS for three diverse domains.

In educational setting, there can be multiple correct solutions to a given problem,

with only some of them being desired by instructors and students. Acknowledging this

difference, our TRACER and TEGCER tools propose and report on new relevance

metric, which captures the percentage of cases where the tool’s suggestion exactly

matches the student’s desired solution. We hope for more widespread adoption

of these stringent metrics borrowed from information retrieval, as opposed to the

common practice of reporting on %success, the percentage of cases where the tool

generates any one of the correct solution. The primary goal in a pedagogy setting is

to improve learning, and not to achieve the highest accuracy in generating ineffective

correct solutions. Our proposed metrics attempt to capture this goal.

Our analysis of feedback tool efficacy through error survival curves and area under

these curves, as opposed to the traditional average metrics prevalent in feedback tool

literature, is broadly applicable and can be used to efficiently represent variations in

experimental and control cohorts of large scale user studies.

Our large scale user study results demonstrate that automated tools can aid

students in solving their problems more effectively, by means of providing timely

relevant solution and example based feedback. These feedback tools were found to

have no lasting impact, positive or otherwise, on their withdrawal. This suggests

relevant feedback tools are equivalent to human tutoring, while being scalable in

massive classroom settings like MOOCs.

Future Work

Conducting additional large scale user studies of ITS where feedback generation

technology exists can help reinforce our positive results; ideally with a more tightly

controlled group, from the same course offering as the experimental group. We

plan to deploy our natural deduction and board-games ITS to measure learning

improvement in novitiates, when provided with relevant solution and example based

feedback. This would help investigate whether our conclusions are transferrable
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across domains.

In this thesis, we focused on providing relevant solution and example based feed-

back to aid learning. Multiple forms of instruction principles have been evaluated for

efficient learning in literature [6], depending on various factors including complexity

and student’s mastery of the educational content. Some of the prominent feedback

mechanism used by instructors and teaching assistants [8], including the CS-1 in-

troductory programming course offering at IIT-Kanpur, are (i) reveal (provide the

complete solution), (ii) partially reveal (show a partial solution, which the student

has to complete), (iii) reveal and justify (after revealing the solution, ask the student

to justify each individual part), (iv) elicit and reveal (pose a series of questions

which eventually lead to a solution), (v) obfuscate and reveal (the correct solution is

mixed with incorrect solutions, such as in the form of multiple-choice options), (vi)

verbose explanation, (vii) example based (where correct solution for similar problems

is revealed). Since the goal of automated feedback tools is to mimic human tutor

behaviour at large scale, it should be capable of automatically switching between

different modes of feedback, depending on the situation, for efficient learning. In

other words, instead of fixing a student to a particular form of feedback such as

repair/example based, we plan to investigate the learning effect of providing dynamic

type of automated feedback, based on student needs.

While our user-study focused on measuring the utility of solution and problem

generation modules to aid students, in future we plan to quantify its benefit to the

teachers as well. Our problem generation technology can be used for automated

assignment creation, based on the topics covered and difficulty setting. Our solution

generation technology can be extended to automatically grade student submissions, in

terms of its distance from the closest correct solution. User studies can be conducted

to capture teacher’s satisfaction on various functional and non functional parameters.

A recent user study by Yi et al. [78] found that providing partial repairs on incorrect

student program attempts helps the teaching assistants grade faster, without affecting

the final scores received by students. This is a promising results which needs to be
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explored further, in a larger setting and for other domains.

Our positive results encourage the development and deployment of ITS for other

educational domains. One such closely related domain is that of logical error repair

for introductory programming. Introductory programming is one of the most popular

courses offered by universities, and students often spend more time understanding

and fixing logical errors compared to compilation errors. The user study by Yi

et al. [78] claims that providing solution based feedback does not help students

resolve logical errors in programs written by other students. However, new feedback

tools can be designed for logical errors that generate relevant solutions and example

based feedback on students’ own code, in a live setting. This feedback tool can be

developed utilizing the generic framework proposed in this thesis, which involves core

components of abstraction, abstract solution, concretization and offline-computation.

The primary challenge in such an approach would be to define the semantic (or

abstract) representation and semantic equivalence of programs.

Not every educational domain can be mapped into our framework for solution

and problem generation, consisting of abstraction, abstract solution, problem search

and concretization phase. For example, consider the domain of trigonometry proofs.

Trigonometry proofs can be considered similar to natural deduction proof style

where rewrite rules are repeatedly applied on a starting premise, until a specific

term is generated. Unlike natural deduction proofs, trigonometry proofs don’t have

any apparent abstraction to help reduce its intractable search space. Hence, new

methodologies might need to be developed to enable both solution generation and

similar problem generation. This is an area for further investigation.



