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Abstract

Static analysis of functional programs turns out to be more challenging than imperative
programs. The main reasons being a compositional style of programming emphasizing
creation of user-defined functions, use of algebraic data types and support for higher-
order programming constructs. Techniques which work well for analyzing imperative
programs do not suffice for functional programs. In this thesis, we formulate the problem
of context-sensitive dependence analysis for first-order functional programs. However,
we are interested in a more general notion of dependence called structure-transmitted
dependence, which can answer questions such as: For expressions e; and es in a program,
if o1 represents the parts of interest in the value of ey, then which parts of the value of eq
are required to compute o1. We show that an analysis that is context-sensitive and models
structure-transmitted dependences is undecidable. While a different formulation of this
problem has already been proved to be undecidable, ours is an independent proof, both
in terms of formulation and the reduction strategy employed.

Using the formulation we define an approximate dependence analysis which mod-
els structure-transmitted dependence precisely but over-approximates context-sensitivity.
The resulting analysis is still precise enough to be useful for applications such as garbage
collection and program slicing. In spite of the analysis being context-sensitive, we ensure
that it is efficient—the body of a user defined function is analyzed only once, irrespective
of the number of times the function is called. Given an expression e; and the parts of
interest o; expressed as a regular grammar, the result of the approximate analysis is a
regular grammar corresponding to e, that answers the dependence question. We formally
prove the soundness of our analysis. As applications, we use variants of the analysis for
i) computing liveness of lazy first-order programs and use it for liveness-based garbage
collection, and ii) static program slicing,.

We first use our dependence analysis to compute liveness for lazy languages. A



variable is [ive if there is a possibility of its value being used in future computations and
dead if it is definitely not used. A liveness-based garbage collector retains only references
that are live as opposed to a reachability-based collector which retains all references
that are reachable. Although it has been shown that liveness-based garbage collection is
effective for eager first-order functional languages, extending the scheme to lazy languages
is not straight forward. The reasons are: i) In a lazy language the point of evaluation
of an expression can be determined statically, ii) references to values can escape their
scope of declaration because of lazy constructors. Further, the garbage collector in a lazy
language needs to handle unevaluated expressions (closures) during garbage collection. Tt
has to make a liveness-based decision on which parts of the closure can be safely garbage
collected. This is the first reported work that uses the results of an interprocedural
liveness analysis to garbage collect both evaluated data and closures. We provide a proof
of correctness of the liveness-based garbage collection scheme. Using a prototype that we
have implemented, we show that the number of garbage collections and the peak memory
required for executing the program reduces for all the programs in our test suite, and the
total time spent doing garbage collection also reduces for many programs.

Program slicing refers to the class of techniques that delete parts of a given pro-
gram while preserving certain desired behaviours. The desired behaviors are specified
using what is called as the slicing criterion. Slicing can be used for debugging, software
maintenance, optimization, program understanding and information flow control. We
show how program slicing can be modelled as a dependence analysis problem. Applica-
tions such as program specialization, cohesion measurement and parallelization require
the same program to be sliced with more than one slicing criterion. Using certain proper-
ties of our formulation of dependence analysis, we define a novel incremental method for
slicing programs, i.e., slicing the same program with different input slicing criteria. We
show the performance benefits of incremental slicing by implementing a slicer capable of
slicing incrementally and non-incrementally. In the interest of completeness, we handle
higher-order programs by converting them into first-order programs through a process
called firstification. We run dependence analysis on the first-order program and obtain its
slice. The resulting sliced program is mapped back to the original higher-order program.
As an example implementation, we extend our slicing algorithm to handle higher-order

programs.
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Chapter 1

Introduction

Static analysis is a collection of techniques that finds useful information about programs.
Such information has a variety of uses—debugging, optimization and program verification
are examples. A static analysis consists of two parts: i) a suitable representation for
the information being computed by the analysis, which we shall generally call dataflow
information, and ii) a fixed point iteration over a representation of the program to compute
the dataflow information. Given the differences in the imperative and the functional
programming styles, the kind of information sought and consequently the nature of the

analysis differ, in general, for programs written in the two styles.

1.1 Analysis of imperative programs

A common example of an analysis in imperative languages is reaching definitions |7, 8|.
This determines the definitions of a variable that may reach a particular program point.
The dataflow information in this case may be represented as sequence of boolean values,
also called a bit-vector, each value representing a definition of a variable at a program
point. In contrast, analyses which compute properties of programs that manipulate the
heap through recursive types require a more complex dataflow representation. This is
because such programs could be used to access unbounded regions of the heap memory
and the dataflow information is usually an abstraction of regions of the heap, often in the
form of graphs. Alias analysis or pointer analysis|9, 24, 28, 42, 48, 49, 52, 53, 95|, liveness
analysis|5, 44, 46, 47] and shape analysis[84, 85| are examples of such analyses.

The fixed point iteration to compute the analysis results can be performed on a



Si: X 5; p—
Sy y 3;
z>0

Sy: X =y + 2;
S5 : else print(zs + yo)
,

S7: print(x + y);

() (b) (c)

Figure 1.1: Program representations for static analysis. (a) An example program (b)

Control Flow Graph of the program in (a) (b) SSA representation of the program in (a)

structure that models the program being analyzed. The program is usually represented
as a graph with the statements in the program as nodes and relations such as data/control
flow among statements as edges. Examples of such representations are the Control Flow
Graph (CnFG), Static Single Assignment (SSA) form and Program Dependence Graph
(PDG) [27]. Figure 1.1 shows an example program and its representation as a CnFG is
shown in Figure 1.1(b). In this graph, nodes represent statements in the program. and

edges represent possible flow of control from one statement to another.

However, notice that the CnFG may separate statements that are computationally
close to each other. As an example, statement Sy defines a variable y that is used in Sj.
The pair (S, S4), called a def-use pair, represents a direct data dependence between Sy
and S4. In general, data dependence is a transitive relation. In the example program, S;
is data dependent on Sg due to the use of x. Sg is data dependent on Sy due to its use of
y and hence transitively, S7 is data dependent on S5. Since the definition and use might

be separated by other statements, data dependences are not obvious in a CnFG.

There is yet another sense in which a statement .S; can depend on S;. The value

computed by S; decides whether the statement S; gets executed or not. In such a case we
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say that \S; is control dependent on S;. In the example program, execution of statement Sy
and Sg depends on what S5 evaluates to. Therefore both S; and Sg are control dependent
on Ss.

There are two program representations that attempt to capture dependences directly
namely Program Dependence Graph and Single Static Assignment (SSA). In the SSA form,
each variable being defined is renamed to a unique name, its uses are connected to the use
by being renamed to the same name. However, a PDG captures both data dependence
as well as control dependence in the program through direct edges between constituent
nodes. Applications like slicing of programs requires information about both data and
control dependences. For such applications we use a PDG. PDGs have wide applicability
in imperative languages |27, 38|. In this thesis we explore the concept and utility of

dependence in the context of functional languages.

1.2 Analysis of functional programs

An example of an analysis for functional programs which does not have a counterpart in
the imperative world is strictness analysis. This analysis is applicable in lazy functional
languages in which expressions are not evaluated unless their values are required. There-
fore, arguments to functions are passed as unevaluated expressions (thunks or closures).
This is a source of space inefficiency as closures may require more space to store than
values. This may also affect the execution time since the garbage collector may have to
be invoked more often. One way of improving the efficiency is to identify arguments which
are guaranteed to be evaluated inside a function and then evaluate them before a call to
the function. Thus, strictness information is associated with the arguments of a function
definition and comes in two forms. If the argument is a scalar, the analysis says whether
the argument is guaranteed to be evaluated or not. And if the argument is a structured
data such as a list, the analysis also indicates the extent of guaranteed evaluation—mno
evaluation, head only, spine only and full evaluation.

For now, we assume the reader’s familiarity with the Scheme programming language.
Consider the program in Figure 1.2, the main expression creates a list x which contains
two expressions e; and e;. From the program, it is clear that the result of the main

expression is the car part of the result returned by function call (map square x). Hence,
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(define (map f 1st)
(if (null? 1st)
nil

(cons (f (car 1st)) (map f (cdr 1st)))))

(define (square y)
(xyy))

main:(let x <+ (cons e; (cons e nil)) in

(car (map square x)))

Figure 1.2: Example for strictness analysis

this information will be propagated through the body of function map and it can be
determined that the expression (f (car 1st)) will definitely be evaluated. Since the
actual argument being passed to the function map is x, we get the information that the
car part of x which is e; will definitely be evaluated. Therefore, we can eagerly evaluate

e safely without violating the lazy semantics of this language.

Judged by this example, analysis of functional programs could differ from their im-

perative counterparts in the following ways.

1. In the nature of the information sought: In the world of imperative languages, it is
uncommon to seek information like: Is the argument of a function likely to be evaluated
along all paths in the function, and if so, what is the common extent of evaluation along
all paths?.

2. Analysis for functional programs must necessarily be interprocedural: Limiting the anal-
ysis to intraprocedural levels with conservative approximation at procedural boundaries
may not yield significant benefits.

3. Identifying structure-transmitted data dependences [78] is important: Consider a vari-
able z bound to (cdr (cons x y)). The fact that the value of z does not depend
on x requires the analysis to incorporate the identity (cdr (cons x y)) = y. While
this is important for the precision of the analysis, identifying the constructor-selector
interaction interprocedurally is undecidable.

4. Additionally, control flow is hard to figure out for functional programs: This is due to

the presence of higher-order functions and in the case of lazy languages, closures.



(define (LenNSum x)
(if (null? x)
(return (cons 0 0))
(let ¢ + (LenNSum (cdr x))) in

(return (cons (+ 1 (car c))

(+ (car x) (cdr ¢))))))

(let a « ... in
(let b + ... in
(let y «+ 7m1:(LenNSum a) in
(let z < 7o:(LenNSum b) in

. more code which does not useaorb...

m:(cons (car y) (cdr z)))))))

Figure 1.3: Motivating example for dependence analysis of functional programs

1.3 Dependence analysis of functional programs

An analysis that is common to both imperative and functional languages is “dependence
analysis”. In the imperative domain, for each variable v in the program, dependence
analysis computes the set of variables on which v is data or control dependent. Identifying
dependences (data or control) in a program is key in many program optimizations and
applications such as slicing. Knowing the dependences among variables, it is possible to
optimize the program by improving its run time or memory usage. For example, if we
can find out that a certain value is computed but never used, we can safely remove the
code corresponding to the generation of this value. This results in faster execution as
the code for generating the value is not executed. Also, the modified program uses less
memory since the memory required for storing the value can be avoided. In the functional
domain, we need to compute dependences among expressions instead of variables. Using
the example in Figure 1.3, we describe some applications of dependence information in
functional programs.

Consider the example in Figure 1.3, the function LenNSum written in a Scheme
like language, takes a list of integers as input and computes both the length of the list

as well as the sum of the elements of the list. The symbol 7 is not part of the program



and is used to denote a program point. For an empty list it returns (cons 0 0), signifying
that the length of an empty list as well as the sum of the elements of an empty list are
both 0. For any non-empty list, the function recursively computes the length and sum of
the cdr part of the input list and increments the car part of the result by 1 to compute
the length and adds the car element of the input list to compute the sum for the input
list. The function creates a cons cell to enclose the computed length and sum values and
returns it. Notice, the length of the list does not depend on the values of elements of the

list.

In an eager language, there are no uses of a beyond 7; and of b beyond 75. Therefore,
we can safely garbage collect the memory associated with list a after m; and b after .
A garbage collector which collects only references which become unreachable would not
have been able to collect a and b as they would still be in scope and hence reachable.
However, the situation gets interesting in the case of lazy language. In a lazy language, a
let expression does not trigger the evaluation of the expression bound to the let variable
as soon as it is encountered. Instead, it creates a closure and defers its evaluation until its
value is actually required. Therefore, in the example program, assuming that the output
of main is being printed, only the length of the list a is required. Therefore, unlike
in an eager language, the function LenNSum does not evaluate the expressions which
compute the sum of the list a. Thus, the final output does not depend on any element of
the list a. Given this information, a garbage collector could efficiently collect the memory

corresponding to the elements of a any time after the creation of the list a.

Another application of dependence information is program specialization. The func-
tion LenNSum computes both the sum and length of the input list. If we need a spe-
cialized function that just computes the length of the list, we can remove expressions that
definitely do not contribute to the car part of its output from the body of LenNSum to

get the specialized function.

In this thesis, we consider the problem of static analysis of functional programs to
compute dependences. The analysis is interprocedural and is defined for a Scheme-like
first-order functional language. Lists are the only user-defined data structures that are
supported as other data-structures can be modelled using lists. Extending our analysis
to other user-defined data structures does not present any conceptual difficulties. Our

analysis strikes a balance between precision and efficiency by computing function sum-



maries for user-defined functions and using them to compute dependences for function

call expressions.

1.4 Contributions of this thesis

This thesis presents an efficient and reasonably precise interprocedural dependence anal-
ysis for functional programs. While Reps [78] has shown that an interprocedural depen-
dence analysis that is context-sensitive and precisely models structure-transmitted data
dependences is undecidable, we provide an independent proof of undecidability and use our
formulation to propose an approximate dependence analysis. The analysis proposed in the
thesis precisely models structure-transmitted data dependences while relaxing the context-
sensitivity requirement in some cases to allow the analysis to become decidable. Thus,
our analysis can be both context-sensitive and precisely model structure-transmitted data
dependences in most cases. The loss of precision when the context-sensitivity requirement
is relaxed is still tolerable to be useful in applications like liveness-based garbage collection
and slicing. To compute dependences, we generalize the analysis described by Asati et
al [12] that computes liveness in eager first-order functional programs. The dependence
analysis is defined over a language which has lazy semantics. This enhances the appli-
cability of the analysis by allowing us to perform liveness analysis of lazy languages and

perform static program slicing.

1.4.1 Dependence analysis

In the context of imperative languages, dependence analysis answers the question: Given
a statement, say Si, what are the statements Sy that it depends on? The definition can
be generalized and made more interesting in the case of functional languages, especially
when the value computed by the program is an algebraic datatype. Let e be an expression
which evaluates to an algebraic datatype and o denote a substructure of this value. The
notion of dependence that we wish to address is: Given a part (or substructure) o of the
value an expression e, what parts o; of the value of other expressions e; decide the value
of o part of the value of e? As a concrete example, for the program in Figure 1.4, our

analysis should yield the information that the only part of list ¢ in the let expression 7
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(define (main)
(define (length 1st)
mo: (let a < ... in
mp: (let x + (null? 1st) in
mo: (letb <+ (+al)in
mo: (if x
m1: (let ¢ < (cons b nil) in
m3: (let v < 0 in
m2: (let w < (length c) in
74 (return v)
m3: (return w)))))
75: (let u < (cdr 1st) in

76 (let y + (length u) in

(main)
77 (let z <~ (+ 1 y) in

s (return z))))))))

Figure 1.4: An example program

that decides the value of (main) is its spine!, the elements of the list are not required.

We call substructures of a value that are of interest as demands and represent them
as follows. The demand () indicates that no part of the value is of interest. For an integer,
we indicate that the value is of interest by using the demand e. In the case of algebraic
datatypes like lists, we can construct a tree and label its branches by selectors, using the
notations 0 and 1 to represent selections using car and cdr respectively. This is shown
in Figure 1.5. The substructure of interest can then be identified by a path from the
root of the tree. As an example, the substructure represented by the highlighted path in
blue, is represented by the set {10}. Similarly, the spine of the list (highlighted in red)
is represented by the set {11}. If the size of the list is unknown, then the spine can be
approximated by the infinite set {¢,1,11,...} or, 1* in short. Paraphrasing our earlier
observation, a demand of ¢ on (main) is decided by (or depends on) the demand 1* on

c, and, interestingly, () (or no part) of the value of (4 a 1).

The idea behind dependence analysis is to propagate demands from an outer ex-
pression to inner expressions, in the example from the body of main to the expressions
c and (+ a 1). We give rules to do this outside-in propagation for the let and the if
expressions, and the built-in operators, cons, car, cdr, null? and +. However, we also

uniformly extend the outside-in propagation principle to user defined function calls (f ),

IThe spine of a list is the substructure obtained by starting with at the root and a performing a series

of cdr selections reaching the end of the list. For the list in Figure 1.5, the edges in red is the spine.



]

Figure 1.5: A list represented as a tree with edges labelled with the corresponding selector

operations.

by computing a transfer function, denoted DS,. If o is the demand on a function call
(f z), then DS, (o) is the propagation of this demand to its argument z. Our proposed

analysis gives DS for a non-null o as:

length

DSlength(g) =eU 1]DSlength(€)

The important point to note that the unknown in this equation is the function
DS pgin, and the reader can verify that DSy, 4,(0) = 17 is a solution of this equation.
What this means is that any non-null demand on (length c) will propagate a spine
demand on c¢. This matches our intuition as the length function recursively traverses the
spine of its argument till the end of the list. Therefore, the demand on c is 1*, and, since
c is bound to (cons b nil), the same demand is transferred to this expression. Going
inwards still further, since b is the head of the list (cons b nil) with the demand 1%,
the demand on b is (), a fact that we infer through algebraic rules. This () demand is
transferred to (4 a 1), and we conclude that the output of main does not depend on any
part of (+ a 1).
More specifically, our contributions in this part are as follows:
1. We generalize liveness analysis to a more general notion of dependence, and propose a
context-sensitive interprocedural analysis that precisely models structure-transmitted
data dependences to compute dependences in a program.

2. Independent of Reps [78] and using a different reduction, we show that context-sensitive

9



and precise modelling of structure-transmitted data dependences is undecidable. Using
our formulation we propose an approximate analysis which precisely models structure-
transmitted data dependences but relaxes context-sensitivity requirement in some
cases.

3. The analysis results in recursive equations, where the unknowns are transfer functions
such as DS;(c). The solution takes the form DS; o (DS; concatenated with o, with
concatenation lifted naturally to sets of strings). Here DS; is the start symbol of a
CFG with two fixed non-CFG productions? We prove that the membership problem of
the resulting grammar is undecidable. We get around the problem by approximating
the CFG by a regular grammar.

4. Based on a demand driven operational semantics for the language, we prove the sound-

ness of the analysis.

1.4.2 Liveness-based garbage collection for lazy languages

The runtime system of most functional languages includes a garbage collector to reclaim
memory, however empirical studies on Scheme [45] and Haskell [82] programs have shown
that garbage collectors leave uncollected a large number of memory objects that are reach-
able but are not live, i.e. these memory objects are guaranteed not be used when execution
resumes from the current state after garbage collection. This results in unnecessary re-
tention of memory which can be safely garbage collected. The situation is even worse in
the case of lazy functional languages as they might have to carry large closures (runtime
representations of unevaluated expressions) instead of values. To remedy this, Asati [12]
proposes a liveness-based garbage collector instead of a reachability-based collector to
increase the number of cells garbage collected. However, the proposal was for a eager
language.

We use the example in Figure 1.6 to demonstrate the benefits of a liveness-based
garbage collection scheme and also the challenges faced in implementing a liveness-based
collector for lazy languages. We represent the heap as a graph in which a node either

represents atomic values (nil, integers, etc.), or a cons cell containing car and cdr fields,

2We reiterate the differences between DS, and DS;. DS, is a transfer function and is the unknown in
the equation generated by the analysis. DS, is a grammar symbol representing a set of strings, and is a

part of the solution. The solution of DS, maps a demand o to DSy 0.

10



(define (length 1st) > ?Z'i 3&

(if (null? 1st)
0

% X
(+ 1 (length (cdr 15t))))) 1)
FANRAN A

(define (append 11 12)
(if (null? 11) 12
(cons (car 11)
(append (cdr 11) 12))))

(define £)
(let x « ... in y
(let y « ... in I 2
(let z < (append x y) in >‘< N \
(if (null? (car z))

0 X X
m:(length z) %
... more code not involving x, y or z A &
M)

(a)

@ denotes a closure. Thick edges denote live links. Traversal stops at edges marked x during garbage

collection for a liveness-based collector.

Figure 1.6: An example program and its memory graph. (b) represents the heap state in

an eager language and (c) represents the heap state in a lazy language.

or a closure (represented by shaded clouds) in the case of lazy languages. Edges in the
graph are references and represent values of variables or fields. The situation in the case
of eager languages is shown in Figure 1.6(b). At program point 7, the liveness associated
with z is 1* and with x and y it is () as there are no more uses for x and y beyond .
Thus, if a GC takes place at m with the heap shown in Figure 1.6(b), a liveness-based

collector will preserve only the cell referenced by the spine of z.

In contrast, Figure 1.6(c) shows the lists x and z partially evaluated due to the if
condition (null? (car z)). Due to this evaluation, the car field of z points to the car of
x and the cdr field of z points to the closure (cons (car x) (append (cdr x) y)) (shown
as the bubble outlined in blue). Here we face a situation that is different from eager
evaluation in the following senses: (i) Laziness dictates that (length z) will be evaluated

on demand, so it is statically not possible to figure out where this evaluation will take
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place. In fact it may even take place beyond the scope in which z has been declared,
indeed even outside the function f. (ii) Given that the spine of z has not been evaluated

yet, how would a liveness-based garbage collector, if invoked at 7, collect the spine of z?

Our solution to these problems is as follows. We think of the free variables inside a
closure as root set variables, and carry their liveness information inside the closure. Thus
the closure (length z) carries the liveness of z as 1*. Second, if a variable is not fully
evaluated during garbage collection, we have devised a mechanism of garbage collecting
(parts of the ) closure. Roughly the idea is as follows: If the demand on, say (length
z) is (), the closure is garbage collected. Otherwise, we consult the recorded liveness to
garbage collect whatever is bound to z. If z happens to be evaluated, we use the recorded
liveness 1* to garbage collect the value, else, if it is bound to a closure, we repeat the

same process as we did for (length z).

We use a variation of dependence analysis to compute liveness information and store
them as Deterministic Finite Automata (DFA) at program points of interest. Since our
application is garbage collection, the program points of interest are the ones which could
potentially trigger a garbage collection, which, for lazy languages, is the point where a
let expression requests memory to create a closure that is bound to the letvariable. If
the garbage collector is invoked at any of these program points, it uses the associated
automata to curtail reachability during marking phase. This results in an increase in the

garbage reclaimed and consequently in fewer collections.
Our contributions in this part are:

1. Whereas the idea of using static analysis to improve memory utilization has been shown
to be effective for eager languages [12, 36, 41, 56|, a straightforward extension of the
technique is not possible for lazy languages, where heap-allocated objects may include
closures. We define a liveness analysis for first-order lazy languages. To make liveness-
based GC effective for lazy languages we extend it to closures apart from evaluated
data. Closures carry liveness information of its free variables which is used by the
garbage collector during garbage collection. As an optimization, to keep the closure
liveness precise, we update it during the execution.

2. To prove the soundness of our method, we modify the demand-guided semantics intro-
duced for dependence analysis by introducing an updatable Heap as part of the state.

We also simulate a Garbage Collection in the semantics which goes to a special state
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called BANG if a reference which has been declared dead by our analysis. The soundness
analysis consists of proving that for any program, the execution of the demand-guided
semantics cannot enter a BANG state.

3. Using a prototype implementation we demonstrate the benefits of liveness-based garbage
collection for lazy languages, increase in the garbage reclaimed and consequently in
fewer collections. Because a liveness-based collector identified more cells that would
not be used, the peak memory use also improved for all the programs. Our experiments
show up to 10X reduction in the number of garbage collections and 20X reduction in

peak memory requirements.

1.4.3 Program slicing

Program slicing is a powerful technique with applications ranging from debugging, soft-
ware maintenance, optimization, program analysis and information flow control. Program
slicing refers to the class of techniques that delete parts of a given program while preserv-
ing certain desired behaviours. The desired behaviors are specified using what is called as
the ’slicing criterion’. We consider one such version of slicing where the slicing criterion
identifies parts of the final output of the program that the user of the slicing tool may be
interested in, and the goal is to produce the parts of the program which affect only the
parts of the output identified by the slicing criterion. Program specialization, paralleliza-
tion, dead code analysis and cohesion measurement are examples of such applications.
In general, a slicing criterion is modeled as a pair (e,o), where e represents an
expression in the program P and o represents the parts of the value of e that is of
interest. The goal of slicing is to identify the set of expressions belonging to P which
may affect the parts identified by o. The slicing problem thus can be formulated as an
instance of dependence analysis as the question: Given a slicing criterion (e, o), what are
the expressions e; in P such that o of e depends on o; of e;, and o; is not 7 While
the general form of dependence analysis can answer the question for any expression e, we
consider the special but useful case in which e is the main expression (main). Figure
1.7a shows a simple program in a Scheme-like language taken from [79]. It takes a string
as input and returns a pair consisting of the number of characters and lines in the string.
Figure 1.7b shows the program when it is sliced with respect to the first component of

the output pair, namely the number of lines in the string (1c). All references to the count
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(define (lcc str 1c cc)
(if (null? str)
(return (cons lc cc))
(if (eq? (car str) nl)
(return (Icc (cdr str) (+ 1lc 1) (+ cc 1)))
(return (lcc (cdr str) m:1lc mo:(+ cc 1))))))
(define (main)
(return (Icc ... 00))))

(main)

(a) Program to compute the number of lines and characters in a string.

(define (lcc str 1c )
(if (null? str)
(return (cons lc 0))
(if (eq? (car str) nl)
(return (lcc (cdr str) (+ 1c 1) O))
(return (lcc (cdr str) m:lc m2:0)))))
(define (main)

(return (lcc ... 00))))

(main)

(b) Slice of program in (a) to compute the number of lines only

(define (lcc str O cc)
(if (null? str)
(return (cons O cc))
(if (eq? (car str) nl)
(return (lcc (edr str) O (+ cc 1)))
(return (Icc (cdr str) m:0 ma:(+ cc 1))))))
(define (main)
(return (lcc ... 00))))

(main)

(c) Slice of program in (a) to compute the number of characters only.

Figure 1.7: A program in Scheme-like language and its slices. The parts that are sliced

away are denoted by [l.
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of characters (cc) and the expressions responsible for computing cc only have been sliced
away (denoted OJ).

To produce a slice for a given program, we use the slicing criterion (a set of strings
over (0+1)*) as a demand on the main expression (main), and compute the demands on
each expression in the program. Any expression which gets a () demand can be sliced from
the program. Since we model the slicing problem as an instance of dependence analysis,
we inherit both its advantages and its weaknesses. One of the weaknesses is the large time
required for automata construction. This was acceptable in the case of garbage collection
as the automata were created only once and the same would be consulted whenever a
garbage collection was triggered. However, in case of slicing the automata have to be
reconstructed every time the slicing criterion changes (even when the program remains
same). Program specialization is an example application where the same program is sliced
with different criteria. We thus turned to the problem of incremental slicing that is useful

in such situations.

Incremental slicing

The program in Figure 1.7a can also be sliced with respect to the second component
of the output (the character count). The resulting program in which all expressions
related to computation of 1c have been removed is shown in Figure 1.7c. If we use
the non-incremental slicing method, the whole procedure of dependence analysis has to
be repeated for the new slicing criterion. Applications such as program specialization,
cohesion measurement, and parallelization which require the same program to be sliced
with more than one slicing criterion can benefit from a slicing method which avoids
repeated computation of information. We propose an incremental algorithm based on
dependence analysis that avoids this repetition of computation when the same program
is sliced with different criteria.

