
Dependene Analysis of Funtional Programs

and its Appliations

Submitted in partial ful�llment of the requirements

for the degree of

Dotor of Philosophy

by

Prasanna Kumar K.

Roll No. 10405002

Advisors

Prof Amitabha Sanyal

and

Prof Amey Karkare

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY�BOMBAY

2018

Abstrat

Stati analysis of funtional programs turns out to be more hallenging than imperative

programs. The main reasons being a ompositional style of programming emphasizing

reation of user-de�ned funtions, use of algebrai data types and support for higher-

order programming onstruts. Tehniques whih work well for analyzing imperative

programs do not su�e for funtional programs. In this thesis, we formulate the problem

of ontext-sensitive dependene analysis for �rst-order funtional programs. However,

we are interested in a more general notion of dependene alled struture-transmitted

dependene, whih an answer questions suh as: For expressions e1 and e2 in a program,

if σ1 represents the parts of interest in the value of e1, then whih parts of the value of e2

are required to ompute σ1. We show that an analysis that is ontext-sensitive and models

struture-transmitted dependenes is undeidable. While a di�erent formulation of this

problem has already been proved to be undeidable, ours is an independent proof, both

in terms of formulation and the redution strategy employed.

Using the formulation we de�ne an approximate dependene analysis whih mod-

els struture-transmitted dependene preisely but over-approximates ontext-sensitivity.

The resulting analysis is still preise enough to be useful for appliations suh as garbage

olletion and program sliing. In spite of the analysis being ontext-sensitive, we ensure

that it is e�ient�the body of a user de�ned funtion is analyzed only one, irrespetive

of the number of times the funtion is alled. Given an expression e1 and the parts of

interest σ1 expressed as a regular grammar, the result of the approximate analysis is a

regular grammar orresponding to e2 that answers the dependene question. We formally

prove the soundness of our analysis. As appliations, we use variants of the analysis for

i) omputing liveness of lazy �rst-order programs and use it for liveness-based garbage

olletion, and ii) stati program sliing.

We �rst use our dependene analysis to ompute liveness for lazy languages. A

i

variable is live if there is a possibility of its value being used in future omputations and

dead if it is de�nitely not used. A liveness-based garbage olletor retains only referenes

that are live as opposed to a reahability-based olletor whih retains all referenes

that are reahable. Although it has been shown that liveness-based garbage olletion is

e�etive for eager �rst-order funtional languages, extending the sheme to lazy languages

is not straight forward. The reasons are: i) In a lazy language the point of evaluation

of an expression an be determined statially, ii) referenes to values an esape their

sope of delaration beause of lazy onstrutors. Further, the garbage olletor in a lazy

language needs to handle unevaluated expressions (losures) during garbage olletion. It

has to make a liveness-based deision on whih parts of the losure an be safely garbage

olleted. This is the �rst reported work that uses the results of an interproedural

liveness analysis to garbage ollet both evaluated data and losures. We provide a proof

of orretness of the liveness-based garbage olletion sheme. Using a prototype that we

have implemented, we show that the number of garbage olletions and the peak memory

required for exeuting the program redues for all the programs in our test suite, and the

total time spent doing garbage olletion also redues for many programs.

Program sliing refers to the lass of tehniques that delete parts of a given pro-

gram while preserving ertain desired behaviours. The desired behaviors are spei�ed

using what is alled as the sliing riterion. Sliing an be used for debugging, software

maintenane, optimization, program understanding and information �ow ontrol. We

show how program sliing an be modelled as a dependene analysis problem. Applia-

tions suh as program speialization, ohesion measurement and parallelization require

the same program to be slied with more than one sliing riterion. Using ertain proper-

ties of our formulation of dependene analysis, we de�ne a novel inremental method for

sliing programs, i.e., sliing the same program with di�erent input sliing riteria. We

show the performane bene�ts of inremental sliing by implementing a slier apable of

sliing inrementally and non-inrementally. In the interest of ompleteness, we handle

higher-order programs by onverting them into �rst-order programs through a proess

alled �rsti�ation. We run dependene analysis on the �rst-order program and obtain its

slie. The resulting slied program is mapped bak to the original higher-order program.

As an example implementation, we extend our sliing algorithm to handle higher-order

programs.

ii

Contents

Abstrat i

List of Figures v

List of Tables ix

1 Introdution 1

1.1 Analysis of imperative programs . 1

1.2 Analysis of funtional programs . 3

1.3 Dependene analysis of funtional programs 5

1.4 Contributions of this thesis . 7

1.5 Related work . 16

1.6 Organization of the thesis . 18

2 Dependene analysis of funtional programs 21

2.1 Dependene Analysis of Imperative Programs 21

2.2 Dependenes in funtional programs . 23

2.3 Syntax . 25

2.4 Dependene analysis as propagation of demands 27

3 An approximate dependene analysis and its proof of orretness 49

3.1 An approximate dependene analysis . 50

3.2 Computing dependenes . 54

3.3 Soundness of approximate dependene analysis 62

4 Liveness-based garbage olletion for lazy languages 65

4.1 Motivating example . 66

4.2 Liveness . 70

4.3 An example . 77

4.4 Computing liveness information . 78

4.5 Soundness of liveness-based garbage olletion 90

4.6 Related work . 93

5 Stati program sliing using demand propagation 97

5.1 Program sliing using dependene analysis 98

5.2 Inremental Sliing . 105

5.3 Corretness of inremental sliing . 112

5.4 Experiments and results . 116

5.5 Stati sliing of higher-order programs . 116

iii

5.6 Related work . 119

6 Conlusions and future work 123

6.1 Future work . 124

iv

List of Figures

1.1 Program representations for stati analysis. (a) An example program (b)

Control Flow Graph of the program in (a) (b) SSA representation of the

program in (a) . 2

1.2 Example for stritness analysis . 4

1.3 Motivating example for dependene analysis of funtional programs 5

1.4 An example program . 8

1.5 A list represented as a tree with edges labelled with the orresponding

seletor operations. 9

1.6 An example program and its memory graph. (b) represents the heap state

in an eager language and () represents the heap state in a lazy language. . 11

1.7 A program in Sheme-like language and its slies. The parts that are slied

away are denoted by �. 14

2.1 Imperative program and its PDG. Solid lines indiate data dependene and

dashed lines ontrol dependene. 22

2.2 Funtional program and its tree representation. 2(b) denotes that the node

represents a value 2 held through a let binding to a variable b 23

2.3 A funtional program evaluating to a struture. Labels suh as e are used
to refer to expressions in the ensuing disussion and are not part of the

language. 24

2.4 The syntax of our language . 26

2.5 Aess paths orresponding to the struture (cons (cons a b) c). Paths

orresponding to demand {00, 01} are shown in bold. 28

2.6 Demand guided exeution semantis. no-eval has preedene over all

rules. 31

2.7 Figure illustrating the orrespondene between TM state and grammar

sentential form. Shaded part represents the region of interest and ⇓ rep-

resents the loation of the TM head. Underlined symbols are spurious

symbols produed by the L and R produtions that an be erased later by

Sc
final. 34

2.8 Commutative diagrams illustrating the invariant θ mapping TM moves to

sentential forms. 35

2.9 Commutative diagrams illustrating the invariant θmapping sentential forms

to TM moves. 37

2.10 Sample grammar rules and the orresponding programs generated by pgm. 41

v

2.11 (a) Example sheme program (b) Labelled dependene graph orresponding

to the program in (a). Dotted edges indiate interproedural dependene,

{i }i pair indiate mathing all-return, (indiates putting a value in ar

part, [indiates putting value in dr part,) indiates a ar seletion and] a
dr seletion. A valid dependene will have a path in whih all parenthesis

math ({ and (([)) an be interleaved). 43

2.12 (a)Program orresponding to the P-PCP instane under disussion (b) De-

pendene graph for the program in (a). 46

2.13 The struture of main and the ommon funtion f 47

3.1 Demand equations and judgment rule . 51

3.2 Illustration of appliation rules (a) A demand of σ on (car x) resulting in
a demand of 0σ on x (b) cons rule () Funtion appliation. 52

3.3 An example program . 53

4.1 Example Program and its Memory Graph 67

4.2 A small-step semantis for the language. 68

4.3 Example illustrating liveness of losures . 72

4.4 Di�erent liveness situations enountered during garbage olletion of y in

a lazy language, (a)Liveness at π4 when y is a losure (b) Liveness at ψ3

when the spine of y is evaluated () Liveness at π8 where y points to a cons
ell ontaining referenes to rest and hd delared in funtion append . . 73

4.5 Dependene analysis modi�ed to ompute liveness 76

4.6 Stak and losure liveness for variable xs at program points π3 and π5.
Stak liveness is indiated in red and Closure liveness in blue. Stak live-

ness hanges between π3 and π5 as the expression (append xs ys) is not
onsidered at π5 for liveness omputation. Closure variable remains un-

hanged. 78

4.7 Simpli�ation proess of automaton orresponding to

Lπ3
(xs)

. 80

4.8 Advantages of updating losure liveness for variable xs at runtime. Closure

liveness of xs at π3 needs to take into aount liveness in both branhes.

Assuming the ondition evaluates to true at ψ1 at runtime, losure liveness

of xs an be updated to ∅. 84

4.9 Memory usage. The red and the blue urves indiate the number of ons

ells in the ative semi-spae for RGC and LGC respetively. The blak

urve represents the number of reahable ells and the light-blue urve rep-

resents the number of ells that are atually live (of whih liveness analysis

does a stati approximation). x-axis is the time measured in number of

ons-ells alloated (saled down by fator 105). y-axis is the number of

ons-ells (saled down by 103). 89

4.10 Mine�eld semantis. The di�erenes with the small-step semantis have

been highlighted by shading. 91

5.1 A program in Sheme-like language and its slies. The parts that are slied

away are denoted by �. 99

5.2 A program to ompute the min and max elements in a list along with their

positions. 100

vi

5.3 The simpli�ation of the automaton Mσ
π : (a), (b) and () show the sim-

pli�ation for the sliing riterion σ = {ǫ, 0, 01, 00}, while (d), (e) and (f)

show the simpli�ation for the riterion σ = {ǫ, 1, 0, 10, 00}. 104

5.4 A program in Sheme-like language and its slies. The parts that are slied

away are denoted by �. 107

5.5 (a) The anonial automaton Aπ and (b) the orresponding ompleting

automaton Aπ . 108

5.6 An example higher order program . 117

6.1 Lattie of demands . 125

6.2 Funtion append and its funtion-summary table. 126

6.3 Table showing the �xed-point omputation for omputing the demand

transformer for x, the �rst argument of append. In eah iteration, the

assumed value is substituted in the equation in the third olumn to get the

atual demand on x. 127

6.4 (a) De�nition of foldr (b) Potential demand transformers for the �rst ar-

gument of f when f is restrited to funtions that take integer arguments

and return an integer. () Funtion summary table orresponding to foldr

when foldr is used to ompute length of lst. 129

6.5 Motivating example for forward demand propagation. If we take a for-

ward slie with respet to car part of x it an be seen that the expression

(length y) an be slied. 131

vii

viii

List of Tables

4.1 Statistis for liveness analysis . 87

4.2 Statistis for garbage olletion . 88

5.1 Statistis for inremental and non-inremental sliing 115

x

Chapter 1

Introdution

Stati analysis is a olletion of tehniques that �nds useful information about programs.

Suh information has a variety of uses�debugging, optimization and program veri�ation

are examples. A stati analysis onsists of two parts: i) a suitable representation for

the information being omputed by the analysis, whih we shall generally all data�ow

information, and ii) a �xed point iteration over a representation of the program to ompute

the data�ow information. Given the di�erenes in the imperative and the funtional

programming styles, the kind of information sought and onsequently the nature of the

analysis di�er, in general, for programs written in the two styles.

1.1 Analysis of imperative programs

A ommon example of an analysis in imperative languages is reahing de�nitions [7, 8℄.

This determines the de�nitions of a variable that may reah a partiular program point.

The data�ow information in this ase may be represented as sequene of boolean values,

also alled a bit-vetor, eah value representing a de�nition of a variable at a program

point. In ontrast, analyses whih ompute properties of programs that manipulate the

heap through reursive types require a more omplex data�ow representation. This is

beause suh programs ould be used to aess unbounded regions of the heap memory

and the data�ow information is usually an abstration of regions of the heap, often in the

form of graphs. Alias analysis or pointer analysis[9, 24, 28, 42, 48, 49, 52, 53, 95℄, liveness

analysis[5, 44, 46, 47℄ and shape analysis[84, 85℄ are examples of suh analyses.

The �xed point iteration to ompute the analysis results an be performed on a

1

S1 : x = 5 ;

S2 : y = 3 ;

S3 : i f z > 0

S4 : x = y + 2 ;

S5 : e l s e

S6 : x = y − 1 ;

S7 : p r i n t (x + y) ;

start

x = 5

y = 3

z > 0

x = y + 2 x = y − 1

print(x+ y)

Exit

start

x0 = 5

y0 = 3

z > 0

x1 = y0 + 2 x2 = y0 − 1

x3 = φ(x1, x2)

print(x3 + y0)

Exit

(a) (b) ()

Figure 1.1: Program representations for stati analysis. (a) An example program (b)

Control Flow Graph of the program in (a) (b) SSA representation of the program in (a)

struture that models the program being analyzed. The program is usually represented

as a graph with the statements in the program as nodes and relations suh as data/ontrol

�ow among statements as edges. Examples of suh representations are the Control Flow

Graph (CnFG), Stati Single Assignment (SSA) form and Program Dependene Graph

(PDG) [27℄. Figure 1.1 shows an example program and its representation as a CnFG is

shown in Figure 1.1(b). In this graph, nodes represent statements in the program. and

edges represent possible �ow of ontrol from one statement to another.

However, notie that the CnFG may separate statements that are omputationally

lose to eah other. As an example, statement S2 de�nes a variable y that is used in S4.

The pair (S2, S4), alled a def-use pair, represents a diret data dependene between S2

and S4. In general, data dependene is a transitive relation. In the example program, S7

is data dependent on S6 due to the use of x. S6 is data dependent on S2 due to its use of

y and hene transitively, S7 is data dependent on S2. Sine the de�nition and use might

be separated by other statements, data dependenes are not obvious in a CnFG.

There is yet another sense in whih a statement Si an depend on Sj . The value

omputed by Sj deides whether the statement Si gets exeuted or not. In suh a ase we

2

say that Si is ontrol dependent on Sj. In the example program, exeution of statement S4

and S6 depends on what S3 evaluates to. Therefore both S4 and S6 are ontrol dependent

on S3.

There are two program representations that attempt to apture dependenes diretly

namely Program Dependene Graph and Single Stati Assignment (SSA). In the SSA form,

eah variable being de�ned is renamed to a unique name, its uses are onneted to the use

by being renamed to the same name. However, a PDG aptures both data dependene

as well as ontrol dependene in the program through diret edges between onstituent

nodes. Appliations like sliing of programs requires information about both data and

ontrol dependenes. For suh appliations we use a PDG. PDGs have wide appliability

in imperative languages [27, 38℄. In this thesis we explore the onept and utility of

dependene in the ontext of funtional languages.

1.2 Analysis of funtional programs

An example of an analysis for funtional programs whih does not have a ounterpart in

the imperative world is stritness analysis. This analysis is appliable in lazy funtional

languages in whih expressions are not evaluated unless their values are required. There-

fore, arguments to funtions are passed as unevaluated expressions (thunks or losures).

This is a soure of spae ine�ieny as losures may require more spae to store than

values. This may also a�et the exeution time sine the garbage olletor may have to

be invoked more often. One way of improving the e�ieny is to identify arguments whih

are guaranteed to be evaluated inside a funtion and then evaluate them before a all to

the funtion. Thus, stritness information is assoiated with the arguments of a funtion

de�nition and omes in two forms. If the argument is a salar, the analysis says whether

the argument is guaranteed to be evaluated or not. And if the argument is a strutured

data suh as a list, the analysis also indiates the extent of guaranteed evaluation�no

evaluation, head only, spine only and full evaluation.

For now, we assume the reader's familiarity with the Sheme programming language.

Consider the program in Figure 1.2, the main expression reates a list x whih ontains

two expressions e1 and e2. From the program, it is lear that the result of the main

expression is the car part of the result returned by funtion all (map square x). Hene,

3

(define (map f lst)

(if (null? lst)

nil

(cons (f (car lst)) (map f (cdr lst)))))

(define (square y)

(∗ y y))

main:(let x ← (cons e1 (cons e2 nil)) in

(car (map square x)))

Figure 1.2: Example for stritness analysis

this information will be propagated through the body of funtion map and it an be

determined that the expression (f (car lst)) will de�nitely be evaluated. Sine the

atual argument being passed to the funtion map is x, we get the information that the

car part of x whih is e1 will de�nitely be evaluated. Therefore, we an eagerly evaluate

e1 safely without violating the lazy semantis of this language.

Judged by this example, analysis of funtional programs ould di�er from their im-

perative ounterparts in the following ways.

1. In the nature of the information sought: In the world of imperative languages, it is

unommon to seek information like: Is the argument of a funtion likely to be evaluated

along all paths in the funtion, and if so, what is the ommon extent of evaluation along

all paths?.

2. Analysis for funtional programs must neessarily be interproedural: Limiting the anal-

ysis to intraproedural levels with onservative approximation at proedural boundaries

may not yield signi�ant bene�ts.

3. Identifying struture-transmitted data dependenes [78℄ is important: Consider a vari-

able z bound to (cdr (cons x y)). The fat that the value of z does not depend

on x requires the analysis to inorporate the identity (cdr (cons x y)) = y. While

this is important for the preision of the analysis, identifying the onstrutor-seletor

interation interproedurally is undeidable.

4. Additionally, ontrol �ow is hard to �gure out for funtional programs: This is due to

the presene of higher-order funtions and in the ase of lazy languages, losures.

4

(define (LenNSum x)

(if (null? x)

(return (cons 0 0))

(let ← (LenNSum (cdr x))) in

(return (cons (+ 1 (car))

(+ (car x) (cdr))))))

(let a ← . . . in

(let b ← . . . in

(let y ← π1:(LenNSum a) in

(let z ← π2:(LenNSum b) in

. . . more ode whih does not use a or b . . .

π:(cons (car y) (cdr z)))))))

Figure 1.3: Motivating example for dependene analysis of funtional programs

1.3 Dependene analysis of funtional programs

An analysis that is ommon to both imperative and funtional languages is �dependene

analysis�. In the imperative domain, for eah variable v in the program, dependene

analysis omputes the set of variables on whih v is data or ontrol dependent. Identifying

dependenes (data or ontrol) in a program is key in many program optimizations and

appliations suh as sliing. Knowing the dependenes among variables, it is possible to

optimize the program by improving its run time or memory usage. For example, if we

an �nd out that a ertain value is omputed but never used, we an safely remove the

ode orresponding to the generation of this value. This results in faster exeution as

the ode for generating the value is not exeuted. Also, the modi�ed program uses less

memory sine the memory required for storing the value an be avoided. In the funtional

domain, we need to ompute dependenes among expressions instead of variables. Using

the example in Figure 1.3, we desribe some appliations of dependene information in

funtional programs.

Consider the example in Figure 1.3, the funtion LenNSum written in a Sheme

like language, takes a list of integers as input and omputes both the length of the list

as well as the sum of the elements of the list. The symbol π is not part of the program

5

and is used to denote a program point. For an empty list it returns (cons 0 0), signifying

that the length of an empty list as well as the sum of the elements of an empty list are

both 0. For any non-empty list, the funtion reursively omputes the length and sum of

the cdr part of the input list and inrements the car part of the result by 1 to ompute

the length and adds the car element of the input list to ompute the sum for the input

list. The funtion reates a cons ell to enlose the omputed length and sum values and

returns it. Notie, the length of the list does not depend on the values of elements of the

list.