Appendix A

A.1 Simple Traditional Board Games

In this section, we present additional results for Chapter 3. Tables A.1, A.2 and A.3

lists interesting starting states for CONNECT-3 & CONNECT-4, Bottom2 and

Tic-Tac-Toe respectively, against depth-k2 = 2 opponent strategy. Observe that |Wj|

is small fraction of |V |, which illustrates the significance of our symbolic methods

in finding these. Also, observe that vertices labeled medium and hard are a small

fraction of the sampled vertices, which illustrates the significance of our efficient

iterative sampling strategy.
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Game State j Win No. of Sampling k2 = 2
Space Cond States k1 = 1 k1 = 2 k1 = 3
|V | |Wj| E M H E M H E M H

CONNECT-3 4.1×104 2 RCD 110 All * 24 5 * 3 0 * 0 0
4 × 4 6.5×104 RC 200 All * 39 9 * 23 5 * 0 0

7.6×104 RD 418 All * 38 14 * 24 4 * 0 0
6.5×104 CD 277 All * 44 21 * 27 17 * 0 0

CONNECT-3 3 RCD 0 -
4 × 4 RC 0 -

RD 18 All * 0 0 * 0 0 * 0 0
CD 0 -

CONNECT-4 6.9×107 2 RCD 1.2×106 Random * 183 202 * 148 115 * 0 0
5 × 5 8.7×107 RC 1.6×106 Random * 70 237 * 75 181 * 0 0

1.0×108 RD 1.1×106 Random * 116 268 * 144 77 * 0 0
9.5×107 CD 5.3×105 Random * 357 133 * 200 95 * 0 0

CONNECT-4 3 RCD 2.8×105 Random * 445 832 * 384 497 * 227 166
5 × 5 RC 7.7×105 Random * 328 969 * 328 506 * 93 196

RD 8.0×105 Random * 398 1206 * 477 501 * 177 79
CD 1.5×105 Random * 146 73 * 168 44 * 87 19

Table A.1: CONNECT-3 & CONNECT-4 results against depth-2 strategy of opponent. The third column (j) denotes whether we explore from W2
or W3. The sixth column denotes sampling method used, to select starting vertices; if |Wj| is small, “All” vertices are explored, else “Random”
sampling of first 5000 vertices from Wj are explored. The E, M, and H columns report the number of easy, medium, or hard vertices found among
the sampled vertices. For each k1 = 1, 2, 3 the sum of E, M, and H columns is equal to the number of sampled vertices, and * denotes the number of
remaining vertices; that is, E = |Wj| −M −H .
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Game State j Win No. of Sampling k2 = 2
Space Cond States k1 = 1 k1 = 2 k1 = 3
|V | |Wj| E M H E M H E M H

3 × 3 4.1×103 2 RCD 20 All * 5 0 * 1 0 * 0 0
4.3×103 RC 0 -
4.3×103 RD 9 All * 2 1 * 3 0 * 0 0
4.3×103 CD 1 All * 0 0 * 0 0 * 0 0

3 × 3 3 RCD 0 -
RC 0 -
RD 0 -
CD 0 -

4 × 4 1.8×106 2 RCD 193 All * 14 25 * 0 2 * 0 0
2.4×106 RC 2709 All * 572 288 * 89 245 * 0 0
2.3×106 RD 2132 All * 104 48 * 13 6 * 0 0
2.4×106 CD 1469 All * 127 49 * 18 5 * 0 0

4 × 4 3 RCD 0 -
RC 90 All * 38 27 * 0 0 * 0 0
RD 24 All * 0 2 * 0 0 * 0 0
CD 16 All * 6 3 * 1 0 * 0 0

Table A.2: Bottom-2 results against depth-2 strategy of opponent. The third column (j) denotes whether we explore from W2 or W3. The E, M,
and H columns report the number of easy, medium, or hard vertices found among the sampled vertices. For each k1 = 1, 2, 3 the sum of E, M, and H
columns is equal to the number of sampled vertices, and * denotes the number of remaining vertices; that is, E = |Wj| −M −H .
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Game State j Win No. of Sampling k2 = 2
Space Cond States k1 = 1 k1 = 2 k1 = 3
|V | |Wj| E M H E M H E M H

3 × 3 5.4×103 2 RCD 36 All * 14 0 * 0 0 * 0 0
5.6×103 RC 0 -
5.6×103 RD 1 All * 0 0 * 0 0 * 0 0
5.6×103 CD 1 All * 0 0 * 0 0 * 0 0

3 × 3 3 RCD 0 -
RC 0 -
RD 0 -
CD 0 -

4 × 4 6.0×106 2 RCD 128 All * 8 0 * 0 0 * 0 0
7.2×106 RC 3272 Lowest-100 * 48 21 * 0 0 * 0 0
7.2×106 RD 4627 Lowest-100 * 3 2 * 0 0 * 0 0
7.2×106 CD 4627 Lowest-100 * 3 2 * 0 0 * 0 0

4 × 4 3 RCD 0 -
RC 0 -
RD 4 All * 0 0 * 0 0 * 0 0
CD 4 All * 0 0 * 0 0 * 0 0

Table A.3: Tic-Tac-Toe results against depth-2 strategy of opponent. The third column (j) denotes whether we explore from W2 or W3. The sixth
column denotes sampling method used, to select starting vertices; if |Wj| is small, “All” vertices are explored, else “Lowest-100” sampling of 100 least
scored vertices (according to iterative simulation score) from Wj are explored. The E, M, and H columns report the number of easy, medium, or hard
vertices found among the sampled vertices. For each k1 = 1, 2, 3 the sum of E, M, and H columns is equal to the number of sampled vertices, and *
denotes the number of remaining vertices; that is, E = |Wj| −M −H .
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