The incremental slicing algorithm involves a one-time precomputation step that com-
putes information which is common to all slicing criteria. The key idea is that for each
expression, the precomputation step computes the set of all slicing criteria which keeps
the expression in the slice. It is an interesting fact that this can be done by consider-
ing only one specific criterion, namely {e}. The resulting set can be represented as a

finite state automaton. Now, given any other criterion (also represented as a finite state
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automaton), the incremental slicing procedure simply finds the intersection of the two

automata. If the language of the resulting automaton is @), the expression can be sliced

out. Notice, that even when the slicing criterion changes the automata computed in the
precomputation step do not change and hence they don’t need to be recomputed.

Finally, for the sake of completeness we describe a method to extend our depen-
dence analysis to handle higher-order programs. We first convert the input higher-order
program to its equivalent first-order program by a process called firstification [60] while
maintaining a mapping between the original program and the firstified program. We
perform dependence analysis on the firstified program and obtain the results. Using the
mapping generated during the firstification process, we transfer the demands generated
on the firstified program to the original program. We extend the static slicer to handle
higher-order programs.

Our contributions in this part are:

1. We use dependence analysis to statically slice functional programs. We define a novel
incremental slicing mechanism which is very efficient when the same program is sliced
multiple times. The correctness of our static slicing algorithm follows from the cor-
rectness of dependence analysis.

2. We formally prove that our incremental slicing is sound with respect to non-incremental
slicing.

3. We extend slicing to handle higher-order programs by performing firstification.

4. We have implemented a prototype of a slicer that can run in incremental or non-
incremental mode. The slicer can handle both first-order and higher-order programs
written in a Scheme like language. Our experiments confirm that the incremental
computation runs orders of magnitude faster than the non-incremental version. We

obtain nearly 1000X speed in nearly all of the experiments.

1.5 Related work

The dependence analysis that we defined involved starting with a demand ¢ on an expres-
sion e and computing demands on each sub-expression of e. Similar approaches of taking
an abstract value and propagating its effects "inwards” have been used in different analy-

sis. Wadler [101] uses projection functions which he calls "contexts” to perform strictness
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analysis. Given the context on the result of a function f, strictness analysis computes the
parts of the arguments of f that could be safely evaluated eagerly. Wadler [100] shows how
contexts can be used to compute the time complexity of lazy programs. The propagation
of abstract values can also be done in the "outwards” direction, starting from arguments
of an expression to the result of the expression. Binding time analysis [40, 61, 65| is an
example of such an analysis. It is used in partial evaluators to determine the parts of the
program can be evaluated if some input is known. In the rest of this section we mainly
discuss work which has similar applications to our analysis, improving garbage collection

using static analysis and static slicing of functional programs.

There have been different approaches to improving memory utilization in functional
programs. An interesting approach by Mohnen [62] uses abstract interpretation to handle
garbage collection of nested lists. A list having n levels is abstracted to an n-tuple, a
boolean denoting the possibility of sharing between any element at each level in the list
and the result of the function to which the list is passed as a parameter. A false value in
the tuple indicates that values at that level are not shared with the return value and hence
can be garbage collected. This leads to very coarse approximations as the use of a single
cell will make the whole list at that level live. The approach due to Lee et. al. [55, 56|
uses memory types to describe usage of heap cells and achieves context sensitivity by
using dynamic flags passed as extra arguments to functions to collect cells inside function
bodies. Passing different values from different call sites for the dynamic flags allows the
same function to have different deallocation behaviors. A practical approach involves
copying only the heap objects whose root variables are live [6]. The drawback of this
approach is that an entire object reachable from a live root variable is considered live,
even if some parts of it are never used. For example, even when only the spine of a list
is live (used as an argument to the length function) all its elements will also be copied.
Asati et al [12]| describe a liveness-based garbage collector for a first-order eager functional
language based on an analysis similar to ours. It demonstrated the utility of a liveness-
based collector over a reachability-based collector for a language which had support for
heap based lists. The analysis described was limited to liveness analysis of first-order data,
values in an eager language. In this thesis, we generalize their analysis and demonstrate
its utility by implementing a liveness-based garbage collector for a lazy language and then

using the same analysis to statically slice functional programs.
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Most of the efforts in slicing have been for imperative programs. The surveys [16, 92,
97] give good overviews of the variants of the slicing problem and their solution techniques.
A natural way is to use data and control dependences between statements to compute the
slice. The program to be sliced is transformed into a graph called the program dependence
graph (PDQG) [39, 72|, in which nodes represent individual statements and edges represent
dependences between them. The slice consists of the nodes in the PDG that are reachable
through a backward traversal starting from the node representing the slicing criterion.
Horwitz, Reps and Binkley [39] extend PDGs by defining a System Dependence Graph
(SDQG) to handle interprocedural slicing.

Silva, Tamarit and Tomas [93] adapt SDGs for functional languages, in particular
Erlang. The adaptation is straightforward except that they handle dependences that
arise out of pattern matching. Because of the use of SDGs, they can manage calling
contexts precisely. However, as pointed out by the authors themselves, they fail to han-
dle constructor-selector interactions. The slicing technique that is closest to ours is due
to Reps and Turnidge [79] which uses projection functions to specify a slicing criteria.
The slicing criterion is propagated backwards to all subexpressions of the program. After
propagation, any expression with the projection function L (corresponding to our () de-
mand), is sliced out of the program. Liu and Stoller [57] use a similar method for dead
code analysis and elimination. Both these methods, unlike ours, do not derive context-
independent summaries of functions. Thus, we do not see any way of computing multiple
slices incrementally.

A graph based approach has also been used by Rodrigues and Barbosa [80] for com-
ponent identification in Haskell programs which is very coarse for our purpose. Rodrigues
and Barbosa [81] use program calculation in the Bird-Meerteens formalism for obtaining
a slice. Given a program P and a projection function v, they calculate a program which

is equivalent to ¢ o P.

1.6 Organization of the thesis

We formalize the notion of an interprocedural context-sensitive dependence analysis that
precisely models structure-transmitted data dependences in Chapter 2. We prove that

such an analysis is undecidable using a non-standard operation semantics called demand-
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guided semantics. In Chapter 3, we use the dependence analysis formulation defined in the
previous chapter to devise an approximate dependence analysis which models structure-
transmitted data dependences precisely but relaxes context-sensitivity for some cases.
We prove its soundness with respect to demand-guided semantics. The first application
of our dependence analysis, a liveness-based garbage collection scheme for a first-order
lazy language is described in Chapter 4 and proved correct. In Chapter 5, we show how
functional programs can be statically sliced using dependence analysis. We also present
an efficient slicing technique called incremental slicing for slicing the same program with
different criteria. We prove its correctness with respect to the non-incremental slicing
algorithm. We describe a way to extend our analysis to handle higher-order programs.
We demonstrate it by extending our static slicer to handle higher-order programs. Finally,

we summarize our contributions and discuss potential extensions to our work in Chapter 6.
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Chapter 2

Dependence analysis of functional

prograrmns

In this chapter, we first look at the notion of dependence for imperative programs. We then
introduce an useful generalization of the notion of dependence for functional programs
by introducing a concept called demand. A demand describes a part of the value of an
expression, whose dependence is of interest and the analysis computes part of values of
other expressions that this expression depends on. We then describe the syntax of a
first-order functional language without imperative features that we shall use throughout
the thesis. We then formally specify the dependence analysis problem—an algorithmic
solution of the problem would compute the generalized notion of dependence mentioned
above for programs written in this language. We show that the dependence analysis
problem is undecidable and therefore there is no such algorithm. In the next chapter, we

propose an approximate algorithm to compute dependence and prove its soundness.

2.1 Dependence Analysis of Imperative Programs

In the context of imperative languages, dependence analysis answers the question: Given
a statement, say S1, what are the statements Sy that it depends on? Dependences be-
tween statements arise because of two distinct reasons. In the example in Figure 2.1, the
statement S7 assigns the value x+y to z. Thus any change in the values of x or y will
affect the value of x+y and therefore the value assigned to z. Since statements Sz, S5 and

Sg define x and y, S; is said to be dependent on S3, S5 and Sg. This kind of dependence
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Figure 2.1: Imperative program and its PDG. Solid lines indicate data dependence and

dashed lines control dependence.

is called data dependence. In summary, if S; defines a value that is directly or transitively

used by S; we say that S; is data dependent on S;.

There is a second reason due to which a statement can be seen as depending on
another. For the present discussion, we shall regard a boolean expression representing the
condition of a if as a statement. In the example, the selection of S5 or S5 for execution
depends upon the condition b > 0 in S;. We say that S3 and S; are control dependent
on Sy. This is viewed as a dependence because the value of x that reaches S; depends on
the statement selected by S;. In general, we say that S; is control dependent on S; if S;

decides whether §; is executed or not.

Dependence is a transitive relation. In the example, S; is data dependent on S3, and
Ss, in turn, is data dependent on S;. This makes S; data dependent on S;. Similarly, the
fact that Ss3 is control dependent on S, makes S; dependent on S,, though the resulting
dependence cannot be classified as either data or control dependence. It is customary to
represent the dependences in a program as a graph, with the data and control dependence
represented by different kinds of edges, as shown in Figure 2.1. This graph is called a
Program Dependence Graph (PDG). For technical reasons, a synthetic node START is

added to the graph and all the statements are made control dependent on this node.
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Figure 2.2: Functional program and its tree representation. 2(b) denotes that the node

represents a value 2 held through a let binding to a variable b

2.2 Dependences in functional programs

We can define dependences for functional programs in a similar way. Since functional
programs do not have assignments of values to variables, the dependences are between
expressions instead of statements. Dependence in the context of functional programs
could be described as: Given an expression e in a program, what other expressions in the
program does the value of e depend on? While we shall formally describe the language for
which we propose our analysis, for now we assume the reader’s familiarity with a Scheme
like language. Consider the earlier imperative program now written as a let expression.
This can be viewed as a tree as shown in Figure 2.2 with some of the nodes labeled by the
variables of 1let. In the absence of function calls, dependence analysis as defined above
would be very easy to compute—an expression depends on each of its sub-expressions.

In the context of functional programs, however, the definition can be generalized and
made more interesting, especially when the value computed by the program is an algebraic
data type. Most functional languages have a set of pre-defined algebraic datatypes (lists,
for example) and additionally provide features for users to define their own algebraic
datatypes. Values of an algebraic datatype are constructed with constructors for example
(coms, nil) and de-constructed with selectors (car , cdr).

Figure 2.3 shows a program fragment computing a structure. As a generalization, we
may be interested in knowing the dependences of a "part" of the value of an expression

instead of the entire value of the expression. The part that we may be interested in is

23



er: let
¢ « ey:(cons a b)
in

es:(if e4:(< a b) es:(car c) eg:d))

Figure 2.3: A functional program evaluating to a structure. Labels such as e are used to

refer to expressions in the ensuing discussion and are not part of the language.

specified through a set of paths, each path representing a composition of selector functions.
As an example, assume that we are interested in the part of (the value of) el corresponding
to the composition of selectors {carocdr} of the value of el. It is convenient to write this
as a set of paths, each path consisting of a sequence of selectors in the order in which these
would be applied. In this case the set would consist of a single path cdr car (cdr followed
by car). Each prefix of a path represents the root of interest of some sub-structure of el.
They are, for this example, the root of el itself represented by the prefix € (the empty
prefix of cdrcar), the root of the structure obtained after a cdr selection on el (the
prefix edr of cdr car), and a cdr selection followed by a car selection (corresponding to

the entire path cdr car).

Given that we are interested in {cdrcar} of el, let us see what sub-structures of
other expressions does this depend on. el. Since the value of el is also the value of
e3, {cdrcar} of el would obviously depend on {cdrcar} of e3. Further, the value of
e3 is decided by the condition e4 of the if. Therefore there is a control dependence of
e3 (and therefore of el) on {¢} of e4.! Going further down the if, Since the value of
e3 is one of e5 and d, {cdrcar} of el is also dependent {cdrcar} of e5 and d. Also
observe that since the specified part of el depends on {cdrcar} of e5, and e5 happens
to be (car c), the dependence of el on c is the set {carcdrcar}. c, a car selection
c to be (cons a b), {carcdrcar} part of ¢ translates to {cdrcar}. Observe that in
obtaining this dependence, we have used the rule (car (cons z y)) = z of constructor-

selector interaction. More importantly, this rule also leads to the conclusion that the

1Since e4 is a scalar, its value is represented by the root e.
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specified part of el is not dependent on b, and we would not have been able to obtain
this precision without incorporating constructor-selector interaction in our analysis.

However, incorporating such rules in the analysis is not simple. In the example,
the selector application immediately followed the pair creation. Therefore, it was easy to
observe the fact that the result of the application was a. In general this may not be the
case, the selector and constructor can be widely separated—in fact, they could even be in
different functions. Another thing that complicates identifying this selector-construction
interaction is the fact that the actual pair that takes part in the selection might take
part in further constructions and subsequent selections. For example, in the expression
(car (car (cons (cons a b) (cons b a))), the analysis has to correctly identify that the
outermost car interacts with the constructor (cons a b). Therefore, any analysis which
can precisely compute such dependences must contain the identity (car (cons x y)) = x
as its part.

Let e be an expression which evaluates to an algebraic datatype and o denote a part
of this structure. The notion of dependence that we wish to address can now be generalized
to: Given the part o of an expression e, what parts o; of other expressions e; decide the
value of o part of the value of e? One can easily see the applicability of this notion of
dependence. For example, in the case of slicing, one can focus on the seemingly erroneous
part of the value of an expression and ask what (e;, 0;)s does it depend on. If it does not
depend on any part of an expression ¢;, it can be sliced out. We call the parts of interest
o; as demands. In the following sections, we describe an analysis which incorporates

constructor-selector interaction and computes precise dependence information.

2.3 Syntax

Figure 2.4 shows the syntax of our language. We assume familiarity with the basic features
of a Scheme-like language. A program in our language is a collection of function definitions
followed by a main expression denoted as €main Which for our purposes will always be
(main). Applications (denoted by the syntactic category App) consist of functions or
operators applied to variables. Constants are regarded as 0-ary functions. Expressions
(Expr) are either an if expression, a let expression that evaluates an application and binds

the result to a variable, or a return expression. The return keyword is used to mark a
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p € Prog := dy...d, €main — program

df € Fdef ::= (define (f x; ... z,) e) — function def
((if x e e) — conditional
e € baxpr == ¢ (let z+ sine) — let binding
\ (return z) — return from function
/
k — constant (numeric or nil)

cons a:2) — constructor

car ) — selects first part of cons
s € App == { (cdr 7) — selects second part of cons
null? ) — returns true if T is nil

+ x1 x9) — generic arithmetic

(
(
(
(
(
(

\ fx ... x,) — function application

Figure 2.4: The syntax of our language

variable in a returning context of a function. Notable omissions are lambda expressions

and a provision for user-defined algebraic datatypes.

For ease of presentation, we restrict the language to Administrative Normal Form
(ANF) [83]. In this form, the arguments to functions can only be variables. This re-
striction does not affect expressibility, but has an important notational advantage. As
we shall see later, the semantics that we shall ascribe to this language is a generalization
of lazy semantics, and every application that is associated with a let definition can also
be seen as an explication of closure creation. We assume that lets in our language are
non-recursive—in the expression let x <— s in e, x should not occur in s. The restriction
of let to a single definition is for ease of exposition—generalization to multiple definitions
does not add conceptual difficulties. To avoid dealing with scope-shadowing, we assume
that all variables in a program are distinct. Neither of these two restrictions affect the
expressibility of our language. In fact, in our implementation, we translate a pure sub-
set of Scheme to our language, and, in the slicing tool, map the sliced program back to
Scheme. To refer to an expression e, we may annotate it with a label 7 as 7 :e; however
the label is not part of the language. To keep the description simple, we shall assume that

each program has its own unique set of labels. In other words, a label identifies both the
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program point and the program that contains it. We denote the body of a function f as
es. We assume that each program has a distinguished expression, emain, and the program

begins execution with the evaluation of main.

2.4 Dependence analysis as propagation of demands

Recall from Section 2.1 that dependence analysis of a functional program, as we wish to
view it, answers the following question: Given that we are interested in a specific part
of the structure representing the value of an expression, what parts of other erpressions
does this value depend on? The substructure of interest can be identified by a set, whose
elements are compositions of selector functions. Fach such composition is a sequence of
dereferences of cons cells through its car and cdr fields, and ends in the root of some sub-
structure. We view this sequence of dereferences as a path from the root of the structure.
We introduce the notations 0 to represent dereferencing using the car field and 1 for
dereferencing using cdr. As an example, consider the structure created by the expression
(cons (consab) c). The set {00, 01} represents dereferencing paths to the root of various
sub-structures of the value of this expressions. This is shown in Figure 2.5. Each element
in this set is called an access path and the entire set {00,01} is called a demand.

A demand on an expression e represents parts of its value that the context of e may
be interested in. Here, by context we mean all future computations that may make use
of e. Since these parts can be represented by paths from the root of the value, a demand
is represented by a set of strings over (04 1)*. As an example, a demand of {10} on the
expression (cons z y) means its context may be interested in the car field of y. This is
represented by the prefix 1 of the string 10 in the demand. The absence of the string 0 as
a prefix of any string in the demand, on the other hand, indicates that x is definitely not
of interest. Notice that computation of {10} of (cons x y), requires {0} of y. Thus we
may think of dependency analysis as computation of a demand transformer transforming
(or propagating) the demand {10} on (cons z y) to demands on its parts—{0} on y
and the empty demand (represented by () on z. As one more example, 1* in which the
context is interested in the spine of a list. The length function would represent such a
demand on its argument. Similarly if e evaluates to a list, then the demand {0, 10,110}

means that the context may only refer up to the third element of e.
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00 a b 01

Figure 2.5: Access paths corresponding to the structure (cons (consab) c). Paths corre-

sponding to demand {00,01} are shown in bold.

The dependence analysis problem is now modeled as follows: Given a demand ¢ on
e, we would like to find the demand o; on each of the expressions e; in the program. Thus
dependence analysis lies in computing a demand transformer that, given a demand on
e, computes a demand environment—a mapping of each expression (represented by its
program point 7) to its demand. While in the general formulation e can be any expression
in the program, in the restricted formulation which suffices for our applications of garbage
collection and slicing, e is specifically a call to the main function main.

We use o to represent demands and a to represent access paths. Given two access
paths a; and as, we use the juxtaposition a;as to denote their concatenation. We extend
this notation to a concatenate a pair of demands and even to the concatenation of a
symbol with a demand: o0, denotes the demand {ajas | @1 € 0 and ay € 03} and Oc

is, through abuse of notation, a shorthand for {O« | @ € o}. Also, note that oy09, when

09 :(Z), is @

2.4.1 Specification of dependence analysis

We now formally specify the dependence analysis problem. To do this, we first define a
non-standard small-step operational semantics called Demand Guided Semantics (DGS)
that serves as a specification of the real demand on each expression of the program that
is required to satisfy the given demand on a designated expression. While the expression
of concern can be any expression in the program, for the applications considered in this
thesis, namely liveness-based garbage collection and slicing, we shall consider this to be

the function main, and the user supplied demand will be denoted o main.
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Function evalAndPrint (expr)
Data: expr is the expression being evaluated

val <+ evalTOWHNF (expr)

if (pair?(val)) then
Display “(”
evalAndPrint(car(val))
Display “.”
evalAndPrint(cdr(val))
Display “)”

else

Display val

Algorithm 1: evalAndPrint function that drives the evaluation in a lazy lan-

guage.

Starting with the demand opain on (main), DGS propagates demands to each ex-
pression as it is being evaluated during execution. We call the demand thus propagated
to an occurrence of an expression as the dynamic demand and denote it as §. A key
aspect of DGS is that an expression is evaluated only if the dynamic demand on it is
not (). Given an expression and a program point of an arbitrary program, any algorithm
which captures the union of the dynamic demands on all occurrence of this expression in
the trace of any DGS execution of the program through static analysis is deemed to be a

solution of the dependence analysis problem.

Demand Guided Semantics

The execution state of Demand Guided Semantics has the dynamic demand as a com-
ponent. The evaluation aspect of Demand Guided Semantics can be thought of as a
generalization of lazy semantics. In lazy semantics, the evaluation of the user supplied
main program main is mediated through a runtime support, which we can model as
a function called evalAndPrint. evalAndPrint evaluates main till it reaches Weak
Head Normal Form (WHNF) [74]. Since our language is first order, this means that an
expression has to be evaluated to its value and printed in the case of a base type, and to
a partially evaluated expression with the outer constructor (cons) exposed, in the case

of a pair or a list. evalAndPrint then recursively evaluates and prints the (possibly)
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Function eval AndPrint(expr, §)
Data: expr is the expression to be evaluated

Data: § is the demand on expr

if (+(0 ==10)) then
val <+ evalTOWHNF (expr)

if (pair?(val)) then
Display “(”
evalAndPrint(car(val), d1) // 61 ={a|0a €}
Display “.”
eval AndPrint(cdr(val), d2) // 62 ={B|1B € §}
Display “)”

else

Display wval

Algorithm 2: Modified evalAndPrint function to drive evaluation in demand

guided semantics.

unevaluated expressions constituting the head and the tail of main, printing appropriate

delimiters in between. This is shown in Figure 1. We wish to point out that:

1. The reason why a program in a lazy language is evaluated in this way is to reconcile two
requirements. First, lazy semantics dictates that the evaluation of any expression in
the program means 'evaluation till WHNF’. However, the top level expression must be
fully evaluated for the user to see the results. Therefore, each expression is evaluated
by default till WHNF. However, the top-level expression main is guided to a full
evaluation by evalAndPrint.

2. This strategy effectively puts a demand of (0 + 1)* (full evaluation) on the main

expression.

In DGS, we generalize the notion of lazy evaluation, so that instead of evaluating the
main expression fully, it is evaluated to the extent given by an arbitrary demand 6. As
examples, if e is a list and § is 1%, then e is evaluated to expose its entire spine, the
individual elements of the list can remain unevaluated. The modified eval AndPrint

function for a demand guided evaluation is shown in Figure 2.
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Premise Transition Rule name
dis 0 p, (P y,e,8):5e,8 ~ p S e o NO-EVAL
0, (0, y,e,8):8, 5,8 ~p d{y — v}, S e d CONST
p(x) is (s, p) 0,8,2,8 ~ p.S 5,8 VAR
p(x) is ((id y), o) p, Sy, 8~ p/, Sy, 0 ID
p, S, (car x),d ~ p, S, x, 00 CAR
p, S, (cdr ), 6 ~ p,S,x, 18 CDR
p, (P ,w,e, d8"):S, (cons = y), € ~ CONS
pro{w — (((id z),p),{(id y),p))}, S, €, &
8 ={a|0a € §} p, S, (cons x y), 0 ~ p, S, x, & CAR-CONS
§ ={a|la € s} p, S, (cons x y),d ~ p, S, x, & CDR-CONS
p(z),p(y) €N p,(p,z,e,8):S (+zy),d ~ PRIM-ADD
po{z = (+ o) py))} Se &
p(z) is (s, p') 0, S, (+xy),d ~ p(p,z,(+xy),d):5 x,€ PRIM-1-CLO
p(y) is (s, ') p, S, (+ 2 y), 6 ~ p,(py, (+7Yy),0):5y,€ PRIM-2-CLO
f defined as (define (f ¥) ey) 0,8, (f ©), 0 ~[y— ((id ?L‘).,[)>].,S, ef, 0 FUNCALL
p,S,(let <+ sine),d ~ p@® {x— (s,p)},S,e,8 LET
p(x) €N & p(x) # 0 0,5, (if z €1 €3),8 ~ p, S, e1, 8 IF-TRUE
p(z) €N & p(z) =0 0, S, (if © ey €3),8 ~ p, S, e, 0 IF-FALSE
p(x) is (s, p) p, S, (if x €1 €3),d ~ p, (p,x, (if x €1 €3),0):5,z,€ IF-CLO
p(x) is (s, p') p, S, (return x),0 ~ p, Sz, RETURN-CLO

Figure 2.6: Demand guided execution semantics. NO-EVAL has precedence over all rules.

We now specify the domains used by the semantics:

d: Data = Val+ Clo — Values & Closures
v: Val = N+ {nil} + Data x Data — Values

c: Clo = (App x Env) — Closures

p: Env = Var — Data — Environment

A data value d may either be an evaluated value, denoted by v, or a closure. A

closure is a pair (s, p) in which s is an unevaluated application, and p maps free variables

of s to data values. An environment is a mapping from the set of variables of the program

Var to Data. The notation [if — p(Z)] represents an environment that maps the formal
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arguments y; to the bindings of the actual arguments x;. p@® p’ represents the environment
p shadowed by p’ and |p]x represents the environment restricted to the variables in the

set X. Finally F'V(s) represents the free variables in the application s.

The DGS of our language is shown in Figure 2.6. The semantics of expressions and
applications are given by transitions of the form p, S,e,d ~ p/, S’ ¢,0’. Here p is an
environment that maps variables to their bindings, S is a stack of continuation frames, e
is the current expression being evaluated, and ¢ is the demand on e. Each continuation
frame is a 4-tuple (p, x, €eu, 0), signifying that the variable x has to be updated with the
value of the currently evaluating expression and e, is the next expression to be evaluated
in the environment p with the demand on e,.,; being . The initial state of the transition
system is: ([ |,, [([ ],, ans, (evalAndPrint), dpmain) |, (main), {€}) in which [ |, is the
empty environment. The initial stack consists of a single continuation frame in which
ans is a distinguished variable that will eventually be updated with the value of (main)
and (evalAndPrint) will be picked next for execution. The function evalAndPrint
halts the program if the value of (main) is already fully evaluated, else it first produces a

DGS trace starting from the state ([ ],, [([],, ans, (evalAndPrint), 6;) ], (car main), €)

09
where 0, = {o | 0w € 6}, followed by the DGS trace starting from ([ |,, [([ ],, ans,

(evalAndPrint),d;) |,(cdr main),e) where d, = {#| 13 € §}.

In the demand guided semantics shown in Figure 2.6, evaluation of a let expression
(let © < s in e) does not result in the evaluation of s. Instead, as the LET rule shows,
a closure is created and bound to x. While evaluating a function body, evaluation of
closures is initially triggered while checking an if condition (IF-CLO) or at a return
(RETURN-CLO). This, in turn, may trigger evaluation of more closures. As an example
of closure evaluation, we explain the rules for car and cons. If the demand ¢ on (car x)
is () then it is not evaluated at all (NO-EVAL). If ¢ is non-null, then z is evaluated with
the propagated demand 06. In a well typed program, the evaluation of x should result
in a closure say (cons y z). The DGS semantics now uses the CAR-CONS rule to select y
for evaluation with the propagated demand obtained by stripping off leading 0 from all
strings in 00. This gives back 0 as the demand to be propagated to y. However, if the
surrounding context of (cons y z) had been a cdr instead of car, then this would have
resulted in () and then y would not have been evaluated any further (NO-EVAL). Also

notice that the rule for function calls is defined through the use of the identity function
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id. We have introduced this due to purely technical reasons. The evaluation of (id x) is
defined by the rule ID, it results in the evaluation of x in the same execution context. Its
introduction simplifies the definition of subsumption in Section 3.3.

The set operation {a|0a € J§} can be described algebraically by introducing the
symbol 0 defined as 06 = {a|0a € §} with the derived property that 00 rewrites to e.
Similarly, we define 16 = {«|0a € 6} with the derived property that 11 rewrites to e.

We now formally define the dependence analysis problem as follows:

Definition 2.1 The dependence analysis problem is to find an algorithm A such that
given a program P, a demand 6, a control point 7, and a string w € (0 + 1)* will answer
yes if there exists a DGS trace of P and 0 in which the expression at w™ appears with a

dynamic demand 0" containing w, and no otherwise.