In an eager language, there are no uses of a beyond π1 and of b beyond π2. Therefore,

we an safely garbage ollet the memory assoiated with list a after π1 and b after π2.

A garbage olletor whih ollets only referenes whih beome unreahable would not

have been able to ollet a and b as they would still be in sope and hene reahable.

However, the situation gets interesting in the ase of lazy language. In a lazy language, a

let expression does not trigger the evaluation of the expression bound to the let variable

as soon as it is enountered. Instead, it reates a losure and defers its evaluation until its

value is atually required. Therefore, in the example program, assuming that the output

of main is being printed, only the length of the list a is required. Therefore, unlike

in an eager language, the funtion LenNSum does not evaluate the expressions whih

ompute the sum of the list a. Thus, the �nal output does not depend on any element of

the list a. Given this information, a garbage olletor ould e�iently ollet the memory

orresponding to the elements of a any time after the reation of the list a.

Another appliation of dependene information is program speialization. The fun-

tion LenNSum omputes both the sum and length of the input list. If we need a spe-

ialized funtion that just omputes the length of the list, we an remove expressions that

de�nitely do not ontribute to the car part of its output from the body of LenNSum to

get the speialized funtion.

In this thesis, we onsider the problem of stati analysis of funtional programs to

ompute dependenes. The analysis is interproedural and is de�ned for a Sheme-like

�rst-order funtional language. Lists are the only user-de�ned data strutures that are

supported as other data-strutures an be modelled using lists. Extending our analysis

to other user-de�ned data strutures does not present any oneptual di�ulties. Our

analysis strikes a balane between preision and e�ieny by omputing funtion sum-

6

maries for user-de�ned funtions and using them to ompute dependenes for funtion

all expressions.

1.4 Contributions of this thesis

This thesis presents an e�ient and reasonably preise interproedural dependene anal-

ysis for funtional programs. While Reps [78℄ has shown that an interproedural depen-

dene analysis that is ontext-sensitive and preisely models struture-transmitted data

dependenes is undeidable, we provide an independent proof of undeidability and use our

formulation to propose an approximate dependene analysis. The analysis proposed in the

thesis preisely models struture-transmitted data dependenes while relaxing the ontext-

sensitivity requirement in some ases to allow the analysis to beome deidable. Thus,

our analysis an be both ontext-sensitive and preisely model struture-transmitted data

dependenes in most ases. The loss of preision when the ontext-sensitivity requirement

is relaxed is still tolerable to be useful in appliations like liveness-based garbage olletion

and sliing. To ompute dependenes, we generalize the analysis desribed by Asati et

al [12℄ that omputes liveness in eager �rst-order funtional programs. The dependene

analysis is de�ned over a language whih has lazy semantis. This enhanes the appli-

ability of the analysis by allowing us to perform liveness analysis of lazy languages and

perform stati program sliing.

1.4.1 Dependene analysis

In the ontext of imperative languages, dependene analysis answers the question: Given

a statement, say S1, what are the statements S2 that it depends on? The de�nition an

be generalized and made more interesting in the ase of funtional languages, espeially

when the value omputed by the program is an algebrai datatype. Let e be an expression

whih evaluates to an algebrai datatype and σ denote a substruture of this value. The

notion of dependene that we wish to address is: Given a part (or substruture) σ of the

value an expression e, what parts σi of the value of other expressions ei deide the value

of σ part of the value of e? As a onrete example, for the program in Figure 1.4, our

analysis should yield the information that the only part of list in the let expression π12

7

(define (length lst)

π1: (let x ← (null? lst) in

π2: (if x

π3: (let v ← 0 in

π4: (return v)

π5: (let u ← (cdr lst) in

π6: (let y ← (length u) in

π7: (let z ← (+ 1 y) in

π8: (return z))))))))

(define (main)

π9: (let a ← . . . in

π10: (let b ← (+ a 1) in

π11: (let ← (cons b nil) in

π12: (let w ← (length) in

π13: (return w)))))

(main)

Figure 1.4: An example program

that deides the value of (main) is its spine1, the elements of the list are not required.

We all substrutures of a value that are of interest as demands and represent them

as follows. The demand ∅ indiates that no part of the value is of interest. For an integer,

we indiate that the value is of interest by using the demand ǫ. In the ase of algebrai

datatypes like lists, we an onstrut a tree and label its branhes by seletors, using the

notations 0 and 1 to represent seletions using car and cdr respetively. This is shown

in Figure 1.5. The substruture of interest an then be identi�ed by a path from the

root of the tree. As an example, the substruture represented by the highlighted path in

blue, is represented by the set {10}. Similarly, the spine of the list (highlighted in red)

is represented by the set {11}. If the size of the list is unknown, then the spine an be

approximated by the in�nite set {ǫ, 1, 11, . . .} or, 1∗
in short. Paraphrasing our earlier

observation, a demand of ǫ on (main) is deided by (or depends on) the demand 1∗
on

, and, interestingly, ∅ (or no part) of the value of (+ a 1).

The idea behind dependene analysis is to propagate demands from an outer ex-

pression to inner expressions, in the example from the body of main to the expressions

 and (+ a 1). We give rules to do this outside-in propagation for the let and the if

expressions, and the built-in operators, cons, car, cdr, null? and +. However, we also

uniformly extend the outside-in propagation priniple to user de�ned funtion alls (f x),

1

The spine of a list is the substruture obtained by starting with at the root and a performing a series

of cdr seletions reahing the end of the list. For the list in Figure 1.5, the edges in red is the spine.

8

1

0

ǫ ǫ

1

1

Figure 1.5: A list represented as a tree with edges labelled with the orresponding seletor

operations.

by omputing a transfer funtion, denoted DSf . If σ is the demand on a funtion all

(f x), then DSf (σ) is the propagation of this demand to its argument x. Our proposed

analysis gives DSlength for a non-null σ as:

DSlength(σ) = ǫ ∪ 1DSlength(ǫ)

The important point to note that the unknown in this equation is the funtion

DSlength, and the reader an verify that DSlength(σ) = 1∗
is a solution of this equation.

What this means is that any non-null demand on (length) will propagate a spine

demand on . This mathes our intuition as the length funtion reursively traverses the

spine of its argument till the end of the list. Therefore, the demand on is 1∗
, and, sine

 is bound to (cons b nil), the same demand is transferred to this expression. Going

inwards still further, sine b is the head of the list (cons b nil) with the demand 1∗
,

the demand on b is ∅, a fat that we infer through algebrai rules. This ∅ demand is

transferred to (+ a 1), and we onlude that the output of main does not depend on any

part of (+ a 1).

More spei�ally, our ontributions in this part are as follows:

1. We generalize liveness analysis to a more general notion of dependene, and propose a

ontext-sensitive interproedural analysis that preisely models struture-transmitted

data dependenes to ompute dependenes in a program.

2. Independent of Reps [78℄ and using a di�erent redution, we show that ontext-sensitive

9

and preise modelling of struture-transmitted data dependenes is undeidable. Using

our formulation we propose an approximate analysis whih preisely models struture-

transmitted data dependenes but relaxes ontext-sensitivity requirement in some

ases.

3. The analysis results in reursive equations, where the unknowns are transfer funtions

suh as DSf (σ). The solution takes the form DSf σ (DSf onatenated with σ, with

onatenation lifted naturally to sets of strings). Here DSf is the start symbol of a

CFG with two �xed non-CFG produtions

2

We prove that the membership problem of

the resulting grammar is undeidable. We get around the problem by approximating

the CFG by a regular grammar.

4. Based on a demand driven operational semantis for the language, we prove the sound-

ness of the analysis.

1.4.2 Liveness-based garbage olletion for lazy languages

The runtime system of most funtional languages inludes a garbage olletor to relaim

memory, however empirial studies on Sheme [45℄ and Haskell [82℄ programs have shown

that garbage olletors leave unolleted a large number of memory objets that are reah-

able but are not live, i.e. these memory objets are guaranteed not be used when exeution

resumes from the urrent state after garbage olletion. This results in unneessary re-

tention of memory whih an be safely garbage olleted. The situation is even worse in

the ase of lazy funtional languages as they might have to arry large losures (runtime

representations of unevaluated expressions) instead of values. To remedy this, Asati [12℄

proposes a liveness-based garbage olletor instead of a reahability-based olletor to

inrease the number of ells garbage olleted. However, the proposal was for a eager

language.

We use the example in Figure 1.6 to demonstrate the bene�ts of a liveness-based

garbage olletion sheme and also the hallenges faed in implementing a liveness-based

olletor for lazy languages. We represent the heap as a graph in whih a node either

represents atomi values (nil, integers, et.), or a cons ell ontaining car and cdr �elds,

2

We reiterate the di�erenes between DSf and DSf . DSf is a transfer funtion and is the unknown in

the equation generated by the analysis. DSf is a grammar symbol representing a set of strings, and is a

part of the solution. The solution of DSf maps a demand σ to DSf σ.

10

(define (length lst)

(if (null? lst)

0
(+ 1 (length (cdr lst)))))

(define (append l1 l2)

(if (null? l1) l2

(cons (car l1)

(append (cdr l1) l2))))

(define f)

(let x ← . . . in
(let y ← . . . in
(let z ← (append x y) in
(if (null? (car z))

0
π:(length z)

. . . more ode not involving x, y or z

))))

x

×

×
×

z

y

×

(b)

x

×

×

×

z

y

×

()

(a)

denotes a losure. Thik edges denote live links. Traversal stops at edges marked × during garbage

olletion for a liveness-based olletor.

Figure 1.6: An example program and its memory graph. (b) represents the heap state in

an eager language and () represents the heap state in a lazy language.

or a losure (represented by shaded louds) in the ase of lazy languages. Edges in the

graph are referenes and represent values of variables or �elds. The situation in the ase

of eager languages is shown in Figure 1.6(b). At program point π, the liveness assoiated

with z is 1∗
and with x and y it is ∅ as there are no more uses for x and y beyond π.

Thus, if a GC takes plae at π with the heap shown in Figure 1.6(b), a liveness-based

olletor will preserve only the ell referened by the spine of z.

In ontrast, Figure 1.6() shows the lists x and z partially evaluated due to the if

ondition (null? (car z)). Due to this evaluation, the car �eld of z points to the car of

x and the cdr �eld of z points to the losure (cons (car x) (append (cdr x) y)) (shown

as the bubble outlined in blue). Here we fae a situation that is di�erent from eager

evaluation in the following senses: (i) Laziness ditates that (length z) will be evaluated

on demand, so it is statially not possible to �gure out where this evaluation will take

11

plae. In fat it may even take plae beyond the sope in whih z has been delared,

indeed even outside the funtion f. (ii) Given that the spine of z has not been evaluated

yet, how would a liveness-based garbage olletor, if invoked at π, ollet the spine of z?

Our solution to these problems is as follows. We think of the free variables inside a

losure as root set variables, and arry their liveness information inside the losure. Thus

the losure (length z) arries the liveness of z as 1∗
. Seond, if a variable is not fully

evaluated during garbage olletion, we have devised a mehanism of garbage olleting

(parts of the) losure. Roughly the idea is as follows: If the demand on, say (length

z) is ∅, the losure is garbage olleted. Otherwise, we onsult the reorded liveness to

garbage ollet whatever is bound to z. If z happens to be evaluated, we use the reorded

liveness 1∗
to garbage ollet the value, else, if it is bound to a losure, we repeat the

same proess as we did for (length z).

We use a variation of dependene analysis to ompute liveness information and store

them as Deterministi Finite Automata (DFA) at program points of interest. Sine our

appliation is garbage olletion, the program points of interest are the ones whih ould

potentially trigger a garbage olletion, whih, for lazy languages, is the point where a

let expression requests memory to reate a losure that is bound to the letvariable. If

the garbage olletor is invoked at any of these program points, it uses the assoiated

automata to urtail reahability during marking phase. This results in an inrease in the

garbage relaimed and onsequently in fewer olletions.

Our ontributions in this part are:

1. Whereas the idea of using stati analysis to improve memory utilization has been shown

to be e�etive for eager languages [12, 36, 41, 56℄, a straightforward extension of the

tehnique is not possible for lazy languages, where heap-alloated objets may inlude

losures. We de�ne a liveness analysis for �rst-order lazy languages. To make liveness-

based GC e�etive for lazy languages we extend it to losures apart from evaluated

data. Closures arry liveness information of its free variables whih is used by the

garbage olletor during garbage olletion. As an optimization, to keep the losure

liveness preise, we update it during the exeution.

2. To prove the soundness of our method, we modify the demand-guided semantis intro-

dued for dependene analysis by introduing an updatable Heap as part of the state.

We also simulate a Garbage Colletion in the semantis whih goes to a speial state

12

alled bang if a referene whih has been delared dead by our analysis. The soundness

analysis onsists of proving that for any program, the exeution of the demand-guided

semantis annot enter a bang state.

3. Using a prototype implementation we demonstrate the bene�ts of liveness-based garbage

olletion for lazy languages, inrease in the garbage relaimed and onsequently in

fewer olletions. Beause a liveness-based olletor identi�ed more ells that would

not be used, the peak memory use also improved for all the programs. Our experiments

show up to 10X redution in the number of garbage olletions and 20X redution in

peak memory requirements.

1.4.3 Program sliing

Program sliing is a powerful tehnique with appliations ranging from debugging, soft-

ware maintenane, optimization, program analysis and information �ow ontrol. Program

sliing refers to the lass of tehniques that delete parts of a given program while preserv-

ing ertain desired behaviours. The desired behaviors are spei�ed using what is alled as

the 'sliing riterion'. We onsider one suh version of sliing where the sliing riterion

identi�es parts of the �nal output of the program that the user of the sliing tool may be

interested in, and the goal is to produe the parts of the program whih a�et only the

parts of the output identi�ed by the sliing riterion. Program speialization, paralleliza-

tion, dead ode analysis and ohesion measurement are examples of suh appliations.

In general, a sliing riterion is modeled as a pair 〈e, σ〉, where e represents an

expression in the program P and σ represents the parts of the value of e that is of

interest. The goal of sliing is to identify the set of expressions belonging to P whih

may a�et the parts identi�ed by σ. The sliing problem thus an be formulated as an

instane of dependene analysis as the question: Given a sliing riterion 〈e, σ〉, what are

the expressions ei in P suh that σ of e depends on σi of ei, and σi is not ∅? While

the general form of dependene analysis an answer the question for any expression e, we

onsider the speial but useful ase in whih e is the main expression (main). Figure

1.7a shows a simple program in a Sheme-like language taken from [79℄. It takes a string

as input and returns a pair onsisting of the number of haraters and lines in the string.

Figure 1.7b shows the program when it is slied with respet to the �rst omponent of

the output pair, namely the number of lines in the string (l). All referenes to the ount

13

(define (lcc str l)

(if (null? str)

(return (cons l))

(if (eq? (car str) nl)

(return (lcc (cdr str) (+ l 1) (+ 1)))

(return (lcc (cdr str) π1:l π2:(+ 1))))))

(define (main)

(return (lcc . . . 0 0))))

(main)

(a) Program to ompute the number of lines and haraters in a string.

(define (lcc str l �)

(if (null? str)

(return (cons l �))

(if (eq? (car str) nl)

(return (lcc (cdr str) (+ l 1) �))

(return (lcc (cdr str) π1:l π2:�)))))

(define (main)

(return (lcc . . . 0 �))))

(main)

(b) Slie of program in (a) to ompute the number of lines only

(define (lcc str �)

(if (null? str)

(return (cons �))

(if (eq? (car str) nl)

(return (lcc (cdr str) � (+ 1)))

(return (lcc (cdr str) π1:� π2:(+ 1))))))

(define (main)

(return (lcc . . . � 0))))

(main)

() Slie of program in (a) to ompute the number of haraters only.

Figure 1.7: A program in Sheme-like language and its slies. The parts that are slied

away are denoted by �.

14

of haraters () and the expressions responsible for omputing only have been slied

away (denoted �).

To produe a slie for a given program, we use the sliing riterion (a set of strings

over (0+1)∗) as a demand on the main expression (main), and ompute the demands on

eah expression in the program. Any expression whih gets a ∅ demand an be slied from

the program. Sine we model the sliing problem as an instane of dependene analysis,

we inherit both its advantages and its weaknesses. One of the weaknesses is the large time

required for automata onstrution. This was aeptable in the ase of garbage olletion

as the automata were reated only one and the same would be onsulted whenever a

garbage olletion was triggered. However, in ase of sliing the automata have to be

reonstruted every time the sliing riterion hanges (even when the program remains

same). Program speialization is an example appliation where the same program is slied

with di�erent riteria. We thus turned to the problem of inremental sliing that is useful

in suh situations.

Inremental sliing

The program in Figure 1.7a an also be slied with respet to the seond omponent

of the output (the harater ount). The resulting program in whih all expressions

related to omputation of l have been removed is shown in Figure 1.7. If we use

the non-inremental sliing method, the whole proedure of dependene analysis has to

be repeated for the new sliing riterion. Appliations suh as program speialization,

ohesion measurement and parallelization whih require the same program to be slied

with more than one sliing riterion an bene�t from a sliing method whih avoids

repeated omputation of information. We propose an inremental algorithm based on

dependene analysis that avoids this repetition of omputation when the same program

is slied with di�erent riteria.

The inremental sliing algorithm involves a one-time preomputation step that om-

putes information whih is ommon to all sliing riteria. The key idea is that for eah

expression, the preomputation step omputes the set of all sliing riteria whih keeps

the expression in the slie. It is an interesting fat that this an be done by onsider-

ing only one spei� riterion, namely {ǫ}. The resulting set an be represented as a

�nite state automaton. Now, given any other riterion (also represented as a �nite state

15

automaton), the inremental sliing proedure simply �nds the intersetion of the two

automata. If the language of the resulting automaton is ∅, the expression an be slied

out. Notie, that even when the sliing riterion hanges the automata omputed in the

preomputation step do not hange and hene they don't need to be reomputed.

Finally, for the sake of ompleteness we desribe a method to extend our depen-

dene analysis to handle higher-order programs. We �rst onvert the input higher-order

program to its equivalent �rst-order program by a proess alled �rsti�ation [60℄ while

maintaining a mapping between the original program and the �rsti�ed program. We

perform dependene analysis on the �rsti�ed program and obtain the results. Using the

mapping generated during the �rsti�ation proess, we transfer the demands generated

on the �rsti�ed program to the original program. We extend the stati slier to handle

higher-order programs.

Our ontributions in this part are:

1. We use dependene analysis to statially slie funtional programs. We de�ne a novel

inremental sliing mehanism whih is very e�ient when the same program is slied

multiple times. The orretness of our stati sliing algorithm follows from the or-

retness of dependene analysis.

2. We formally prove that our inremental sliing is sound with respet to non-inremental

sliing.

3. We extend sliing to handle higher-order programs by performing �rsti�ation.

4. We have implemented a prototype of a slier that an run in inremental or non-

inremental mode. The slier an handle both �rst-order and higher-order programs

written in a Sheme like language. Our experiments on�rm that the inremental

omputation runs orders of magnitude faster than the non-inremental version. We

obtain nearly 1000X speed in nearly all of the experiments.

1.5 Related work

The dependene analysis that we de�ned involved starting with a demand σ on an expres-

sion e and omputing demands on eah sub-expression of e. Similar approahes of taking

an abstrat value and propagating its e�ets "inwards� have been used in di�erent analy-

sis. Wadler [101℄ uses projetion funtions whih he alls "ontexts� to perform stritness

16

analysis. Given the ontext on the result of a funtion f , stritness analysis omputes the

parts of the arguments of f that ould be safely evaluated eagerly. Wadler [100℄ shows how

ontexts an be used to ompute the time omplexity of lazy programs. The propagation

of abstrat values an also be done in the "outwards� diretion, starting from arguments

of an expression to the result of the expression. Binding time analysis [40, 61, 65℄ is an

example of suh an analysis. It is used in partial evaluators to determine the parts of the

program an be evaluated if some input is known. In the rest of this setion we mainly

disuss work whih has similar appliations to our analysis, improving garbage olletion

using stati analysis and stati sliing of funtional programs.