We introduce a predicate prop(e,d, 7 : €/,40") to denote that there exists a DGS trace
of an expression e with demand § such that the expression ¢’ at the program point 7
appears on the trace with a dynamic demand ¢’. Thus the dependence analysis problem
is to find an algorithm A such that VPVéVaVw.A(P, 0, m,w) = 30" .prop(P,d, 7, d'), and
w € ¢. We are now ready to prove a result that shows that dependence analysis is

undecidable.

2.4.2 Undecidability of dependence analysis

We use the symbol w to denote strings in (0 + 1)*, o and (3 to denote strings in (0 +
1+ 0+ 1)*, and v to denote strings of grammar symbols, i.e. strings of non-terminals
and terminals. We also name the set consisting of the two non-context-free productions
00 — ¢ and 11 — € as unrestricted. We first show that for a class of grammars CG
consisting of a set of context-free productions over the terminal symbols {0, 1,0, 1} along
with the fixed set of non-context-free productions unrestricted, the problem of whether ¢
belongs to an arbitrary grammar in the class is undecidable. We then consider a subset of
CG, say CG', that is large enough to replay the Undecidability proof. Specifically, the set
CG' corresponds to the set of all Turing Machines. Finally we show that any grammar G
in CG’ can be converted to a program P such that the problem of whether € belongs to

Z (@) can be reduced to the dependence analysis problem of P.
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Figure 2.7: Figure illustrating the correspondence between TM state and grammar sen-
tential form. Shaded part represents the region of interest and |} represents the location
of the TM head. Underlined symbols are spurious symbols produced by the L and R

productions that can be erased later by S%, ;.

Lemma 2.2 Consider the class of grammars C'G in which each grammar G is of the kind
(N, {0, 1, 0, 1}, p U unrestricted, S). Here N is a set of non-terminals and p is a set
of context-free productions containing the distinguished production S — y, where v is a
string of grammar symbols that does not contain S. The problem of whether an arbitrary

grammar G in this set recognizes € is undecidable.

PROOF. We reduce the Halting problem to the e-recognition problem of grammars in CG.

We assume that the Turing Machine (TM) is deterministic, the input w to the Turing

Machine is a unary string in 1* and the blank symbol is represented by 0. We shall

represent a TM configuration as w;(S, ¢)w,, where w; and w, are regions of the tape that

have either been visited or contain the symbol 1, ¢ is the symbol under the head and S

is the current state of the TM. We shall call w;cw, as the region of interest in the tape.

We construct a grammar G such that the machine will halt on w if and only if € € Z(G).

The grammar will have the following productions:

1. Fized productions: These are the productions in unrestricted and the productions L —
LO|eand R — OR|e.

2. Productions related to TM transitions: For each combination of state and symbol (S, ¢),
the grammar will contain the non-terminal S¢. Correspondences between the moves of
the TM and the grammar productions are as follows:

(a) For each transition (S;,c) — (S;, ¢, L), there are two productions S§ — 0S9¢’ and
S{ — 1S
(b) For each transition (S;,c) = (S;, ¢, R), there are two productions S{ — /S0 and
S¢ — ¢S}1.
3. Productions related to the final state: For every symbol ¢, there is a non-terminal

SGna Where Sg s the final state of the TM. We add the productions S§,,, — 0Sg, ,;,
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(a) (b)

Figure 2.8: Commutative diagrams illustrating the invariant # mapping TM moves to

sentential forms.

Sfinat = LSfinat> Sfinat = Sfinat0s Sfinat = Sfinal and Sf;0 — €.
4. Production related to the start state: Assume that the TM starts in a state S;,; with an
input w and the head positioned to the immediate left of w. Then there is a production
S — LS? .wR, where S would be regarded as the start symbol of the grammar.
We now first show that if the TM halts on w, then there is a derivation S = ¢. To

do this, we define a mapping # that serves as an invariant relation from configurations of

the TM to sentential forms.

6 maps a TM configuration w;(S, c)w, to the sentential form Lw;S¢w, R, where
w; is the same as w; but with each tape symbol ¢ in w; replaced by ¢. The L
and the R non-terminals act as markers that delimit the infinite tape to its

region of interest.

Thus, if SY .,w is the initial configuration of the TM, then the matching sentential
form is Lw;SY, ;, w, R, which can be derived in a single step from S. For any move of the
TM, we now specify the sequence of derivation steps that would maintain the invariant.
1. Assume that the TM moves left using the transition rule (S;,¢) — (S;,¢, L). There
are two sub cases:
(a) If the current configuration of the TM is w;0(S;, ¢)w,, then § defines the current
sentential form to be Lw;05¢w,R. The corresponding derivation first uses the

production S{ — 0S¢’ and follows it up using 00 — e. This is shown in Fig-

ure 2.8(a). Notice that the invariant continues to be maintained between the new
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state of the TM and the sentential form at the end of these two derivation steps.
Similarly, if the TM configuration is w;1(S;, ¢)w, and the TM transition remains
the same, then the corresponding derivation first uses the production S{ — 15}0’
and then simplifies using 11 — .

(b) Let the current configuration of the TM be (S;, ¢)w,. Then @ defines the current
sentential form as LSS w,R. The corresponding steps in the derivation are: first
move the left marker using the production L — L0, expand S¢ using the S¢ —
OS?CI and simplify using 00 — €. Figure 2.8(b) shows that the invariant continues
to be maintained.

2. Now assume that the TM makes a right move using the transition rule (S;,¢) —

(S;,¢, R). There are again two sub cases:

(a) If the current configuration of the TM is w,(S;, ¢)Ow,., then the current sentential
form is Lw;S§ Ow, R. The corresponding derivation first uses the production S§ —
@S90 and follows it up using 00 — €. Similarly, if the TM configuration is
wy(S;, ¢)1w,, then the corresponding derivation first uses the production S§{ —
S}1 and then simplifies using 11 — €.

(b) Let the current configuration of the TM be w;(S;, ¢). Then the corresponding steps
in the derivation are: first move the right marker using the production R — OR,
expand S using the S¢ — S%0 and simplify using 00 — e. Tt is easy to verify

that in both the sub cases of 2, the invariant continues to be maintained.

The idea behind the productions is explained with an example: Assume that the
traversed part of the TM is 01(S,;,0)00 and therefore the current sentential form is
LO1SP00R. Also assume that the TM has a transition (S;,0) — (S;,1,L). Since the
next corresponding step in the derivation has to be done without any prior knowledge of
whether the symbol to the left of the tape is a 0 or a 1, two productions are provided,
and the invariant will be maintained only if the production SP — 1571 is chosen for the
next step in the derivation. This gives the configuration L011S}100R. Simplification
with the production 11 — € yields LOS;100R, which exactly corresponds to the changed
configuration of the TM.

When the TM comes to a halt in a configuration w;S%;,, w;, the corresponding
sentential form is Lw;S%;,,, w-R. In the subsequent derivations both L and R derive € and

the 5%;,,, productions are used to generate symbols that can be used by the productions
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Figure 2.9: Commutative diagrams illustrating the invariant § mapping sentential forms

to TM moves.

in unrestricted to erase w; and w,. The derivation ends with S%, , deriving €. Clearly if
the TM halts on the input string, then there is a derivation S = e.

Before proving the converse, we state a property of derivations in the constructed
grammar. The productions used for derivations can be categorized as (1) productions
with S¢ on the LHS, (2) productions with L or R on the LHS, and (3) productions in

unrestricted.

Lemma 2.3 Consider a derivation S = ~ in which productions are applied in some
sequence. The following pairs of consecutive productions in the derivation can be inter-
changed:

1. S¢ - v L — v and L — v S§ —

2.5 >y R— 7y and R — v S§ =™

3. Ly R—>vand R— v L —v

Also, the pair of consecutive productions, 00 — ¢ X — 7, can be replaced by X — v
00 — ¢ where X is one of S¢, L or R. Similarly, 11 — ¢ X — v, can be replaced by
X =y 11 —e

As a consequence of Lemma 2.3, if S = ~ through a sequence of productions, we can
derive v through an alternate derivation that re-orders the sequence by applying the
S¢ productions first, followed by the L and R productions and finally the unrestricted
productions. Notice that the new derivation must retain the order of productions in the
same category.

Also notice another property of sentential forms. A 0 (or 1) can only be cancelled
by a 0 (or 1) on its immediate right. Similarly, a 0 (or 1) can only be cancelled by a 0
(or 1) on its immediate left. Define an uncancellable-pair as the string 01 or 10. We then

make the following claim:
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Claim 2.4 If a sentential form contains an uncancellable-pair it can never derive €.

We are now in a position to prove the converse result, that if S — LS) wR = e,
then starting with the configuration (S,,;,c)w, the TM reaches a final state. Because
of Lemma 2.3, we can assume that the productions with S are employed before L, R
or unrestricted. Consider the segment of the derivation that starts with LS?  wR and
ends with the sentential form that has S, for the first time. To derive € there must be
such a sentential form. We now specify an invariant § mapping sentential forms to TM

configurations.

Each sentential form has the structure LoyS¢a, R, where o, o, € (0+1+0 +
1)*. Given such a sentential form, the corresponding TM state is w;(S;, ¢)w,,

where oy = Sy, and o, = w, 3, where 3, € 0* and f3, € 0*.

The correspondence between derivation steps and TM moves is as follows:

1. Assume that the production chosen for the next step in the derivation is Sf — 0S9¢'.
This production corresponds to the unique left move (S;,c) — (S;,¢, L). To derive
e without getting stuck, the current sentential form has to be either La;0S¢a, R or
LSSa, R.

(a) If the sentential form is La;0S$a, R, then because of the invariant §, the current
TM configuration is w;0(S;, ¢)w,, where 0,0 = B0, o, = w,S3,, f € 0* and
B, € 0*. Clearly the next sentential form is La;00S¢'a,R and the next TM
configuration is w;(S;,0)c'w,. The invariant is maintained once again, because
00 = By and o, = cw,B.. This is shown in Figure 2.9(a).

(b) If the sentential form is LSS« R, then the current TM configuration is (S;, ¢)w.,
where o, = w, 3, and S, € 0*. The next sentential form is L0S)c' o, R and the
next TM configuration is (S;,0)c’w,. The invariant is maintained because 0 € 0*
and o, = c/w,3,. This is shown in Figure 2.9(b).

2. If the next production chosen is S§ — 1S]1.c’, then it also corresponds to the left
move (S;,¢) — (S;,¢, L). The current sentential form necessarily has the structure
Loy1SSa, R and the corresponding TM configuration is w;1(S;, ¢)w,, where o;1 =
B, a. = w,B,, B € 0% and B, € 0*. The next sentential form is Lay11SYc . R and
the next TM configuration is w;(S;,1)c'w,. The invariant is maintained once again,

= * _ *
because oy11 = fw; and o, = dw,f,.

38



3. The productions S{ — ¢/S?0 or S{ — /S;1 correspond to a right move of the TM
(S;;¢) = (S;, ¢, R) and can be reasoned similarly.

It is important to notice that a wrong choice of production for the current sentential form

will result in a sentential form that will contain an uncancellable-pair and will not be able
to derive e.

Since the original derivation derived e, it had to arrive at a sentential form containing

Ginai- Therefore, the re-ordered derivation will also reach a sentential form such as

LoyS§, 0 R. Because of the invariant the TM will be in a configuration wi(S 4,4, ¢)wr

and halt. This completes the reduction. [ |

Let us enumerate the kinds of context-free productions used in the proof of Lemma 2.2.
They are (i) the productions corresponding to the starting state of the TM, S — LS, wR,
w € (0+ 1)* (ii) the productions corresponding to the intermediate states, S, — 0S;c,
S, = 1S;¢, S; — ©S5;0 and S; — ©5,1, where ¢ € {0,1}, (iii) the productions corre-
sponding to the final state, S, — ¢S;, S, — S,¢ and S, — ¢, and (iv) the productions

corresponding to L and R. The following lemma is obvious:

Lemma 2.5 Consider the subclass CG' of grammars (N,{0,1,0,1},p U unrestricted,S),
in which the productions in p are restricted to the forms described above. The e-recognition

problem for CG' is undecidable.

For grammars in C'G’, define a canonical derivation as one which first uses the R-
productions, then the S-productions, followed by the L-productions, and finally uses the
productions in unrestricted. In other words, a canonical derivation is a rightmost derivation
S =, a, followed by the use of productions in unrestricted. We present the following

claim without proof:

Claim 2.6 Consider a grammar in CG'. For every derivation of a string in G, there is

also a canonical derivation of the same string.

We now show how to construct a program P from given a grammar G € C'G’, such
that the language recognition of G is related to the result of dependence analysis of P.
This is shown in Algorithm 3. The reader can verify that for the example productions
shown in Figure 2.10, application of pgm will result in the program shown alongside. We

now have the following result.
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Function pgm (P)
Data: P is a production of the form S — vy or S — 71 | 72

Result: F, function corresponding to P
begin
var < createNew Var|()
switch P do
case S — v do
F < (define (S var))(pgm?’ (v, var))
case S — 71 | 72 do

F « (define (S var))(if * (pgm?’(y1,var)) (pgm?’(y2,var)))
return F'

Function pgm’ (v, curvar)
Data: A string v of grammar symbols representing the RHS of a production and

curvar, the context variable for ~y
Result: The program fragment for ~
begin
var < createNew Var|()
switch v do

case € do
(return curvar)

case 0y do
(let var < (car curvar) in pgm’ (v, var))

case 17/ do
(let var < (cdr curvar) in pgm’ (v, var))

case 0y do
(let var < (cons curvar ) in pgm’(y/,var))

case 19/ do
(let var < (cons _ curvar) in pgm?’ (v, var))

case S+ do
(let var < (S curvar) in pgm?(+/,var))

Algorithm 3: Algorithm to construct functions corresponding to grammars in

Cdq'.

Lemma 2.7 Consider a grammar G in CG' with start symbol S. The grammar has a
canonical derivation S = «a if and only if prop((S v),{€},x,d), where a € 0, x is the

formal parameter of S and v is an arbitrary value of appropriate type.
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S — LS,1R S, — 0S,0 | 1S,0

(define (S x) . (define (S, x)
(let a < (L x) in (if 0
(let b < (S; a) in (let a « (car x) in
(let c « 8cdr b) in (let b < (S, a) in
(let d « (R c) in (let ¢ «+ (car b) in
(return d)))))) (return c))))

(let a < (cdr x) in

(let b + (S5 a) in
(let ¢ + (gcar b) in

(return c))))))

Figure 2.10: Sample grammar rules and the corresponding programs generated by pgm.

Instead of proving Lemma 2.7, we prove the following generalization.

Lemma 2.8 Consider a grammar G in CG’. For any non-terminal symbol T and a string
a € (0+1+0+ 1) the grammar, Ta = B in a canonical derivation, if and only if
prop((T v),{a},x,0), where 5 € 8, x is the formal parameter of T and v is any value of

an appropriate type.

PROOF. Assume without loss of generality that 3 is the string obtained without applying
any of the rules in unrestricted, so that ( is ¢/« for some o' derivable from T.

First consider only the if part. The proof is by induction on the number of steps in
the derivation. As the base case, consider a 1-step derivation of T = o/c. This means
that o' is € and the production used is T — e. The program fragment corresponding to
this choice of production for T simply returns the formal parameter x of T. It follows
from the rules of DGS that prop((T v),{a}, %, {a}).

Now consider the case where T = o in n steps. For the first step of the derivation,
we have to do a case analysis on all productions with a non-e RHS. Let us consider only
one of them, say T — 0T’1, we can reason about other productions similarly. Further, we
assume that T/ = o and since this derivation takes n — 1 steps, we assume as induction
hypothesis prop((T’ v), {1a},y,d") where o”1a € ¢, y is the formal parameter of T and
v’ is some value.

From the program corresponding to T, it is clear that (a) the CDR rule will prefix a

1 to the demand {a} on the return value of T which then becomes the demand on the
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function call (T’ a), (b) from the induction hypothesis and because of id rule used while
binding the actual to the formal parameter y during a function call, the actual argument
a appears on the DGS trace with a demand ¢’ containing o’1a and (c¢) the CAR rule adds
a 0 to this demand giving the demand on the formal argument of T that contains 0”1,
or a.

Now consider the if part. We show by an induction on the depth of calls that if
prop((T v), {a}, x,d") such that o’a € ¢, then (T v) = o’/a. The proof is by induction on
the call depth of (T v). As base case, assume that the call depth of (T v) is 0, i.e. (T v)
results in no further calls. Then the program fragment executed in T immediately returns
the formal parameter, say x of T. From the rules of DGS, prop((T v), {a}, %, {a}), or in
other words o' is e. Also, it follows from the description of pgm that corresponding to
the program fragment above, T has a production that goes to €, and therefore Taw = a.

For the inductive case, we once again consider a single illustrative function definition:

(define (T x)
(if 0
(let a < (car x) in
(let b < (T" a) in
(let ¢ + (cdr b) in
(return c))))

As induction hypothesis, assume that prop((T" a),{1a},y,d’) such that o’ € ¢’ implies
T'la = o1a, where y is the assumed formal parameter of T'. Further, from the cDR rule
of DGS and the induction hypothesis, we have prop((T" a),{1a},y,d’) such that o"1la € §
and the fact that a is bound to (id y) gives prop((T v),{a},a,d’) Finally, by the CAR rule,
prop((T v),{a},x,d) such that 0a”1a € §, so that o is 0a”’1. Now, pgm dictates that the
program fragment must have been generated from the production T — 0T’1, and thus Ta =

0a"1e, or Ta = o/« [
Theorem 2.9 The dependence analysis problem is undecidable.

PROOF. Assume to the contrary that there is an algorithm A for dependence analysis.
Then given a grammar G € CG’, we construct a program P that consists of a main
program defined as (define (main) (let a < (S v) in (return a))) where v is a value
of an appropriate type. By Lemma 2.7, the e-recognition problem of GG, translates to the
predicate 3'prop(P, {€e}, x,d’) such that € € §' and x is the formal parameter of S. This

can be answered by using A as A(P, {€},x,¢). However, since the e-recognition problem
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(define (fu v)

(cons (u v)))

(define (main)

(let a « (car (f bc))

(let z + (cdr (f xy)) Y}1 Yo,

(cons a z)))) )li 7]]

Figure 2.11: (a) Example scheme program (b) Labelled dependence graph corresponding
to the program in (a). Dotted edges indicate interprocedural dependence, {; }; pair
indicate matching call-return, ( indicates putting a value in car part, [ indicates putting
value in cdr part, ) indicates a car selection and | a cdr selection. A valid dependence will

have a path in which all parenthesis match ({ and ( ( [ )) can be interleaved).

of GG has been shown to be undecidable, no such A can exist. Hence, the dependence

analysis problem is undecidable. [ |

2.4.3 Related work

The problem of devising a context-sensitive precise dependence analysis that can han-
dle structure-transmitted dependence has been shown to be undecidable by Reps [78].
Unlike our reduction, the undecidability is shown by reducing a variant of the Post’s

Correspondence Problem (PCP) called parenthesis PCP or P-PCP.

Reps models dependence analysis as a graph reachability problem on a directed
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graph, where the nodes of the graph represent program variables and the edges represent
data dependence. A variable u is dependent on variable v if and only if there exists a path
between the nodes corresponding to u and v satisfying some property. Figure 2.11 shows
an example program and the corresponding graph. The function f takes two arguments u
and v and returns a cons cell with u as the car-part and v as cdr-part. The main expression
has two calls to f, the car-part of the result of the call (f b ¢) is assigned to a and the
cdr-part of the result of the call (f y z) is assigned to x. A dependence analysis would
answer questions such as: Is a dependent on b? What are the variables on which a may
be dependent? Ignoring the property that needs to be satisfied, and, as a consequence,
the labels on the edges for the time being, we will try to answer these questions by doing
a reachability check on the graph shown in Figure 2.11(b). Variable a depends on b as
there is a path in the graph between the nodes corresponding to a and b. Notice, however,
that since there exists a path between ¢ and a, we conclude that a is dependent on ¢ and
for similar reasons, also a is dependent on y. However, it is clear from the program that
these dependences are spurious as a is not dependent on ¢ when one considers structure
transmitted dependence (captured by rules of the kind (car (cons x y)) = x), and a is not
dependent on y when context-sensitivity (dependences are propagated only along matched
call-return paths) is considered. These spurious dependences are generated because simple

reachability cannot capture structure-transmitted dependences or context-sensitivity.

Reps uses the fact that program-analysis problems can be tackled by modelling them
as CFL-reachability [77, 104| on labelled graphs. In a labelled graph, a node ¢ is CFL-
reachable from s if the string obtained from concatenating the labels on the path belongs
to a given context-free language defining the property that such a path should have. In
particular, context-sensitivity can be modelled by adding labels {; }; to call-return edges
and defining a context-free grammar, say G that accepts only those paths that have
matched {; };. In the graph in Figure 2.11, considering the CFL-reachability using G,
it is clear that the spurious path connecting a with y will be invalid. Similarly, we can
add ( to represent a value being passed as the first argument of cons [ to represent the
value being passed as the second argument of cons, ) to represent car selection and
| to represent a cdr selection and a different context-free grammar Go accepting only
matched-parenthesis paths. Again, in this case, considering only paths along which the

parenthesis (both ( ) and | |) are correctly matched, the fact that a is dependent on ¢
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can be ruled out. However, notice that just considering context-sensitivity or structure-
transmitted dependence alone is not sufficient to rule out all spurious paths and a fully
precise dependence analysis should consider both. In terms of the graph, only paths
along which both sets of parenthesis match ({ } for context-sensitivity and ( ) [ |
for structure-transmitted dependences) should be considered valid i.e. only paths in the
language GG; N G,. The reader can verify that the path from b to a is valid and paths from
c to a and y to a are invalid. Therefore, dependence analysis problem reduces to finding
an algorithm that finds all and only fully matched paths of the type described above in
the data dependence graph of a program.

Reps shows that this question is undecidable by reducing a variant of the Post’s
Correspondence Problem (PCP) to finding parenthesis matched paths. The PCP problem
is defined as follows: Given 2 lists of k strings X and Y over the language (0 + 1)", an
instance of PCP has a solution if there exists a non-empty sequence of indices iy, i, ... %,
where 1 < k < m and z;, %, ... 2i,, = YiyYi, - - - Yi,,- Lhe following instance of the PCP
problem from [78] where, X = {0101,101,111} and ¥ = {01,011,0111101} has the

solution 1,2, 3,1 because,
T1T2T3T1 = 01011011110101 = Y1Y2Ysyq

Reps introduces a variant of PCP called Parenthesis-PCP (P-PCP) and shows how to
construct an instance of P-PCP given an instance of PCP. Given an instance of PCP with

X =zx9m3 ... 2 and Y = y1y0y3 . . . yx we construct the instance of P-PCP as,

where ,

1. 7; are constructed by replacing 0 in z; by (and 1 by [.

2. E are constructed by replacing 0 in y; by ) and 1 by | and then reversing the string.
is reversed.

An instance of P-PCP is said to have a solution if it has a non-empty sequence
Ti Ty - Ty # Vi - T T

where for all 1 < m, we have 1 <i; < k and the parenthesis are matched. The correspond-

ing sets X and Y™ for the earlier instance are, X = {([([, ([, [} and YE = {]),1D), DD}
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call f
List *xx; foz. >O
void f1(){ N\ ret.f .........
/xEncodes ([([*/ .
x = cons (NULL, (cons (cons NULL,
(cons x, NULL)), NULL)); I oeall fr ol 0 callfs
if (...) £0O); ‘ {1' 2}1 {2' 5}2 {35 }s
/+*Encodes ])x*/ G . § . M .
x = car(cdr(x)) ; : ret f1 ret fa q ret f3
: o] o I [ 1)
void fa(){ : ] (] I] I ]
/+xEncodes [([*/ : o 1
x = cons (NULL, ( I ] [ifI* I] [ I ]
(cons (cons NULL, x), NULL)); [ I \—{ I ]
. . : if ) »
i) O3 Ly A iy >y |1
/*Encodes ]])x*/ # >0 B
x = car(cdr(cdr(x))); '~.'_"»__ 2o I )
void f3(){ T A :
/*Encodes [[[*/ k_{>3
x = cons (NULL, .
(cons NULL, (cons NULL, x))); ..... <3 """""
if (..) fO)s
/*Encodes ])]]]])*/
x = car(cdr(cdr(cdr(cdr(car(cdr(x)))))));

}

(a) (b)

Figure 2.12: (a)Program corresponding to the P-PCP instance under discussion (b) De-

pendence graph for the program in (a).

It can be verified that the sequence 1,2,3,1 is a solution to this instance of P-PCP also.
It is clear from the construction that if an instance of P-PCP has a solution then the
corresponding instance of PCP also has a solution. This shows that P-PCP is also unde-
cidable. Reps shows that given an instance of P-PCP, one can construct a program such
that if and only if there exists a parenthesis matched path in the dependence graph then
the corresponding P-PCP problem has a solution.

The program fragment that is equivalent to the instance of the P-PCP problem is
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void f(){
if (...) f0);
elseif (...) fa()

void main () {
s: x = atom(A);

f0);

t: /#* can x have the value A here?x/

else fi();

Figure 2.13: The structure of main and the common function f.

shown in Figure 2.12. Each function f; in the program encodes the 7; as a sequence of con-
structor operations and the corresponding 7;7 as a sequence of selectors. For example, the
sequence for 77, ([([ is encoded as cons(NULL, (cons(consNULL, (consz, NULL)), NULL))
and 777, ]) as car(cdr(x)). A non-deterministic condition ensures that each f; can call any
other f; (including itself) any number of times. Function call and returns are matched

using the symbols {; }; (<; >;). Functions f and main are shown in Figure 2.13.

From the construction it is clear that any f; can be called from f any number
of times and in any order, capturing the fact that any 7; can be used any number
of times and in any order. Once the functions start returning from f only the code
corresponding to ;s will be executed. A context-sensitive dependence analysis capa-
ble of correctly modelling structure transmitted dependences should be able to identify
that variable x may have the value atom(A) at program point ¢ (because the corre-
sponding instance of P-PCP has the solution 1,2,3,1). It can be verified that the path,
<ot ([(I<a{al(l<e{s[[T<s{a CLCIT) ha>s])T1]]) s>2]]) J2>1]) b >0
corresponding to the sequence 1,2,3,1 is indeed well matched. The undecidability of
context-sensitive structure transmitted data dependence analysis follows from the fact
that if we had an algorithm that could check if such a path exists in the dependence
graph then we could solve the P-PCP problem which is already known to be undecidable.