There have been di�erent approahes to improving memory utilization in funtional

programs. An interesting approah by Mohnen [62℄ uses abstrat interpretation to handle

garbage olletion of nested lists. A list having n levels is abstrated to an n-tuple, a

boolean denoting the possibility of sharing between any element at eah level in the list

and the result of the funtion to whih the list is passed as a parameter. A false value in

the tuple indiates that values at that level are not shared with the return value and hene

an be garbage olleted. This leads to very oarse approximations as the use of a single

ell will make the whole list at that level live. The approah due to Lee et. al. [55, 56℄

uses memory types to desribe usage of heap ells and ahieves ontext sensitivity by

using dynami �ags passed as extra arguments to funtions to ollet ells inside funtion

bodies. Passing di�erent values from di�erent all sites for the dynami �ags allows the

same funtion to have di�erent dealloation behaviors. A pratial approah involves

opying only the heap objets whose root variables are live [6℄. The drawbak of this

approah is that an entire objet reahable from a live root variable is onsidered live,

even if some parts of it are never used. For example, even when only the spine of a list

is live (used as an argument to the length funtion) all its elements will also be opied.

Asati et al [12℄ desribe a liveness-based garbage olletor for a �rst-order eager funtional

language based on an analysis similar to ours. It demonstrated the utility of a liveness-

based olletor over a reahability-based olletor for a language whih had support for

heap based lists. The analysis desribed was limited to liveness analysis of �rst-order data

values in an eager language. In this thesis, we generalize their analysis and demonstrate

its utility by implementing a liveness-based garbage olletor for a lazy language and then

using the same analysis to statially slie funtional programs.

17

Most of the e�orts in sliing have been for imperative programs. The surveys [16, 92,

97℄ give good overviews of the variants of the sliing problem and their solution tehniques.

A natural way is to use data and ontrol dependenes between statements to ompute the

slie. The program to be slied is transformed into a graph alled the program dependene

graph (PDG) [39, 72℄, in whih nodes represent individual statements and edges represent

dependenes between them. The slie onsists of the nodes in the PDG that are reahable

through a bakward traversal starting from the node representing the sliing riterion.

Horwitz, Reps and Binkley [39℄ extend PDGs by de�ning a System Dependene Graph

(SDG) to handle interproedural sliing.

Silva, Tamarit and Tomás [93℄ adapt SDGs for funtional languages, in partiular

Erlang. The adaptation is straightforward exept that they handle dependenes that

arise out of pattern mathing. Beause of the use of SDGs, they an manage alling

ontexts preisely. However, as pointed out by the authors themselves, they fail to han-

dle onstrutor-seletor interations. The sliing tehnique that is losest to ours is due

to Reps and Turnidge [79℄ whih uses projetion funtions to speify a sliing riteria.

The sliing riterion is propagated bakwards to all subexpressions of the program. After

propagation, any expression with the projetion funtion ⊥ (orresponding to our ∅ de-

mand), is slied out of the program. Liu and Stoller [57℄ use a similar method for dead

ode analysis and elimination. Both these methods, unlike ours, do not derive ontext-

independent summaries of funtions. Thus, we do not see any way of omputing multiple

slies inrementally.

A graph based approah has also been used by Rodrigues and Barbosa [80℄ for om-

ponent identi�ation in Haskell programs whih is very oarse for our purpose. Rodrigues

and Barbosa [81℄ use program alulation in the Bird-Meerteens formalism for obtaining

a slie. Given a program P and a projetion funtion ψ, they alulate a program whih

is equivalent to ψ ◦ P.

1.6 Organization of the thesis

We formalize the notion of an interproedural ontext-sensitive dependene analysis that

preisely models struture-transmitted data dependenes in Chapter 2. We prove that

suh an analysis is undeidable using a non-standard operation semantis alled demand-

18

guided semantis. In Chapter 3, we use the dependene analysis formulation de�ned in the

previous hapter to devise an approximate dependene analysis whih models struture-

transmitted data dependenes preisely but relaxes ontext-sensitivity for some ases.

We prove its soundness with respet to demand-guided semantis. The �rst appliation

of our dependene analysis, a liveness-based garbage olletion sheme for a �rst-order

lazy language is desribed in Chapter 4 and proved orret. In Chapter 5, we show how

funtional programs an be statially slied using dependene analysis. We also present

an e�ient sliing tehnique alled inremental sliing for sliing the same program with

di�erent riteria. We prove its orretness with respet to the non-inremental sliing

algorithm. We desribe a way to extend our analysis to handle higher-order programs.

We demonstrate it by extending our stati slier to handle higher-order programs. Finally,

we summarize our ontributions and disuss potential extensions to our work in Chapter 6.

19

20

Chapter 2

Dependene analysis of funtional

programs

In this hapter, we �rst look at the notion of dependene for imperative programs. We then

introdue an useful generalization of the notion of dependene for funtional programs

by introduing a onept alled demand. A demand desribes a part of the value of an

expression, whose dependene is of interest and the analysis omputes part of values of

other expressions that this expression depends on. We then desribe the syntax of a

�rst-order funtional language without imperative features that we shall use throughout

the thesis. We then formally speify the dependene analysis problem�an algorithmi

solution of the problem would ompute the generalized notion of dependene mentioned

above for programs written in this language. We show that the dependene analysis

problem is undeidable and therefore there is no suh algorithm. In the next hapter, we

propose an approximate algorithm to ompute dependene and prove its soundness.

2.1 Dependene Analysis of Imperative Programs

In the ontext of imperative languages, dependene analysis answers the question: Given

a statement, say S1, what are the statements S2 that it depends on? Dependenes be-

tween statements arise beause of two distint reasons. In the example in Figure 2.1, the

statement S7 assigns the value x+y to z. Thus any hange in the values of x or y will

a�et the value of x+y and therefore the value assigned to z. Sine statements S3, S5 and

S6 de�ne x and y, S7 is said to be dependent on S3, S5 and S6. This kind of dependene

21

S0: b = 2

S1: a = 5

S2: if b < 0

S3: x = a+ 5

S4: else

S5: x = a− 2

S6: y = a + 1

S7: z = x + y

S8: print z

start

S0 S1

S2

S3 S5 S6

S7

S8

Figure 2.1: Imperative program and its PDG. Solid lines indiate data dependene and

dashed lines ontrol dependene.

is alled data dependene. In summary, if Si de�nes a value that is diretly or transitively

used by Sj we say that Sj is data dependent on Si.

There is a seond reason due to whih a statement an be seen as depending on

another. For the present disussion, we shall regard a boolean expression representing the

ondition of a if as a statement. In the example, the seletion of S3 or S5 for exeution

depends upon the ondition b > 0 in S2. We say that S3 and S5 are ontrol dependent

on S2. This is viewed as a dependene beause the value of x that reahes S7 depends on

the statement seleted by S2. In general, we say that Sj is ontrol dependent on Si if Si

deides whether Sj is exeuted or not.

Dependene is a transitive relation. In the example, S7 is data dependent on S3, and

S3, in turn, is data dependent on S1. This makes S7 data dependent on S1. Similarly, the

fat that S3 is ontrol dependent on S2 makes S7 dependent on S2, though the resulting

dependene annot be lassi�ed as either data or ontrol dependene. It is ustomary to

represent the dependenes in a program as a graph, with the data and ontrol dependene

represented by di�erent kinds of edges, as shown in Figure 2.1. This graph is alled a

Program Dependene Graph (PDG). For tehnial reasons, a syntheti node START is

added to the graph and all the statements are made ontrol dependent on this node.

22

let

b = 2

a = 5

x = if (< b 0) (+ a b)

(− a 2)

y = (+ a 1)

z = (+ y x)

in z

+(z)

+(y) if(x)

<

0

1

+

-

2

5(a)

2(b)

Figure 2.2: Funtional program and its tree representation. 2(b) denotes that the node

represents a value 2 held through a let binding to a variable b

2.2 Dependenes in funtional programs

We an de�ne dependenes for funtional programs in a similar way. Sine funtional

programs do not have assignments of values to variables, the dependenes are between

expressions instead of statements. Dependene in the ontext of funtional programs

ould be desribed as: Given an expression e in a program, what other expressions in the

program does the value of e depend on? While we shall formally desribe the language for

whih we propose our analysis, for now we assume the reader's familiarity with a Sheme

like language. Consider the earlier imperative program now written as a let expression.

This an be viewed as a tree as shown in Figure 2.2 with some of the nodes labeled by the

variables of let. In the absene of funtion alls, dependene analysis as de�ned above

would be very easy to ompute�an expression depends on eah of its sub-expressions.

In the ontext of funtional programs, however, the de�nition an be generalized and

made more interesting, espeially when the value omputed by the program is an algebrai

data type. Most funtional languages have a set of pre-de�ned algebrai datatypes (lists,

for example) and additionally provide features for users to de�ne their own algebrai

datatypes. Values of an algebrai datatype are onstruted with onstrutors for example

(cons, nil) and de-onstruted with seletors (car , cdr).

Figure 2.3 shows a program fragment omputing a struture. As a generalization, we

may be interested in knowing the dependenes of a "part" of the value of an expression

instead of the entire value of the expression. The part that we may be interested in is

23

e1: let

 ← e2:(cons a b)

in

e3:(if e4:(< a b) e5:(car) e6:d))

Figure 2.3: A funtional program evaluating to a struture. Labels suh as e are used to

refer to expressions in the ensuing disussion and are not part of the language.

spei�ed through a set of paths, eah path representing a omposition of seletor funtions.

As an example, assume that we are interested in the part of (the value of) e1 orresponding

to the omposition of seletors {car◦cdr} of the value of e1. It is onvenient to write this

as a set of paths, eah path onsisting of a sequene of seletors in the order in whih these

would be applied. In this ase the set would onsist of a single path cdr car (cdr followed

by car). Eah pre�x of a path represents the root of interest of some sub-struture of e1.

They are, for this example, the root of e1 itself represented by the pre�x ǫ (the empty

pre�x of cdr car), the root of the struture obtained after a cdr seletion on e1 (the

pre�x cdr of cdr car), and a cdr seletion followed by a car seletion (orresponding to

the entire path cdr car).

Given that we are interested in {cdr car} of e1, let us see what sub-strutures of

other expressions does this depend on. e1. Sine the value of e1 is also the value of

e3, {cdr car} of e1 would obviously depend on {cdr car} of e3. Further, the value of

e3 is deided by the ondition e4 of the if . Therefore there is a ontrol dependene of

e3 (and therefore of e1) on {ǫ} of e4.1 Going further down the if , Sine the value of

e3 is one of e5 and d, {cdr car} of e1 is also dependent {cdr car} of e5 and d. Also

observe that sine the spei�ed part of e1 depends on {cdr car} of e5, and e5 happens

to be (car), the dependene of e1 on is the set {car cdr car}. , a car seletion

 to be (cons a b), {car cdr car} part of translates to {cdr car}. Observe that in

obtaining this dependene, we have used the rule (car (cons x y)) = x of onstrutor-

seletor interation. More importantly, this rule also leads to the onlusion that the

1

Sine e4 is a salar, its value is represented by the root ǫ.

24

spei�ed part of e1 is not dependent on b, and we would not have been able to obtain

this preision without inorporating onstrutor-seletor interation in our analysis.

However, inorporating suh rules in the analysis is not simple. In the example,

the seletor appliation immediately followed the pair reation. Therefore, it was easy to

observe the fat that the result of the appliation was a. In general this may not be the

ase, the seletor and onstrutor an be widely separated�in fat, they ould even be in

di�erent funtions. Another thing that ompliates identifying this seletor-onstrution

interation is the fat that the atual pair that takes part in the seletion might take

part in further onstrutions and subsequent seletions. For example, in the expression

(car (car (cons (cons a b) (cons b a))), the analysis has to orretly identify that the

outermost car interats with the onstrutor (cons a b). Therefore, any analysis whih

an preisely ompute suh dependenes must ontain the identity (car (cons x y)) = x

as its part.

Let e be an expression whih evaluates to an algebrai datatype and σ denote a part

of this struture. The notion of dependene that we wish to address an now be generalized

to: Given the part σ of an expression e, what parts σi of other expressions ei deide the

value of σ part of the value of e? One an easily see the appliability of this notion of

dependene. For example, in the ase of sliing, one an fous on the seemingly erroneous

part of the value of an expression and ask what (ei, σi)s does it depend on. If it does not

depend on any part of an expression ei, it an be slied out. We all the parts of interest

σi as demands. In the following setions, we desribe an analysis whih inorporates

onstrutor-seletor interation and omputes preise dependene information.

2.3 Syntax

Figure 2.4 shows the syntax of our language. We assume familiarity with the basi features

of a Sheme-like language. A program in our language is a olletion of funtion de�nitions

followed by a main expression denoted as emain whih for our purposes will always be

(main). Appliations (denoted by the syntati ategory App) onsist of funtions or

operators applied to variables. Constants are regarded as 0-ary funtions. Expressions

(Expr) are either an if expression, a let expression that evaluates an appliation and binds

the result to a variable, or a return expression. The return keyword is used to mark a

25

p ∈ Prog ::= d1 . . . dn emain � program

df ∈ Fdef ::= (define (f x1 . . . xn) e) � funtion def

e ∈ Expr ::=

(if x e1 e2) � onditional

(let x← s in e) � let binding

(return x) � return from funtion

s ∈ App ::=

k � onstant (numeri or nil)

(cons x1 x2) � onstrutor

(car x) � selets �rst part of cons

(cdr x) � selets seond part of cons

(null? x) � returns true if x is nil

(+ x1 x2) � generi arithmeti

(f x1 . . . xn) � funtion appliation

Figure 2.4: The syntax of our language

variable in a returning ontext of a funtion. Notable omissions are lambda expressions

and a provision for user-de�ned algebrai datatypes.

For ease of presentation, we restrit the language to Administrative Normal Form

(ANF) [83℄. In this form, the arguments to funtions an only be variables. This re-

strition does not a�et expressibility, but has an important notational advantage. As

we shall see later, the semantis that we shall asribe to this language is a generalization

of lazy semantis, and every appliation that is assoiated with a let de�nition an also

be seen as an expliation of losure reation. We assume that lets in our language are

non-reursive�in the expression let x← s in e, x should not our in s. The restrition

of let to a single de�nition is for ease of exposition�generalization to multiple de�nitions

does not add oneptual di�ulties. To avoid dealing with sope-shadowing, we assume

that all variables in a program are distint. Neither of these two restritions a�et the

expressibility of our language. In fat, in our implementation, we translate a pure sub-

set of Sheme to our language, and, in the sliing tool, map the slied program bak to

Sheme. To refer to an expression e, we may annotate it with a label π as π :e; however

the label is not part of the language. To keep the desription simple, we shall assume that

eah program has its own unique set of labels. In other words, a label identi�es both the

26

program point and the program that ontains it. We denote the body of a funtion f as

ef . We assume that eah program has a distinguished expression, emain, and the program

begins exeution with the evaluation of main.

2.4 Dependene analysis as propagation of demands

Reall from Setion 2.1 that dependene analysis of a funtional program, as we wish to

view it, answers the following question: Given that we are interested in a spei� part

of the struture representing the value of an expression, what parts of other expressions

does this value depend on? The substruture of interest an be identi�ed by a set, whose

elements are ompositions of seletor funtions. Eah suh omposition is a sequene of

dereferenes of cons ells through its car and cdr �elds, and ends in the root of some sub-

struture. We view this sequene of dereferenes as a path from the root of the struture.

We introdue the notations 0 to represent dereferening using the car �eld and 1 for

dereferening using cdr. As an example, onsider the struture reated by the expression

(cons (cons a b) c). The set {00, 01} represents dereferening paths to the root of various

sub-strutures of the value of this expressions. This is shown in Figure 2.5. Eah element

in this set is alled an aess path and the entire set {00, 01} is alled a demand.

A demand on an expression e represents parts of its value that the ontext of e may

be interested in. Here, by ontext we mean all future omputations that may make use

of e. Sine these parts an be represented by paths from the root of the value, a demand

is represented by a set of strings over (0+ 1)∗. As an example, a demand of {10} on the

expression (cons x y) means its ontext may be interested in the car �eld of y. This is

represented by the pre�x 1 of the string 10 in the demand. The absene of the string 0 as

a pre�x of any string in the demand, on the other hand, indiates that x is de�nitely not

of interest. Notie that omputation of {10} of (cons x y), requires {0} of y. Thus we

may think of dependeny analysis as omputation of a demand transformer transforming

(or propagating) the demand {10} on (cons x y) to demands on its parts�{0} on y

and the empty demand (represented by ∅) on x. As one more example, 1∗
in whih the

ontext is interested in the spine of a list. The length funtion would represent suh a

demand on its argument. Similarly if e evaluates to a list, then the demand {0, 10, 110}

means that the ontext may only refer up to the third element of e.

27

ǫ

0

b 0100 a

Figure 2.5: Aess paths orresponding to the struture (cons (cons a b) c). Paths orre-

sponding to demand {00, 01} are shown in bold.

The dependene analysis problem is now modeled as follows: Given a demand σ on

e, we would like to �nd the demand σi on eah of the expressions ei in the program. Thus

dependene analysis lies in omputing a demand transformer that, given a demand on

e, omputes a demand environment�a mapping of eah expression (represented by its

program point π) to its demand. While in the general formulation e an be any expression

in the program, in the restrited formulation whih su�es for our appliations of garbage

olletion and sliing, e is spei�ally a all to the main funtion main.

We use σ to represent demands and α to represent aess paths. Given two aess

paths α1 and α2, we use the juxtaposition α1α2 to denote their onatenation. We extend

this notation to a onatenate a pair of demands and even to the onatenation of a

symbol with a demand: σ1σ2 denotes the demand {α1α2 | α1 ∈ σ and α2 ∈ σ2} and 0σ

is, through abuse of notation, a shorthand for {0α | α ∈ σ}. Also, note that σ1σ2, when

σ2 = ∅, is ∅.

2.4.1 Spei�ation of dependene analysis

We now formally speify the dependene analysis problem. To do this, we �rst de�ne a

non-standard small-step operational semantis alled Demand Guided Semantis (DGS)

that serves as a spei�ation of the real demand on eah expression of the program that

is required to satisfy the given demand on a designated expression. While the expression

of onern an be any expression in the program, for the appliations onsidered in this

thesis, namely liveness-based garbage olletion and sliing, we shall onsider this to be

the funtion main, and the user supplied demand will be denoted σmain.

28

Funtion evalAndPrint(expr)

Data: expr is the expression being evaluated

val ← evalToWHNF(expr)

if (pair?(val)) then

Display �(�

evalAndPrint(car(val))

Display �.�

evalAndPrint(cdr(val))

Display �)�

else

Display val

Algorithm 1: evalAndPrint funtion that drives the evaluation in a lazy lan-

guage.

Starting with the demand σmain on (main), DGS propagates demands to eah ex-

pression as it is being evaluated during exeution. We all the demand thus propagated

to an ourrene of an expression as the dynami demand and denote it as δ. A key

aspet of DGS is that an expression is evaluated only if the dynami demand on it is

not ∅. Given an expression and a program point of an arbitrary program, any algorithm

whih aptures the union of the dynami demands on all ourrene of this expression in

the trae of any DGS exeution of the program through stati analysis is deemed to be a

solution of the dependene analysis problem.

Demand Guided Semantis

The exeution state of Demand Guided Semantis has the dynami demand as a om-

ponent. The evaluation aspet of Demand Guided Semantis an be thought of as a

generalization of lazy semantis. In lazy semantis, the evaluation of the user supplied

main program main is mediated through a runtime support, whih we an model as

a funtion alled evalAndPrint. evalAndPrint evaluates main till it reahes Weak

Head Normal Form (WHNF) [74℄. Sine our language is �rst order, this means that an

expression has to be evaluated to its value and printed in the ase of a base type, and to

a partially evaluated expression with the outer onstrutor (cons) exposed, in the ase

of a pair or a list. evalAndPrint then reursively evaluates and prints the (possibly)

29

Funtion evalAndPrint(expr, δ)

Data: expr is the expression to be evaluated

Data: δ is the demand on expr

if (¬(δ == ∅)) then

val ← evalToWHNF(expr)

if (pair?(val)) then

Display �(�

evalAndPrint(car(val), δ1) // δ1 = {α | 0α ∈ δ}

Display �.�

evalAndPrint(cdr(val), δ2) // δ2 = {β | 1β ∈ δ}

Display �)�

else

Display val

Algorithm 2: Modi�ed evalAndPrint funtion to drive evaluation in demand

guided semantis.

unevaluated expressions onstituting the head and the tail of main, printing appropriate

delimiters in between. This is shown in Figure 1. We wish to point out that:

1. The reason why a program in a lazy language is evaluated in this way is to reonile two

requirements. First, lazy semantis ditates that the evaluation of any expression in

the program means 'evaluation till WHNF'. However, the top level expression must be

fully evaluated for the user to see the results. Therefore, eah expression is evaluated

by default till WHNF. However, the top-level expression main is guided to a full

evaluation by evalAndPrint.

2. This strategy e�etively puts a demand of (0 + 1)∗ (full evaluation) on the main

expression.

In DGS, we generalize the notion of lazy evaluation, so that instead of evaluating the

main expression fully, it is evaluated to the extent given by an arbitrary demand δ. As

examples, if e is a list and δ is 1∗, then e is evaluated to expose its entire spine, the

individual elements of the list an remain unevaluated. The modi�ed evalAndPrint

funtion for a demand guided evaluation is shown in Figure 2.

30

Premise Transition Rule name

δ is ∅ ρ, (ρ′, y, e′, δ′) :S, e, δ ρ′, S, e′, δ′ no-eval

ρ, (ρ′, y, e, δ′) :S, κ, δ ρ′ ⊕ {y 7→ v}, S, e, δ′ onst

ρ(x) is 〈s, ρ′〉 ρ, S, x, δ ρ′, S, s, δ var

ρ(x) is 〈(id y), ρ′〉 ρ, S, x, δ ρ′, S, y, δ id

ρ, S, (car x), δ ρ, S, x, 0δ ar

ρ, S, (cdr x), δ ρ, S, x, 1δ dr

ρ, (ρ′, w, e, δ′) :S, (cons x y), ǫ

ρ′ ⊕ {w 7→ (〈(id x), ρ〉, 〈(id y), ρ〉)}, S, e, δ′

ons

δ′ = {α | 0α ∈ δ} ρ, S, (cons x y), δ ρ, S, x, δ′ ar-ons

δ′ = {α | 1α ∈ δ} ρ, S, (cons x y), δ ρ, S, x, δ′ dr-ons

ρ(x), ρ(y) ∈ N ρ, (ρ′, z, e, δ′) :S, (+ x y), δ

ρ′ ⊕ {z 7→ (+ ρ(x) ρ(y))}, S, e, δ′

prim-add

ρ(x) is 〈s, ρ′〉 ρ, S, (+ x y), δ ρ, (ρ, x, (+ x y), δ) :S, x, ǫ prim-1-lo

ρ(y) is 〈s, ρ′〉 ρ, S, (+ x y), δ ρ, (ρ, y, (+ x y), δ) :S, y, ǫ prim-2-lo

f de�ned as (define (f ~y) ef) ρ, S, (f ~x), δ [~y 7→ ~〈(id x), ρ〉], S, ef , δ funall

ρ, S, (let x← s in e), δ ρ⊕ {x 7→ 〈s, ρ〉}, S, e, δ let

ρ(x) ∈ N & ρ(x) 6= 0 ρ, S, (if x e1 e2), δ ρ, S, e1, δ if-true

ρ(x) ∈ N & ρ(x) = 0 ρ, S, (if x e1 e2), δ ρ, S, e2, δ if-false

ρ(x) is 〈s, ρ′〉 ρ, S, (if x e1 e2), δ ρ, (ρ, x, (if x e1 e2), δ) :S, x, ǫ if-lo

ρ(x) is 〈s, ρ′〉 ρ, S, (return x), δ ρ, S, x, δ return-lo

Figure 2.6: Demand guided exeution semantis. no-eval has preedene over all rules.

We now speify the domains used by the semantis:

d : Data = Val + Clo � Values & Closures

v : Val = N+ {nil}+ Data × Data � Values

c : Clo = (App × Env) � Closures

ρ : Env = Var → Data � Environment

A data value d may either be an evaluated value, denoted by v, or a losure. A

losure is a pair 〈s, ρ〉 in whih s is an unevaluated appliation, and ρ maps free variables

of s to data values. An environment is a mapping from the set of variables of the program

Var to Data. The notation [~y 7→ ρ(~x)] represents an environment that maps the formal

31

arguments yi to the bindings of the atual arguments xi. ρ⊕ρ
′
represents the environment

ρ shadowed by ρ′ and ⌊ρ⌋X represents the environment restrited to the variables in the

set X . Finally FV (s) represents the free variables in the appliation s.

The DGS of our language is shown in Figure 2.6. The semantis of expressions and

appliations are given by transitions of the form ρ, S, e, δ ρ′, S ′, e′, δ′. Here ρ is an

environment that maps variables to their bindings, S is a stak of ontinuation frames, e

is the urrent expression being evaluated, and δ is the demand on e. Eah ontinuation

frame is a 4-tuple (ρ, x, enext, δ), signifying that the variable x has to be updated with the

value of the urrently evaluating expression and enext is the next expression to be evaluated

in the environment ρ with the demand on enext being δ. The initial state of the transition

system is: ([]ρ, [([]ρ, ans, (evalAndPrint), δmain)], (main), {ǫ}) in whih []ρ is the

empty environment. The initial stak onsists of a single ontinuation frame in whih

ans is a distinguished variable that will eventually be updated with the value of (main)

and (evalAndPrint) will be piked next for exeution. The funtion evalAndPrint

halts the program if the value of (main) is already fully evaluated, else it �rst produes a

DGS trae starting from the state ([]ρ, [([]ρ, ans, (evalAndPrint), δ1)], (car main), ǫ)

where δ1 = {α | 0α ∈ δ}, followed by the DGS trae starting from ([]ρ, [([]ρ, ans,

(evalAndPrint),δ2)],(cdr main),ǫ) where δ2 = {β | 1β ∈ δ}.

In the demand guided semantis shown in Figure 2.6, evaluation of a let expression

(let x ← s in e) does not result in the evaluation of s. Instead, as the let rule shows,

a losure is reated and bound to x. While evaluating a funtion body, evaluation of

losures is initially triggered while heking an if ondition (IF-lo) or at a return

(return-lo). This, in turn, may trigger evaluation of more losures. As an example

of losure evaluation, we explain the rules for car and cons. If the demand δ on (car x)

is ∅ then it is not evaluated at all (no-eval). If δ is non-null, then x is evaluated with

the propagated demand 0δ. In a well typed program, the evaluation of x should result

in a losure say (cons y z). The DGS semantis now uses the ar-ons rule to selet y

for evaluation with the propagated demand obtained by stripping o� leading 0 from all

strings in 0δ. This gives bak δ as the demand to be propagated to y. However, if the

surrounding ontext of (cons y z) had been a cdr instead of car, then this would have

resulted in ∅ and then y would not have been evaluated any further (no-eval). Also

notie that the rule for funtion alls is de�ned through the use of the identity funtion

32

id. We have introdued this due to purely tehnial reasons. The evaluation of (id x) is

de�ned by the rule id, it results in the evaluation of x in the same exeution ontext. Its

introdution simpli�es the de�nition of subsumption in Setion 3.3.

The set operation {α | 0α ∈ δ} an be desribed algebraially by introduing the

symbol 0̄ de�ned as 0̄δ = {α | 0α ∈ δ} with the derived property that 0̄0 rewrites to ǫ.

Similarly, we de�ne 1̄δ = {α | 0̄α ∈ δ} with the derived property that 1̄1 rewrites to ǫ.

We now formally de�ne the dependene analysis problem as follows:

De�nition 2.1 The dependene analysis problem is to �nd an algorithm A suh that

given a program P , a demand δ, a ontrol point π, and a string w ∈ (0+ 1)∗ will answer

yes if there exists a DGS trae of P and δ in whih the expression at π appears with a

dynami demand δ′ ontaining w, and no otherwise.

We introdue a prediate prop(e, δ, π : e′, δ′) to denote that there exists a DGS trae

of an expression e with demand δ suh that the expression e′ at the program point π

appears on the trae with a dynami demand δ′. Thus the dependene analysis problem

is to �nd an algorithm A suh that ∀P∀δ∀π∀w.A(P, δ, π, w) = ∃δ′.prop(P, δ, π, δ′), and

w ∈ δ′. We are now ready to prove a result that shows that dependene analysis is

undeidable.

2.4.2 Undeidability of dependene analysis

We use the symbol w to denote strings in (0 + 1)∗, α and β to denote strings in (0 +

1 + 0̄ + 1̄)∗, and γ to denote strings of grammar symbols, i.e. strings of non-terminals

and terminals. We also name the set onsisting of the two non-ontext-free produtions

0̄0 → ǫ and 1̄1 → ǫ as unrestricted. We �rst show that for a lass of grammars CG

onsisting of a set of ontext-free produtions over the terminal symbols {0, 1, 0̄, 1̄} along

with the �xed set of non-ontext-free produtions unrestricted, the problem of whether ǫ

belongs to an arbitrary grammar in the lass is undeidable. We then onsider a subset of

CG, say CG′
, that is large enough to replay the Undeidability proof. Spei�ally, the set

CG′
orresponds to the set of all Turing Mahines. Finally we show that any grammar G

in CG′
an be onverted to a program P suh that the problem of whether ǫ belongs to

L (G) an be redued to the dependene analysis problem of P .

33

0011 101. . .000 000 . . . L0̄0̄0̄1̄1̄S0101000R
⇓

Figure 2.7: Figure illustrating the orrespondene between TM state and grammar sen-

tential form. Shaded part represents the region of interest and ⇓ represents the loation

of the TM head. Underlined symbols are spurious symbols produed by the L and R

produtions that an be erased later by Sc
final.

Lemma 2.2 Consider the lass of grammars CG in whih eah grammar G is of the kind

(N, {0, 1, 0̄, 1̄}, p ∪ unrestricted, S). Here N is a set of non-terminals and p is a set

of ontext-free produtions ontaining the distinguished prodution S → γ, where γ is a

string of grammar symbols that does not ontain S. The problem of whether an arbitrary

grammar G in this set reognizes ǫ is undeidable.

Proof. We redue the Halting problem to the ǫ-reognition problem of grammars in CG.

We assume that the Turing Mahine (TM) is deterministi, the input w to the Turing

Mahine is a unary string in 1∗
and the blank symbol is represented by 0. We shall

represent a TM on�guration as wl(S, c)wr, where wl and wr are regions of the tape that

have either been visited or ontain the symbol 1, c is the symbol under the head and S

is the urrent state of the TM. We shall all wlcwr as the region of interest in the tape.

We onstrut a grammar G suh that the mahine will halt on w if and only if ǫ ∈ L (G).

The grammar will have the following produtions:

1. Fixed produtions: These are the produtions in unrestricted and the produtions L→

L 0̄ | ǫ and R→ 0R | ǫ.

2. Produtions related to TM transitions: For eah ombination of state and symbol (S, c),

the grammar will ontain the non-terminal Sc
. Correspondenes between the moves of

the TM and the grammar produtions are as follows:

(a) For eah transition (Si, c)→ (Sj, c
′, L), there are two produtions Sc

i → 0S0
j c

′
and

Sc
i → 1S1

j c
′
.

(b) For eah transition (Si, c)→ (Sj, c
′, R), there are two produtions Sc

i → c′S0
j 0̄ and

Sc
i → c′S1

j 1̄.

3. Produtions related to the �nal state: For every symbol c, there is a non-terminal

Sc
final where Sfinal is the �nal state of the TM. We add the produtions Sc

final → 0Sc
final ,

34

wl0(Si, c)wr Lwl0̄S
c
i wrR

wl(Sj, 0)c
′wr Lwl0̄0S

0
j c

′wrR

LwlS
0
j c

′wrR

θ

(S
i
,c)→(S

j
,c′,L) Sc

i
→0S0

j
c′

θ
0̄0→ǫ

(Si, c)wr LSc
i wrR

(Sj, 0)c
′wr L0S0

j c
′wrR

L0̄0S0
j c

′wrR

LS0
j c

′wrR

θ

(S
i
,c)→(S

j
,c′,L) Sc

i
→0S0

j
c′

θ

L→L0̄

0̄0→ǫ

(a) (b)

Figure 2.8: Commutative diagrams illustrating the invariant θ mapping TM moves to

sentential forms.

Sc
final → 1Sc

final , S
c
final → Sc

final 0̄, S
c
final → Sc

final 1̄ and Sc
final → ǫ.

4. Prodution related to the start state: Assume that the TM starts in a state Sinit with an

input w and the head positioned to the immediate left of w. Then there is a prodution

S → LS0
initwR, where S would be regarded as the start symbol of the grammar.

We now �rst show that if the TM halts on w, then there is a derivation S
∗
⇒ ǫ. To

do this, we de�ne a mapping θ that serves as an invariant relation from on�gurations of

the TM to sentential forms.

θ maps a TM on�guration wl(S, c)wr to the sentential form LwlS
c wrR, where

wl is the same as wl but with eah tape symbol c in wl replaed by c. The L

and the R non-terminals at as markers that delimit the in�nite tape to its

region of interest.

Thus, if S0
initw is the initial on�guration of the TM, then the mathing sentential

form is LwlS
0
initwrR, whih an be derived in a single step from S. For any move of the

TM, we now speify the sequene of derivation steps that would maintain the invariant.

1. Assume that the TM moves left using the transition rule (Si, c) → (Sj, c
′, L). There

are two sub ases:

(a) If the urrent on�guration of the TM is wl0(Si, c)wr, then θ de�nes the urrent

sentential form to be Lwl0̄S
c
i wrR. The orresponding derivation �rst uses the

prodution Sc
i → 0S0

j c
′
and follows it up using 0̄0 → ǫ. This is shown in Fig-

ure 2.8(a). Notie that the invariant ontinues to be maintained between the new

35

state of the TM and the sentential form at the end of these two derivation steps.

Similarly, if the TM on�guration is wl1(Si, c)wr and the TM transition remains

the same, then the orresponding derivation �rst uses the prodution Sc
i → 1S1

j c
′

and then simpli�es using 1̄1→ ǫ.

(b) Let the urrent on�guration of the TM be (Si, c)wr. Then θ de�nes the urrent

sentential form as LSc
i wrR. The orresponding steps in the derivation are: �rst

move the left marker using the prodution L → L0̄, expand Sc
i using the Sc

i →

0S0
j c

′
and simplify using 0̄0→ ǫ. Figure 2.8(b) shows that the invariant ontinues

to be maintained.

2. Now assume that the TM makes a right move using the transition rule (Si, c) →

(Sj , c
′, R). There are again two sub ases:

(a) If the urrent on�guration of the TM is wl(Si, c)0wr, then the urrent sentential

form is LwlS
c
i 0wrR. The orresponding derivation �rst uses the prodution Sc

i →

c′S0
j 0̄ and follows it up using 0̄0 → ǫ. Similarly, if the TM on�guration is

wl(Si, c)1wr, then the orresponding derivation �rst uses the prodution Sc
i →

c′S1
j 1̄ and then simpli�es using 1̄1→ ǫ.

(b) Let the urrent on�guration of the TM be wl(Si, c). Then the orresponding steps

in the derivation are: �rst move the right marker using the prodution R→ 0R,

expand Sc
i using the Sc

i → c′S0
j 0̄ and simplify using 0̄0 → ǫ. It is easy to verify

that in both the sub ases of 2, the invariant ontinues to be maintained.

The idea behind the produtions is explained with an example: Assume that the

traversed part of the TM is 01(Si, 0)00 and therefore the urrent sentential form is

L0̄1̄S0
i 00R. Also assume that the TM has a transition (Si, 0) → (Sj , 1, L). Sine the

next orresponding step in the derivation has to be done without any prior knowledge of

whether the symbol to the left of the tape is a 0 or a 1, two produtions are provided,

and the invariant will be maintained only if the prodution S0
i → 1S1

j1 is hosen for the

next step in the derivation. This gives the on�guration L0̄1̄1S1
j100R. Simpli�ation

with the prodution 1̄1→ ǫ yields L0̄S1
j100R, whih exatly orresponds to the hanged

on�guration of the TM.

When the TM omes to a halt in a on�guration wlS
c
final wr, the orresponding

sentential form is LwlS
c
final wrR. In the subsequent derivations both L and R derive ǫ and

the Sc
final produtions are used to generate symbols that an be used by the produtions

36

wl0(Si, c)wr Lαl0̄S
c
i αrR

wl(Sj, 0)c
′wr Lαl0̄0S

0
j c

′ αrR

(S
i
,c)→(S

j
,c′,L)

θ

Sc
i
→0S0

j
c′

θ

(Si, c)wr LSc
i αrR

(Sj, 0)c
′wr L0S0

j c
′ αrR

(S
i
,c)→(S

j
,c′,L)

θ

Sc
i
→0S0

j
c′

θ

(a) (b)

Figure 2.9: Commutative diagrams illustrating the invariant θ mapping sentential forms

to TM moves.

in unrestricted to erase wl and wr. The derivation ends with Sc
final deriving ǫ. Clearly if

the TM halts on the input string, then there is a derivation S
∗
⇒ ǫ.

Before proving the onverse, we state a property of derivations in the onstruted

grammar. The produtions used for derivations an be ategorized as (1) produtions

with Sc
i on the LHS, (2) produtions with L or R on the LHS, and (3) produtions in

unrestricted.

Lemma 2.3 Consider a derivation S
∗
⇒ γ in whih produtions are applied in some

sequene. The following pairs of onseutive produtions in the derivation an be inter-

hanged:

1. Sc
i → γ1 L→ γ2 and L→ γ2 Sc

i → γ1

2. Sc
i → γ1 R→ γ2 and R→ γ2 Sc

i → γ1

3. L→ γ1 R→ γ2 and R→ γ2 L→ γ1

Also, the pair of onseutive produtions, 0̄0 → ǫ X → γ1 an be replaed by X → γ1

0̄0 → ǫ where X is one of Sc
i , L or R. Similarly, 1̄1 → ǫ X → γ1 an be replaed by

X → γ1 1̄1→ ǫ.

As a onsequene of Lemma 2.3, if S
∗
⇒ γ through a sequene of produtions, we an

derive γ through an alternate derivation that re-orders the sequene by applying the

Sc
i produtions �rst, followed by the L and R produtions and �nally the unrestricted

produtions. Notie that the new derivation must retain the order of produtions in the

same ategory.

Also notie another property of sentential forms. A 0̄ (or 1̄) an only be anelled

by a 0 (or 1) on its immediate right. Similarly, a 0 (or 1) an only be anelled by a 0̄

(or 1̄) on its immediate left. De�ne an unanellable-pair as the string 0̄1 or 1̄0. We then

make the following laim:

37

Claim 2.4 If a sentential form ontains an unanellable-pair it an never derive ǫ.