The undecidability proof presented in this thesis differs from Reps’ in two respects, 1)
While Reps uses PCP to show the undecidability we use the Turing machine halting prob-
lem 2) our proof is tightly coupled with the operational semantics that we have defined
to give a formal definition of dependence analysis. The fact that it is closer to the opera-

tional semantics allows us to define an analysis which computes safe over-approximation
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of dependences which we discuss in the following chapter. Most approximate analyses
drop the requirement of either context-sensitivity [79] or structure transmitted data de-
pendence [93] to become decidable. As we shall see later, our approximate dependence
analysis is modelled as the emptiness question on intersection of 2 CFGs. However, it ap-
proximates the requirement of context-sensitivity by a regular grammar instead of a CFG.
While the emptiness question of intersection of 2 CFGs is known to be undecidable, the
emptiness question of the intersection of a CFG with a regular grammar is decidable [64].
We model structure transmitted dependence precisely using a CFG but over approximate
the CFG corresponding to context-sensitivity by a regular grammar and use the intersec-
tion to compute approximate dependences. An analysis which is only context-sensitive or
which only models structure transmitted dependences cannot eliminate spurious paths in
the example in Figure 2.11, however the analysis that we will be presenting in the next

chapter rules out all spurious dependences for the example.
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Chapter 3

An approximate dependence analysis

and its proof of correctness

In the previous chapter, we formulated the problem of dependence analysis and showed
that computing precise dependence information is undecidable. In this chapter, we de-
scribe an analysis to compute an over-approximation of dependences for first-order func-
tional programs. Interestingly, our formulation of the problem leads naturally to the
approximate analysis. Our analysis is driven with a demand supplied by the user on
a designated expression, which, for the applications considered in this thesis, namely
liveness-based garbage collection and slicing, is a call to the function main. The user
supplied demand will be denoted oain. The result of the analysis is a (non-context-free)
grammar corresponding to each expression in the program. These grammars effectively
describe the parts of the expression on which the result of main is dependent. Answer-
ing queries related to dependence questions amounts to finding out membership of access
paths in the generated grammars. Since we have already shown that precise dependence
analysis is undecidable, the undecidability manifests in the membership question also
turning out to be undecidable. We get around this undecidability by settling for an ap-
proximate answer to the membership problem. Finally, we prove the correctness of our

formulation of dependence analysis using DGS.
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3.1 An approximate dependence analysis

We now describe an analysis to compute dependences in functional programs. As men-
tioned earlier, this analysis should be interprocedural, since the central construct in a
functional program is a function call. In the interest of precision, the handling of function
calls should be context sensitive, and for reasons of efficiency, a function body should
not be analyzed more than once. Finally, for an accurate modelling of the state of the
heap, the interaction between constructors and selectors should be modeled as part of the
analysis, in other words we should model structure-transmitted dependence in the model
of Reps [78].

The analysis that we consider addresses scalability and precision concerns by com-
puting context independent summaries of the effect of functions and then using these
summaries at call sites to mimic the effect of the function call on its arguments. These
summaries act as demand transformers which transform the demand on the function call
to demand on the arguments of the call. Thus, if the demands on different calls to the same
function are different, the demands propagated to the arguments will also be different.
This effectively captures context sensitivity.

Figure 3.1 describes our analysis. First notice that a null demand (denoted by 0)
on any expression! results in a null demand on the constituents of the expression. This
captures the fact that when no part of the value of the expression is required, none of its
constituents need to be computed. This means that the evaluation of the language is a
generalization of lazy evaluation—the extent of evaluation of an application or expression
is determined by the demand on it.

The function A, takes an application s and a demand o and returns a demand
environment that maps the demand on each argument of s (represented by its program
point) due to the application. The third parameter to A, denoted DS, represents context-
independent summaries of the functions in the program and is used to analyze function
calls. This will be explained shortly. A demand environment is a mapping from program
points to a demand, expressed as {m; — {¢,1,11}, 7 +— {€}, m3 — {}}. In this notation,
7o +— {€} indicates that the demand on the expression at s is the root of the value of the

expression. Similarly 3 — {} indicates an empty demand on the expression at m3. We

'In general, we shall call elements of both Expr and App expressions, distinguishing them only when

required by the context

20



A :: (App, Demand, FuncSummaries) — DemandEnvironment

A(mk,0,DS) = {m > o}, for constants including nil

A(m:(null? 7p:x),0,DS) = {m > if 0 # 0 then {e} else 0}

A(m(+ mx may),0,D8) = {m > if 0 # 0 then {€} else 0,

7y > if o # () then {e} else 0}

= {m — if 0 # () then Oc else (}

= {m > if o # () then 10 else 0}

= {m—{a|0aec},m—{8|15€0c}}
= ULi{m — DSj(0)}

o, DS
o, DS

A(m: (car 7y ), )
A(m: (cdr my: x), )
A(m:(cons m:x my), o, DY)
); )

A(m:(f ey -+ Tyn), 0, DS

D :: (Exp, Demand, FuncSummaries) — DemandEnvironment

D(m(return m:x),0,D8) = {m +— o, 71— 0o}
D(m:(if m:x €1 e3),0,D8) = D(ey,0,DS) UD(eq,0,DS) U
{m > if 0 # 0 then {e} else O, ™+ o}
D(m(let < mpsine),0,DS) = A(s,0/,DS) U {mr— o,m — o'}
where II is the set of program points

representing all occurrences of x in e

DE = D(e,0,DS), and ¢’ = U g DE(7),

DS € FuncSummaries :: Funcname — (Demand — (Demandy, . .., Demand,))

Vf,Vi,Yo : D(es,0,DS) = DE,DS; = J, .y DE(r)

df; ... df, ' DS

(FUNCTION-SUMMARIES)
(define (f 21 ... z,) ef)isoneof df; ...dfy, 1 <i<nmn,

and II represents all occurrences of z; in ey

Figure 3.1: Demand equations and judgment rule

use DE to range over demand environments. The demand on the expression at a program
point 7 is denoted as DE(7), but can also be written as DE;.

Now the A rules: A demand of ¢ on the application (car x), is transformed to the
demand Oc on the argument x. This is illustrated in Figure 3.2(a). To compute o of
(car ), we have to start with the root of x, dereference using the car field and then

compute o of the tree thus obtained, resulting in the path 0o. The rule for (cdr z) is
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\cons zy) 00y U 1oy ~ (fzyo

Figure 3.2: Tllustration of application rules (a) A demand of ¢ on (car x) resulting in a

demand of 0o on z (b) cons rule (c¢) Function application.

similar. In an opposite sense, illustrated in Figure 3.2(b), the demand of 0o, on (cons z y)
is transformed to the demand o, on z and a () demand on vy , and a demand of 1oy on
(cons z y) is transformed into a demand of o2 on y and () demand on z. Since (null? x)
only requires the root of x to examine the constructor, a non-null demand on (null? z)
translates to the demand € on z. A similar reasoning also explains the rule for (+ z y).
Since, both x and y evaluate to integers in a well typed program, a non-null demand on
(+ z y) translates to the demand € on both z and y.

Just as A defines how a primitive like car maps a demand on itself to demands on
its arguments, we would like to derive a similar transformation for user-defined functions.
Since user-defined functions are, in general, mutually dependent, we define this transfor-
mation simultaneously for all user-defined functions. This is given by the inference rule
DEMAND-SUMMARY and results in a set of functions ]DS}, defining how a demand o on a
call to f is propagated to its ith parameter. The rule for function calls uses DS to propa-
gate demands to the arguments of a specific call. We look upon the functions for DSy as
a context-independent summary of f—context-independent because it is parameterized
with respect to the demand that will be instantiated at the place where the function is
called.

The rule FUNCTION-SUMMARIES specifies the fixed-point property to be satisfied by
DS, namely, the demand transformation assumed for each function in the program should
be the same as the demand transformation calculated from the body of the function.

The reader will notice the similarity between this rule and the rule for recursive lets in
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(define (length 1st) (define (main)

m1: (let x < (null? 1st) in mo: (let a < 5 in
mo: (if ;% mo: (let b+« (+al)in
m3: (let v < 0 in m1: (let ¢ < (cons b nil) in
7y (return ¢y : v) m2: (let w <— (length c) in
7s: (let u + (cdr 1st) in m3: (return ¢,:w)))))

76: (let y < (length u) in
i (let z < (+ 1y) in
ms: (return ¢s : z))))))))

Figure 3.3: An example program

the Hindley-Milner system of type inference [34, 59, 76]. An operational interpretation
of the rule to find ]DS}(U) proceeds by analyzing e;, the body of f, with respect to a
symbolic demand o. Then ]DS}(U) is the union of the demands on all occurrences of the
ith argument in e;. A call to a function, say g, in ey is analyzed using the summary DS,.
In general, this results in a recursive description of ]DS}(U). We explain in Section 3.2
how to convert this to a closed form.

We next describe the function D that propagates demands across expressions. Con-
sider the D-rules for let, if, and return. Since the value of (return x) is the value of x, a
demand ¢ on (return x) gives a demand of 0. The demand of the expression (if = e; e)
is a union of the demands of e¢; and e5. In addition, since the condition x is also evaluated,
the demand {e} is created and added to the union. Note that, the condition z needs to
be evaluated only if the result of the if expression is required, i.e. demand on ¢ is not
(). Hence, the demand {e} is added only if the demand on if is not (). Finally, since the
value of (let z < s in e) is the value of its body e, the rule for let first uses o to calculate
the demand environment DE of e. The demand on s is the union of the demands on all
occurrences of x in e. Notice that the demand environment for each expression e also

includes the demand on e itself apart from its subexpressions.

3.1.1 An Example

For the rest of the chapter, we consider the program in Figure 3.3 as our running example.

The program takes a list as input and computes its length. Consider ]DS]length, the function
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that propagates the demand on a call to length to its first (in fact, only) argument.
An operational interpretation of the rule FUNCTION-SUMMARIES rule requires us to do a
dependence analysis of the body of length with a symbolic demand o, union the resulting
demands on all occurrences of the argument 1st in the body, and equate it to ]DSllength.
Assume for the sake of simplicity that o is not (). Firstly notice that, according to the rules
of let and if, the demand on z is also ¢. This is propagated to y through (+ 1 y), which
in turn is propagated to u through (length u), and finally to 1st through (cdr 1st). The
reader can verify that the resulting demand on this occurrence of 1st is 1]DSllength(e). On
the other hand the demand on x is also € (the if rule), and this is propagated to the 1st

in (null? 1st) resulting in a demand of € for this occurrence of 1st. Thus:

]DSllength =eU 1IDSllength<E>

Notice that this equation is recursive in ]DSllength, and in order to be able to use it

to compute dependences, we have to bring it to a closed form.

3.2 Computing dependences

The analysis in Section 3.1 is precise and context-sensitive, describing the demands inside
a function body in terms of a symbolic demand o and the function summaries DS. What
we have not said so far is how the demand on the function body is to be determined. This
is as follows:
1. The demand on the body of the main program, épain, is user supplied, and is denoted

by Omain-
2. The demand on a function body e is the union of demand over all calls to f.
The function bodies are analyzed using the demands described above. The advantage of
summarizing a function in a context-sensitive manner using a symbolic demand is that
while analyzing a function body, it helps us to propagate a demand across several calls
to a function without analyzing its body each time. Additionally, as we shall show in
Chapter 5, it is the key to our incremental slicing method.

However, some of the rules of dependence analysis requires us to do operations

that cannot be done on a symbolic demand. For example, the cons rule defined as

{a | 0w € o} clearly requires us to know strings belonging to o that start with O.
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Recall from Section 2.4.1, we were able to describe the set operations of the cons rule
algebraically by introducing symbols 0 and 1. We replace the rule {a | O € o} with the
rule Oc and {a | 1a € o} with 16. While 0 represents selection using the car selector, the
symbol 0 represents the use of a value as the first argument of cons. Thus, 00 represents
first putting a value in the car part of a cons cell and following it with a car selection,
effectively cancelling out each other. We therefore add the rule 00 — € to capture this fact.
Similarly, for the analysis to handle lazy semantics, the if rule should place an € demand
on its conditional expression only if the incoming demand in non-null. We introduce the
symbol 0.2 to capture this operation. @, represents the symbolic transformation of any
non-null demand to € and null demand to itself. The simplification function S defines and

makes these transformations deterministic.

0  ifS(o)=10

{e} otherwise

8(0’1 U 0'2) = 8(0’1) US(O'Q)

Notice that O strips the leading 0 from the string following it, as required by the rule for
cons. Similarly, @, examines the string following it and replaces it by () or {e}; this is
required by several rules. The A rules for cons and null? in terms of the new symbols

are:

A(m: (cons my:x m:y), 0, DS) = {m + 00,7 — 1o}

A(m: (null? 7y:2), 0, DS) = {m; — B0}

20dd as it may seem, choice of the symbol @, is to check whether the demand following it is the null

demand 0.
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and the D rule for if is:

D(m: (if m:x e e3),0,DS) = D(ey,0,DS) UD(ez,0,DS) U
{m — if o # () then {e} else 0,

T o}

The rules for + are also modified similarly. We keep applying the simplification rules
starting from the right, the simplification process stops when no rules are applicable. If
the final string does not have any bar-edge symbols the string belongs to the language

generated otherwise it does not. The following examples show the process of simplification,
{10.0110} > 15({0.0110}) > 10.S({0110}) > 10.0S({110})
5 10.015({10}) > 10.0115({0}) > 10.01105({e})
5 10.0118({0}) > 16.01S({10}) > 10.05({0}) > 16.S({e}) > 1

In this example, the final string contains no bar-edge symbols and therefore is a valid

string.

{00.01110} > 05({0.01110}) > 00.5({01110}) > 00.05({1110})

5 00.015({110}) > 00.011S({10}) > 00.01115({0}) > 00.011105({e})

% 00011100 > 00.01110 > 00,0110 > 00.010 > 00.00 5 00.0 > 00 > ¢

In the second example, S generates an () when it encounters an e following a 0
symbol. Once ) is generated, the semantics of concatenation of strings ensures that the
final result of § is an empty string, indicating that the string is not valid.

Now the demand summaries can be obtained symbolically with the new symbols as
markers indicating the operations that should be performed on the string following it.
When the final demand environments are obtained with opain acting a concrete demand
for the main expression emain, the symbols 0, 1 and @, are eliminated using the simpli-

fication function §. The original rules and the modified rules are related through the

simplification function S as follows:

Proposition 3.1 Assume that a demand computation based on the original set of rules
gives the demand on the expression w : e as o (symbolically, DE(w) = o). Further, let

DE(7) = o’ when the modified rules are used instead of D. Then o = S(o’).
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To see why the proposition is true, consider an analysis based on the modified rules
in which o appears in the context A((cons z y),0,DS). Let o € 0. The symbol 0(1)
merely marks a place in o where the original cons rule would have erased an immediately
following 0(1), or, in absence of such a symbol, would have dropped « itself. Since the
application of the modified rules merely add symbols at the beginning of «, the markers
and other symbols in « are propagated to other dependent parts of program in their same
relative positions. Consequently, the erasure carried out at the end of the analysis with S
gives the same result as obtained through the original rules. The proposition also holds

for other modified rules for similar reasons.

3.2.1 Obtaining closed form for function summaries DS

As mentioned earlier, and illustrated in the example in the last section, to obtain the
context-independent summary of a function f with respect to its ith argument, ]DS;},
we start with a symbolic demand o and compute the demand environment for ey, the
body of f. From this we calculate the overall demand on the ith argument of f, say
x. This is the union of demands of all occurrences of = in e;. This demand on the ith
argument is equated to ]DS;(J). Since the body may contain other calls, the dependence
analysis within e; makes use of DS in turn. Thus, on the whole, DS will be given by a
set of equations, one for every argument of each function. For the running example, the
equation shown below defines DS, (). DE(m1) and DE(ms) are the demands on the

two occurrences of 1st in the body of length.
IDSllength(a) = DE(T‘-l) U DE(TF5) = @60' U 11DSllength<0€U>

This looks different from the equation for ]DSllength(a) in Sections 1.4.1 and 3.1.1 because
of two reasons: We no longer assume that o is non-empty, and the equation is written
using the modified rules of dependence analysis that make use of the symbols 0, 1 and
0.

As noted in [79], the main difficulty in obtaining a convenient function summary is
to find a closed-form for ]DSllength(a) instead of the recursive description. Our solution to
the problem lies in the following observation: Since we know that the rules of dependence
analysis always prefix o with symbols, we can write ]DS}(U) as DS} o (DS;} concatenated

with o), where DS} is a set of strings over the alphabet {0,1,0,1,0.}, and represents
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the effect of ]DS} on o. The modified equation after substituting the guessed form of

]DSllength(a) in the equation will be:
DSllengthU = 060 U 1DSllength0€U

Substituting the guessed form in the equation describing DS, and factoring out o,

we get an equation for D} that is independent of 0. Applied to DSiengtn, We get:

]])Sllength(a) = DSllengthU7 and

DSllength = @e U 1DSllength®€

Any solution for DS} yields a solution for DS;. Note that the equation can also be viewed

as a CFG with {1, 0.} as terminal symbols and DSllength as the sole non-terminal.

3.2.2 Computing the demand environment for function bodies

While the computation of function summary assumed a symbolic demand for each func-
tion, to compute the demand environment, we have to supply the concrete demand for
each function. The concrete demand on a function denoted as oy is computed in a manner
similar to 0-CFA [91], by taking the union of the demands at all call-sites of f. This acts
as a safe over-approximation and keeps the analysis sound. The demand environment of
a function body e; is calculated using oy. If there is a call to g inside ef, the demand
summary DS, is used to propagate the demand across the call. Continuing with our
example, we assume that the concrete demand on the body of length to be denoted by
Olength and the demand on emain t0 be Omain. Since length has calls from main with a

demand omain and a recursive call at mg with a demand Qeoiengtn. Thus:

Olength — Omain ) @ealength

We calculate the demands on all expressions arguments of length in terms of Olength-
Thus the demand on u at 7g, denoted by D, is DSllengthQ)ecr]ength.

At the end of this step, we shall have (i) A set of equations defining the demand
summaries ]DS} for each argument of each function, (ii) Equations specifying the demand
D, at each program point 7, and (iii) an equation for each concrete demand oy on the

body of each function f.
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3.2.3 Converting equations to grammars:

Notice that the equations for DSllength and Ojengtn are still recursive. However, these
equations can also be viewed as a grammar with {0,1,1,0,0.} as terminal symbols and
DSllength, Drs and Oiengtn as non-terminals. Thus finding the solution to the set of equa-
tions generated by the dependence analysis reduces to finding the language generated
by the corresponding grammar. In fact the language generated by the grammar is the
least solution of equations above. The least solution corresponds to the most precise

dependence analysis. The equations can now be re-written as grammar rules:

1
D7T6 — DSlength@ealength
1 1
DSlength — (Z)e Ul DSlength 06 (31)
Olength — Omain U 06 Olength

Information required for several applications can be posed as language recognition prob-
lems for this grammar. For example, During garbage collection, we may need to know
whether a path in the heap, say 0010, starting from the variable u in the root set is possi-
bly live at program point mg. This translates to the question of whether the language of D,
after simplification using the function S, contains 0010. Formally, 0010 € S(.Z(D,))?
Notice that we ask the membership question for strings belonging to (0 + 1)*, as these
represent valid paths in the heap.

If the membership question was decidable, the dependence question would also be
decidable. But, as we have already shown, the dependence question is undecidable and
hence the membership question is also undecidable. The membership question can be
shown to be undecidable in a similar way to the dependence question. Fortunately, the
membership question becomes decidable if the grammars generated are regular. In the
next section, we describe a method to safely over-approximate the CFGs generated from

our analysis by regular grammars.

3.2.4 Over-approximating dependence grammars

We circumvent the problem of undecidability by over approximating the CFG by non-
deterministic finite state automata (NFA) using the method of Mohri and Nederhof [63].
This method transforms a CFG G into a strongly regular grammar R such that .Z(G) C

Z(R). This makes the membership question decidable at the cost of some precision.
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Function createStronglyRegularGrammar(G)
Data: A context-free grammar G

Result: R, the strongly regular grammar over approximating GG
create grammar R
/* M is the set of mutually recursive non-terminals in G */
M « {A, By, Bs,...,By}
add to R new non-terminals {4, By, Bo, ..., B, }
foreach (production P € G) do
add to R production A — ¢
/* «; not empty */
if (P is A — apBia1Bsas...Byau, and m > 0) then
add to R production A — B
add to R production B; — oy Bs

add to R production B,, — o, A
else

add to R production A — agA
return R

Algorithm 4: Function to approximate a CFG by a strongly regular gram-
mar [63].

If a CFG consists of a set of mutually recursive non-terminals such that the rules
involved are not all left regular or not all right regular, then the method breaks the rules
into right regular rules by introducing fresh non-terminals. For our example, the rule
Dllength has a non-regular production 1Dllength@€. Algorithm 4 describes the procedure to
over approximate a context free grammar by a strongly regular grammar. The steps for

transforming these productions into right regular productions are:

1. Add a new non-terminal m to the grammar with the rule Dlength — €.

2. Replace Digngin — O by Diengtn — 0 Dlength

3. Replace  Dingtn — 1Dicngtn@e by Dicngen — 1Dlgpgen and
Dllength — 0. Dlength

The detailed algorithm and explanation of this approximation is described in Mohri
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Input: A program P with a function main as entry point and omain as the user
supplied demand

Output: A finite-state automaton (FSM) for every program point 7 such that for
every string w € (0 + 1)*,
dprop((main), omain, 7,0) and w € § = w € L (FSM)

Step 1 : (Section 3.2.1)

foreach (define (f 7) ef(7)) do

Obtain summary DS} with respect to a symbolic demand o resulting in equations :

DS;(U):...Dsg(U/)... /*x 1 <i<#Args(f) */

Step 2: (Section 3.2.2)
foreach e¢; do
if f is main then
0f = Omain
else
0f = Upen DEx
where II is the set of all program points where f is called in P
Compute demand D(ef,o¢,DS) to give DE; at each 7 : e in ey
Step 3: (Section 3.2.3)
Obtain closed form, by expressing IDS’J} (o) as DS} o
DS;} is given by a CFG over {0+1+0+1+ 0.}
Express all DE; as CFG in terms of DE,, and DS}
Step 4: (Section 3.2.4)
foreach DE, do
Convert DE; to strongly regular grammar using Mohri-Nederhof transformation

Convert regular grammar to FSM and perform S-simplification

Algorithm 5: Algorithm to convert the dependence analysis specification in

Figure 3.1 to a computable form.

and Nederhof [63]. The rules for Dllength after the transformation are:

1 1 1
Dlength — meD]ength | 1D1ength
1 1
Dlength - meDlength | €

The strongly regular grammar is converted into a set of NFAs, one for each non-
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terminal. The simplification is now done on the NFAs by repeatedly introducing e edges
to bypass pairs of consecutive edges labeled 00 or 11 and constructing the e-closure until a
fixed point is reached, after which the edges labeled 0 and 1 are deleted. The simplification
does not change the semantics of the path in that the node reached by the path remains
the same and no new edge is added to the path . The details of the algorithm to perform
simplification on the NFAs, its correctness and termination proofs are given in [12, 44]|.
Finally, we remove all the edges labeled (. and convert the automaton into a deterministic
automaton. These steps effectively implement the simplification function S rules for 0
and 1 to obtain forward access paths. This concludes our analysis procedure and these
automata constitute the output of our dependence analysis. The entire procedure to bring

the specification of dependence analysis to a computable form is shown in Algorithm 5.

3.3 Soundness of approximate dependence analysis

We now prove the correctness of our proposed dependence analysis. This involves showing
that the demand computed by our analysis conservatively approximates the "real" demand
on each expression that would meet the demand oya;, on the designated expression
(main) in any execution of the program.

Consider the trace of a program in execution under DGS. Let ¢ represent the runtime
or dynamic demand on an expression. Assume that an expression e appears on the trace
for evaluation with an execution context & = (p, S, ,d). The evaluation of e under the
context £ is deemed to be over, when its value v reaches the extent of evaluation specified
by 0 and is replaced by the continuation on the top of S. During this evaluation (of
e under the context &), consider a sub-expression €’ of e that appears on the trace for
evaluation with a context, say & = (p/,S’, ,9’). Then the soundness of our analysis
involves showing that if o and ¢’ are the static demands on e and ¢’ respectively, then
d C o implies & C ¢’. In other words, if 6 C o and prop(e,d,e’,d’), then &' C o’. If
this happens for every execution context £ and every sub-expression €', we say that the
expression e preserves subsumption. One can similarly talk about applications preserving
subsumption.

We first show that every expression preserves the subsumption relation, provided

applications, in particular function calls, preserve subsumption.
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Lemma 3.2 Assuming that applications preserve subsumption, expressions also preserves

subsumption.

PROOF. The proof is by induction on the structure of expressions. The base case is a
return expression for which the proof is trivial. Now consider a let expression e given
as (let z < s in €’). Assume as induction hypothesis that ¢’ preserves the subsumption
relation. Let e appear for evaluation on the trace of the program with a context carrying
the demand 9. We assume that the static demand on e is o and that § C o. Then, by
the rules of dependence analysis the static demand on ¢’ is also o. Further, the rules
of DGS gives that ¢’ appears on the trace with the context (p @ {z — (s,p)}, , ,0),
i.e. the dynamic demand on ¢’ is also §. So the premise of the induction hypothesis
holds for ¢/, and thus for each sub-expression of ¢’ the subsumption relation holds. In
particular, this subsumption relation will hold for the dynamic and static demands on z,
if 2 appears on the trace for execution. i.e. if the dynamic and static demands on x are ¢’
and ¢’ respectively, then ¢’ C o’. Further, if  appears on the trace of the DGS execution
with a demand ¢’, then in the next step of DGS, s also appears on the trace with the
same dynamic demand ¢’. By the dependence analysis rule for let, the static demand
on s will include ¢’. Since s is an application, because of the premise of the lemma, the
subsumption relation will hold for the sub-expressions of s. Since the sub-expressions of
e are made up of the sub-expressions of s and ¢, the result follows for let.

The case when e is an if expression directly follows from the induction hypothesis

and the rules of dependence analysis and DGS. |

We now have to show that the assumption regarding applications in Lemma 3.2

actually holds.
Lemma 3.3 Applications preserve subsumption.

PROOF. For an application that is not a function call, it is clear that the statement of the
lemma holds. This is because such applications propagate the demand to their arguments
in the same way in both the static analysis and the DGS.

To prove the lemma for a function call, say (f x), we induct on the depth of the
call. Assume that the function f is defined as (define (f a) ef) and also assume that the

evaluation context of (f x) in the trace is (_, S, ,¢), the demand on the call in the static
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analysis is o, and 6 C 0. The DGS trace then evaluates e; with a demand d. Consider
a static analysis of e; with the demand o. For the base case, assume that evaluation
of ef does not result in any more function calls. Therefore, by lemma 3.2, if the formal
argument a comes on the trace with a demand ¢’ and the static demand on this occurrence
of a is ¢/, we have ¢’ C ¢’. Since a is bound to (id z), the dynamic demand on z is ¢’
while the static demand is z is ]DS}(U). We have to show that ¢’ C ]DS}(U). This directly
follows from the rule DEMAND-SUMMARY.

For the inductive hypothesis, assume that all calls in e; preserve subsumption. Due to
the inductive hypothesis the premise of lemma 3.2 is satisfied and we can once again replay
the argument of the base case and prove that if the dynamic demand on an occurrence of
the argument a is 0’ and the static demand is ¢/, we have §' C ¢’. And for the reason as

in the base case, we have §' C ]DS}(U), where ]DS}(U) is the static demand on . [

Theorem 3.4 Consider the DGS trace of an arbitrary program. For any expression e
that appears on the trace, the dynamic demand on e is subsumed by the static demand on

€.

PRrROOF. We first define the dynamic level of an expression e on the trace as follows. The
only expression at level 0 is (main), and if a function call to f appears at level n, then
each sub-expression e of the current incarnation of ey that appears on the trace is at level
n + 1. The proof is by induction on the dynamic level n of expressions.

The base case n = 0 is trivial as both the dynamic and the static demands on
(main) are the same, omain. Now assume that the statement of the theorem holds for
all expressions at level n. Consider any call (f x) at level n. If the dynamic and static
demands on (f z) are § and o respectively, then from the induction hypothesis § C o.
While the dynamic demand on e; is also d, the static demand is o; which contains o.
Thus, the dynamic demand on ey is subsumed by the static demand and therefore by
Lemmas 3.2 and 3.3, for all sub-expressions of e; that appear on the trace, the static
demand subsumes the dynamic demand. Since this happens for all calls at dynamic level

n, the theorem holds for all expressions at dynamic level n + 1. |
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Chapter 4

Liveness-based garbage collection for

lazy languages

Functional programs make extensive use of dynamically allocated memory. The allocation
is either explicit (i.e., while using constructors) or implicit (while creating the runtime
representations of unevaluated expressions, also called closures). Programs in lazy func-
tional languages put additional demands on memory, as they require closures to be carried
from the point of creation to the point of evaluation.

Although the runtime system of most functional languages includes a garbage col-
lector to reclaim memory, empirical studies on Scheme [45] and Haskell [82] programs
have shown that garbage collectors leave uncollected a large number of memory objects
that are reachable but will assuredly not be used by the program later. This results in
unnecessary retention of memory which can be safely garbage collected.

In this chapter, we propose the use of liveness analysis of heap cells to improve
garbage collection (GC) in a lazy first-order functional language. Liveness analysis can
identify cells which will definitely not be used by the program in future. By making this
information available during garbage collection, these cells can be garbage collected, even
if they are reachable. We use a modified version of the dependence analysis that was
defined in chapter 2 to compute liveness information. The result of liveness analysis is
an annotation of certain program points with deterministic finite-state automata (DFA),
one for each variable in scope, capturing the liveness of the variables at these points.
Depending on where GC is triggered, the collector consults a set of automata to restrict

reachability during marking. This results in an increase in the garbage reclaimed and
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consequently in fewer collections.

Whereas the idea of using static analysis to improve memory utilization has been
shown to be effective for eager languages [12, 36, 41, 56|, a straightforward extension
of the technique is not possible for lazy languages, where heap-allocated objects may
include closures. The additional complexity of replaying such techniques for lazy languages
are as follows: Firstly, since data is made live by evaluation of closures, and in lazy
languages the place in the program where this evaluation takes place cannot be statically
determined, laziness complicates liveness analysis itself. Moreover, for liveness-based GC
to be effective, we need to extend it to closures apart from evaluated data. Since a closure
can escape the scope in which it was created, during garbage collection, it is not enough
to refer to the liveness of only variables in scope. As we shall see later, we require closures
to carry liveness information of its free variables. As a further optimization, as execution
progresses and possible future uses are eliminated, we update the liveness information in a
closure with a more precise version. For these reasons, the garbage collector also becomes
significantly more complicated than a liveness-based collector for an eager language.

Experiments with a single generation copying collector (Section 4.4.3) confirm the
expected performance benefits. Liveness-based collection results in an increase in garbage
reclaimed. As a consequence, there is a reduction in the number of collections and a
decrease in the minimum memory requirement. As an added benefit, there is also a

reduction in the overall execution time in some of the benchmark programs.

4.1 Motivating example

Figure 4.1 shows an example in which the heap is represented by a graph in which a node
either represents atomic values (nil, integers, etc.), or a cons cell containing car and
cdr fields, or a closure (represented by shaded clouds). Edges in the graph are references
and represent values of variables or fields. Figure 4.1(b) shows the lists x and z partially
evaluated due to the if condition (null? (car z)). The edges shown by thick arrows are
those which are live at 7.

Thus, if a GC takes place at 7 with the heap shown in Figure 4.1(b), a liveness-based
collector (LGC) will preserve only the cell referenced by z and the live cells constituting

the closure referenced by (cdr z). In contrast, a reachability-based collector (RGC) will
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(define (length 1st)
(if (null? 1st) 0 (+ 1 (length (cdr 1st)))))

(define (append 11 12)
(if (null? 11) 12
(cons (car 11) (append (cdr 11) 12))))

(define main)
(let x < (cons 5 (cons (cons 6 nil) nil) in
(let y < (cons 3 nil) in
(let z + (append x y) in
(if (null? (car z)) 0 7: (length z))))))

(main)

(a) Example program.

(b) Memory graph at .

@ denotes a closure. Thick edges denote live links. Traversal stops at edges marked x during garbage

collection for a liveness-based collector.

Figure 4.1: Example Program and its Memory Graph

preserve all cells. In this chapter, we propose a static analysis of heap data that helps in

determining the live references in the heap. Similar to dependence analysis, the result is

a set of automata describing the liveness of variables at chosen program points. We also

describe a GC scheme which uses the automata to collect the non-live areas of the heap

during GC and implement a copying collector based on the scheme. Our experiments

reveal interesting space-time trade-offs in the engineering of the collector—for example,

updating liveness information carried in closures during execution results in more garbage

being collected.
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Premise

Transition

Rule name

o, (p',0e):S, Hy k~ p/) S, H[{ := k], e CONST
p(z) is (s, p') 0, S, H,z ~ p/, S, H,s VAR
P (p’,ﬂ,e):S, H, (COI’IS € y) N
p', S, H[l:= (p(x), p(y))], e CONS
p, (0,4, e):S, H, (car ) ~
H(p(z)) is (v,d) P, S, H[ =], e CAR-SELECT
p, S, H, (car x) ~
H(p(z)) is ((s, p'),d) 0, (p,addr({s,p")), (car z)):S, H, s CAR-1-CLO
p, S, H, (car x) ~
H(p(z)) is (s, p’) o, (p,p(x),(car x)):S, H, s CAR-CLO
p, (05 4,e):S, H, (+ z y) ~
H(p(x)), H(p(y)) € N o, S, H0 = H(/ () + H(s/(y))], ¢ | PRIv-ADD
p, S, H, (+ 2 y) ~
H(p(z)) ¢ N p's (p,p(x), (+ xy):S, H, x PRIM-1-CLO
p, S, H, (+ 2 y) ~
H(p(y)) ¢ N p's (o, p(y), (+2y)):S, Hyy PRIM-2-CLO
f defined as (define (f ) ey) p, S, H, (f )~ [y~ p(@)], S, H, ef FUNCALL
p, S, H, (let x < sine) ~
¢ is a new location p@[x— 1], S, H[l:= (s, [p]pv(s))] € LET
H(p(z)) #0 p, S, H, (if z e1 e2) ~ p, S, H, 1 IF-TRUE
H(p(z)) =0 p, S, H, (if z e1 e2) ~ p, S, H, ey IF-FALSE
p, S, H, (if z e eg) ~
H(p(z)) = (s, p) o, (p,p(x),(if z e1 e2)):S, H, x IF-CLO
p, S, H, (return z) ~~
RETURN

o' (p, p(z), (return z)): 5, H, x

Figure 4.2: A small-step semantics for the language.
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4.1.1 Semantics

We now give a small-step semantics for the language described in Section 2.3. We first

specify the domains used by the semantics:

H: Heap = Loc — (Data+ {empty}) — Heap

d: Data = Val+ Clo — Values & Closures
v: Val = N+ {nil} + Data x Data — Values

c: Clo = (App x Env) — Closures

p: Env = Var — Loc — Environment

Here Loc is a countable set of locations in the heap. A non-empty location either
contains a closure, or a value in Weak Head Normal Form (WHNF)[74]. For our imple-
mentation, a value in WHNF is either a number, or the empty list nil or a cons cell with
possibly unevaluated constituents. A closure is a pair (s, p) in which s is an unevaluated
application, and p maps free variables of s to their respective locations. Since all data
objects are boxed, we model an environment as a mapping from the set of variables of
the program Var to locations in the heap.

The semantics of expressions (and applications') are given by transitions of the form
p,SSH,e ~ p/ S H ¢. Here S is a stack of continuation frames. Each continuation
frame is a triple (p”, ¢, €pest), signifying that the location ¢ has to be updated with the
value of the currently evaluating expression and e,..; is to be evaluated next in the

environment p”. The initial state of the transition system is:
([ 1p» (pinit, lans, (evalAndPrint ans)) : [ |s, [ Ju, (main))

in which [ ],, [ |g and [ ]g are the empty environment, heap and stack respectively. The
initial stack consists of a single continuation frame in which ans is a distinguished variable
that will eventually be updated with the value of (main), and p;,; maps ans to a location
lans- As is customary for lazy languages, the result of evaluation of (main) is in WHNF.
Full evaluation is achieved through interaction with a printing mechanism modelled as a
function evalAndPrint which evaluates the unevaluated parts of (main), in case (main)
is a structure. This is a standard runtime support assumption for lazy languages [74].

The operator : pushes elements on top of the stack.

'In most contexts, we shall use the term ’expression’ and the notation e to stand for both expressions

and applications.
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The notation [Z — ¢| represents an environment that maps variables x; to locations
¢; and H[{¢ := d] indicates an update of H at ¢ with d. p @ p’ represents the environment
p shadowed by p’ and |p|x represents the environment restricted to the variables in X.
Finally F'V(s) represents the free variables in the application s and addr(c) gives the
address of the closure ¢ in the heap. As a convention, we use d to represent a data value
which may either be in WHNF or a closure and v to represent values which are always in
WHNF.

The small-step semantics is shown in Figure 4.2. Unlike an eager language, evaluation
of a let expression (let z <— s in e) does not result in the evaluation of s. Instead, as the
LET rule shows, a closure is created and bound to . The program points which trigger the
evaluation of these closures are an if condition (IF-CLO) and a return (RETURN-CLO).
We call such points evaluation points (ep) and label them with ¢ instead of 7. As an
example of closure evaluation, we explain the three rules for (car z). If x is a closure, it
is evaluated to WHNF, say (di,ds). This is given by the rule CAR-cLO. If d; is not in
WHNPF, it is also evaluated (CAR-1-CLO). The address to be updated with the evaluated
value is recorded in a continuation frame. This is required for the evaluation to be lazy,
else d; may be evaluated more than once due to sharing [74]. Only after this is the actual

selection done (CAR-SELECT).

4.2 Liveness

A variable is live if there is a possibility of its value being used in future computations and
dead if it is definitely not used. Classical liveness analysis models liveness as a boolean
value—a variable is either live or it is dead. Heap-allocated data needs a richer model than
classical liveness—a model which talks about liveness of references possibly pointing to
structured data. As an example, consider a list . Assume that, at a program point, future
computations only refer up to the third member of x. A precise liveness model should be
able to clearly capture such liveness values. Liveness, in this sense, signifies future accesses
of parts of a structure, and therefore the notion of access paths that was introduced in
Chapter 2 can be used as its natural representation. For example, the liveness of the list
mentioned earlier can be represented as the set of access paths {0,10,110}. However, the

notion of access paths (or what it represents) has to be modified to account for structures
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which are not fully evaluated. We shall provide the semantics of access path in terms of

heap accesses later, especially in the context of a lazy language.

In contrast to dependence, liveness is a property that is applicable only to variables.
Since a liveness-based garbage collection is guided by the liveness of variables, it has to
be computed (or, at the least, approximated) for each program point where a garbage
collector could be potentially invoked. While our method is not restricted to a particular
garbage collection mechanism, we explain our method using a copying collector |20, 26].
Whenever a garbage collection is triggered, starting with the root set (variable references
on the stack), the garbage collector consults the liveness value associated with the variable

and copies only the parts of the value which are live.

We now connect liveness with dependence analysis. For computing liveness, we are
interested in the entire output, hence the designated expression is (main) and the effective
demand on (main) is (0 + 1)* which we also refer as o,;. We reiterate the point made
in Section 2.4.1 that the demand of o,; on (main) is achieved indirectly through the
repeated invocation of evalAndPrint. Dependence analysis propagates this demand to
every expression, however in the context of liveness analysis we would be interested in
the demands on variables only. The demand on a variable occurrence gives the use of the
variable’s value in computing the result of the focus expression. On the other hand, the
liveness of a variable at a program point 7 takes into account all the future uses of the
variable beyond 7. Therefore, liveness of a variable at a program point is the union of
demands of all occurrences of the variable beyond the program point. As an example,
consider the liveness of the variable xs in program 4.3 between the program points 7; and
m3. There are two occurrences of xs beyond 7, in (append xs ys) at w3 and (car xs)
at mg. The liveness of xs between 7 and w3 is the union of demands on both these
occurrences. Now, consider the liveness of xs at m4. The only use of xs beyond my is
(car xs) at mg. Hence, the liveness at 7y is given by the demand on xs at mg. This
describes the liveness of stack wvariables, i.e. the function arguments and the variables
defined in a let (also called the root set). We call liveness of such variables stack-liveness

to distinguish it from the liveness of closure variables which we will introduce shortly.
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defi i
(define (append 1st1 1st2) (define (main)

(let cond <— (null? 1st1) in
(if cond
(return 1st2)
(let hd < (car 1stl) in
(let t1 « (cdr 1stl) in
m:(let rest « (append tl 1st2) in

m:(let xs ... in
mo:(let ys ... in
m3:(let y < (append xs ys) in
74:(let ¢ < (null? y) in
my:(if ¥r:c
76:(let u < (car xs) in
m7:(return ¢:u))))
mg:(let z < (length y) in
y:(return 13:z))))))

(let zs < (cons hd rest) in

(return zs)))))))

Figure 4.3: Example illustrating liveness of closures

4.2.1 Liveness analysis for lazy languages

In an eager language, the order of evaluation of the expression (let x <« s in 7:e) is
as follows: s is evaluated first and its value is bound to x and then e is evaluated. Now
consider a variable y that occurs free in s, and consider the program point 7 just before
e. Since s has already been evaluated, the occurrence of y in s does not contribute to
the liveness of the stack variable y at 7. In general, the demand on any variable which is
part of s need not be considered in computing liveness of the corresponding stack variable
at or beyond this program point. As an example, in Figure 4.3, it can be seen from the
program text itself that (append xs ys) would be evaluated before 74, and hence liveness
of the stack variable xs need not consider the demand generated by the use of xs in the
expression (append xs ys). Further, as described in [12], during garbage collection,
stack variables always point to fully evaluated values and hence it is sufficient to consider

stack-liveness while doing liveness-based garbage collection of eager languages.

In contrast, a lazy evaluation of the expression (let x <« s in e) creates a closure
for s instead of evaluating it and binds this closure to . In a lazy language statically
determining the order of evaluation of closures is not possible and hence, it is not possible
to determine statically whether a variable is bound to a closure or to an evaluated value at
a given program point. Thus, during liveness-based garbage collection for lazy languages,
a stack variable may point to an evaluated value or a closure. If the value is fully evaluated,
we can just use the stack-liveness to garbage collect it, but if it is a closure then stack-

liveness cannot be used directly to garbage collect the closure. This is illustrated in
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y append X8 Y,
XS

X8

Figure 4.4: Different liveness situations encountered during garbage collection of y in a
lazy language, (a)Liveness at m; when y is a closure (b) Liveness at 13 when the spine of
y is evaluated (c) Liveness at mg where y points to a cons cell containing references to

rest and hd declared in function append

Figure 4.3, where determining whether (append xs ys) would be evaluated before 7, is
not possible. Therefore, if the garbage collector encounters the closure corresponding to
(append xs ys) at my, there are two alternatives: either to treat the closure as useful
data and copy it, or to do a liveness-based garbage collection on the closure itself. The

latter can result in some more space being reclaimed.

Figure 4.4 depicts the scenarios described earlier. Figure 4.4(a) shows the situation
where y has not been evaluated, i.e. it is a closure. Notice that the memory corresponding
to xs has references from the stack and also from the closure containing it. Figure 4.4(b)

depicts the situation when y is fully evaluated. In this case, the future use of y is fully
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accounted for by its stack-liveness, and this can be used for garbage collecting y at my.

There is yet another reason why stack-liveness alone is not sufficient for liveness-
based garbage collection of lazy languages. In a lazy language, data constructors (for
example, cons) are lazy, i.e. they do not evaluate their arguments. Therefore, when a
cons cell is returned from a function, it might contain closures. These closures in turn
hold references to variables which may be defined locally in the function returning the
cons. Let us consider a garbage collection after the cons is returned. When the cons cell
is being garbage collected, the current root set has only variables which are in the current
scope. Since the references inside the cons cell were defined in a scope which is no longer
on the program stack it is not possible to determine the liveness of the references inside
the cons cell. In Figure 4.3, the variable rest is defined locally in the function append.
This variable escapes from the scope when returned as part of the cons cell zs. In any
garbage collection triggered beyond this return point, none of the root sets contains a
reference to the variable rest which is part of the returned cons cell. Thus, determining

the liveness of the reference becomes impossible. This situation is shown in Figure 4.4(c).

The solution to both the challenges is to treat variables which are part of a closure
as first class citizens from the point of view of garbage collection, and treat them as
being separate from the variables introduced by lets or function arguments. We call such
variables as closure variables and consider liveness of both stack variables and closure
variables during garbage collection. It is important to clarify that a stack variable and its

corresponding closure variables are different references to the same memory location.

Notationally, a closure variable is distinguished from its corresponding stack variable
by subscripting it with the label of the program point where the closure was created. As an
example, in Figure 4.3, the closure variables y_and y__ correspond to the stack variable
y defined at w3 2. Each closure carries liveness information of the variables which are
part of a closure within the closure itself. Liveness of a closure variable is exactly the
demand on that particular occurrence of the variable and hence is different from stack-
liveness. For example, the closure-liveness of xs is just the demand on xs due to its use
in the evaluation of the expression (append xs ys) in the context of the demand on the

expression. The closure for (append xs ys) needs to carry this liveness information of

2Multiple occurrences of the same variable in an application are further distinguished by their positions

in the application.
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xs and ys within itself. In the modified garbage collection scheme, if the reference being
garbage collected originates from the stack, the corresponding stack-liveness is used to
garbage collect it and if the reference originates inside a closure the closure-liveness is
used. While garbage collecting a reference on the stack, if we encounter a closure, the
closure arguments are treated as references from which garbage collection, guided by the
closure-liveness of the references, is initiated.

In summary, the major differences between the formulations of liveness-based garbage
collection of lazy languages and eager languages [12| are:
1. Introducing the notion of closure variable and treating them as first-class citizens from

the perspective of garbage collection.

2. The association of liveness with closure variables.
3. Handling evaluated values and closures differently during garbage collection.
We have been using access paths to represent liveness of variables. Assume that a garbage
collection is triggered at 7, where a variable x has a liveness «. In a lazy language, x may
point to a closure or to a structure that may contain closures. While « still represents
the set of accesses that might be performed in future when the closure is fully evaluated,
a garbage collection triggered at m would use « to access only the evaluated parts of
the structure, till a closure is encountered. Beyond those points, the garbage collector
uses the liveness values of the closure variables to do the garbage collection. Formally,
given an initial location ¢ (usually a reference corresponding to a variable) and a heap H,
semantically an access path « represents a reference, denoted H[[¢, o], in the heap that
is obtained by starting with ¢ and chasing the car or cdr fields in the heap as specified
by the access path. H[[¢, @] denotes the liveness of the heap rooted at £ only if the path
followed in the heap is closure-free. If this path is intercepted by a closure, say (car y,),
then the liveness of the path starting from y, is given by the demand on y,. As we shall
see in Section 4.4.1, the liveness of the closure variable y, is recorded along with the

closure for s so that the GC can refer to it during garbage collection.

4.2.2 The analysis

Figure 4.5 shows the dependence analysis introduced in Section 3.1 modified for liveness.
Unlike demands which can be associated with both variables or expressions, liveness is

always associated with variables. Hence, we modify the rules of dependence analysis to
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‘.A :: (App, Demand, FuncSummaries) — LivenessEnvironment‘

A(mk,0,D8) = {}, for constants including nil
A(m:(null? z),0,D8) = {2+ 00}
A(m(+ z y),0,D8) = {x+— B0t U{y+— B0}
A(m (car z),0,DS) = {x+— 00}
A(m (edr z),0,D8) = {z+ 1o}
A(m:(cons z y), o, DS)
A(w(f 1 -+ un). 0, DS)

= {z— 00} U{y— 1o}
= ULi{yi = DS}(0)}

‘D :: (Exp, Demand, FuncSummaries) — LivenessEnvironment‘

D(m:(return z),0,DS) = L,

where £, = {z — o}
D(m:(if = me; maez),0,D8) = L, ULy, U{z— 0.0}
Ly, = D(myeq,0,DS)
Ly, = D(mez,0,DS)
D(m(let x < mpis in mae),0,DS) = L., \z.*xU L,

L, = A(my:s, o', DS)
o' = Ln,(2)

L., = D(mye,0,DS)

where x.x represents all access paths starting from z

DS € FuncSummaries :: Funcname — (Demand — (Demandy, .. ., Demandn))‘

VfVi,Yo: D(m:es,0,D8) =Ly, DS =, Lx(2)

mell

df, ... dfy F' DS

(FUNCTION-SUMMARIES)
(define (f 2 ... z,) ey)is oneof df; ...dfy, 1 <i<nmn,

and II represents all occurrences of z; in ey

Figure 4.5: Dependence analysis modified to compute liveness

now compute demands only for variables. While a demand environment was a mapping
from a program-point to a demand, a liveness environment is a mapping from a variable
to a demand. It is often expressed as a set, for example by writing {x.11,y.1,z.0}
instead of [x — {11}, y — {e},z — {0}]. The function A takes an application s and a
demand ¢ and returns a liveness environment that maps the free variables of s to sets of

access paths representing their closure-liveness. The closure-liveness is stored as part of
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the closure itself, and consulted while exploring the heap starting from closure variables
during garbage collection. The function D uses A to propagate liveness across expressions
and computes program-point-wise stack-liveness. We use o to range over demands, « to
range over access paths and £, to denote the liveness environment at program point 7.
The liveness of an individual variable y at program point 7 is £, (y).

In a lazy language, an expression is not evaluated unless required. Our analysis cap-
tures this by ensuring that no liveness generated is independent of the incoming demand.
The @. symbol ensures that an e liveness is generated only if the incoming demand is
non-null. Function calls are handled as in dependence analysis, using the third parameter
DS that represents the summaries of all functions in the program. In case of liveness
also, we prefer the least solution as it ensures the safe collection of the greatest amount
of garbage.

The major modification in the dependence analysis rule happens in the rule for let.
To understand the liveness rule for m:(let  <— my:s in my:e), observe that the value of
let is the value of its body e. Thus the liveness environment L., of e is calculated for
the given demand o. The stack variable x gets its liveness from the liveness environment
of e and this liveness is transferred to s generating closure-liveness of the variables of s.
Finally, the liveness environment at 7 is computed by killing the stack-liveness of x, and
taking a union of the closure-liveness in s and the stack-liveness in e. Apart from the
fact that liveness is computed only for variables, killing of stack-liveness is the primary

difference between dependence analysis and liveness analysis.

4.3 An example

We now use an example program to show liveness computation and the differences between
stack-liveness and closure-liveness. Let us consider the liveness of variable xs due to the
evaluation point 3.

1. The stack-liveness of xs just before executing the expression at 73 is due to its uses
in the expressions (append xs ys), (car xs) and is DS, ena(DSjengen (0au)) U 00 ay.
However at w5, the liveness is 0o,y as the liveness no longer includes the use of xs in
(append xs ys).

2. In contrast, closure-liveness of xs at 73 is only due to its use in (append xs ys).
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(define (main)
m:(let xs ... in
my:(let ys ... in
DS;ppend(DSfength(Oau)) m3:(let y < (append xs ys) in IDS;ppend(]DSljength(gall))
U Ocay ms:(let ¢ « (null? y) in
00 ms:(if P1:c DSappend (DSiengen(Tair)
76:(let u < (car xs) in
m7:(return y:u))))
ms:(let z < (length y) in
- (return 5:2)))))

Figure 4.6: Stack and closure liveness for variable xs at program points 73 and 75. Stack
liveness is indicated in red and Closure liveness in blue. Stack liveness changes between 3
and 75 as the expression (append xs ys) is not considered at 75 for liveness computation.

Closure variable remains unchanged.

Closure-liveness of xs due to the evaluation point ¢35 is computed by starting with the
expression at 13 and transferring demands via the expressions (length y), till we reach
xs at m3. Notice, the expression (car xs) is not considered as the expression is not

evaluated along the path starting from 3.

4.4 Computing liveness information

We now use the liveness of the closure variable xs,, in example 4.1 to illustrate liveness
computation. The liveness of the variable xs, is determined by how the function append
uses its first argument and how the stack variable y is used in the program. The liveness
of the stack variable y is given by the union of the liveness of the closure variables y_
and y .. To compute the liveness value, we require the demand transformers for the
user-defined functions append and length. The demand transformers of append and

length are given by:
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IDSllength(U) = @60' U 1DSllength(®€O)
DS,

append

(o) = B0 U000 U 1DS} (10)

append

We now use the property that all rules of our analysis always prefix o with symbols to
rewrite DS} (o) as DS} o (DS} concatenated with o). After the rewrite we can cancel out

o from both the LHS and RHS to get the modified equations for DSjengtn and DSappend:

1 1
Dlength = 05 U 1D1ength®€

D! = (. U00U 1D}

append ppend 1

Viewing these equation as a CFGs with {1,1,0,1,0.} as terminal symbols and

Dl

lengtn and D} o4 as non-terminals, we get the following productions:

1 1
Dlength — we | 1D1ength®e

D;ppend — 06 | 06 ‘ 1D511ppend]_-
The liveness of xs,, is given by the equation:
£7|—3 (XS) — megall | Dellppenlelength@eUall

Both Dllength and Dzlippend contain context-free productions. Hence, we perform the
Mohri-Nederhof transformation on these non-terminals to convert them to strongly regular

grammars. The grammar post conversion is:

Dllengthl — meDllength/ | €
Dllength — ]—Dllength | meDllength/
D:}lppend/ — iD:}lppend, | €
D;ppend — OﬁD;ppend, | (Z)eD;ppend, | 1D:%lppend

We now construct the automaton corresponding to xs,, using the strongly regular
grammars. The automaton and the corresponding simplifications are shown in Figure 4.7.

When no more simplification rules are applicable, all the bar-edges are dropped from the
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Figure 4.7: Simplification process of automaton corresponding to Lr,(xs)

automaton. In this automaton all states which lie on the path from the start state to a

final state are marked as final. This ensures that the liveness automaton accepts a prefix-
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closed language which is needed for the liveness-based garbage collector. The simplified
automaton accepts the language 1* indicating that only the spine of the list xs is live.
This matches our intuition as only the spine of the list y was needed by the length

function and y was constructed by appending xs and ys.

4.4.1 Liveness-based garbage collection scheme

In this section we describe a garbage collection scheme which uses the result of the liveness
analysis described in Section 4.2.1 to collect more garbage. The liveness analysis described
in Section 4.2.1 computes program-point-wise stack-liveness and closure-liveness for each
closure variable. While we compute liveness at all program points, since the liveness is
applied for garbage collection, we need to store liveness only at potential garbage collection
points i.e. where the program can potentially allocate heap memory. However, unlike
eager languages, where memory from the heap is allocated only for cons cells and for
passing arguments to functions, in a lazy language each let definition requires memory for
creating closures. And since such definitions abound in programs, almost every program
point in a lazy language can become a trigger point for potential garbage collection,
and would therefore require liveness information to be stored. For a practical liveness-
based garbage collector, the memory overhead required to store liveness information at all
program points may be prohibitively large. Thus, we have to restrict the possible garbage
collection points in a function body.