We are now in a position to prove the onverse result, that if S → LS0
initwR

∗
⇒ ǫ,

then starting with the on�guration (Sinit, c)w, the TM reahes a �nal state. Beause

of Lemma 2.3, we an assume that the produtions with Sc
i are employed before L, R

or unrestricted. Consider the segment of the derivation that starts with LS0
initwR and

ends with the sentential form that has Sc
final for the �rst time. To derive ǫ there must be

suh a sentential form. We now speify an invariant θ mapping sentential forms to TM

on�gurations.

Eah sentential form has the struture LαlS
c
iαrR, where αl, αr ∈ (0+ 1+ 0̄+

1̄)∗. Given suh a sentential form, the orresponding TM state is wl(Si, c)wr,

where αl
∗
⇒ βlwl, and αr

∗
⇒ wrβr where βl ∈ 0∗

and βr ∈ 0̄∗
.

The orrespondene between derivation steps and TM moves is as follows:

1. Assume that the prodution hosen for the next step in the derivation is Sc
i → 0S0

j c
′
.

This prodution orresponds to the unique left move (Si, c) → (Sj , c
′, L). To derive

ǫ without getting stuk, the urrent sentential form has to be either Lαl0̄S
c
iαrR or

LSc
iαrR.

(a) If the sentential form is Lαl0̄S
c
iαrR, then beause of the invariant θ, the urrent

TM on�guration is wl0(Si, c)wr, where αl0̄
∗
⇒ βlwl0̄, αr

∗
⇒ wrβr, βl ∈ 0∗

and

βr ∈ 0̄∗
. Clearly the next sentential form is Lαl0̄0S

0
jc

′αrR and the next TM

on�guration is wl(Sj, 0)c
′wr. The invariant is maintained one again, beause

αl0̄0
∗
⇒ βlwl and c

′αr
∗
⇒ c′wrβr. This is shown in Figure 2.9(a).

(b) If the sentential form is LSc
iαrR, then the urrent TM on�guration is (Si, c)wr,

where αr
∗
⇒ wrβr and βr ∈ 0̄∗

. The next sentential form is L0S0
jc

′αrR and the

next TM on�guration is (Sj , 0)c
′wr. The invariant is maintained beause 0 ∈ 0∗

and c′αr
∗
⇒ c′wrβr. This is shown in Figure 2.9(b).

2. If the next prodution hosen is Sc
i → 1S1

j c
′
, then it also orresponds to the left

move (Si, c) → (Sj , c
′, L). The urrent sentential form neessarily has the struture

Lαl1̄S
c
iαrR and the orresponding TM on�guration is wl1(Si, c)wr, where αl1̄

∗
⇒

βlwl1̄, αr
∗
⇒ wrβr, βl ∈ 0∗

and βr ∈ 0̄∗
. The next sentential form is Lαl1̄1S

0
jc

′αrR and

the next TM on�guration is wl(Sj, 1)c
′wr. The invariant is maintained one again,

beause αl1̄1
∗
⇒ βlwl and c

′αr
∗
⇒ c′wrβr.

38

3. The produtions Sc
i → c′S0

j 0̄ or Sc
i → c′S1

j 1̄ orrespond to a right move of the TM

(Si, c)→ (Sj , c
′, R) and an be reasoned similarly.

It is important to notie that a wrong hoie of prodution for the urrent sentential form

will result in a sentential form that will ontain an unanellable-pair and will not be able

to derive ǫ.

Sine the original derivation derived ǫ, it had to arrive at a sentential form ontaining

Sc
final. Therefore, the re-ordered derivation will also reah a sentential form suh as

LαlS
c
finalαrR. Beause of the invariant the TM will be in a on�guration wl(Sfinal, c)wr

and halt. This ompletes the redution. �

Let us enumerate the kinds of ontext-free produtions used in the proof of Lemma 2.2.

They are (i) the produtions orresponding to the starting state of the TM, S → LSiwR,

w ∈ (0 + 1)∗ (ii) the produtions orresponding to the intermediate states, Si → 0Sjc,

Si → 1Sjc, Si → cSj0̄ and Si → cSj 1̄, where c ∈ {0, 1}, (iii) the produtions orre-

sponding to the �nal state, Si → cSi, Si → Sic and Si → ǫ, and (iv) the produtions

orresponding to L and R. The following lemma is obvious:

Lemma 2.5 Consider the sublass CG′
of grammars (N, {0, 1, 0̄, 1̄}, p ∪ unrestricted,S),

in whih the produtions in p are restrited to the forms desribed above. The ǫ-reognition

problem for CG′
is undeidable.

For grammars in CG′
, de�ne a anonial derivation as one whih �rst uses the R-

produtions, then the S-produtions, followed by the L-produtions, and �nally uses the

produtions in unrestricted. In other words, a anonial derivation is a rightmost derivation

S
∗
⇒rm α, followed by the use of produtions in unrestricted. We present the following

laim without proof:

Claim 2.6 Consider a grammar in CG′
. For every derivation of a string in G, there is

also a anonial derivation of the same string.

We now show how to onstrut a program P from given a grammar G ∈ CG′
, suh

that the language reognition of G is related to the result of dependene analysis of P .

This is shown in Algorithm 3. The reader an verify that for the example produtions

shown in Figure 2.10, appliation of pgm will result in the program shown alongside. We

now have the following result.

39

Funtion pgm(P)

Data: P is a prodution of the form S → γ or S → γ1 | γ2

Result: F , funtion orresponding to P

begin

var ← createNewVar()

swith P do

ase S → γ do

F ← (define (S var))(pgm'(γ, var))

ase S → γ1 | γ2 do

F ← (define (S var))(if ∗ (pgm'(γ1, var)) (pgm'(γ2, var)))

return F

Funtion pgm'(γ, urvar)

Data: A string γ of grammar symbols representing the RHS of a prodution and

urvar, the ontext variable for γ

Result: The program fragment for γ

begin

var ← createNewVar()

swith γ do

ase ǫ do

(return urvar)

ase 0γ′ do

(let var ← (car urvar) in pgm'(γ′, var))

ase 1γ′ do

(let var ← (cdr urvar) in pgm'(γ′, var))

ase 0̄γ′ do

(let var ← (cons urvar _) in pgm'(γ′, var))

ase 1̄γ′ do

(let var ← (cons _ urvar) in pgm'(γ′, var))

ase Sγ′ do

(let var ← (S urvar) in pgm'(γ′, var))

Algorithm 3: Algorithm to onstrut funtions orresponding to grammars in

CG′
.

Lemma 2.7 Consider a grammar G in CG′
with start symbol S. The grammar has a

anonial derivation S
∗
⇒ α if and only if prop((S v), {ǫ}, x, δ), where α ∈ δ, x is the

formal parameter of S and v is an arbitrary value of appropriate type.

40

S → LS11R

(define (S x)

(let a ← (L x) in
(let b ← (S1 a) in
(let ← (cdr b) in
(let d ← (R) in
(return d))))))

S1 → 0S20 | 1S30

(define (S1 x)

(if 0
(let a ← (car x) in
(let b ← (S2 a) in
(let ← (car b) in
(return))))

(let a ← (cdr x) in
(let b ← (S3 a) in
(let ← (car b) in
(return))))))

Figure 2.10: Sample grammar rules and the orresponding programs generated by pgm.

Instead of proving Lemma 2.7, we prove the following generalization.

Lemma 2.8 Consider a grammar G in CG′
. For any non-terminal symbol T and a string

α ∈ (0 + 1 + 0̄ + 1̄)∗, the grammar, Tα
∗
⇒ β in a anonial derivation, if and only if

prop((T v), {α}, x, δ), where β ∈ δ, x is the formal parameter of T and v is any value of

an appropriate type.

Proof. Assume without loss of generality that β is the string obtained without applying

any of the rules in unrestricted, so that β is α′α for some α′
derivable from T.

First onsider only the if part. The proof is by indution on the number of steps in

the derivation. As the base ase, onsider a 1-step derivation of T
∗
⇒ α′α. This means

that α′
is ǫ and the prodution used is T → ǫ. The program fragment orresponding to

this hoie of prodution for T simply returns the formal parameter x of T. It follows

from the rules of DGS that prop((T v), {α}, x, {α}).

Now onsider the ase where T
∗
⇒ α′

in n steps. For the �rst step of the derivation,

we have to do a ase analysis on all produtions with a non-ǫ RHS. Let us onsider only

one of them, say T→ 0T′1, we an reason about other produtions similarly. Further, we

assume that T′ ∗
→ α′′

and sine this derivation takes n− 1 steps, we assume as indution

hypothesis prop((T′ v), {1α}, y, δ′) where α′′1α ∈ δ′, y is the formal parameter of T′
and

v′ is some value.

From the program orresponding to T, it is lear that (a) the dr rule will pre�x a

1 to the demand {α} on the return value of T whih then beomes the demand on the

41

funtion all (T′
a), (b) from the indution hypothesis and beause of id rule used while

binding the atual to the formal parameter y during a funtion all, the atual argument

a appears on the DGS trae with a demand δ′ ontaining α′′1α and () the ar rule adds

a 0 to this demand giving the demand on the formal argument of T that ontains 0α′′1α,

or α′α.

Now onsider the if part. We show by an indution on the depth of alls that if

prop((T v), {α}, x, δ′) suh that α′α ∈ δ′, then (T v)
∗
→ α′α. The proof is by indution on

the all depth of (T v). As base ase, assume that the all depth of (T v) is 0, i.e. (T v)

results in no further alls. Then the program fragment exeuted in T immediately returns

the formal parameter, say x of T. From the rules of DGS, prop((T v), {α}, x, {α}), or in

other words α′
is ǫ. Also, it follows from the desription of pgm that orresponding to

the program fragment above, T has a prodution that goes to ǫ, and therefore Tα
∗
⇒ α.

For the indutive ase, we one again onsider a single illustrative funtion de�nition:

(define (T x)

(if 0
(let a ← (car x) in
(let b ← (T′

a) in
(let ← (cdr b) in
(return))))

. . .

As indution hypothesis, assume that prop((T′
a), {1α}, y, δ′) suh that α′′ ∈ δ′ implies

T′1α
∗
⇒ α′′1α, where y is the assumed formal parameter of T′

. Further, from the dr rule

of DGS and the indution hypothesis, we have prop((T′
a), {1α}, y, δ′) suh that α′′1α ∈ δ′

and the fat that a is bound to (id y) gives prop((T v), {α}, a, δ′) Finally, by the ar rule,

prop((T v), {α}, x, δ) suh that 0α′′1α ∈ δ, so that α′
is 0α′′1. Now, pgm ditates that the

program fragment must have been generated from the prodution T → 0T′1, and thus Tα
∗
⇒

0α′′1α, or Tα
∗
⇒ α′α �

Theorem 2.9 The dependene analysis problem is undeidable.

Proof. Assume to the ontrary that there is an algorithm A for dependene analysis.

Then given a grammar G ∈ CG′
, we onstrut a program P that onsists of a main

program de�ned as (define (main) (let a ← (S v) in (return a))) where v is a value

of an appropriate type. By Lemma 2.7, the ǫ-reognition problem of G, translates to the

prediate ∃δ′prop(P, {ǫ}, x, δ′) suh that ǫ ∈ δ′ and x is the formal parameter of S. This

an be answered by using A as A(P, {ǫ}, x, ǫ). However, sine the ǫ-reognition problem

42

(define (f u v)

(cons (u v)))

(define (main)

(let a ← (car (f b))

(let z ← (cdr (f x y))

(cons a z))))

b c x y

call f

u v

return from f

a z

{1 {1 {2 {2

([

}1 }2

)]

Figure 2.11: (a) Example sheme program (b) Labelled dependene graph orresponding

to the program in (a). Dotted edges indiate interproedural dependene, {i }i pair

indiate mathing all-return, (indiates putting a value in ar part, [indiates putting

value in dr part,) indiates a ar seletion and] a dr seletion. A valid dependene will

have a path in whih all parenthesis math ({ and (([)) an be interleaved).

of G has been shown to be undeidable, no suh A an exist. Hene, the dependene

analysis problem is undeidable. �

2.4.3 Related work

The problem of devising a ontext-sensitive preise dependene analysis that an han-

dle struture-transmitted dependene has been shown to be undeidable by Reps [78℄.

Unlike our redution, the undeidability is shown by reduing a variant of the Post's

Correspondene Problem (PCP) alled parenthesis PCP or P-PCP.

Reps models dependene analysis as a graph reahability problem on a direted

43

graph, where the nodes of the graph represent program variables and the edges represent

data dependene. A variable u is dependent on variable v if and only if there exists a path

between the nodes orresponding to u and v satisfying some property. Figure 2.11 shows

an example program and the orresponding graph. The funtion f takes two arguments u

and v and returns a cons ell with u as the ar-part and v as dr-part. The main expression

has two alls to f , the ar-part of the result of the all (f b) is assigned to a and the

dr-part of the result of the all (f y z) is assigned to x. A dependene analysis would

answer questions suh as: Is a dependent on b? What are the variables on whih a may

be dependent? Ignoring the property that needs to be satis�ed, and, as a onsequene,

the labels on the edges for the time being, we will try to answer these questions by doing

a reahability hek on the graph shown in Figure 2.11(b). Variable a depends on b as

there is a path in the graph between the nodes orresponding to a and b. Notie, however,

that sine there exists a path between and a, we onlude that a is dependent on and

for similar reasons, also a is dependent on y. However, it is lear from the program that

these dependenes are spurious as a is not dependent on when one onsiders struture

transmitted dependene (aptured by rules of the kind (car (cons x y)) = x), and a is not

dependent on y when ontext-sensitivity (dependenes are propagated only along mathed

all-return paths) is onsidered. These spurious dependenes are generated beause simple

reahability annot apture struture-transmitted dependenes or ontext-sensitivity.

Reps uses the fat that program-analysis problems an be takled by modelling them

as CFL-reahability [77, 104℄ on labelled graphs. In a labelled graph, a node t is CFL-

reahable from s if the string obtained from onatenating the labels on the path belongs

to a given ontext-free language de�ning the property that suh a path should have. In

partiular, ontext-sensitivity an be modelled by adding labels {i }i to all-return edges

and de�ning a ontext-free grammar, say G1 that aepts only those paths that have

mathed {i }i. In the graph in Figure 2.11, onsidering the CFL-reahability using G1,

it is lear that the spurious path onneting a with y will be invalid. Similarly, we an

add (to represent a value being passed as the �rst argument of cons [to represent the

value being passed as the seond argument of cons,) to represent car seletion and

] to represent a cdr seletion and a di�erent ontext-free grammar G2 aepting only

mathed-parenthesis paths. Again, in this ase, onsidering only paths along whih the

parenthesis (both () and []) are orretly mathed, the fat that a is dependent on

44

an be ruled out. However, notie that just onsidering ontext-sensitivity or struture-

transmitted dependene alone is not su�ient to rule out all spurious paths and a fully

preise dependene analysis should onsider both. In terms of the graph, only paths

along whih both sets of parenthesis math ({ } for ontext-sensitivity and () []

for struture-transmitted dependenes) should be onsidered valid i.e. only paths in the

language G1∩G2. The reader an verify that the path from b to a is valid and paths from

 to a and y to a are invalid. Therefore, dependene analysis problem redues to �nding

an algorithm that �nds all and only fully mathed paths of the type desribed above in

the data dependene graph of a program.

Reps shows that this question is undeidable by reduing a variant of the Post's

Correspondene Problem (PCP) to �nding parenthesis mathed paths. The PCP problem

is de�ned as follows: Given 2 lists of k strings X and Y over the language (0 + 1)+, an

instane of PCP has a solution if there exists a non-empty sequene of indies i1, i2, . . . im

where 1 ≤ k ≤ m and xi1xi2 . . . xim = yi1yi2 . . . yim. The following instane of the PCP

problem from [78℄ where, X = {0101, 101, 111} and Y = {01, 011, 0111101} has the

solution 1, 2, 3, 1 beause,

x1x2x3x1 = 01011011110101 = y1y2y3y1

Reps introdues a variant of PCP alled Parenthesis-PCP (P-PCP) and shows how to

onstrut an instane of P-PCP given an instane of PCP. Given an instane of PCP with

X = x1x2x3 . . . xk and Y = y1y2y3 . . . yk we onstrut the instane of P-PCP as,

X = x1 x2 . . . xk

Y
R
= y1

R y2
R . . . yk

R

where ,

1. xi are onstruted by replaing 0 in xi by (and 1 by [.

2. yRi are onstruted by replaing 0 in yi by) and 1 by] and then reversing the string.

is reversed.

An instane of P-PCP is said to have a solution if it has a non-empty sequene

xi1 xi2 . . . xim # yim
R . . . yi2

R yi1
R

where for all 1 ≤ m, we have 1 ≤ ij ≤ k and the parenthesis are mathed. The orrespond-

ing sets X and Y
R
for the earlier instane are, X = {([([, [([, [[[} and Y R = {]),]]),])]]]])}.

45

L i s t ∗x ;

void f1 (){

/∗Enodes ([([∗ /

x = ons (NULL, (ons (ons NULL,

(ons x , NULL)) , NULL)) ;

i f (. . .) f () ;

/∗Enodes ℄)∗/

x = ar (dr (x)) ;

}

void f2 (){

/∗Enodes [([∗ /

x = ons (NULL,

(ons (ons NULL, x) , NULL)) ;

i f (. . .) f () ;

/∗Enodes ℄ ℄) ∗ /

x = ar (dr (dr (x))) ;

}

void f3 (){

/∗Enodes [[[∗ /

x = ons (NULL,

(ons NULL, (ons NULL, x))) ;

i f (. . .) f () ;

/∗Enodes ℄) ℄ ℄ ℄ ℄) ∗ /

x = ar (dr (dr (dr (dr (ar (dr (x))))))) ;

}

call f1

{1

(

[

(

[

if ∗

}1

ret f1

)

]

#

call f2

{2

[

(

[

if ∗

}2

ret f2

)

]

]

#

call f3

{3

[

[

[

}3

)

]

]

]

]

)

]

if ∗

ret f3

#

ret f

<1
>1

<2 >2

<3

>3

call f

s t

<0 >0

(a) (b)

Figure 2.12: (a)Program orresponding to the P-PCP instane under disussion (b) De-

pendene graph for the program in (a).

It an be veri�ed that the sequene 1,2,3,1 is a solution to this instane of P-PCP also.

It is lear from the onstrution that if an instane of P-PCP has a solution then the

orresponding instane of PCP also has a solution. This shows that P-PCP is also unde-

idable. Reps shows that given an instane of P-PCP, one an onstrut a program suh

that if and only if there exists a parenthesis mathed path in the dependene graph then

the orresponding P-PCP problem has a solution.

The program fragment that is equivalent to the instane of the P-PCP problem is

46

void f (){

i f (. . .) f1 () ;

e l s e i f (. . .) f2 () ;

. . .

e l s e fk () ;

}

void main (){

s : x = atom(A) ;

f () ;

t : /∗ an x have the value A here ?∗/

}

Figure 2.13: The struture of main and the ommon funtion f .

shown in Figure 2.12. Eah funtion fi in the program enodes the xi as a sequene of on-

strutor operations and the orresponding yi
R
as a sequene of seletors. For example, the

sequene for x1, ([([is enoded as cons(NULL, (cons(consNULL, (consx,NULL)), NULL))

and y1
R
,]) as car(cdr(x)). A non-deterministi ondition ensures that eah fi an all any

other fj (inluding itself) any number of times. Funtion all and returns are mathed

using the symbols {i }i (<i >i). Funtions f and main are shown in Figure 2.13.