We would like to ensure that a garbage collection is never triggered at a let definition
inside the body of a function. To do this, we need to ensure that sufficient number of heap
cells are available before evaluating a function body. Therefore, we compute the estimated
number of heap cells required to create closures while executing the body of the function.
For a primitive operation, selector or tester a single heap cell is sufficient. For a function
call, assuming that each heap cell can hold a single argument of the function, the number
of heap cells is equal to the number of arguments of the called function. Using these
estimates for applications we can compute the number of heap cells required for creating
closures for a function body. In case the function body has a branch, we consider the
maximum among the two branches. During execution, before evaluating a function call,
we check whether the available heap cells can cover the estimated number of cells. If the

available cells are less than the estimated value a garbage collection is triggered. Although

81



at the beginning of a function body, the liveness is empty for the current function, the

garbage collector can collect garbage from the other functions in the call stack. This way

we ensure that before evaluating a function body we always have sufficient cells to create
closures for the function body.

While triggering garbage collection at the beginning of a function body suffices when
the function body does not have if expressions, we need more check points for a function
body containing branches. The reason for this is that evaluation of the condition in
an if expression could potentially lead to evaluation of closures. In case the closure
being evaluated is a primitive operator/tester/constructor/selector then no extra space
is required as the same cell can be updated to hold the result of evaluation. But if the
closure is a function call, evaluation of the function body could lead to creation of more
closures requiring extra cells. The calling function does not include these cells as part of
its estimate and depends on the called function to check for the required memory. If the
condition evaluation in if expression triggers the evaluation of a function call, it invalidates
the memory check at the beginning of the function body. Therefore, a memory check with
the required heap cells for the selected branch with the updated memory availability is
necessary. Thus, for each function we store the estimated number of heap cells required at
the beginning of the function and at the beginning of each branch. Liveness information
is stored at the beginning of each branch?.

In summary the modified garbage collection scheme is,

1. We statically over-approximate the memory required to create the closures for each
function body. On entering a function, if the available memory is less than this re-
quirement for the function, a GC is triggered.

2. Since the evaluation of a if condition may trigger a collection, after evaluating the
condition the available memory is checked once again against a revised estimate of the
memory (based on value of the condition) required to execute the rest of the program.
A GC is triggered if enough memory is unavailable.

Another drawback of the analysis is the fact that the closure-liveness is computed
once and it remains unchanged. Closure-liveness is computed at the point of creation of
the closure by transferring the liveness of the stack variable to which the closure is bound.

This liveness is never updated during the analysis even if at a different program point

3Storing liveness at beginning of function body is not required as it is empty

82



the liveness of the associated stack variable itself changes. While this keeps the analysis
simple, using constant liveness during garbage collection could leave a lot of garbage
uncollected. Considering the liveness of closure variables along only feasible evaluation
paths leads to more precise liveness information and improved garbage collection. Assume,
for the sake of concreteness, that ep; and ep, are two evaluation points. During GC, we
would like to use more precise liveness, based on the actual paths taken during execution.
Therefore, we create separate liveness automata for dependences along paths to ep; and
ep,, in addition to automata for dependences along paths to both ep; and ep,. The closure
carries the liveness environment for its free variables (as pointers to automata, one for each
variable). Initially the liveness environment is based on the dependences along both ep,
and ep,. However, after evaluating an if condition, the liveness environments are updated
to one based on either ep, or ep,, so that subsequent garbage collections are based on more
precise liveness information. As an example, in Figure 4.3, a dependence chain for xs;,,
begins with the variable z at the evaluation point i3 and z in turn depends on y through
(length y_ ). We denote this chain of dependences as [13 : z < (length y__)]. Indeed, the
chains of closures in the heap are runtime representations of these dependences. Since z is
evaluated at 13 due to the expression return z, the demand made by the calling context(s)
of f places a demand on z which will impart a liveness to y, . Other dependence chains
which result in a liveness for xs., are [¢; : ¢ < (null? y_ ),y < (append xs., ys_.)|
and [1)g : u < (car xs,,)]. The liveness analysis declares the liveness of xs,, to be a union
of the liveness arising from these dependence chains. To be safe, a GC during evaluation
of y at 11 has to use this liveness to copy the heap starting from xs,,. However, notice
that if a GC takes place while evaluating u at 13, it can safely consider only the liveness
arising from the dependence chain [¢)y : u < (car xs.,)]. The liveness due to the branch
terminating with the evaluation point 13 is not feasible after the condition in 75 evaluates

to true.

Figure 4.8 shows the stack and closure liveness for the variable xs corresponding
to the evaluation point 5. Assuming that the condition c¢ evaluates to true, the next
expression that is executed has program point 7. At this point, the stack-liveness of xs
is only due to u. The closure variable xs,, also gets the same liveness. However, notice
that the liveness of the closure variable xs,,, acquired from the variable y at 73 remains

unchanged, although there is no future use of y in this branch. This leads to less precise
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(define (main)

m:(let xs ... in
my:(let ys ... in
xS, = DSpppend (DSiengen(0au))  Ts:(let y < (append xs ys) in

m4:(let ¢ < (null? y) in
ms:(if Yric
x8r, — 0 ms:(let u < (car xs) in
m7:(return y:u))))
ms:(let z < (length y) in
o (return 45:2)))))

Figure 4.8: Advantages of updating closure liveness for variable xs at runtime. Closure
liveness of xs at w3 needs to take into account liveness in both branches. Assuming the

condition evaluates to true at v, at runtime, closure liveness of xs can be updated to .

liveness for the closure variable xs,, and may prevent it from being garbage collected. To

avoid this, we update the closure-liveness after evaluation of a condition in if expression.

4.4.2 The garbage collection algorithm

We shall call a unit of allocatable memory as a cell. A cell can hold a basic value (bas),
the constructor cons (cons argy argy) or a closure. The closure, in turn, can be one of
(unop arg), (binop arg; arg,) and function application (f arg). Here each arg; is a reference
to another heap cell. In addition, the closure also carries a pointer to a DFA (denoted
arg;.dfa;) for each arg;.

Algorithm 6 describes the garbage collection scheme. Starting with the root set,
each cell pointed by a live reference (i.e., whose associated DFA state is final) is copied
using copy. Copying a cons cell involves copying the cell itself and conditionally copying
the car and the cdr fields after referring to the next states of the DFA. If the reference
points to a closure, then, as mentioned earlier, the closure carries pointers to the liveness

DFAs of its arguments. These are used to recursively initiate copying of the arguments.
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procedure lgc():
for each reference ref in root set:
ref = copy (ref, init(ref.dfa));
copyReferencesOnPrintStack();

return;

function copy (ref, state):

if —final(state):
return ref;

newRef = dupHeapCell(ref);

if ref.cell(ref ) is a cons cell (cons arg; argp):
newRef.arg; = copy(arg;, next(state, 0));
newRef.arg, = copy(argp, next(state, 1));

if ref.cell is a closure cell, generically (binop arg; argp):
newRef.arg; = copy(argy, init(arg;.dfa));
newRef.arg, = copy(argy, init(argy.dfa));

return newRef;

Algorithm 6: Liveness-based garbage collection.

Note that the copying strategy for (unop arg;) or (f arg;) are similar to (binop arg; arg,)

and have not been shown.

The evaluation of the top-level expression in a program is driven by a printing func-
tion (Section 4.1.1) that is common to all user programs. We describe a generic algorithm
for printing values in lazy-languages in Algorithm 7. The print function takes a heap
reference as input and checks if it contains an evaluated value or a closure. If it contains
a closure, it triggers an evaluation of the closure to produce a value which is in WHNF.
In case the value is an atomic value (number) it prints the value. If it is a cons cell,
then it recursively calls print on the car part and then the cdr part. Notice that once
the car part is printed it becomes dead, even though it is reachable from the stack. We
extend liveness-based garbage collection to the print function to take advantage of this

observation.
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Function evalAndPrint(ref)
Data: ref is the expression being evaluated

val <+ evalTOWHNF (ref)
if (pair?(val)):
Display “(”
evalAndPrint(car(val))
Display “.”
evalAndPrint(cdr(val))
Display “)”

else:

Display val

Algorithm 7: Function to print result of a lazy program.

4.4.3 Experimental evaluation

Our experimental setup consists of the prototypes of (a) an interpreter for our language,
(b) a liveness analyzer, and (c) a single generation copying garbage collector. The garbage
collector can be configured to work on the basis of reachability (RGC mode) or use liveness
DFAs (LGC mode). Our benchmark consists of programs taken from nofib [66] and other
repositories for functional programs [2-4]. We ran the experiments on 8 core Intel®
Core™ i7-4770 3.40GHz CPU having 8192KB L2 cache, 16GB RAM, running 64 bit
Ubuntu 14.04.

The statistics related to liveness analysis and DFA generation are shown in Table 4.1.
We observe that the analysis of all programs except treejoin and sudoku require reason-
able time. The bottleneck in our analysis is the NFA to DFA conversion with worst-case
exponential behaviour. However, since the analysis has to be done only once and its results

can be cached and re-used, the time spent in analysis may be considered acceptable.

Table 4.2 compares GC statistics for RGC and LGC. We report the number of GC
events, average number of cells reclaimed per GC, average number of cells touched per
GC and the total time to perform all collections. It is no surprise that the number of cells
reclaimed per garbage collection is higher and the number of garbage collections lower
for LGC. The cost of LGC is higher garbage collection time, which increases the overall

execution time even with reduced number of collections. However, the execution time
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Table 4.1: Statistics for liveness analysis

Program #CFG Nonterminals | #CFG Rules | #DFA States | #DFA Transitions | DFA Gen Time (sec)
X@'a?
£3° 621 1176 1761 2829 37.28
\9)
s 1422 2009 4283 7690 655.41
0?3& 662 866 1546 2522 0.94
5
Q"’{b 1174 1773 3346 6086 13.22
N 642 1206 1666 2726 8.66
o>
o
‘o"&& 499 818 1414 2528 4.00
MS""“‘
yod® 660 883 1519 2420 10.97
e?'“e
o+ 404 643 889 1170 0.36
24
o 328 468 809 1435 0.61
Sl
)
82 615 1328 1803 2797 903.14
o>
42 669 1088 1703 2580 11.01
eﬁa\
@f';o 390 450 571 788 0.10
Data for Liveness Analysis

of LGC is still comparable for most benchmarks (slowdown within 5X of RGC in most
cases) and better for 3 benchmarks (2X speedup in the best case).

Memory usage graphs for the benchmarks are shown Figure . In all the programs
we can see that the curve corresponding to LGC (blue line) dips below the RGC curve
(red line) during GC. The graphs also include the curve for reachable cells (black) and
live cells (light-blue). These were obtained by forcing RGC to run at very high frequency.
The curve for live cells were obtained by recording heap access times and post processing
the data at the end of the program. Note that the size of an LGC cell is 1.16 times the
size of a RGC cell.

As demonstrated by the gap between the red and the light-blue lines, a large number
of cells which are unused by the program are still copied during RGC. LGC does a much
better job of closing this gap but still falls short of the precision achieved by LGC in case
of eager languages [12]. A major source of inefficiency in LGC is multiple traversals of
already copied heap cells. Since LGC does not mark the heap cells after the first visit,

the same cells can be repeatedly visited with different liveness states.

The huffman benchmark performs extremely well with liveness-based GC in terms
of both the peak memory required and the number of GCs. The benchmark takes a list

of characters and first encodes it and then takes the encoded list and decodes it, printing
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Table 4.2: Statistics for garbage collection

Program fibheapsudoku | nperm paraffins| 1lcss| huffman |knightstour |nqueens| deriv|treejoin lambda |gc_bench
#Cells collected/GC | 3466.2 | 931.3| 4684.4 661.7 | 8064.7| 10533.8 179155.0 | 2607.4| 854.6| 50284.2 7271.7| 14932.7
#Cells collected/GC | 4164.5 | 2328.7 | 14212.5 2920.5 18268.7|100010.0 312454.0 |  9529.1|10755.3 | 936525.0] 8448.4 | 204774.0
#Cells touched/GC |33576.6|3134.6 | 22743.2 4522.6 [14177.9 | 89536.1 498645.0 | 7493.4|10269.3 1566250.0/ 13194.2 | 189880.0
#Cells touched/GC [50957.9|2950.2 | 23127.1 2933.0| 4604.4 88.6 534562.0 829.0| 420.3| 700756.0, 29156.3 33.2

#GCs 1333 179 710 16 30 356 929 3345 31 116 775 48

#GCs 1108 72 235 4 14 38 304 916 3 B 667 4

Peak Memory Required| 37043 | 4066 | 27428 5185 | 22243 | 100070 677800 10101 | 11124| 1616533 20466 204813
Peak Memory Required| 37043 | 2960| 25343 3733 | 16296 72 642303 1082 589 | 887005 18169 72
% 1.16 0.84 1.07 0.83 0.84 0.00 1.09 0.12 0.06 0.63 1.02 0.00

GC time (sec) 1.46 0.01 0.24 0.00 0.01 0.64 6.24 0.36 0.00 3.84 0.17 0.11

GC time (sec) 20.00 0.04 1.24 0.00 0.02 0.01 64.43 0.18 0.00 1.90 4.70 0.00
% 13.70 4.64 5.20 2.01 3.02 0.02 10.32 0.49 0.05 0.49 28.48 0.00

Total Exec time (sec) | 13.82 0.11 1.80 0.01 0.13 2.70 55.29 4.68 0.05 6.66 277 1.45
Total Exec time (sec) | 33.23 0.16 3.39 0.02 0.18 2.55 134.35 0.87 0.05 9.50 8.32 1.22
% 2.40 1.5 1.88 1.2 1.36 0.94 2.43 1.25 0.9 0.82 3.00 0.84

Comparing RGC with LGC. Note that the size of an LGC cell is 1.16 times the size of an RGC cell, Total Exec time includes GC time.
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Figure 4.9: Memory usage. The red and the blue curves indicate the number of cons
cells in the active semi-space for RGC and LGC respectively. The black curve represents
the number of reachable cells and the light-blue curve represents the number of cells that
are actually live (of which liveness analysis does a static approximation). x-axis is the
time measured in number of cons-cells allocated (scaled down by factor 10%). y-axis is the

number of cons-cells (scaled down by 10%).

out the decoded list. Notice that in a lazy language, the printing of the final decoded
list is what forces the evaluation to move forward. Ideally, once the element is printed
the memory allocated to that element can be freed and re-used, but a reachability-based
collector will not be able to collect it as a reference to the cons cell containing the element
will be still on the stack. Since the evalAndPrint function is also annotated with liveness
information our liveness-based collector will be able to collect it. The input character list
to the program is generated using a loop and hence the program can execute in constant
memory irrespective of the length of input list. The benchmark demonstrates that our

garbage collector is very effective when the program has a producer-consumer nature.

Tail call optimization Tail call optimization is a very important optimization for

improving space utilization of programs. In spite of this, many languages do not require

89



tail calls to be optimized. Not optimizing tail calls not only uses up stack size but it can
also hog heap memory if a reachability-based collector is used. For example, a list which is
traversed using a tail call will hold references to already processed elements of the list on
the stack. This makes them reachable during garbage collection preventing the memory
from being garbage collected. Our liveness analysis detects that beyond the tail call the
car part of the argument list is not used and hence marks it dead. A liveness-based

collector would use this information and collect the cells as garbage.

4.5 Soundness of liveness-based garbage collection

We shall now present a proof of the soundness of the liveness-based garbage collection
scheme. It is easy to see that the analysis correctly identifies the liveness of stack variables.
A stack variable is live between its introduction through a let and its last use to create
a closure variable. This is correctly captured by the let rule. Proving soundness for root
set, traversals starting with closure variables is more complex. Here are the ideas behind
the proof.

1. As in DGS, we extend the abstract machine state p,S,H,e to p,S,H,e, . We call
such a state a minefield state. Here 9 is the “dynamic” demand on the expression e.
The demand for the initial state is (0 + 1)* (also abbreviated as d,;), and each ~
transition transforms the demand according to the liveness rules of Section 4.2.1. The
information in continuation frames on the stack S are also similarly augmented with
their demands. Thus, a stacked entry now takes the form (p, ¢, e, d). The initial state of
the minefield semantics is assumed to be ([ ],, (pinit, ans, (evalAndPrint ans), d,;) :
[]s, [ ]#, émain, €)-

2. We augment the standard semantics in Figure 4.2 to simulate a GC before the execution
of each let definition. We reiterate that, unlike eager languages, memory is allocated
only during execution of let expressions. GC(p,S,H,e,d) models a liveness-based
garbage collection that returns (p’, S’, H’). The changes in p,S and H are due to non-
live references being replaced by L*. This simulates the act of garbage collecting the

cells pointed to by these references during an actual garbage collection. Any attempt

“In our fanciful imagination, L in the heap are mines and liveness analysis is the mine detector. A

wrong liveness analysis can cause L to be be dereferenced resulting in the BANG state.
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Premise Transition Rule name
dis 0 p, (0 L, €,8"): S, H e, d ~ p',S,H, e, 0 NO-EVAL
p,(p e d):SSH Kk, & ~ p,S Hl :== K], e, CONST
p(x)is (s, p) p, SSH z,6 ~ p/,S,H, s, 0 VAR
p(x)is L p,S,H,xz, § ~ BANG VAR-BANG
plx) is ((id y), o) p. S H, 2,6 ~ S H,y, 0 1D
p, (0, le d):S H,(cons x y),§ ~ CONS
o, S, HIC:= (p(x), p(y))], e, &
H(p(z)) is (v,d) p, (0,0 e d): S, H,(car z),d ~ CAR-SELECT
oS, H[C =], e, d
H(p(x)) is (s, p) p,S,H, (car z),d ~ CAR-CLO
o, (p,p(x),(car z),d):S,H, s, 0§
H(p(x)) is ((s,p'),d) p, S, H, (car ), § ~ CAR-1-CLO
o, (p,addr((s,p')),(car z),8):S, H, s, §
H(p(z)),H(p(y)) €N p, (Pl e d):SSH, (+xy),d ~ PRIM-ADD
p', S, HIC:=H(p'(z)) + H(p'(y))], e, &
H(p(z)) ¢ N p, SSH, (+ z y),d ~ PRIM-1-CLO
oy (p, p(x), (+ 2 y),d): 5, H,z,€
H(p(y)) ¢ N p, SSH, (+ z y),d ~ PRIM-2-CLO
P (psp(y): (+ 2 y),d):S, H,y,e
[ defined as (define (f ¥) ey) p, SSH, (f ©),8 ~ FUNCALL
(7 ((id x), p)], S, H, ey,
GC(p1,51, Hy, (let 2 <— s in e),0) p,S,H,(let x <~ sine),d ~ LET
= (p, S, H), p & [z L], S,H[C:= (s, [p| rv(s), 0z)], €, 8
¢ is a new location where 0, = |L(e,0,DS)]
H(p(z)) # 0 p, S, H, (if z €1 €2),8 ~ p, S, H,e1,0 IF-TRUE
H(p(z)) =0 p, S, H, (if z e; e3),8 ~ p,S,H, e, IF-FALSE
H(p(x)) = (s,p) p, S, H, (if z €1 €3),d ~~ IF-CLO
o (p,p(x), (if z ey e2),0): 5, H, z, €
H(p(x)) = (s,p) p, S, H, (return x),d ~ RETURN
o, (p,p(x), (return z),6):S,H,z,§

Figure 4.10: Minefield semantics. The differences with the small-step semantics have been

highlighted by shading.
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to dereference such references during execution results in the transition system entering

a special state denoted BANG. G/C(...) needs to consider the following environments:

(1) the environment in the current state, (2) the environment in each of the stacked

continuations and (3) the environment in each of the closures in the heap.

(a) For each of these environments, GC(...) calculates a liveness environment £ for
the corresponding s with the dynamic demand §.

(b) For each location ¢, GC(...) sets H(¢) to L iff for each environment p above, for
each x € domain(p), and each prefix o/ of an access path a, it is not the case that
z.oo € L and H[p(x), ] = ¢.

3. Note that the modeled GC is done on the basis of dynamic demand rather than static
demand. However, by a reasoning similar to Theorem 3.4, the static liveness that is
consulted during actual GC is computed from an over-approximation of this demand.
Thus, the soundness result on the modeled GC will also apply for the actual GC. The
soundness proof consists in showing that the execution of no program enters the BANG
state.

Figure 4.10 shows the minefield rules. As mentioned earlier, the transition for a
let is preceded by GC(...). Also consider, as an example, the transition for the modified
CAR-CLO. If an earlier call to GC(...) results in p(x) being bound to L, then the ~ step
enters the BANG state (CAR-BANG). Otherwise, the transition is similar to the earlier

CAR-CLO rule.

4.5.1 Soundness result

Note that our proofs will be for a single round of minefield execution i.e., the evalua-
tion of (main) to its WHNF driven by the printing mechanism (Section 4.1.1). With
minor variations, the proof will also be applicable for subsequent evaluations initiated by
eval AndPrint. We now present the result which shows that the liveness-based garbage

collection scheme is sound.
Theorem 4.1 The minefield execution of no program can enter a BANG state.

PROOF. Consider a state (p, S, H, e, d) in the minefield execution of a program. We show
by induction on the number n of ~ steps leading to this state that the next transition can-

not enter a BANG state. When n is 0, the state is ([ |,, (pinit, lans, (€valAndPrint ans), §,;) :
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[ s, [ |H, €main,€). Since the call to GC(...) in this state does nothing, we just have to
show that the ~~ transition cannot enter a BANG state. Since our programs are in ANF,
Emain Can only be a let expression. A LET step does not involve dereferencing, and thus
cannot result in a BANG.

For the inductive step, we shall show that none of the minefield steps that involves
dereferencing results in a BANG. These are the steps which have a H(p(...)) in the premise.
If we are in the the state (_, , e, d) after n steps of minefield execution, then, because
of the NO-EVAL rule ¢ is not null. Now a ~» step can go BANG because it dereferences a
1 inserted by an earlier GC(...). However, again by a reasoning similar to Lemma 3.2,
the demand ¢’ on the basis of which the GC(...) would have inserted a L would have
included the current demand . Thus it is enough to show that the ~~ step would also
not lead to a BANG.

We only consider the rules for the case when e is (car x). The rest of the rules
involve similar reasoning. For the CAR-CLO rule in the state (p, S, H, (car z), ), we know
that ¢ is non-null. Therefore the liveness of = includes e. Now since garbage collection
on (car z) was done on the basis of a demand that included J, GC(...) would not have
inserted a L for z and therefore the dereferencing H(p(z)) will go without BANG.

Similarly for the CAR-1-CLO rule, observe that there are two dereferences. First x
is dereferenced to get a cons cell and then the head of the cons cell is dereferenced to
obtain a closure. If the demand ¢ on (car z) is non-null, then the liveness of x will have
as its prefixes both ¢ and 0, and GC(...) on (car z) with a liveness that includes § will
neither bind x to a L, nor insert L at the first component of the cons cell. Thus both

dereferences can take place without ~~ entering the BANG state. |

4.6 Related work

The impact of liveness on the effectiveness of GC is investigated in [35]. They observe that
liveness can significantly impact garbage collection, but only when it is interprocedural.
As far as memory requirement is concerned, our paper demonstrates this observation. To
the best of our knowledge, this is the first work that uses the results of an interproce-
dural liveness analysis to garbage collect both evaluated data and closures. Thomas [96]

describes a copying garbage collector for the Three Instruction Machine (TIM) [25] that
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only preserves live closures in a function’s environment (also called a frame). However, in
the absence of details, it is not clear whether a) the scope of the method is interprocedu-
ral, and b) it handles algebraic datatypes like lists (the original design of TIM did not).
All other previous attempts [12, 45, 87-89] involved either imperative or eager functional

languages.

There have been several attempts to use liveness analysis to improve GC for imper-
ative languages. [49]| presents a liveness analysis and uses the results for inserting nulli-
fying statements in Java programs. In [89], temporal properties like liveness are checked
against an automaton modeling heap accesses. Both these approaches are intraprocedural

in scope.

In the space of functional languages, there are: rewriting methods such as deforesta-
tion [21, 29, 99|, sharing analysis based reallocation [75], region based analysis [98], and
insertion of compile-time nullifying statements [41, 56|. The analysis described by Inoue
et. al. [41] handles the specific case that arises when list-valued functions F’ and G are used
in an expression of type F(G(...)). If a cell ¢ created by G and is not part of the result
returned by F', ¢ can be garbage collected whenever F' completes execution. Similar to
our method, the result of their analysis is also represented using grammars(CFG). How-
ever their method introduces (under)approximation in the CFG itself to remove symbols
equivalent to 0 and 1 from CFG rules. Another approach to detect garbage cells gener-
ated by expressions of type F(G(...)) due to Mohnen [62] uses abstract interpretation.
A list having n levels is abstracted to an n-tuple, a boolean denoting the possibility of
sharing between any element at each level in the list and the result of the function to
which the list is passed as a parameter. A false value in the tuple indicates that values at
that level are not shared with the return value and hence can be garbage collected. This
leads to very coarse approximations as the use of a single cell will make the whole list at
that level live. The bigger limitation with both approaches is that garbage collection can

happen only at end of function bodies.

Another approach due to Lee et. al. [55, 56| uses memory types to describe usage
of heap cells by expressions. Their analysis also achieves context sensitivity by doing
a parameterized analysis of functions. The method uses dynamic flags passed as extra
arguments to functions to collect cells inside function bodies. Passing different values

from different call sites for the dynamic flags allows the same function to have different
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deallocation behaviors.

Another method that comes close to our approach is the Heap Safety Automaton
[89]. The goal of this method is to safely insert null statements and it uses an automaton
to model safety of null insertion statement at a given point. The program is abstracted
by a shape graph and this graph is used to do model-checking against the heap safety
automaton. A key aspect of any approach which tries to improve precision of garbage
collection is to identify the earliest program point where a reference can be set to null.
The Heap Safety Automaton based approach does not address this issue, it can only
answer whether a given access expression be set to null immediately after a program
point. It fails to answer the following question, Which expressions should be considered
at which program point? This is a very crucial question as considering every pair of access
expression and program point is impractical.

A practical approach involves copying only the heap objects whose root variables
are live [6]. The drawback of this approach is that an entire object reachable from a live
root variable is considered live, even if some parts of it are never used. For example, even
when only the spine of a list is live (used as an argument to the length function) all its
elements will also be copied.

The only work in the space of lazy languages seems to be [31] which touches upon only
basic techniques of compile-time garbage marking, explicit deallocation and destructive
allocation. An interesting approach suggested in [36] is to annotate the heap usage of first-
order programs through linear types. The annotations are then used to serve memory
requests through re-allocation. However, this requires the user to write programs in a
specific way. Safe-for-space [11] approaches |23, 90| reduce the amount of heap used by a
program by allocating closures in registers and through tail call optimizations. However,
these approaches take care of only part of the problem addressed by our analysis as the
program can still contain unused objects and closures that are reachable.

Simplifiers [68] are abstractly described as lightweight daemons that attach them-
selves to program data and, when activated, improve the efficiency of the program. Our
liveness-based GC can be seen as an instance of a simplifier which is tightly coupled with
garbage collectors. The approach that is closest to the method described in this paper is
the liveness-based garbage collector implemented in [12, 44] and address eager languages.

We extend this to handle lazy evaluation and closures.
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Chapter 5

Static program slicing using demand

propagation

Program slicing is a powerful technique that is widely used for debugging, software main-
tenance, optimization, program analysis and information flow control. Program slicing
refers to the class of techniques that delete parts of a given program while preserving
certain desired behaviours. The desired behaviors are specified using what is called as the
slicing criterion’. According to the original definition of slicing given by Weiser [103], a
slice of a program P with respect to a statement x and variable v is the set of state-
ments of P which affect the value of v at statement x for all possible inputs. The
main applications of slicing include software testing [15, 30, 32, 33, 38|, program de-
bugging [58, 102], measurement [14, 69-71|, validation [50|, program parallelization [103],
program integration [37], reverse engineering and program comprehension [1, 13|, program
restructuring [18, 22, 43, 51, 94|, program specialization [79] and identification of reusable
functions [10, 19, 54].

The definition of what constitutes a slice has been modified in multiple ways depend-
ing on the application. We consider one such version of slicing where the slicing criterion
identifies parts of the final output of the program and the goal is to produce only those
parts of the program which affect the parts of the output identified by the slicing criterion.
Program specialization, parallelization, dead code analysis and cohesion measurement are
examples of such applications. In this chapter, we formulate the slicing problem as a
dependence analysis problem and use the analysis defined in Chapter 3.2 to solve it. As

an interesting consequence of our formulation, we were able to come up with a novel and
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efficient way of slicing called Incremental slicing to slice the same program multiple times
with different criteria. The soundness of our slicing algorithm follows directly from the
soundness of dependence analysis. We prove the correctness of incremental slicing with

respect to the non-incremental slicing method.

5.1 Program slicing using dependence analysis

The example from [79] shown in Figure 5.1a motivates the need for program slicing. Tt
takes a string as input and returns a pair consisting of the number of characters and
lines in the string. Figure 5.1b shows the program when it is sliced with respect to the
first component of the output pair, namely the number of lines in the string (1c). All
references to the count of characters (cc) and the expressions responsible for computing
cc only have been sliced away (denoted [J). The same program can also be sliced to
produce only the char count and the resulting program is shown in Figure 5.1c. |

Formally, Weiser [103| defines slicing criterion as a pair (p, V'), where p is a program
point and V is a subset of program variables. A program slice on the slicing criterion (p, V')
is a subset, of program statements that preserves the behavior of the original program at
the program point p with respect to the program variables in V, i.e., the values of the
variables in V at program point p are the same in both the original program and the
slice. Similarly, we define slicing criterion for a functional program P as the pair (e, o),
where e represents a particular expression in the program P and o represents the parts of
the value of e that is of interest. The goal of slicing is to identify the set of expressions
belonging to P which may affect the parts identified by o. In general, the question we
want to answer is: Given a slicing criterion (e, o), which other expressions e; € P decide
o part of the value of e?

Notice the similarity between the slicing problem and the problem of computing
dependences in functional programs. Indeed, given a slicing criterion (e, o), an expression
e; decides the value of o part of the value of e only if o part of e depends on e;. We
view the slicing criterion (a set of strings over (0 + 1)*) as a demand on the expression
(main), using this we compute the demand on each expression in the program. Unlike
liveness analysis where the demand is always (0 + 1)*, the slicing criterion can be any

subset of (0+ 1)* and is supplied by a context that is external to the program. To decide
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(define (lcc str 1c cc)
(if (null? str)
(return (cons lc cc))
(if (eq? (car str) nl)
(return (lcc (cdr str) (+ 1lc 1) (+ cc 1)))
(return (lcc (cdr str) m:lc mo:(+ cc 1))))))
(define (main)
(return (lcc ... 00))))

(main)

(a) Program to compute the number of lines and characters in a string.

(define (lcc str 1c )
(if (null? str)
(return (cons lc 0))
(if (eq? (car str) nl)
(return (lcc (cdr str) (+ 1c 1) 0))
(return (lcc (edr str) m:lc m9:00)))))
(define (main)

(return (lcc ... 00))))

(main)

(b) Slice of program in (a) to compute the number of lines only

(define (lcc str O cc)
(if (null? str)
(return (cons O cc))
(if (eq? (car str) nl)
(return (Icc (edr str) O (+ cc 1)))
(return (Icc (cdr str) m:00 m:(+ cc 1))))))
(define (main)
(return (lcc ... 0J0))))

(main)

(c) Slice of program in (a) to compute the number of characters only.

Figure 5.1: A program in Scheme-like language and its slices. The parts that are sliced

away are denoted by [I.
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1. (define (mmp xs p nv np xv xp)

2. (if (null? xs)

3. (return (cons (cons nv np) (cons xv xp)))

4. (let pl (+7m:pl)in

5. (if (< (car xs) nv)

6. (mmp (cdr xs) pl (car xs) p xv xp))

7. (if (> (car xs) xv)

8. (mmp (cdr xs) pl nv np (car xs) p)
9. (mmp (cdr xs) pl nv np xv xp)))))
10. (define (main)

11.  (return (mmp (cdr xs) 2 (car xs) 1 (car xs) 1)))
12. (main)

Figure 5.2: A program to compute the min and max elements in a list along with their

positions.

whether to slice a particular expression e;, we only need to know whether the part of the
program output identified by the slicing criterion is dependent on e; or not. Specifically,
if the demand on the expression ¢; turns out to be (), the expression does not contribute
to the parts identified by the slicing criterion and can be removed from the slice. We now

formally define the slicing problem and show that it is undecidable.

Definition 5.1 The slicing problem is to find an algorithm A such that given a program
P, a demand 6, and a control point ™ will answer yes if there exists a DGS trace of P in

which m occurs with a non-null demand, and no otherwise.

Theorem 5.2 The slicing problem as stated in 5.1 is undecidable.

PROOF. To prove this, it is enough to prove that the problem of whether for an arbitrary
grammar G € CG’ (described in Section 2.4.1) the language .Z(G) = 0 is undecidable.
Assume to the contrary that we have a null-checker that can decide whether Z(G)
is empty or not. We show that this implies that the e-recognition problem of G also
becomes decidable, thereby resulting in a contradiction. If the null-checker for .Z(G) says
yes, then it is clear that ¢ ¢ Z(G). Otherwise consider a string a € Z(G). Clearly,
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S = « and we can assume without loss of generality that in this derivation S-productions
appear before any other category of productions. Thus, the derivation must go through
a sentential form containing S%;,,, for the first time, say LaS%;,,arR. In the segment of
the derivation from LS, wR to Lo S%;,, o R consider any production. This production
will correspond to a valid TM move. Thus the TM will reach a halting state. However,
by Lemma 2.7, it follows that, starting from S, there is an (possibly) alternate derivation
S = ¢. Thus, either Z(G) = 0 or ¢ € Z(G). So, if the null-checker returns no, we can
conclude that € € Z(G). This gives an algorithm for deciding the e-membership of G, a

contradiction. Hence the emptiness question of GG is undecidable. |

It turns out that similar to the e-membership question, the emptiness question also
becomes decidable if the grammar is regular. Therefore we model our slicing problem as a
dependence analysis problem. Modelling the slicing problem as an instance of dependence
analysis in Chapter 2 provides several advantages: i) the previously introduced notion of
access paths (set of prefix-closed strings of selectors) is rich enough to define interesting
and meaningful slicing criteria, ii) the slicing method shares the advantages of computing
context independent summaries for user-defined functions that can be used to analyze
function call without analyzing the function body multiple times, and most importantly,
iii) function summaries allow us to define a very efficient, incremental way of slicing a
program multiple times with different criteria. The incremental slicing algorithm will be

discussed in Section 5.2.

5.1.1 Slicing algorithm

For the rest of the discussion, we consider the program in Figure 5.2 as our running
example. The program takes a list of integers as input and computes the minimum and
maximum values along with their positions in the input list. The function mmp keeps
track of the current minimum and maximum value using the arguments xv and nv. It
compares every element with xv and if the current element is greater, it updates xv to be
the current element and processes the rest of the list. p which keeps track of the position
of the current element is used to update xp. The minimum value and its position are also
computed similarly.

We can extract different slices from the example program by specifying different
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Function computeSlice(P, o)
Data: program P, slicing criteria o

Result: Slice of P for the slicing criterion o
S+ P
DE + Compute demand environment for P with demand on main as o
foreach (grammar G, € DE)do

M, < Over-approximate G, using Mohri-Nederhof transformation

M, = S(My)

Mark as final each state in M which has a path to a final state in M)
foreach (7:e € S)do

if (Z(M)=10):

Replace m:e with (I

return S

Algorithm 8: Function to compute slice of a program using dependence analysis.

slicing criterion. For example, we might be interested in only the maximum value and
its position in the list, or we might be interested in only the maximum and minimum
values without needing their positions. The demand {e, 1,10,01} selects the part of
the output which corresponds to the maximum value and its position and similarly, the
demand {¢,0,1,10,00} selects only the maximum and minimum values. We compute
the demand environment for the example program with the given slicing criterion o as
the demand on (main). The question whether the expression at 7 can be sliced for the

slicing criterion o is equivalent to asking whether the language S(.Z(D,)) is empty.

Algorithm 8 describes our slicing algorithm. It takes a program P and slicing criterion
o as input. It computes the demand environment for P using o as the demand on (main)
of P. We use Mohri-Nederhof transformation to over-approximate any context-free gram-
mars by strongly regular grammars. The strongly-regular grammars are then converted
to a set of non-deterministic finite automata (NFA) and the simplification operation S()
is performed on these NFA. Post simplification, we ensure that the language generated is
prefix-closed by setting all states that are in a path from the start node to a final node
as final (including the start state). Finally, the required slice is computed by checking
if the language generated by the grammar corresponding to an expression is empty and

removing the expression from the slice if language is empty. We now use our running
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example to explain our slicing algorithm. We show the working of our slicing algorithm
for the slicing criteria {¢,1,10,01} and {¢,0,1,10,00}. Specifically, we consider the oc-
currence of the variable p identified by the program point 7 at line 4 and check whether

it can be sliced or not for the given slicing criterion. Consider ]Danmp, the function that

propagates the demand on a call to mmp to its second argument. Firstly notice that,
according to the rules of if and let, the demand o is propagated without change to the
three calls at lines 6, 8 and 9. Further, p appears as the fourth argument to the call to
mmp at line 6 and the sixth in the call to mmp at line 8. Clearly the demands on these

two occurrences of p are DSy, (o) and DSy, (o). Also notice that the demands of the

2

three occurrences of p1 at lines 6, 8 and 9 are the same, namely D5,

(0). And since p

is being used to define p at line 4, by the let rule, the demand on this occurrence of p is:

if (DS2,,.(0)) # 0 then {} else )

mmp
Bringing everything together, we get:

DS2 . (0) = DS: (o) U DS (o) U

mmp mmp mmp

if (DS2,.,(c)) # 0 then {e} else §

mmp

We have to bring this equation to a closed-form by substituting the values of DS (o)

mmp

and DSY, ., (o) and eliminating the recursion in DS}, (o).
2
mmp

The equations shown below define DS (0). Notice that the earlier equation for

DS, mp(0) has been rewritten in terms of the symbols 0, 1 and 0.

DS mp(0) = DSy (0) UDS, 0 (0) UBDSE L (0)

mmp mmp mmp

DSt . (0) = 100UDS; . (o)

mmp mmp
]Danmp(o) = _icrU]DS?nmp(cr)

Assuming the concrete demand on the body of mmp to be ommp, it is easy to see
that this demand propagates without change to the three calls in the body of mmp. The

call in main has a demand that is the same as the slicing criterion os.. Thus we get:

Ommp — Ommpuasc

Which gives the value of ommp as os.. When the body of mmp is analyzed with the
demand 0pymp, the demand on p1 is DS? Ommp- Thus, by the let rule, the demand on

mmp

p at 7, denoted Dy, is @cDS 1 Ommp-
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>(@@. >(1)2(@) .

(c) (f)

Figure 5.3: The simplification of the automaton MZ?: (a), (b) and (c) show the sim-
plification for the slicing criterion o = {¢,0,01,00}, while (d), (e) and (f) show the
simplification for the criterion o = {¢, 1,0, 10, 00}.

The equations can now be re-written as: grammar rules:

D7r — 06 DS?nmpo-mmp

DSZimp — DStump | DStamp | @ DS:

mmp mmp
Danmp — 10 | Danmp
DSY\mp — 11 | DS}

mmp

Ommp — Ose

Similar to liveness, we are interested in the least solution of equations as it corre-
sponds to the most precise slice. For our running example, the grammar after dependence
analysis is already regular, and thus remains unchanged by Mohri-Nederhof transforma-
tion. The automata in Figure 5.3a—c and 5.3d-f correspond to the two slicing criteria
Ommp = {€,0,00,01} and ommp = {€,0,00,1,10} and illustrate the simplification of
corresponding Mohri-Nederhof automata AM;™™". It can be seen that, when the slicing
criterion is {¢,0,00,1,10}, the language of D, is empty and hence the argument p can

be sliced away, giving us the required slice.
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In our formulation, any expression which gets a demand () for a given slicing criterion
is considered dead code and can be removed from the program. As a consequence of this,
the dead code elimination compiler optimization becomes a special case where the slicing
criterion is set to (0 + 1)*.

The correctness of our static slicing algorithm follows from the correctness of our
dependence analysis. For a given slicing criterion o, our slicing algorithm replaces ex-
pressions with [J only when the statically computed demand on it is (. This implies
that no DGS trace of the program with demand on main as o will evaluate the removed

expression.

Lemma 5.3 The static slicing algorithm described in Algorithm 8 is sound.

5.2 Incremental Slicing

Applications such as program specialization, cohesion measurement and parallelization
require the same program to be sliced with more than one slicing criterion. These ap-
plications can benefit from an incremental static slicing method in which some of the
computations for slicing with respect to one criterion could be reused for another.

In this section, we consider the problem of incremental slicing for first order functional
programs. The incremental algorithm avoids the repetition of computation when the same
program is sliced with different criteria. This is done by a one time precomputation that
computes that part of the slice which is common to all slicing criteria. The result is then
converted to a set of automata, one for each expression in the program. This completes
the precomputation step. To decide whether an expression is in the slice for a given slicing
criterion, we convert the slicing criterion to a NFA and check if the intersection of this
NFA with the precomputed automaton is (). If the result is (), the expression can be sliced
out.

The reason for the efficiency of our incremental method is that most of the efforts
in slicing can be factored out in a one time precomputation step (per program) which
computes, for each expression, all slicing criteria that keep an expression in the slice
and store it as an NFAs. Even more interesting, we can compute all the slicing criteria
that keep an expression in the slice by performing a dependence analysis on the program

with 0main = €. The NFAs which result from the dependence analysis are converted
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into a canonical form which we will shortly discuss. The purpose of this conversion is
to ensure that the language generated by the NFAs have (0 + 1)s only towards the end
of the string. Now, given such an NFA, we can construct a corresponding NFA, called
completing automaton, which exactly captures strings that would cancel out the bar-edges
in the original NFA. The completing automata can be stored and slicing with a specific

criterion is a small additional computation over the result of this precomputation step.

5.2.1 Motivating example

We will use the example in Figure 5.4 to motivate the need for an incremental slicing
algorithm. Recall that the program takes a list of integers as input and computes the
minimum and maximum values along with their positions in the input list. The function
mmp keeps track of the current minimum and maximum value using the arguments xv
and nv. The original program can be specialized to compute only the min and max values
in the list (Figure 5.4b) by slicing the program with the slicing criterion {¢, 0, 1,00,10}.
Similarly, by using the slicing criterion {¢,0,00,01}, we get a program which computes
the minimum value and its position (Figure 5.4c). If we were to use the slicing algorithm
described in Algorithm 8, the process of computing automata, simplification of automata
has to be repeated. The goal of our incremental algorithm is to avoid the duplication of
this effort.

The key observation driving our incremental slicing algorithm is the fact that the
we treat the slicing criterion to be prefix-closed. Therefore, a certain kind of containment
relation exists between the slices of a program. We say that a slice P contains Q, if
all the expressions in Q are also present in P. For example, the slice corresponding to
the criterion {€, 0} should contain the slice corresponding to the criterion {e}. Since {¢}
criterion is the smallest non-trivial slicing criterion that can be used, an expression that
is sliced away in the e-slice cannot be part of a slice computed using any other slicing
criterion. We use this observation to perform a precomputation step to slice the original
program with e slicing criterion. The result of this slicing is then processed to bring it to
a certain canonical form and stored. Given a slicing criterion the stored results are used
to compute the slice corresponding to the given slicing criterion.

We now describe the actual steps of our precomputation in detail:

1. Use the non-incremental slicing method with slicing criterion {€} to compute the de-
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(define (mmp xs p nv np xv xp)
(if (null? xs)
(return (cons (cons nv np) (cons xv xp)))
(let ple (+7:p1l)in
(if (< (car xs) nv)
(mmp (cdr xs) pl (car xs) p xv xp))
(if (> (car xs) xv)
(mmp (cdr xs) pl nv np (car xs) p)
(mmp (cdr xs) p1l nv np xv xp)))))
(define (main)
(return (mmp (cdr xs) 2 (car xs) 1 (car xs) 1)))

(main)

(a) Program to compute the min and max values in the list

(define (mmp xs O nv O xv 0J)
(if (null? xs)
(return (cons (cons nv ) (cons xv [J)))
(let pl+ Oin
(if (< (car xs) nv)
(mmp (cdr xs) O (car xs) O xv 0))
(if (> (car xs) xv)
(mmp (cdr xs) O nv O (car xs) O)
(mmp (cdr xs) O nv O xv 0)))))
(define (main)
(return (mmp (cdr xs) O (car xs) O (car xs) 0)))

(main)

(b) Slice of program in (a) to compute only the min and max value

(define (mmp xs p nv np xv )
(if (null? xs)
(return (cons (cons nv np) (cons xv [J)))
(let pi« (+p1)in
(if (< (car xs) nv)
(mmp (cdr xs) pl (car xs) p xv O))
(if (> (car xs) xv)
(mmp (cdr xs) pl nv np (car xs) 0J)
(mmp (cdr xs) pl nv np xv [0)))))
(define (main)
(return (mmp (cdr xs) 2 (car xs) 1 (car xs) O)))

(main)

(c) Slice of program in (a) to compute the min value and its position.

Figure 5.4: A program in Scheme-like language and its slices. The parts that are sliced

away are denoted by [J.

mand at each expression 7 e
2. Apply the Mohri-Nederhof procedure to construct the corresponding automaton Mie}

3. A step called canonicalization which applies the simplification rules on M{Ee}, but stops
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Figure 5.5: (a) The canonical automaton A_ and (b) the corresponding completing au-

tomaton ZW

when the symbols 0 and 1 of every accepting string of the resulting automaton are
only at the end
4. From the canonical automaton, constructing an automaton called the completing au-

tomaton, the output of the precomputation step

Since the first two steps have already been described in Chapter 3, we describe only the

next two steps in detail.

5.2.2 Canonicalization

The simplification step defined in Section 3.2 reduces all strings which contains un-erased
bar-edge symbols to null strings. The canonicalization step instead retains all strings that
either have no 0 and 1 symbols or have 0 and 1 symbols only at the end. All bar-edge free
strings correspond to expressions which will be present in the e-slice and as a consequence
in every non-trivial slice. Strings that have 0 and 1 symbols only at the end correspond
to expressions which could potentially be part of a slice, given the right slicing criterion.

We now give a set of rules, denoted by C, that captures canonicalization.
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C({e}) = {¢} C(00) = 0C(0)
C(10) = 1C(o) C(Peo) = 0L(0)
C(00) ={0[C(0) is {e}} U{a | 0a € C(0)}
U {01l | 1a € C(0)} U{00a | Oa € C(o)}
C(1o) ={1|C(o) is {}} U{a|la € (o)}
U{lla|1la €C(o)} U{l0a | 0a € C(o)}
C(oyUoy) =C(o1) UC(09)

C differs from S in that it accumulates continuous run of 0 and 1 at the end of a
string. Notice that C, like S, simplifies its input string from the right. Here is an example

of C simplification:
{00.01110} < 0C({0.01110}) S 00 C({01110}) N 00.0C({1110})

S 00.01C({110}) S 00.011C({10}) 5 00.0111C({0}) S 00.01110C({e})
S 00.01110{¢} 5 00.0111{0} < 00.011{10} 5 00.01{0}
S 00.0{10} S 00.{010} > 0{0.010} < {0p.010}
In contrast the simplification of the same string using S gives:

{00.01110} > 05({0.01110}) > 00.5({01110}) > 00.05({1110})

5 00.015({110}) > 00.0115({10}) > 00.0111S5({0}) > 00.01110S({c})

5 00.011100 > 0001110 > 00,0110 > 00.010 > 00.00 > 00.0 > 0p > ¢

C satisfies two important properties:
1. The result of C always has the form (0+1+0.)*(0+1)*. Further, if 0 C (0+1+0.)*,
then C(o) =
2. § subsumes C, i.e., S(C(01)C(02)) = S(0102).
Note that while we have defined canonicalization over a language, the actual canon-
icalization takes place over an automaton—specifically the automaton M _ obtained after
Mohri-Nederhof transformation. The process of canonicalization over an automaton is a

minor variation of the simplification process [44]. Specifically,
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1. Adjacent 00 and 11 edges are replaced by an ¢ edge and the resulting automaton is
made deterministic, until there are no more such edges

2. Edges with labels 0 or 1 are retained only if their targets have a path reaching some
final node, and the labels on this path consist only of 0 or 1 symbols.

It is in the second step that the canonicalization differs from simplification. For the

example program, the canonical automaton for 7 is shown in Figure 5.5a. Notice that all

the strings in the language of M will have the form 0.0.*11 or 0.0.*10. The 1 and 0

symbols are all towards the end of the string in both cases. Once all the automata have

been converted into the canonical form, the next step is to convert each one of them into

a completing automaton.

5.2.3 Completing automata generation

The completing automata generation step takes an automaton corresponding to expression
e in canonical form, and computes an automaton which accepts all possible slicing criterion
strings that keeps e in slice. For the motivating example 5.4, the automaton ML for the
slicing criterion {€} is shown in Figure 5.5a. In this automaton, each accepting string has
0 and 1 symbols only at the end. Thus the automaton is canonical, and we shall denote
it as A,. It is clear that if A_ is concatenated with a slicing criterion that starts with the
symbol 01, the result, after simplification, will be non-empty, and the expression at 7w will
be retained in the slice. We call such a string a completing string for A_. Detecting the
completing string became easy because the canonicalization step pushed all the 0 and 1
symbols towards the final state in the canonical automaton. Similarly, the string 11 is
also a completing string for the same automaton.

Algorithm 9 describes the process for converting an automaton in canonical form to
a completing automaton. The function createCompletingAutomaton takes A_, the
canonical Mohri-Nederhof automaton for the slicing criterion {¢}, as input, and constructs
the completing automaton, denoted as A_. Recollect that the strings recognized by A_
are of the form (0+1+0.)*(0+ 1)*. Call the set of states reachable from the start state
using only edges with labels {0,1,0.} as the frontier set. The completing automaton
is a copy of canonical automaton with edges labeled by 0 and 1 symbols reversed, and
the symbols themselves replaced by 0 and 1 respectively. All edges with labels {0, 1, 0.}

are dropped. Further, all states in the frontier set are marked as final states, and a new
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Function createCompletingAutomaton(A)
Data: The Canonicalized Automaton A = (@, {0,1,0,1,0.},4,qo, F)

Result: A, the completing automaton for A
F' « {qt | g € Q, hasBarFreeTransition(qo, g, 0)}
/* Reverse the ‘“bar’’ transitions: directions as well as labels */

foreach (transition 6(q,0) — ¢')do
add transition §'(¢’,0) — ¢

foreach (transition 6(q,1) — ¢')do
add transition & (¢, 1) — ¢

¢, + new state /x start state of A */

foreach (state ¢ € F)do
add transition §(q.,€) = ¢

return (Q U {q.},{0,1},&", ¢, F)
Function inSlice(e, o)
Data: expression e, slicing criteria o

Result: Decides whether e should be retained in slice

return (£ (A,)N o # ()

Algorithm 9: Function to create the completing automaton and the slicing func-

tion.

start node is added with transitions to the states corresponding to the final states of
canonical automaton. For the example program, the frontier set corresponding to Mie} is
{qo, 1} since these are the only states reachable from the start state using only edges with
{0,1,0.} labels. The completing automaton for 7 is the automaton in Figure 5.5b. After
dropping edges with {0,1,0.} symbols there is no path from the new state to the state
corresponding to go. Since, state corresponding to ¢; is also final state, the completing

automaton will have a non-null language.

Notice that for the canonical automata in Figure 5.5a, any string which has the
prefix (01 4+ 11) is a valid completing string. Therefore, the automaton corresponding
to the regular expression{(01 4+ 11)(0 + 1)*} recognizes all completing strings for A _
and nothing else. Thus for an arbitrary slicing criterion o, it suffices to intersect ¢ with
this automaton to decide whether the expression at 7 will be in the slice. In fact, it is
enough for the completing automaton to recognize just the language {(01 + 11)} instead
of {(01 + 11)(0 + 1)*}. The reason is that any slicing criterion, say o, is prefix closed,
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and therefore o N {(01 + 11)} is empty if and only if o N {(01 + 11)(0 + 1)*} is empty.
For our running example, the automaton in Figure 5.5b, gives the completing automaton
that recognizes the language (01 + 11).

The incremental slicing algorithm uses the fact that a completing automaton accepts
all slicing criterion strings that prevents the corresponding expression from being sliced.
Whenever a slicing criterion is presented, we construct an automaton representing the
criterion, which is then intersected with the completing automaton of every expression
in the program. If the intersection turns out to be non-null, then the slicing criterion
contains at least one string which would prevent the expression from being sliced. This
fact is used to decide whether an expression can be sliced out or not. For the example
program, we can see that the completing automaton corresponding to the program point
7 has a non-null intersection with the criterion {¢,0,00,01} and hence it is retained in the
slice, whereas it has a null intersection with {€,0,1,00,10} allowing the corresponding
expression to be sliced out. This matches our intuition that if neither the position of
the minimum element nor the maximum element is required then the expression tracking
the current position can be sliced out. We formally prove the correctness of incremental

slicing in the next section.

5.3 Correctness of incremental slicing

We now show that the incremental algorithm to compute incremental slices is correct.

Recall that we use the following notations:

1. G7 is the grammar generated by dependence analysis (Figure 3.1) for an expression
m: e in the program of interest, when the slicing criteria is o

2. A_ is the automaton corresponding to G;{f} after Mohri-Nederhof transformation and
canonicalization

3. A_ is the completing automaton for e

We first show that the result of the dependence analysis for an arbitrary slicing criterion

o can be decomposed as the concatenation of the grammar obtained from the dependence

analysis with the fixed slicing criterion {¢} and o itself.

Lemma 5.4 For all expressions e and slicing criteria o, £ (G2) = f(G;{f}) .
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PROOF. The proof is by induction on the structure of e. Observe that all the rules of the
dependence analysis (Figure 3.1) add symbols only as prefixes to the incoming demand.
Hence, the slicing criteria will always appear as a suffix of any string that is produced by
the grammar. Thus, any grammar Z(G%) can be decomposed as ¢’ o for some language

o’. Substituting {€} for o, we get GI = o’. Thus L(G?%) = Z(GiV) 0. [ ]

Given a string s over (0+ 1)*, we use the notation 5 to stand for the reverse of s in which
all occurrences of 0 are replaced by 0 and 1 replaced by 1. Clearly, S({s5}) = {€}.