From the onstrution it is lear that any fi an be alled from f any number

of times and in any order, apturing the fat that any xi an be used any number

of times and in any order. One the funtions start returning from f only the ode

orresponding to yi
R
s will be exeuted. A ontext-sensitive dependene analysis apa-

ble of orretly modelling struture transmitted dependenes should be able to identify

that variable x may have the value atom(A) at program point t (beause the orre-

sponding instane of P-PCP has the solution 1,2,3,1). It an be veri�ed that the path,

<0 {1 ([([<1 {2 [([<2 {3 [[[<3 {1 ([([]) }1 >3])]]]]) }3 >2]]) }2 >1]) }1 >0

orresponding to the sequene 1,2,3,1 is indeed well mathed. The undeidability of

ontext-sensitive struture transmitted data dependene analysis follows from the fat

that if we had an algorithm that ould hek if suh a path exists in the dependene

graph then we ould solve the P-PCP problem whih is already known to be undeidable.

The undeidability proof presented in this thesis di�ers from Reps' in two respets, 1)

While Reps uses PCP to show the undeidability we use the Turing mahine halting prob-

lem 2) our proof is tightly oupled with the operational semantis that we have de�ned

to give a formal de�nition of dependene analysis. The fat that it is loser to the opera-

tional semantis allows us to de�ne an analysis whih omputes safe over-approximation

47

of dependenes whih we disuss in the following hapter. Most approximate analyses

drop the requirement of either ontext-sensitivity [79℄ or struture transmitted data de-

pendene [93℄ to beome deidable. As we shall see later, our approximate dependene

analysis is modelled as the emptiness question on intersetion of 2 CFGs. However, it ap-

proximates the requirement of ontext-sensitivity by a regular grammar instead of a CFG.

While the emptiness question of intersetion of 2 CFGs is known to be undeidable, the

emptiness question of the intersetion of a CFG with a regular grammar is deidable [64℄.

We model struture transmitted dependene preisely using a CFG but over approximate

the CFG orresponding to ontext-sensitivity by a regular grammar and use the interse-

tion to ompute approximate dependenes. An analysis whih is only ontext-sensitive or

whih only models struture transmitted dependenes annot eliminate spurious paths in

the example in Figure 2.11, however the analysis that we will be presenting in the next

hapter rules out all spurious dependenes for the example.

48

Chapter 3

An approximate dependene analysis

and its proof of orretness

In the previous hapter, we formulated the problem of dependene analysis and showed

that omputing preise dependene information is undeidable. In this hapter, we de-

sribe an analysis to ompute an over-approximation of dependenes for �rst-order fun-

tional programs. Interestingly, our formulation of the problem leads naturally to the

approximate analysis. Our analysis is driven with a demand supplied by the user on

a designated expression, whih, for the appliations onsidered in this thesis, namely

liveness-based garbage olletion and sliing, is a all to the funtion main. The user

supplied demand will be denoted σmain. The result of the analysis is a (non-ontext-free)

grammar orresponding to eah expression in the program. These grammars e�etively

desribe the parts of the expression on whih the result of main is dependent. Answer-

ing queries related to dependene questions amounts to �nding out membership of aess

paths in the generated grammars. Sine we have already shown that preise dependene

analysis is undeidable, the undeidability manifests in the membership question also

turning out to be undeidable. We get around this undeidability by settling for an ap-

proximate answer to the membership problem. Finally, we prove the orretness of our

formulation of dependene analysis using DGS.

49

3.1 An approximate dependene analysis

We now desribe an analysis to ompute dependenes in funtional programs. As men-

tioned earlier, this analysis should be interproedural, sine the entral onstrut in a

funtional program is a funtion all. In the interest of preision, the handling of funtion

alls should be ontext sensitive, and for reasons of e�ieny, a funtion body should

not be analyzed more than one. Finally, for an aurate modelling of the state of the

heap, the interation between onstrutors and seletors should be modeled as part of the

analysis, in other words we should model struture-transmitted dependene in the model

of Reps [78℄.

The analysis that we onsider addresses salability and preision onerns by om-

puting ontext independent summaries of the e�et of funtions and then using these

summaries at all sites to mimi the e�et of the funtion all on its arguments. These

summaries at as demand transformers whih transform the demand on the funtion all

to demand on the arguments of the all. Thus, if the demands on di�erent alls to the same

funtion are di�erent, the demands propagated to the arguments will also be di�erent.

This e�etively aptures ontext sensitivity.

Figure 3.1 desribes our analysis. First notie that a null demand (denoted by ∅)

on any expression

1

results in a null demand on the onstituents of the expression. This

aptures the fat that when no part of the value of the expression is required, none of its

onstituents need to be omputed. This means that the evaluation of the language is a

generalization of lazy evaluation�the extent of evaluation of an appliation or expression

is determined by the demand on it.

The funtion A, takes an appliation s and a demand σ and returns a demand

environment that maps the demand on eah argument of s (represented by its program

point) due to the appliation. The third parameter to A, denoted DS, represents ontext-

independent summaries of the funtions in the program and is used to analyze funtion

alls. This will be explained shortly. A demand environment is a mapping from program

points to a demand, expressed as {π1 7→ {ǫ, 1, 11}, π2 7→ {ǫ}, π3 7→ {}}. In this notation,

π2 7→ {ǫ} indiates that the demand on the expression at π2 is the root of the value of the

expression. Similarly π3 7→ {} indiates an empty demand on the expression at π3. We

1

In general, we shall all elements of both Expr and App expressions, distinguishing them only when

required by the ontext

50

A :: (App,Demand, FuncSummaries) → DemandEnvironment

A(π:κ, σ,DS) = {π 7→ σ}, for onstants inluding nil

A(π:(null? π1:x), σ,DS) = {π1 7→ if σ 6= ∅ then {ǫ} else ∅}

A(π:(+ π1:x π2:y), σ,DS) = {π1 7→ if σ 6= ∅ then {ǫ} else ∅,

π2 7→ if σ 6= ∅ then {ǫ} else ∅}

A(π:: (car π1: x), σ,DS) = {π1 7→ if σ 6= ∅ then 0σ else ∅}

A(π:: (cdr π1: x), σ,DS) = {π1 7→ if σ 6= ∅ then 1σ else ∅}

A(π:(cons π1:x π2:y), σ,DS) = {π1 7→ {α | 0α ∈ σ}, π2 7→ {β | 1β ∈ σ}}

A(π:(f π1:y1 · · · πn:yn), σ,DS) =
⋃n

i=1{πi 7→ DS
i
f (σ)}

D :: (Exp,Demand, FuncSummaries) → DemandEnvironment

D(π:(return π1:x), σ,DS) = {π1 7→ σ, π 7→ σ}

D(π:(if π1:x e1 e2), σ,DS) = D(e1, σ,DS) ∪ D(e2, σ,DS) ∪

{π1 7→ if σ 6= ∅ then {ǫ} else ∅, π 7→ σ}

D(π:(let x ← π1:s in e), σ,DS) = A(s, σ′,DS) ∪ {π 7→ σ, π1 7→ σ′}

where Π is the set of program points

representing all ourrenes of x in e

DE = D(e, σ,DS), and σ′ = ∪π′∈ΠDE(π
′),

DS ∈ FuncSummaries :: Funcname→ (Demand→ (Demand1, . . . ,Demandn))

∀f, ∀i, ∀σ : D(ef , σ,DS) = DE,DS
i
f =

⋃

π∈Π DE(π)

df1 . . . dfk ⊢
l DS

(funtion-summaries)

(define (f z1 . . . zn) ef) is one of df1 . . . dfk , 1 ≤ i ≤ n,

and Π represents all ourrenes of zi in ef

Figure 3.1: Demand equations and judgment rule

use DE to range over demand environments. The demand on the expression at a program

point π is denoted as DE(π), but an also be written as DEπ.

Now the A rules: A demand of σ on the appliation (car x), is transformed to the

demand 0σ on the argument x. This is illustrated in Figure 3.2(a). To ompute σ of

(car x), we have to start with the root of x, dereferene using the car �eld and then

ompute σ of the tree thus obtained, resulting in the path 0σ. The rule for (cdr x) is

51

x(0σ)

(car x) σ

0

(cons x y) 0σ1 ∪ 1σ2

x σ1
y σ20 1

f x y

(f x y) σ

x DS
1
f (σ) y DS

2
f (σ)

(a) (b) ()

Figure 3.2: Illustration of appliation rules (a) A demand of σ on (car x) resulting in a

demand of 0σ on x (b) cons rule () Funtion appliation.

similar. In an opposite sense, illustrated in Figure 3.2(b), the demand of 0σ1 on (cons x y)

is transformed to the demand σ1 on x and a ∅ demand on y , and a demand of 1σ2 on

(cons x y) is transformed into a demand of σ2 on y and ∅ demand on x. Sine (null? x)

only requires the root of x to examine the onstrutor, a non-null demand on (null? x)

translates to the demand ǫ on x. A similar reasoning also explains the rule for (+ x y).

Sine, both x and y evaluate to integers in a well typed program, a non-null demand on

(+ x y) translates to the demand ǫ on both x and y.

Just as A de�nes how a primitive like car maps a demand on itself to demands on

its arguments, we would like to derive a similar transformation for user-de�ned funtions.

Sine user-de�ned funtions are, in general, mutually dependent, we de�ne this transfor-

mation simultaneously for all user-de�ned funtions. This is given by the inferene rule

demand-summary and results in a set of funtions DS
i
f , de�ning how a demand σ on a

all to f is propagated to its ith parameter. The rule for funtion alls uses DS to propa-

gate demands to the arguments of a spei� all. We look upon the funtions for DSf as

a ontext-independent summary of f�ontext-independent beause it is parameterized

with respet to the demand that will be instantiated at the plae where the funtion is

alled.

The rule funtion-summaries spei�es the �xed-point property to be satis�ed by

DS, namely, the demand transformation assumed for eah funtion in the program should

be the same as the demand transformation alulated from the body of the funtion.

The reader will notie the similarity between this rule and the rule for reursive lets in

52

(define (length lst)

π1: (let x ← (null? lst) in

π2: (if ψ1: x

π3: (let v ← 0 in

π4: (return ψ2 : v)

π5: (let u ← (cdr lst) in

π6: (let y ← (length u) in

π7: (let z ← (+ 1 y) in

π8: (return ψ3 : z))))))))

(define (main)

π9: (let a ← 5 in

π10: (let b ← (+ a 1) in

π11: (let ← (cons b nil) in

π12: (let w ← (length) in

π13: (return ψ4:w)))))

Figure 3.3: An example program

the Hindley-Milner system of type inferene [34, 59, 76℄. An operational interpretation

of the rule to �nd DS
i
f (σ) proeeds by analyzing ef , the body of f , with respet to a

symboli demand σ. Then DS
i
f (σ) is the union of the demands on all ourrenes of the

ith argument in ef . A all to a funtion, say g, in ef is analyzed using the summary DSg .

In general, this results in a reursive desription of DS
i
f (σ). We explain in Setion 3.2

how to onvert this to a losed form.

We next desribe the funtion D that propagates demands aross expressions. Con-

sider the D-rules for let, if , and return. Sine the value of (return x) is the value of x, a

demand σ on (return x) gives a demand of σ. The demand of the expression (if x e1 e2)

is a union of the demands of e1 and e2. In addition, sine the ondition x is also evaluated,

the demand {ǫ} is reated and added to the union. Note that, the ondition x needs to

be evaluated only if the result of the if expression is required, i.e. demand on σ is not

∅. Hene, the demand {ǫ} is added only if the demand on if is not ∅. Finally, sine the

value of (let x← s in e) is the value of its body e, the rule for let �rst uses σ to alulate

the demand environment DE of e. The demand on s is the union of the demands on all

ourrenes of x in e. Notie that the demand environment for eah expression e also

inludes the demand on e itself apart from its subexpressions.

3.1.1 An Example

For the rest of the hapter, we onsider the program in Figure 3.3 as our running example.

The program takes a list as input and omputes its length. Consider DS
1
length, the funtion

53

that propagates the demand on a all to length to its �rst (in fat, only) argument.

An operational interpretation of the rule funtion-summaries rule requires us to do a

dependene analysis of the body of length with a symboli demand σ, union the resulting

demands on all ourrenes of the argument lst in the body, and equate it to DS
1
length.

Assume for the sake of simpliity that σ is not ∅. Firstly notie that, aording to the rules

of let and if , the demand on z is also σ. This is propagated to y through (+ 1 y), whih

in turn is propagated to u through (length u), and �nally to lst through (cdr lst). The

reader an verify that the resulting demand on this ourrene of lst is 1DS
1
length(ǫ). On

the other hand the demand on x is also ǫ (the if rule), and this is propagated to the lst

in (null? lst) resulting in a demand of ǫ for this ourrene of lst. Thus:

DS
1
length = ǫ ∪ 1DS

1
length(ǫ)

Notie that this equation is reursive in DS
1
length, and in order to be able to use it

to ompute dependenes, we have to bring it to a losed form.

3.2 Computing dependenes

The analysis in Setion 3.1 is preise and ontext-sensitive, desribing the demands inside

a funtion body in terms of a symboli demand σ and the funtion summaries DS. What

we have not said so far is how the demand on the funtion body is to be determined. This

is as follows:

1. The demand on the body of the main program, emain, is user supplied, and is denoted

by σmain.

2. The demand on a funtion body ef is the union of demand over all alls to f .

The funtion bodies are analyzed using the demands desribed above. The advantage of

summarizing a funtion in a ontext-sensitive manner using a symboli demand is that

while analyzing a funtion body, it helps us to propagate a demand aross several alls

to a funtion without analyzing its body eah time. Additionally, as we shall show in

Chapter 5, it is the key to our inremental sliing method.

However, some of the rules of dependene analysis requires us to do operations

that annot be done on a symboli demand. For example, the cons rule de�ned as

{α | 0α ∈ σ} learly requires us to know strings belonging to σ that start with 0.

54

Reall from Setion 2.4.1, we were able to desribe the set operations of the cons rule

algebraially by introduing symbols 0̄ and 1̄. We replae the rule {α | 0α ∈ σ} with the

rule 0̄σ and {α | 1α ∈ σ} with 1̄σ. While 0 represents seletion using the car seletor, the

symbol 0̄ represents the use of a value as the �rst argument of cons. Thus, 0̄0 represents

�rst putting a value in the car part of a cons ell and following it with a car seletion,

e�etively anelling out eah other. We therefore add the rule 0̄0→ ǫ to apture this fat.

Similarly, for the analysis to handle lazy semantis, the if rule should plae an ǫ demand

on its onditional expression only if the inoming demand in non-null. We introdue the

symbol ∅ǫ

2

to apture this operation. ∅ǫ represents the symboli transformation of any

non-null demand to ǫ and null demand to itself. The simpli�ation funtion S de�nes and

makes these transformations deterministi.

S({ǫ}) = {ǫ}

S(0σ) = 0S(σ)

S(1σ) = 1S(σ)

S(0̄σ) = {α | 0α ∈ S(σ)}

S(1̄σ) = {α | 1α ∈ S(σ)}

S(∅ǫσ) =

∅ if S(σ) = ∅

{ǫ} otherwise

S(σ1 ∪ σ2) = S(σ1) ∪ S(σ2)

Notie that 0̄ strips the leading 0 from the string following it, as required by the rule for

cons. Similarly, ∅ǫ examines the string following it and replaes it by ∅ or {ǫ}; this is

required by several rules. The A rules for cons and null? in terms of the new symbols

are:

A(π: (cons π1:x π2:y), σ,DS) = {π1 7→ 0̄σ, π2 7→ 1̄σ}

A(π: (null? π1:x), σ,DS) = {π1 7→ ∅ǫσ}

2

Odd as it may seem, hoie of the symbol ∅ǫ is to hek whether the demand following it is the null

demand ∅.

55

and the D rule for if is:

D(π: (if π1:x e1 e2), σ,DS) = D(e1, σ,DS) ∪ D(e2, σ,DS) ∪

{π1 7→ if σ 6= ∅ then {ǫ} else ∅,

π 7→ σ}

The rules for + are also modi�ed similarly. We keep applying the simpli�ation rules

starting from the right, the simpli�ation proess stops when no rules are appliable. If

the �nal string does not have any bar-edge symbols the string belongs to the language

generated otherwise it does not. The following examples show the proess of simpli�ation,

{1∅ǫ0̄1̄10}
S
→ 1S({∅ǫ0̄1̄10})

S
→ 1∅ǫS({0̄1̄10})

S
→ 1∅ǫ0̄S({1̄10})

S
→ 1∅ǫ0̄1̄S({10})

S
→ 1∅ǫ0̄1̄1S({0})

S
→ 1∅ǫ0̄1̄10S({ǫ})

S
→ 1∅ǫ0̄1̄1S({0})

S
→ 1∅ǫ0̄1̄S({10})

S
→ 1∅ǫ0̄S({0})

S
→ 1∅ǫS({ǫ})

S
→ 1

In this example, the �nal string ontains no bar-edge symbols and therefore is a valid

string.

{0∅ǫ01̄1̄10̄}
S
→ 0S({∅ǫ01̄1̄10̄})

S
→ 0∅ǫS({01̄1̄10̄})

S
→ 0∅ǫ0S({1̄1̄10̄})

S
→ 0∅ǫ01̄S({1̄10̄})

S
→ 0∅ǫ01̄1̄S({10̄})

S
→ 0∅ǫ01̄1̄1S({0̄})

S
→ 0∅ǫ01̄1̄10̄S({ǫ})

S
→ 0∅ǫ01̄1̄10̄∅

S
→ 0∅ǫ01̄1̄1∅

S
→ 0∅ǫ01̄1̄∅

S
→ 0∅ǫ01̄∅

S
→ 0∅ǫ0∅

S
→ 0∅ǫ∅

S
→ 0∅

S
→ ∅

In the seond example, S generates an ∅ when it enounters an ǫ following a 0̄

symbol. One ∅ is generated, the semantis of onatenation of strings ensures that the

�nal result of S is an empty string, indiating that the string is not valid.

Now the demand summaries an be obtained symbolially with the new symbols as

markers indiating the operations that should be performed on the string following it.

When the �nal demand environments are obtained with σmain ating a onrete demand

for the main expression emain, the symbols 0̄, 1̄ and ∅ǫ are eliminated using the simpli-

�ation funtion S. The original rules and the modi�ed rules are related through the

simpli�ation funtion S as follows:

Proposition 3.1 Assume that a demand omputation based on the original set of rules

gives the demand on the expression π : e as σ (symbolially, DE(π) = σ). Further, let

DE(π) = σ′
when the modi�ed rules are used instead of D. Then σ = S(σ′).

56

To see why the proposition is true, onsider an analysis based on the modi�ed rules

in whih σ appears in the ontext A((cons x y), σ,DS). Let α ∈ σ. The symbol 0̄(1̄)

merely marks a plae in α where the original cons rule would have erased an immediately

following 0(1), or, in absene of suh a symbol, would have dropped α itself. Sine the

appliation of the modi�ed rules merely add symbols at the beginning of α, the markers

and other symbols in α are propagated to other dependent parts of program in their same

relative positions. Consequently, the erasure arried out at the end of the analysis with S

gives the same result as obtained through the original rules. The proposition also holds

for other modi�ed rules for similar reasons.

3.2.1 Obtaining losed form for funtion summaries DS

As mentioned earlier, and illustrated in the example in the last setion, to obtain the

ontext-independent summary of a funtion f with respet to its ith argument, DS
i
f ,

we start with a symboli demand σ and ompute the demand environment for ef , the

body of f . From this we alulate the overall demand on the ith argument of f , say

x. This is the union of demands of all ourrenes of x in ef . This demand on the ith

argument is equated to DS
i
f(σ). Sine the body may ontain other alls, the dependene

analysis within ef makes use of DS in turn. Thus, on the whole, DS will be given by a

set of equations, one for every argument of eah funtion. For the running example, the

equation shown below de�nes DS
1
length(σ). DE(π1) and DE(π5) are the demands on the

two ourrenes of lst in the body of length.

DS
1
length(σ) = DE(π1) ∪ DE(π5) = ∅ǫσ ∪ 1DS

1
length(∅ǫσ)

This looks di�erent from the equation for DS
1
length(σ) in Setions 1.4.1 and 3.1.1 beause

of two reasons: We no longer assume that σ is non-empty, and the equation is written

using the modi�ed rules of dependene analysis that make use of the symbols 0̄, 1̄ and

∅ǫ.

As noted in [79℄, the main di�ulty in obtaining a onvenient funtion summary is

to �nd a losed-form for DS
1
length(σ) instead of the reursive desription. Our solution to

the problem lies in the following observation: Sine we know that the rules of dependene

analysis always pre�x σ with symbols, we an write DS
i
f (σ) as DS

i
f σ (DSi

f onatenated

with σ), where DSi
f is a set of strings over the alphabet {0, 1, 0̄, 1̄,∅ǫ}, and represents

57

the e�et of DS
i
f on σ. The modi�ed equation after substituting the guessed form of

DS
1
length(σ) in the equation will be:

DS1
lengthσ = ∅ǫσ ∪ 1DS1

length∅ǫσ

Substituting the guessed form in the equation desribing DSf , and fatoring out σ,

we get an equation for Di
f that is independent of σ. Applied to DSlength, we get:

DS
1
length(σ) = DS1

lengthσ, and

DS1
length = ∅ǫ ∪ 1DS1

length∅ǫ

Any solution for DSi
f yields a solution for DSf . Note that the equation an also be viewed

as a CFG with {1, ∅ǫ} as terminal symbols and DS1
length as the sole non-terminal.

3.2.2 Computing the demand environment for funtion bodies

While the omputation of funtion summary assumed a symboli demand for eah fun-

tion, to ompute the demand environment, we have to supply the onrete demand for

eah funtion. The onrete demand on a funtion denoted as σf is omputed in a manner

similar to 0-CFA [91℄, by taking the union of the demands at all all-sites of f . This ats

as a safe over-approximation and keeps the analysis sound. The demand environment of

a funtion body ef is alulated using σf . If there is a all to g inside ef , the demand

summary DSg is used to propagate the demand aross the all. Continuing with our

example, we assume that the onrete demand on the body of length to be denoted by

σlength and the demand on emain to be σmain. Sine length has alls from main with a

demand σmain and a reursive all at π6 with a demand ∅ǫσlength. Thus:

σlength = σmain ∪ ∅ǫσlength

We alulate the demands on all expressions arguments of length in terms of σlength.

Thus the demand on u at π6, denoted by Dπ6
, is DS1

length∅ǫσlength.

At the end of this step, we shall have (i) A set of equations de�ning the demand

summaries DS
i
f for eah argument of eah funtion, (ii) Equations speifying the demand

Dπ at eah program point π, and (iii) an equation for eah onrete demand σf on the

body of eah funtion f .

58

3.2.3 Converting equations to grammars:

Notie that the equations for DS1
length and σlength are still reursive. However, these

equations an also be viewed as a grammar with {0, 1, 1̄, 0̄,∅ǫ} as terminal symbols and

DS1
length, Dπ6

and σlength as non-terminals. Thus �nding the solution to the set of equa-

tions generated by the dependene analysis redues to �nding the language generated

by the orresponding grammar. In fat the language generated by the grammar is the

least solution of equations above. The least solution orresponds to the most preise

dependene analysis. The equations an now be re-written as grammar rules:

Dπ6 → DS1
length∅ǫ

σlength

DS1
length → ∅ǫ ∪ 1DS1

length ∅ǫ

σlength → σmain ∪ ∅ǫ σlength

(3.1)

Information required for several appliations an be posed as language reognition prob-

lems for this grammar. For example, During garbage olletion, we may need to know

whether a path in the heap, say 0010, starting from the variable u in the root set is possi-

bly live at program point π6. This translates to the question of whether the language of Dπ,

after simpli�ation using the funtion S, ontains 0010. Formally, 0010 ∈ S(L (Dπ))?

Notie that we ask the membership question for strings belonging to (0 + 1)∗, as these

represent valid paths in the heap.

If the membership question was deidable, the dependene question would also be

deidable. But, as we have already shown, the dependene question is undeidable and

hene the membership question is also undeidable. The membership question an be

shown to be undeidable in a similar way to the dependene question. Fortunately, the

membership question beomes deidable if the grammars generated are regular. In the

next setion, we desribe a method to safely over-approximate the CFGs generated from

our analysis by regular grammars.

3.2.4 Over-approximating dependene grammars

We irumvent the problem of undeidability by over approximating the CFG by non-

deterministi �nite state automata (NFA) using the method of Mohri and Nederhof [63℄.

This method transforms a CFG G into a strongly regular grammar R suh that L (G) ⊆

L (R). This makes the membership question deidable at the ost of some preision.

59

Funtion reateStronglyRegularGrammar(G)

Data: A ontext-free grammar G

Result: R, the strongly regular grammar over approximating G

reate grammar R

/* M is the set of mutually reursive non-terminals in G */

M ← {A,B1, B2, ..., Bn}

add to R new non-terminals {A,B1, B2, ..., Bn}

foreah (prodution P ∈ G) do

add to R prodution A→ ǫ

/* αi not empty */

if (P is A→ α0B1α1B2α2...Bmαm and m > 0) then

add to R prodution A→ α0B1

add to R prodution B1 → α1B2

. . .

add to R prodution Bm → αmA

else

add to R prodution A→ α0A

return R

Algorithm 4: Funtion to approximate a CFG by a strongly regular gram-

mar [63℄.

If a CFG onsists of a set of mutually reursive non-terminals suh that the rules

involved are not all left regular or not all right regular, then the method breaks the rules

into right regular rules by introduing fresh non-terminals. For our example, the rule

D1
length has a non-regular prodution 1D

1
length∅ǫ. Algorithm 4 desribes the proedure to

over approximate a ontext free grammar by a strongly regular grammar. The steps for

transforming these produtions into right regular produtions are:

1. Add a new non-terminal D1
length to the grammar with the rule D1

length → ǫ.

2. Replae

D1
length → ∅ǫ by

D1
length → ∅ǫD

1
length

3. Replae

D1
length → 1D1

length∅ǫ by

D1
length → 1D1

length and

D1
length → ∅ǫD

1
length

The detailed algorithm and explanation of this approximation is desribed in Mohri

60

Input: A program P with a funtion main as entry point and σmain as the user

supplied demand

Output: A �nite-state automaton (FSM) for every program point π suh that for

every string w ∈ (0+ 1)∗,

∃dprop((main), σmain, π, δ) and w ∈ δ ⇒ w ∈ L (FSM)

Step 1 : (Setion 3.2.1)

foreah (define (f x) ef (x)) do

Obtain summary DSif with respet to a symboli demand σ resulting in equations :

DSif (σ) = . . .DSjg(σ
′) . . . /* 1 ≤ i < #Args(f) */

Step 2: (Setion 3.2.2)

foreah ef do

if f is main then

σf = σmain

else

σf =
⋃

π′∈ΠDEπ′

where Π is the set of all program points where f is alled in P

Compute demand D(ef , σf ,DS) to give DEπ at eah π : e in ef

Step 3: (Setion 3.2.3)

Obtain losed form, by expressing DS
i
f (σ) as DS

i
f σ

DSif is given by a CFG over {0+ 1+ 0̄+ 1̄+ ∅ǫ}

Express all DEπ as CFG in terms of DEπ′
and DSif

Step 4: (Setion 3.2.4)

foreah DEπ do

Convert DEπ to strongly regular grammar using Mohri-Nederhof transformation

Convert regular grammar to FSM and perform S-simpli�ation

Algorithm 5: Algorithm to onvert the dependene analysis spei�ation in

Figure 3.1 to a omputable form.

and Nederhof [63℄. The rules for

D1
length after the transformation are:

D1
length → ∅ǫD

1
length | 1D

1
length

D1
length → ∅ǫD

1
length | ǫ

The strongly regular grammar is onverted into a set of NFAs, one for eah non-

61

terminal. The simpli�ation is now done on the NFAs by repeatedly introduing ǫ edges

to bypass pairs of onseutive edges labeled 0̄0 or 1̄1 and onstruting the ǫ-losure until a

�xed point is reahed, after whih the edges labeled 0̄ and 1̄ are deleted. The simpli�ation

does not hange the semantis of the path in that the node reahed by the path remains

the same and no new edge is added to the path . The details of the algorithm to perform

simpli�ation on the NFAs, its orretness and termination proofs are given in [12, 44℄.

Finally, we remove all the edges labeled ∅ǫ and onvert the automaton into a deterministi

automaton. These steps e�etively implement the simpli�ation funtion S rules for 0̄

and 1̄ to obtain forward aess paths. This onludes our analysis proedure and these

automata onstitute the output of our dependene analysis. The entire proedure to bring

the spei�ation of dependene analysis to a omputable form is shown in Algorithm 5.

3.3 Soundness of approximate dependene analysis

We now prove the orretness of our proposed dependene analysis. This involves showing

that the demand omputed by our analysis onservatively approximates the "real" demand

on eah expression that would meet the demand σmain on the designated expression

(main) in any exeution of the program.

Consider the trae of a program in exeution under DGS. Let δ represent the runtime

or dynami demand on an expression. Assume that an expression e appears on the trae

for evaluation with an exeution ontext E = (ρ, S,_, δ). The evaluation of e under the

ontext E is deemed to be over, when its value v reahes the extent of evaluation spei�ed

by δ and is replaed by the ontinuation on the top of S. During this evaluation (of

e under the ontext E), onsider a sub-expression e′ of e that appears on the trae for

evaluation with a ontext, say E ′ = (ρ′, S ′,_, δ′). Then the soundness of our analysis

involves showing that if σ and σ′
are the stati demands on e and e′ respetively, then

δ ⊆ σ implies δ′ ⊆ σ′
. In other words, if δ ⊆ σ and prop(e, δ,e', δ′), then δ′ ⊆ σ′

. If

this happens for every exeution ontext E and every sub-expression e′, we say that the

expression e preserves subsumption. One an similarly talk about appliations preserving

subsumption.

We �rst show that every expression preserves the subsumption relation, provided

appliations, in partiular funtion alls, preserve subsumption.

62

Lemma 3.2 Assuming that appliations preserve subsumption, expressions also preserves

subsumption.

Proof. The proof is by indution on the struture of expressions. The base ase is a

return expression for whih the proof is trivial. Now onsider a let expression e given

as (let x ← s in e′). Assume as indution hypothesis that e′ preserves the subsumption

relation. Let e appear for evaluation on the trae of the program with a ontext arrying

the demand δ. We assume that the stati demand on e is σ and that δ ⊆ σ. Then, by

the rules of dependene analysis the stati demand on e′ is also σ. Further, the rules

of DGS gives that e′ appears on the trae with the ontext (ρ ⊕ {x 7→ 〈s, ρ〉},_,_, δ),

i.e. the dynami demand on e′ is also δ. So the premise of the indution hypothesis

holds for e′, and thus for eah sub-expression of e′ the subsumption relation holds. In

partiular, this subsumption relation will hold for the dynami and stati demands on x,

if x appears on the trae for exeution. i.e. if the dynami and stati demands on x are δ′

and σ′
respetively, then δ′ ⊆ σ′

. Further, if x appears on the trae of the DGS exeution

with a demand δ′, then in the next step of DGS, s also appears on the trae with the

same dynami demand δ′. By the dependene analysis rule for let, the stati demand

on s will inlude σ′
. Sine s is an appliation, beause of the premise of the lemma, the

subsumption relation will hold for the sub-expressions of s. Sine the sub-expressions of

e are made up of the sub-expressions of s and e′, the result follows for let.

The ase when e is an if expression diretly follows from the indution hypothesis

and the rules of dependene analysis and DGS. �

We now have to show that the assumption regarding appliations in Lemma 3.2

atually holds.

Lemma 3.3 Appliations preserve subsumption.

Proof. For an appliation that is not a funtion all, it is lear that the statement of the

lemma holds. This is beause suh appliations propagate the demand to their arguments

in the same way in both the stati analysis and the DGS.

To prove the lemma for a funtion all, say (f x), we indut on the depth of the

all. Assume that the funtion f is de�ned as (define (f a) ef) and also assume that the

evaluation ontext of (f x) in the trae is (_, S,_, δ), the demand on the all in the stati

63

analysis is σ, and δ ⊆ σ. The DGS trae then evaluates ef with a demand δ. Consider

a stati analysis of ef with the demand σ. For the base ase, assume that evaluation

of ef does not result in any more funtion alls. Therefore, by lemma 3.2, if the formal

argument a omes on the trae with a demand δ′ and the stati demand on this ourrene

of a is σ′
, we have δ′ ⊆ σ′

. Sine a is bound to (id x), the dynami demand on x is δ′

while the stati demand is x is DS
1
f (σ). We have to show that δ′ ⊆ DS

1
f (σ). This diretly

follows from the rule demand-summary.

For the indutive hypothesis, assume that all alls in ef preserve subsumption. Due to

the indutive hypothesis the premise of lemma 3.2 is satis�ed and we an one again replay

the argument of the base ase and prove that if the dynami demand on an ourrene of

the argument a is δ′ and the stati demand is σ′
, we have δ′ ⊆ σ′

. And for the reason as

in the base ase, we have δ′ ⊆ DS
1
f (σ), where DS

1
f (σ) is the stati demand on x. �

Theorem 3.4 Consider the DGS trae of an arbitrary program. For any expression e

that appears on the trae, the dynami demand on e is subsumed by the stati demand on

e.

Proof. We �rst de�ne the dynami level of an expression e on the trae as follows. The

only expression at level 0 is (main), and if a funtion all to f appears at level n, then

eah sub-expression e of the urrent inarnation of ef that appears on the trae is at level

n + 1. The proof is by indution on the dynami level n of expressions.

The base ase n = 0 is trivial as both the dynami and the stati demands on

(main) are the same, σmain. Now assume that the statement of the theorem holds for

all expressions at level n. Consider any all (f x) at level n. If the dynami and stati

demands on (f x) are δ and σ respetively, then from the indution hypothesis δ ⊆ σ.

While the dynami demand on ef is also δ, the stati demand is σf whih ontains σ.

Thus, the dynami demand on ef is subsumed by the stati demand and therefore by

Lemmas 3.2 and 3.3, for all sub-expressions of ef that appear on the trae, the stati

demand subsumes the dynami demand. Sine this happens for all alls at dynami level

n, the theorem holds for all expressions at dynami level n+ 1. �

64

Chapter 4

Liveness-based garbage olletion for

lazy languages

Funtional programs make extensive use of dynamially alloated memory. The alloation

is either expliit (i.e., while using onstrutors) or impliit (while reating the runtime

representations of unevaluated expressions, also alled losures). Programs in lazy fun-

tional languages put additional demands on memory, as they require losures to be arried

from the point of reation to the point of evaluation.

Although the runtime system of most funtional languages inludes a garbage ol-

letor to relaim memory, empirial studies on Sheme [45℄ and Haskell [82℄ programs

have shown that garbage olletors leave unolleted a large number of memory objets

that are reahable but will assuredly not be used by the program later. This results in

unneessary retention of memory whih an be safely garbage olleted.

In this hapter, we propose the use of liveness analysis of heap ells to improve

garbage olletion (GC) in a lazy �rst-order funtional language. Liveness analysis an

identify ells whih will de�nitely not be used by the program in future. By making this

information available during garbage olletion, these ells an be garbage olleted, even

if they are reahable. We use a modi�ed version of the dependene analysis that was

de�ned in hapter 2 to ompute liveness information. The result of liveness analysis is

an annotation of ertain program points with deterministi �nite-state automata (DFA),

one for eah variable in sope, apturing the liveness of the variables at these points.

Depending on where GC is triggered, the olletor onsults a set of automata to restrit

reahability during marking. This results in an inrease in the garbage relaimed and

65

onsequently in fewer olletions.

Whereas the idea of using stati analysis to improve memory utilization has been

shown to be e�etive for eager languages [12, 36, 41, 56℄, a straightforward extension

of the tehnique is not possible for lazy languages, where heap-alloated objets may

inlude losures. The additional omplexity of replaying suh tehniques for lazy languages

are as follows: Firstly, sine data is made live by evaluation of losures, and in lazy

languages the plae in the program where this evaluation takes plae annot be statially

determined, laziness ompliates liveness analysis itself. Moreover, for liveness-based GC

to be e�etive, we need to extend it to losures apart from evaluated data. Sine a losure

an esape the sope in whih it was reated, during garbage olletion, it is not enough

to refer to the liveness of only variables in sope. As we shall see later, we require losures

to arry liveness information of its free variables. As a further optimization, as exeution

progresses and possible future uses are eliminated, we update the liveness information in a

losure with a more preise version. For these reasons, the garbage olletor also beomes

signi�antly more ompliated than a liveness-based olletor for an eager language.

Experiments with a single generation opying olletor (Setion 4.4.3) on�rm the

expeted performane bene�ts. Liveness-based olletion results in an inrease in garbage

relaimed. As a onsequene, there is a redution in the number of olletions and a

derease in the minimum memory requirement. As an added bene�t, there is also a

redution in the overall exeution time in some of the benhmark programs.

4.1 Motivating example

Figure 4.1 shows an example in whih the heap is represented by a graph in whih a node

either represents atomi values (nil, integers, et.), or a cons ell ontaining car and

cdr �elds, or a losure (represented by shaded louds). Edges in the graph are referenes

and represent values of variables or �elds. Figure 4.1(b) shows the lists x and z partially

evaluated due to the if ondition (null? (car z)). The edges shown by thik arrows are

those whih are live at π.

Thus, if a GC takes plae at π with the heap shown in Figure 4.1(b), a liveness-based

olletor (LGC) will preserve only the ell referened by z and the live ells onstituting

the losure referened by (cdr z). In ontrast, a reahability-based olletor (RGC) will

66

(define (length lst)

(if (null? lst) 0 (+ 1 (length (cdr lst)))))

(define (append l1 l2)

(if (null? l1) l2

(cons (car l1) (append (cdr l1) l2))))

(define main)

(let x ← (cons 5 (cons (cons 6 nil) nil) in

(let y ← (cons 3 nil) in

(let z ← (append x y) in

(if (null? (car z)) 0 π: (length z))))))

(main)

5

x

×

×
×

z

y

×

(a) Example program. (b) Memory graph at π.

denotes a losure. Thik edges denote live links. Traversal stops at edges marked × during garbage

olletion for a liveness-based olletor.

Figure 4.1: Example Program and its Memory Graph

preserve all ells. In this hapter, we propose a stati analysis of heap data that helps in

determining the live referenes in the heap. Similar to dependene analysis, the result is

a set of automata desribing the liveness of variables at hosen program points. We also

desribe a GC sheme whih uses the automata to ollet the non-live areas of the heap

during GC and implement a opying olletor based on the sheme. Our experiments

reveal interesting spae-time trade-o�s in the engineering of the olletor�for example,

updating liveness information arried in losures during exeution results in more garbage

being olleted.