We next prove the completeness and minimality of A_.
Lemma 5.5 {s|S(L (M) £ 0} = L(A) 0+ 1)*

PROOF. We first prove LHS C RHS. Let the string s € S(Z(ME")). Then by
Lemma 5.4, s € S(L(M) {s}). By Property 2, this also means that s € S(C(L(M) {s}).
Since strings in C(L(MLY)) are of the form (0 + 1 + 0)*(0 + 1))* (Property 1), this
means that there is a string pypy such that p; € (0 4+ 1+ 0)* and ps € (0 + 1),
and S({p2}{s}) C (0+ 1)*. Thus s can be split into two strings s; and sy, such that
S({p2} {s1}) = {€}. Therefore s; = p3. From the construction of A_ we have p € £L(A.)
and s, € (0+1)*. Thus, s € L(A.)(0+1)*.

Conversely, for the proof of RHS C LHS, we assume that a strings € £ (A,) (0 +1)*.
From the construction of A_ we have strings pi,ps, s’ such that pipy € C(ZL(MY)),
pr € (0+ 140", py € (04 1), s is pos’ and s € (04 1)*. Thus, S(L (M) =
S(L (M {s})) = S(C(L(MIN){s}) = SUpipPas'}) = {pis'}. Thus, S(L (M)
is non-empty and s € LHS. [ |

We now prove our main result: Our slicing algorithm represented by inSlice (Algo-

rithm 9) returns true if and only if S(Z(AS) o) is non-empty.

Theorem 5.6 The incremental slicing algorithm is sound i.e.

S(ZL(M?)) # 0 < inSlice(e, o)

PROOF. We first prove the forward implication. Let s € S(Z(M7)). From Lemma 5.4,
s € S(Z(M:)o). From Property 2, s € S(C(Z(M£)) o). Thus, there are strings py, po
such that p, € C(ZL(MY)), ps € 0,5 = S({p1p2}). Further p; in turn can be decomposed
as pspy such that p3 € (0+1+0.)* and py € (0+1)*. We also have S({pap2}) C (0+1)*.
Thus py is a prefix of ps.
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From the construction of A_, we know p; € £ (A_). Further, Py is a prefix of p, and
p2 € o, from the prefix closed property of o we have p; € o. This implies A_No # () and
thus inSlice(e, o) returns true.

Conversely, if inSlice(e, o) is true, then 3s : s € Z(A ) No. In particular, s €
Z(A.). Thus, from Lemma 5.5 we have S((,S,”(Mis})) # (). Further, since s € o we have

S(Z(M7)) # 0. o

114



€¢ €¢ 861LC | 0L | TET VLLEE | 9C LC 0°680€ | TcL 6 ¢10v epquIe]
66 L0 '8y G0T | 80 g'6¥ 66 L0 T°9¥ 1¢T 9 1L [1es
9y | V'L 8'¢C6ve | 9€V | ¢°C1 9°0849¢C | 9€¥ | 8°C 1'881¢ | 0€9 G'926¢ MOYSHYSIIY
86 gL €ey0T | TOT | €1 97e8 | 96 ¢l ¢'8¢8 | ¢0€ 9°0¢TT OFuTjuUapNIs
¢8 g0 VL 8L g0 gL 69 g0 0L 16 LTI e s R
cve | 811 0%99 | I8¢ | C'11 7869 | 90C | T'¢C ¥'L29 | 069 T'EV6 o du
6VT | 60 ¢0c 6¥1 | 80 g6l vl | 670 T'8T1 ¢8I 6°LC sodxeurur
0s€ | 91 I'8ce | 0S¢ | ¢'1T 9vce | 09€ | 9T 660€ | 0G€ ¥a6¢€ susanbu
90T | T'G L'899¢ | L90T | T°¢ ¢'6c4c | L90T | ¢°¢ €°L8¢¢C | STl 8'Cace suggered
99¢ | €¢ ceee | 6vc | 91 ¢Iie | 1we | 91 0892 | 68€ 9°66€ ALIOp
8€¢ | 97 P'198G | 8€G | 8°C ¢'LLGG | 9EG | VT €919 | 189 00069 uto[ea1y
SWRIS0IJ I9PI0-)SIl]

(sur) (sur) (sw)

91[s | (swm) owr) [ oo1s | (sw) owir) [ o1 | (sw) owry

ur| owrn our ur| owrn our ur| own our

adxo# ouj -uoN |rdxo# ouj -uoN |rdxo# ouj -UON »%.@%@ r%& SO
{15} wym Suoig {02} wym Supg {5} yya Sumoyg N ot %%%%& o
Ot

SUIDIS [RIUSWLIDUI-UOU PUR [RIUSUIDIOUT 10J SOTPSIPRIS 1°C d[qe],

115



5.4 Experiments and results

In this section, we present the results obtained from our implementation of the slicing
algorithm described. Since slicing time and accuracy (number of expressions sliced) are
not reported for other slicing methods, we implemented both an incremental slicer and
a non-incremental slicer and compared the two. The non-incremental slicing part was
implemented as part of a BTP [86]. The non-incremental version does not construct
completing automatons and hence needs to simplify automatons at each program point
for every slicing criteria. Our experiments show that the incremental slicing algorithm
is efficient when the overhead of creating the completing automata is amortized over the
computation of a number of slices with different criteria.

For each slicing criteria, we compare the times for incremental step and computed
non-incremental slicing. The results in Table 5.1 show that for all benchmarks the time
required to compute the completing automatons is less than twice the time for slicing
non-incrementally. The results confirm our hypothesis that incremental slicing is orders

of magnitude faster than non-incremental slicing.

5.5 Static slicing of higher-order programs

We now describe a method using which our dependence analysis can be extended to
handle higher-order programs. We achieve this by first converting the input higher-order
program to its equivalent first-order program by a process called firstification [60]. During
the firstification process we maintain a mapping between the original program and the
firstified program. We perform dependence analysis on the firstified program and obtain
the results. Using the mapping generated during the firstification process, we transfer the
demands generated on the firstified program to the original program. We describe this
method with an example for extending our static slicing algorithm to handle higher-order
programs.

We now describe, using an example, how our method can be extended to handle
slicing of higher order programs. While this is work in progress, our description will make
it clear that the extension is implementable. Our example for this section will be the
program in Figure 5.6a. It contains a higher order function hof which takes a function £

and a second argument 1st and applies £ to 1st. The function main creates a list 1st1
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(define (hof f 1st) (return m:(f 1st)))
(define (foldr f id 1st)
(if (null? 1st)) (return id)
(return (f (car 1st) (foldr f id (cdr 1st)))))
(define (fun x y) (return (+ y 1)))
(define (main)
(let 1st1 <« (cons a (cons b nil)) in
(let g «+ (foldr fun 0) in
(return (cons (hof car 1st1) (hof g 1st1)))))

(main)

(a) A program with higher order functions.

(define (hof_g 1) (return 7;:(foldr_fun 0 1)))
(define (hof car 1st) (return 7.:(car 1lst)))
(define (foldr fun id 1st)
(if(null? 1st)) (return id)
(return (fun (car 1st) (foldr fun id (cdr 1st)))))
(define (fun x y) (return (+ y 1)))
(define (main)
(let 1st1 <« (cons a (cons b nil)) in
(let g «+ (foldr fun 0) in
(return (cons (hof car 1stl) (hof g 1st1))))))

(main)

(b) Program after specialization.

(define (hof f 1st) (return 7:(f 1st)))
(define (main)
(let 1st1 < (cons a ) in
(let g < O) in
(return (cons (hof car 1st1) [0))))

(main)

(c) Slice of program in (a) with slicing criterion {¢, 0}.

Figure 5.6: An example higher order program

117




and a function value through a partial application and binds it to g. It makes two calls
to hof. The first call to hof uses car and 1st1 as arguments and the second call uses
the built-in function even and (g 1st1) as arguments. Finally, main returns a cons cell

created from the result of these calls.

We first discuss how demands are propagated from a call to its arguments in the
case of a higher-order function. Observe that in Figure 5.6a the demands on the second
argument to hof depends not only on the demand on hof but also on the function being
passed as an argument to hof. To handle this, we specialize hof using the function
argument in a manner similar to [60]. We create two specialized versions hof _car and
hof g corresponding to the two calls. The specialized program for our example is shown

in Figure 5.6b.

We can now find out the demands on each expression of the specialized program
using our dependence analysis. Moreover, the separation of the two calls to hof through
specialization adds precision to the analysis. In the specialized program, the demands on
the arguments 1st1 and (g 1stl) now come separately from hof car and hof g and

are not merged.

The body of hof, on the other hand, gets its demand from both the specialized
calls. Hence, we maintain a mapping from each higher order function to all its first order
variants. Once the demands for all the first order functions are computed, this mapping is
used to compute the demands for the body of the higher order function. In the example,
we maintain the mapping © — {m., 7¢}. The demand on = is given by the union of the

demands on 7. and 7.

Even after specialization, partial applications, such as (foldr fun 0), may remain
in the residual program. Whenever a functional value is created via partial applica-
tion it needs to maintain information about the first order base function using which
the functional value gets created. As an example, to compute the demand on 1stl in
the specialized program, it is necessary to know that foldr fun is the base for g and
1st1 is the second argument to foldr fun. The demand on the effective first order call

(foldr_fun 0 1st1) is obtained from the demand on (g 1st1).

The actual process of slicing remains same. At each program point in the higher order
function we store the completing automaton and whenever a slicing criterion is applied we

just check for the intersection. For our example, given a slicing criterion {¢, 0}, the sliced
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program is shown in Figure 5.6c. The specialization enables computation of context-
independent-summaries, even in the presence of higher order functions. As a result, the

cdr part of 1st1 gets sliced away.

5.5.1 Limitations

Note that our simple firstifier requires us to statically find all bindings of a functional
parameter. This is not possible if we allow functions to be returned as results or store
functions in data-structures. As an example we can consider a function f, that, depending
on a calculated value n, returns a function g iterated n times (i.e. g o go ™ ¥mes o g). A
higher-order function receiving this value as a parameter cannot be specialized using
the techniques described, for example, in [60]. A similar situation can show if we allow

functions in lists.

5.6 Related work

Most of the efforts in slicing have been for imperative programs. The surveys [16, 92, 97|
give good overviews of the variants of the slicing problem and their solution techniques.
In the context of imperative programs, a slicing criterion is a pair consisting of a program
point, and a set of variables. The slicing problem is to determine those parts of the
program that decide the values of the variables at the program point [103]. A natural
solution to the slicing problem is through the use of data and control dependences between
statements. Thus the program to be sliced is transformed into a graph called the program
dependence graph (PDG) [39, 72|, in which nodes represent individual statements and
edges represent dependences between them. The slice consists of the nodes in the PDG
that are reachable through a backward traversal starting from the node representing the
slicing criterion. Horwitz, Reps and Binkley [39] extend PDGs to handle interprocedural
slicing. They show that a naive extension could lead to imprecision in the computed
slice due to the incorrect tracking of the calling context. Their solution is to construct a
context-independent summary of each function through a linkage grammar, and then use
this summary to process function calls. The resulting graph is called a system dependence
graph (SDG). Our method generalizes SDGs to additionally keep track of the construction

of algebraic data types (cons), selection of components of data types (car and cdr) and
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their interactions (the cons-car and cons-cdr cancellations), which may span across

function boundaries.

Silva, Tamarit and Tomas [93] adapt SDGs for functional languages, in particular
Erlang. The adaptation is straightforward except that they handle dependences that
arise out of pattern matching. Because of the use of SDGs, they can manage calling
contexts precisely. However, as pointed out by the authors themselves, when given the
Erlang program: {main() -> x = {1,2}, {y,z} = x, y}, their method produces the im-
precise slice {main() -> x = {1,2}, {y,d} = x, y} when sliced on the variable y.
Notice that the slice retains the constant 2, and this is because of inadequate han-
dling of the interaction between cons and cdr. For the equivalent program (let x<
(cons12) in (let y < (car x) in y)) with the slicing criterion €, our method would
correctly compute the demand on the constant 2 as 1(eU0). This simplifies to the demand
(0, and 2 would thus not be in the slice. Another issue is that while the paper mentions
the need to handle higher order functions, it does not provide details regarding how this

is actually done. This would have been interesting, given that the language considered

allows lambda expressions.

The slicing technique that is closest to ours is due to Reps and Turnidge [79]. They
use projection functions, represented as tree grammars, as slicing criteria. Given a pro-
gram P and a projection function 1, their goal is to produce a program which behaves
like 9 o P. Their analysis consists of propagating the projection function backwards to
all subexpressions of the program. After propagation, any expression with the projec-
tion function L (corresponding to our () demand), is sliced out of the program. Liu and
Stoller [57] use a similar method for dead code analysis and elimination. As shown earlier,

our slicing algorithm subsumes dead code elimination.

These techniques differ from ours in two respects. These methods, unlike ours, do
not derive context-independent summaries of functions. This results in a loss of infor-
mation due to merging of contexts and affects the precision of the slice. As mentioned
earlier, the computation of function summaries using symbolic demands enables the in-
cremental version of our slicing method. Consider, as an example, the program fragment
7: (cons 7:x my:y) representing the body of a function. Dependence analysis with the
symbolic demand o gives the demand environment {7 + o, 7 + 00, m + 1o}. Notice

that the demands 7; and m are in terms of the symbols 0 and 1. This is a result of

120



our decision to work with symbolic demands. If we now slice with the default criterion
e and then canonicalize (instead of simplify), we are left with the demand environment
{m > €,m + 0,7 — 1}. There is enough information in the demand environment to
deduce that m; (m2) will be in the slice only if the slicing criterion includes 0(1). Since
the methods in [79] and [57] deal with demands in their concrete forms, it is difficult to
see the incremental version being replayed with their methods.

There are other less related approaches to slicing. A graph based approach has
also been used by Rodrigues and Barbosa [80] for component identification in Haskell
programs. Given the intended use, the nodes of the graph represents coarser structures
such as modules, functions and data type definitions, and the edges represents relations
such as containment (e.g. a module containing a function definition). On a completely
different note, Rodrigues and Barbosa [81] use program calculation in the Bird-Meerteens
formalism for obtaining a slice. Given a program P and a projection function v, they
calculate a program which is equivalent to ¢ o P. However the method is not automated.
Finally, dynamic slicing techniques have been explored for functional programs by Perera

et al. [73], Ochoa et al. [67] and Biswas [17].
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Chapter 6

Conclusions and future work

In this thesis we have defined a dependence analysis that is context-sensitive and takes into
account structure transmitted data dependences, i.e. dependences arising from selector-
constructor cancellation rules. We provide a formal definition of dependence analysis
using an operational semantics called Demand Guided Semantics (DGS). In addition
to the normal execution state transitions, DGS also specifies how demand on (main)
propagates to constituent sub-expressions of the program. While this has been proved
by Reps [78] in a different setting, we independently prove that computing fully precise
dependence information as formulated in this thesis is undecidable. Reps shows that
context-sensitivity and structure transmitted dependence can be modelled as context-free
grammars individually. Modelling both at the same time is equivalent to finding out
whether the intersection of two CFGs is empty, which is known to be undecidable.
Based on our formulation of dependence analysis, we come up with an algorithm
that computes an over-approximation of dependences. We believe our analysis to be
more precise than [79], which is not context-sensitive, and [93] which is context-sensitive
but does not precisely model constructor-selector cancellation. The analysis defined in
this thesis is more precise because instead of sacrificing either context-sensitivity or precise
modelling of structure transmitted data dependence, we over approximate the context-
sensitivity by a regular grammar instead of a CFG. Since the emptiness question for an
intersection of regular grammar and a CFG is known to be decidable [64] our analysis
captures context-sensitivity precisely when the grammar is already regular and only over
approximates if it is a CFG. We show that the approximate dependence analysis is sound

with respect to DGS.

123



We show the usefulness of dependence analysis in two applications, namely, liveness-
based garbage collection in lazy languages and static program slicing. While liveness-
based garbage collection has been shown to be effective in eager languages [12], this is
the first attempt to handle lazy languages. Since it is difficult to determine exactly when
an expression will be evaluated in a lazy language, deciding when to declare a variable
dead becomes difficult. This is further aggravated by the fact that lazy constructors carry
references to free variables in closures (which we call closure variables) outside the scope in
which the variables were declared. This forces the following design decisions with respect
to liveness analysis, 1) We introduce the notion of closure variables and treat them as
first-class citizens from the perspective of garbage collection by extending the root set
(variables on the program stack) to include closure variables and 2) We carry liveness of
closure variables as part of the closure. The design of the garbage collector also becomes
more complex as the collector has to deal with unevaluated expressions (closures) along
with data values. We have proved the correctness of the liveness-based garbage collection
scheme for a lazy language.

We model slicing as a dependence analysis problem by viewing the slicing criterion
(a set of strings over (0 4+ 1)*) as a demand on the main expression (main) and use it
to compute the demand on each expression in the program. Any expression which gets
a () demand can then be sliced away. Since applications such as program specialization
and parallelization require the same program to be sliced with more than one slicing
criteria. We propose an efficient way of slicing called incremental slicing. The incremental
algorithm avoids repeated computations of dependences by a one time precomputation
that computes for every expression all slicing criteria that keep the expression in the
slice. The interesting fact is that such a set can be efficiently computed and is related to
our decision of computing function summaries in terms of symbolic demands. Since the
same program is sliced multiple times, the cost of the precomputation step gets amortized

whenever the program is sliced with a different criterion.

6.1 Future work

The work presented in this thesis can be extended in multiple ways. In the formulation of

dependence analysis problem proposed in Chapter 2, the designated expression on which
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Figure 6.1: Lattice of demands

the user places the external demand is always (main). However, one may relax this

restriction and an arbitrary expression é can be chosen as the designated expression on

which the user places the demand &. This is very similar to the way the problem is posed

for imperative languages. To handle this situation, we introduce the following rules that

determine the demand on the body of each function in the program.

1. The demand on the main expression (main) is ().

2. The demand on a function body e; is the union of demand over all calls to f. As a
consequence, the demand on emain is also 0.

3. The demand propagation on the designated expression is carried out using D instead of
D. These functions "inject" a demand of & over the demand that reaches the designated

expression. Formally:

A

D(3,0,D8) = D(3,0 U &, DS)

Notice that our earlier formulation is a special case of the rules above when the

designated expression is (main).

6.1.1 Liveness-based garbage collection

Although liveness-based garbage collection is efficient in collecting more garbage per col-
lection than reachability-based collectors, the total time spent in doing garbage collection
for liveness-based collectors does not compare favourably with reachability-based collec-

tors. As mentioned in Section 4.4.3 and [12], this is mainly due to liveness-based collectors
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(define (append x y)
) ) (append x y) | x y
(if (eq? x nil)
0 0 0
(return y)
€ € €
(let a + (cdr x) in
0 0 0
(let b «+ (append a y) in
1 1* 1
(let u + (car x) in
1* 1* 1*
(let w < (cons u b) in
(return w)))))) (O+1) O+ 1) | O+1)

Figure 6.2: Function append and its function-summary table.

traversing the same memory locations multiple times where a reachability-based collector
would do a single traversal. For liveness-based garbage collection scheme to become main-
stream, the efficiency of the analysis and the garbage collector itself have to be improved.
Another drawback of liveness-based collectors is the extra memory required for storing

liveness automata. We discuss some ideas to mitigate these drawbacks.

Improve performance of liveness-based garbage collector

Our experiments with liveness-based garbage collection suggest that most programs do
not require the kind of precise liveness generated by our analysis. Sufficient gains can
be made over a reachability-based collector even when we restrict our liveness values to
a small set of liveness values. We borrow ideas from strictness analysis and restrict the
possible liveness values to a finite set of patterns. By sacrificing some precision, both the
analysis and the process of garbage collection itself can be made faster. Figure 6.1 shows
the lattice of allowed liveness values in our analysis. The input and output values can
only be one among the values represented in the lattice. While we describe our method
for a lazy first-order language, the same is applicable to eager languages.

Consider the example shown in Figure 6.2, we show how to compute the demand
transformer for the function append with the restricted set of demands. Since we are
dealing with a finite set of demands only, computing context-independent summaries
becomes simpler. We take each demand in the finite set and use it as a concrete demand
on the function body and do a fixed-point computation to obtain the demand transformer.

The fixed-point computation can be done as shown by the example in Figure 6.3. Assume

1

appends We first assume that the

that we need to compute the demand transformer DS

126



Tteration # | Assumed value for DS} cq | Oco ULDS, . q(10) U000
0—0 0—0
e €€
0 00 0— (04 1)*
1—0 1—¢
1" =0 1" — €
0+1)—0 0+1)*+— (0+1)*
0—0 0—0
Er— € Er— €
. 0— (0+1)" 0— (0+1)"
1€ 1—1"
1" — € 1" — 1"
(0+1)"— (0+ 1) (0+1)"— (0+ 1)
0—0 0—0
Er— € Er— €
) 0— (0+1)* 0— (0+1)*
1—1" 1—1"
17— 17 17— 17
(0+1)*— (0+1)* (0+1)*— (0+1)*

Figure 6.3: Table showing the fixed-point computation for computing the demand trans-
former for x, the first argument of append. In each iteration, the assumed value is

substituted in the equation in the third column to get the actual demand on x.

demand transformer takes any demand and returns (). Using this we compute the demand

on x which is given by the equation,

DSt

a;

ppend(a):: méo-LJlﬂ)S;ppend

(1o) U000

1
appen

1
append

Using the assumed function for DS q in the RHS, we get our next approximation. For

example, for the demand 1*, we get DS (1*) = {e}. We use the new set of mappings
to get the next approximation where again some values get updated. Considering the
same input demand 1* as before, the new mapping is DS, ena(1*) = {e} U {1}. Since,

this value is not part of the finite liveness values being considered we replace it with a
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value in the lattice which contains both {e¢} and {1} i.e. 1*. Repeating the process once
more, we find that there are no more changes in the mapping. We stop the iteration as

we have reached a fixed-point. The mapping obtained at the end of the iteration is the

1

required demand transformer DS, cnq-

Working with a finite set of liveness values avoids the simplification /erasure process
and thus improves the efficiency of computing liveness automata. Whenever we encounter
a function call with demand o, we look-up the table corresponding to the function and use
the argument demands corresponding to o. Another factor which makes liveness-based
collection slow is the need for consulting liveness automata at each step during garbage
collection. By using a finite set of liveness values we can hardcode the processing for each
liveness value in the garbage collector. The garbage collector can then just check the
liveness value associated with the root variable and call the specialized code for handling
that liveness value. This not only saves time but also memory by avoiding the storing of
liveness automata completely. Liveness values now can be embedded inside the heap cell
itself as an enum.

Finally, since the fixed set of values form a lattice, whenever a heap cell has been
visited with a value which contains the incoming value we can avoid traversing the heap
again. For example, if it is known that a reference has been traversed using the liveness
value (04 1)*, then if the same root cell is being traversed with the value 1* the repeated
traversal can be avoided.

In case of a lazy language we can further take advantage by reducing the extra
memory required for storing liveness automata references for closure arguments. Each
closure need only store an enumeration corresponding to the liveness value of each of its

argument.

Extending demand propagation to higher order programs

Our current way of handling higher-order programs requires the program to be converted
to a first-order program. This can be avoided if we have an analysis which can handle
higher-order programs. By restricting the demands to a finite set, we can extend our
analysis to handle higher-order programs.

In the case of a higher-order function, the demand on the non-functional argument

can depend on the functional argument. The first step in determining the demand on
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(define (foldr f id 1st)
(if (null? 1st)) (return id)
(return (f (car 1st)
(foldr f
id (edr 1st)))))

—0 D—0 0 — e
— 0 €— € €—€
(b)
Demand on call to foldr | Demand on id | Demand on 1st
0 ) )
{e} {e} 1"
(c)

Figure 6.4: (a) Definition of foldr (b) Potential demand transformers for the first ar-
gument of f when f is restricted to functions that take integer arguments and return
an integer. (c¢) Function summary table corresponding to foldr when foldr is used to

compute length of 1st.

the non-functional argument is to find out all potential demand transformers for the

higher-order argument and use them to create a table.

Consider the higher-order function foldr in Figure 6.4(a). Restricting the argu-
ment f to functions which take integer values and return an integer we can generate the
summaries for functions that could be passed to foldr. Figure 6.4(b) lists the possible
function summaries for the first argument of f. Since f takes two arguments, and the
second argument also has similar potential transformers, considering all possible combi-
nations we will have 9 potential function-summaries for f. Once all the possible function
summaries have been generated, we generate the function summary for foldr considering
each possible function summary for f. During analysis when a higher-order function call
is encountered, we can use the summary for the actual function being passed and compute
the demands on the arguments of foldr. As an example, consider the implementation of
length function using foldr, given as (foldr (a b (+ 1 b) 0 xs). The anonymous function
passed has demand-transformer which maps both demands () and {e} to () for its first

argument and the transformer for the second argument maps ) to ) and {e} to {e}. The
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function summary table for foldr for this function is shown in Figure 6.4(c). Since, the
passed function never uses its first argument, the demand on the elements of xs is always
(). Thus, the demand transformer corresponding to xs transforms an {¢} demand on a
call to foldr into a 1* demand on xs.

Further, demand on the functional argument has to be added to the demand-
summary of the actual function being passed. Demands on the expressions inside the
body of foldr are computed as usual by considering the union of demands at all call
points. The major challenge in using this method is to handle the huge number of poten-

tial demand transformers that needs to be considered for each higher-order function.

Hybrid GC - (reachability and liveness)

Another way to improve the effectiveness of garbage collection is to have a hybrid garbage
collector which can invoke either reachability or liveness-based collector. The intuition
behind this idea is that running a slow liveness-based collection is justified only if there
are sufficiently large number of reachable but dead cells. Therefore, we invoke a liveness-
based collector once after every k invocations of a fast reachability-based collector. Over
several runs of a reachability-based collector sufficient memory which is reachable but
not live gets accumulated and hence running a liveness-based collector will give sufficient
advantage. The cost of invoking a liveness-based collector is thus amortized over several
calls of a reachability-based collector. However, care has to be taken to ensure that after
a liveness-based collection, any references which point to the dead part of the heap are

correctly nullified.

k-Liveness GC

This is an extension of the idea due to Agesen [6] which just tests for the liveness of root
variables in Java. Instead of checking liveness of just the root variable, we use liveness
upto k levels. Beyond k levels everything that is reachable is copied. We can avoid
repeated traversals by maintaining an extra bit in each heap cell which can be set if it
was copied using reachability. During a traversal, if this bit is set the collector need not
traverse the substructure. The only drawback in this approach is that even for common
functions like length which only traverses the spine of its argument, a k-liveness collector

could end up copying extra cells.
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(define (repeatlN 1lst)
(if (eq? (cdr 1st) 0)
0
(cons (car 1st)

(repeatN (cons (car 1st)

(- (cdr 1st) 1))))))

(let x + (cons 5 6) in
(let y « (repeatN x) in
(cons (sum y)

(length y))))

Figure 6.5: Motivating example for forward demand propagation. If we take a forward
slice with respect to car part of x it can be seen that the expression (length y) can be

sliced.
6.1.2 Forward slicing using demand propagation

The dependence analysis defined in this thesis is a backward analysis i.e. it takes a
demand on the result of an expression and computes the demand on the arguments of
the expression. This allowed us to use the result of the analysis to solve problems such
as computing liveness and backward slicing. There are applications which can benefit
from an analysis which takes demands on the arguments of an expression and computes
demands on the output of the expression i.e. a forward analysis. A forward version of
our dependence analysis would be a good extension. The example in Figure 6.5 shows
how forward analysis is useful. In the example, let us assume that we are interested in
knowing what parts of the final output might be affected when we modify the value of the
car part of x(5). We can take a forward slice of the program with respect to the car part
of x. The forward slice thus obtained will not contain the cdr part of the final output.
This is intuitive, as the length of the list produced by the function repeatIN depends only

on the cdr part of x.
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