67

Premise Transition Rule name

ρ, (ρ′, ℓ, e) :S, H, κ ρ′, S, H[ℓ := κ], e onst

ρ(x) is 〈s, ρ′〉 ρ, S,H, x ρ′, S,H, s var

ρ, (ρ′, ℓ, e) :S, H, (cons x y)

ρ′, S, H[ℓ := (ρ(x), ρ(y))], e ons

H(ρ(x)) is (v, d)

ρ, (ρ′, ℓ, e) :S, H, (car x)

ρ′, S, H[ℓ := v], e ar-selet

H(ρ(x)) is (〈s, ρ′〉, d)

ρ, S, H, (car x)

ρ′, (ρ, addr(〈s, ρ′〉), (car x)) :S, H, s ar-1-lo

H(ρ(x)) is 〈s, ρ′〉

ρ, S, H, (car x)

ρ′, (ρ, ρ(x), (car x)) :S, H, s ar-lo

H(ρ(x)),H(ρ(y)) ∈ N

ρ, (ρ′, ℓ, e) :S, H, (+ x y)

ρ′, S, H[ℓ := H(ρ′(x)) +H(ρ′(y))], e prim-add

H(ρ(x)) /∈ N

ρ, S, H, (+ x y)

ρ′, (ρ, ρ(x), (+ x y)) :S, H, x prim-1-lo

H(ρ(y)) /∈ N

ρ, S, H, (+ x y)

ρ′, (ρ, ρ(y), (+ x y)) :S, H, y prim-2-lo

f de�ned as (define (f ~y) ef) ρ, S, H, (f ~x) [~y 7→ ρ(~x)], S, H, ef funall

ℓ is a new loation

ρ, S, H, (let x← s in e)

ρ⊕ [x 7→ ℓ], S, H[ℓ := 〈s, ⌊ρ⌋FV (s)〉], e let

H(ρ(x)) 6= 0 ρ, S, H, (if x e1 e2) ρ, S, H, e1 if-true

H(ρ(x)) = 0 ρ, S, H, (if x e1 e2) ρ, S, H, e2 if-false

H(ρ(x)) = 〈s, ρ′〉

ρ, S, H, (if x e1 e2)

ρ′, (ρ, ρ(x), (if x e1 e2)) :S, H, x if-lo

ρ, S, H, (return x)

ρ′, (ρ, ρ(x), (return x)) :S, H, x return

Figure 4.2: A small-step semantis for the language.

68

4.1.1 Semantis

We now give a small-step semantis for the language desribed in Setion 2.3. We �rst

speify the domains used by the semantis:

H : Heap = Loc → (Data+ {empty}) � Heap

d : Data = Val + Clo � Values & Closures

v : Val = N+ {nil}+ Data ×Data � Values

c : Clo = (App × Env) � Closures

ρ : Env = Var → Loc � Environment

Here Loc is a ountable set of loations in the heap. A non-empty loation either

ontains a losure, or a value in Weak Head Normal Form (WHNF)[74℄. For our imple-

mentation, a value in WHNF is either a number, or the empty list nil or a cons ell with

possibly unevaluated onstituents. A losure is a pair 〈s, ρ〉 in whih s is an unevaluated

appliation, and ρ maps free variables of s to their respetive loations. Sine all data

objets are boxed, we model an environment as a mapping from the set of variables of

the program Var to loations in the heap.

The semantis of expressions (and appliations

1

) are given by transitions of the form

ρ, S,H, e ρ′, S ′,H′, e′. Here S is a stak of ontinuation frames. Eah ontinuation

frame is a triple (ρ′′, ℓ, enext), signifying that the loation ℓ has to be updated with the

value of the urrently evaluating expression and enext is to be evaluated next in the

environment ρ′′. The initial state of the transition system is:

([]ρ, (ρinit , ℓans, (evalAndPrint ans)) : []S, []H, (main))

in whih []ρ, []H and []S are the empty environment, heap and stak respetively. The

initial stak onsists of a single ontinuation frame in whih ans is a distinguished variable

that will eventually be updated with the value of (main), and ρinit maps ans to a loation

ℓans. As is ustomary for lazy languages, the result of evaluation of (main) is in WHNF.

Full evaluation is ahieved through interation with a printing mehanism modelled as a

funtion evalAndPrint whih evaluates the unevaluated parts of (main), in ase (main)

is a struture. This is a standard runtime support assumption for lazy languages [74℄.

The operator : pushes elements on top of the stak.

1

In most ontexts, we shall use the term 'expression' and the notation e to stand for both expressions

and appliations.

69

The notation [~x 7→ ~ℓ] represents an environment that maps variables xi to loations

ℓi and H[ℓ := d] indiates an update of H at ℓ with d. ρ⊕ ρ′ represents the environment

ρ shadowed by ρ′ and ⌊ρ⌋X represents the environment restrited to the variables in X .

Finally FV (s) represents the free variables in the appliation s and addr(c) gives the

address of the losure c in the heap. As a onvention, we use d to represent a data value

whih may either be in WHNF or a losure and v to represent values whih are always in

WHNF.

The small-step semantis is shown in Figure 4.2. Unlike an eager language, evaluation

of a let expression (let x← s in e) does not result in the evaluation of s. Instead, as the

let rule shows, a losure is reated and bound to x. The program points whih trigger the

evaluation of these losures are an if ondition (IF-lo) and a return (return-lo).

We all suh points evaluation points (ep) and label them with ψ instead of π. As an

example of losure evaluation, we explain the three rules for (car x). If x is a losure, it

is evaluated to WHNF, say (d1, d2). This is given by the rule ar-lo. If d1 is not in

WHNF, it is also evaluated (ar-1-lo). The address to be updated with the evaluated

value is reorded in a ontinuation frame. This is required for the evaluation to be lazy,

else d1 may be evaluated more than one due to sharing [74℄. Only after this is the atual

seletion done (ar-selet).

4.2 Liveness

A variable is live if there is a possibility of its value being used in future omputations and

dead if it is de�nitely not used. Classial liveness analysis models liveness as a boolean

value�a variable is either live or it is dead. Heap-alloated data needs a riher model than

lassial liveness�a model whih talks about liveness of referenes possibly pointing to

strutured data. As an example, onsider a list x. Assume that, at a program point, future

omputations only refer up to the third member of x. A preise liveness model should be

able to learly apture suh liveness values. Liveness, in this sense, signi�es future aesses

of parts of a struture, and therefore the notion of aess paths that was introdued in

Chapter 2 an be used as its natural representation. For example, the liveness of the list x

mentioned earlier an be represented as the set of aess paths {0, 10, 110}. However, the

notion of aess paths (or what it represents) has to be modi�ed to aount for strutures

70

whih are not fully evaluated. We shall provide the semantis of aess path in terms of

heap aesses later, espeially in the ontext of a lazy language.

In ontrast to dependene, liveness is a property that is appliable only to variables.

Sine a liveness-based garbage olletion is guided by the liveness of variables, it has to

be omputed (or, at the least, approximated) for eah program point where a garbage

olletor ould be potentially invoked. While our method is not restrited to a partiular

garbage olletion mehanism, we explain our method using a opying olletor [20, 26℄.

Whenever a garbage olletion is triggered, starting with the root set (variable referenes

on the stak), the garbage olletor onsults the liveness value assoiated with the variable

and opies only the parts of the value whih are live.

We now onnet liveness with dependene analysis. For omputing liveness, we are

interested in the entire output, hene the designated expression is (main) and the e�etive

demand on (main) is (0 + 1)∗ whih we also refer as σall. We reiterate the point made

in Setion 2.4.1 that the demand of σall on (main) is ahieved indiretly through the

repeated invoation of evalAndPrint. Dependene analysis propagates this demand to

every expression, however in the ontext of liveness analysis we would be interested in

the demands on variables only. The demand on a variable ourrene gives the use of the

variable's value in omputing the result of the fous expression. On the other hand, the

liveness of a variable at a program point π takes into aount all the future uses of the

variable beyond π. Therefore, liveness of a variable at a program point is the union of

demands of all ourrenes of the variable beyond the program point. As an example,

onsider the liveness of the variable xs in program 4.3 between the program points π1 and

π3. There are two ourrenes of xs beyond π1, in (append xs ys) at π3 and (car xs)

at π6. The liveness of xs between π1 and π3 is the union of demands on both these

ourrenes. Now, onsider the liveness of xs at π4. The only use of xs beyond π4 is

(car xs) at π6. Hene, the liveness at π4 is given by the demand on xs at π6. This

desribes the liveness of stak variables, i.e. the funtion arguments and the variables

de�ned in a let (also alled the root set). We all liveness of suh variables stak-liveness

to distinguish it from the liveness of losure variables whih we will introdue shortly.

71

(define (append lst1 lst2)

(let ond ← (null? lst1) in

(if ond

(return lst2)

(let hd ← (car lst1) in

(let tl ← (cdr lst1) in

π:(let rest ← (append tl lst2) in

(let zs ← (cons hd rest) in

(return zs)))))))

(define (main)

π1:(let xs . . . in

π2:(let ys . . . in

π3:(let y ← (append xs ys) in

π4:(let ← (null? y) in

π5:(if ψ1:

π6:(let u ← (car xs) in

π7:(return ψ2:u))))

π8:(let z ← (length y) in

π9:(return ψ3:z))))))

Figure 4.3: Example illustrating liveness of losures

4.2.1 Liveness analysis for lazy languages

In an eager language, the order of evaluation of the expression (let x ← s in π :e) is

as follows: s is evaluated �rst and its value is bound to x and then e is evaluated. Now

onsider a variable y that ours free in s, and onsider the program point π just before

e. Sine s has already been evaluated, the ourrene of y in s does not ontribute to

the liveness of the stak variable y at π. In general, the demand on any variable whih is

part of s need not be onsidered in omputing liveness of the orresponding stak variable

at or beyond this program point. As an example, in Figure 4.3, it an be seen from the

program text itself that (append xs ys) would be evaluated before π4, and hene liveness

of the stak variable xs need not onsider the demand generated by the use of xs in the

expression (append xs ys). Further, as desribed in [12℄, during garbage olletion,

stak variables always point to fully evaluated values and hene it is su�ient to onsider

stak-liveness while doing liveness-based garbage olletion of eager languages.

In ontrast, a lazy evaluation of the expression (let x ← s in e) reates a losure

for s instead of evaluating it and binds this losure to x. In a lazy language statially

determining the order of evaluation of losures is not possible and hene, it is not possible

to determine statially whether a variable is bound to a losure or to an evaluated value at

a given program point. Thus, during liveness-based garbage olletion for lazy languages,

a stak variable may point to an evaluated value or a losure. If the value is fully evaluated,

we an just use the stak-liveness to garbage ollet it, but if it is a losure then stak-

liveness annot be used diretly to garbage ollet the losure. This is illustrated in

72

y

xs

append xs ys

(a)

y

xs

(b)

y

hd

rest

car
lst1

append tl lst2

()

Figure 4.4: Di�erent liveness situations enountered during garbage olletion of y in a

lazy language, (a)Liveness at π4 when y is a losure (b) Liveness at ψ3 when the spine of

y is evaluated () Liveness at π8 where y points to a cons ell ontaining referenes to

rest and hd delared in funtion append

Figure 4.3, where determining whether (append xs ys) would be evaluated before π4 is

not possible. Therefore, if the garbage olletor enounters the losure orresponding to

(append xs ys) at π4, there are two alternatives: either to treat the losure as useful

data and opy it, or to do a liveness-based garbage olletion on the losure itself. The

latter an result in some more spae being relaimed.

Figure 4.4 depits the senarios desribed earlier. Figure 4.4(a) shows the situation

where y has not been evaluated, i.e. it is a losure. Notie that the memory orresponding

to xs has referenes from the stak and also from the losure ontaining it. Figure 4.4(b)

depits the situation when y is fully evaluated. In this ase, the future use of y is fully

73

aounted for by its stak-liveness, and this an be used for garbage olleting y at π4.

There is yet another reason why stak-liveness alone is not su�ient for liveness-

based garbage olletion of lazy languages. In a lazy language, data onstrutors (for

example, cons) are lazy, i.e. they do not evaluate their arguments. Therefore, when a

cons ell is returned from a funtion, it might ontain losures. These losures in turn

hold referenes to variables whih may be de�ned loally in the funtion returning the

cons. Let us onsider a garbage olletion after the cons is returned. When the cons ell

is being garbage olleted, the urrent root set has only variables whih are in the urrent

sope. Sine the referenes inside the cons ell were de�ned in a sope whih is no longer

on the program stak it is not possible to determine the liveness of the referenes inside

the cons ell. In Figure 4.3, the variable rest is de�ned loally in the funtion append.

This variable esapes from the sope when returned as part of the cons ell zs. In any

garbage olletion triggered beyond this return point, none of the root sets ontains a

referene to the variable rest whih is part of the returned cons ell. Thus, determining

the liveness of the referene beomes impossible. This situation is shown in Figure 4.4().

The solution to both the hallenges is to treat variables whih are part of a losure

as �rst lass itizens from the point of view of garbage olletion, and treat them as

being separate from the variables introdued by lets or funtion arguments. We all suh

variables as losure variables and onsider liveness of both stak variables and losure

variables during garbage olletion. It is important to larify that a stak variable and its

orresponding losure variables are di�erent referenes to the same memory loation.

Notationally, a losure variable is distinguished from its orresponding stak variable

by subsripting it with the label of the program point where the losure was reated. As an

example, in Figure 4.3, the losure variables yπ4
and yπ8

orrespond to the stak variable

y de�ned at π3
2

. Eah losure arries liveness information of the variables whih are

part of a losure within the losure itself. Liveness of a losure variable is exatly the

demand on that partiular ourrene of the variable and hene is di�erent from stak-

liveness. For example, the losure-liveness of xs is just the demand on xs due to its use

in the evaluation of the expression (append xs ys) in the ontext of the demand on the

expression. The losure for (append xs ys) needs to arry this liveness information of

2

Multiple ourrenes of the same variable in an appliation are further distinguished by their positions

in the appliation.

74

xs and ys within itself. In the modi�ed garbage olletion sheme, if the referene being

garbage olleted originates from the stak, the orresponding stak-liveness is used to

garbage ollet it and if the referene originates inside a losure the losure-liveness is

used. While garbage olleting a referene on the stak, if we enounter a losure, the

losure arguments are treated as referenes from whih garbage olletion, guided by the

losure-liveness of the referenes, is initiated.

In summary, the major di�erenes between the formulations of liveness-based garbage

olletion of lazy languages and eager languages [12℄ are:

1. Introduing the notion of losure variable and treating them as �rst-lass itizens from

the perspetive of garbage olletion.

2. The assoiation of liveness with losure variables.

3. Handling evaluated values and losures di�erently during garbage olletion.

We have been using aess paths to represent liveness of variables. Assume that a garbage

olletion is triggered at π, where a variable x has a liveness α. In a lazy language, x may

point to a losure or to a struture that may ontain losures. While α still represents

the set of aesses that might be performed in future when the losure is fully evaluated,

a garbage olletion triggered at π would use α to aess only the evaluated parts of

the struture, till a losure is enountered. Beyond those points, the garbage olletor

uses the liveness values of the losure variables to do the garbage olletion. Formally,

given an initial loation ℓ (usually a referene orresponding to a variable) and a heap H,

semantially an aess path α represents a referene, denoted HJℓ, αK, in the heap that

is obtained by starting with ℓ and hasing the car or cdr �elds in the heap as spei�ed

by the aess path. HJℓ, αK denotes the liveness of the heap rooted at ℓ only if the path

followed in the heap is losure-free. If this path is interepted by a losure, say (car yπ),

then the liveness of the path starting from yπ is given by the demand on yπ. As we shall

see in Setion 4.4.1, the liveness of the losure variable yπ is reorded along with the

losure for s so that the GC an refer to it during garbage olletion.

4.2.2 The analysis

Figure 4.5 shows the dependene analysis introdued in Setion 3.1 modi�ed for liveness.

Unlike demands whih an be assoiated with both variables or expressions, liveness is

always assoiated with variables. Hene, we modify the rules of dependene analysis to

75

A :: (App,Demand, FuncSummaries) → LivenessEnvironment

A(π:κ, σ,DS) = {}, for onstants inluding nil

A(π:(null? x), σ,DS) = {x 7→ ∅ǫσ}

A(π:(+ x y), σ,DS) = {x 7→ ∅ǫσ} ∪ {y 7→ ∅ǫσ}

A(π:: (car x), σ,DS) = {x 7→ 0σ}

A(π:: (cdr x), σ,DS) = {x 7→ 1σ}

A(π:(cons x y), σ,DS) = {x 7→ 0̄σ} ∪ {y 7→ 1̄σ}

A(π:(f y1 · · · yn), σ,DS) =
⋃n

i=1{yi 7→ DS
i
f (σ)}

D :: (Exp,Demand, FuncSummaries) → LivenessEnvironment

D(π:(return x), σ,DS) = Lπ

where Lπ = {x 7→ σ}

D(π:(if x π1:e1 π2:e2), σ,DS) = Lπ1
∪ Lπ2

∪ {x 7→ ∅ǫσ}

Lπ1
= D(π1:e1, σ,DS)

Lπ2
= D(π1:e2, σ,DS)

D(π:(let x ← π1:s in π2:e), σ,DS) = Lπ2
\ x. ∗ ∪ Lπ1

Lπ1
= A(π1:s, σ

′,DS)

σ′ = Lπ2
(x)

Lπ2
= D(π2:e, σ,DS)

where x.∗ represents all aess paths starting from x

DS ∈ FuncSummaries :: Funcname→ (Demand→ (Demand1, . . . ,Demandn))

∀f, ∀i, ∀σ : D(π : ef , σ,DS) = Lπ,DS
i
f =

⋃

π∈Π Lπ(zi)

df1 . . . dfk ⊢
l DS

(funtion-summaries)

(define (f z1 . . . zn) ef) is one of df1 . . . dfk , 1 ≤ i ≤ n,

and Π represents all ourrenes of zi in ef

Figure 4.5: Dependene analysis modi�ed to ompute liveness

now ompute demands only for variables. While a demand environment was a mapping

from a program-point to a demand, a liveness environment is a mapping from a variable

to a demand. It is often expressed as a set, for example by writing {x.11, y.1, z.0}

instead of [x 7→ {11}, y 7→ {ǫ}, z 7→ {0}]. The funtion A takes an appliation s and a

demand σ and returns a liveness environment that maps the free variables of s to sets of

aess paths representing their losure-liveness. The losure-liveness is stored as part of

76

the losure itself, and onsulted while exploring the heap starting from losure variables

during garbage olletion. The funtion D uses A to propagate liveness aross expressions

and omputes program-point-wise stak-liveness. We use σ to range over demands, α to

range over aess paths and Lπ to denote the liveness environment at program point π.

The liveness of an individual variable y at program point π is Lπ(y).

In a lazy language, an expression is not evaluated unless required. Our analysis ap-

tures this by ensuring that no liveness generated is independent of the inoming demand.

The ∅ǫ symbol ensures that an ǫ liveness is generated only if the inoming demand is

non-null. Funtion alls are handled as in dependene analysis, using the third parameter

DS that represents the summaries of all funtions in the program. In ase of liveness

also, we prefer the least solution as it ensures the safe olletion of the greatest amount

of garbage.

The major modi�ation in the dependene analysis rule happens in the rule for let.

To understand the liveness rule for π:(let x ← π1:s in π2:e), observe that the value of

let is the value of its body e. Thus the liveness environment Lπ2
of e is alulated for

the given demand σ. The stak variable x gets its liveness from the liveness environment

of e and this liveness is transferred to s generating losure-liveness of the variables of s.

Finally, the liveness environment at π is omputed by killing the stak-liveness of x, and

taking a union of the losure-liveness in s and the stak-liveness in e. Apart from the

fat that liveness is omputed only for variables, killing of stak-liveness is the primary

di�erene between dependene analysis and liveness analysis.

4.3 An example

We now use an example program to show liveness omputation and the di�erenes between

stak-liveness and losure-liveness. Let us onsider the liveness of variable xs due to the

evaluation point ψ3.

1. The stak-liveness of xs just before exeuting the expression at π3 is due to its uses

in the expressions (append xs ys), (car xs) and is DS
1
append(DS

1
length(σall)) ∪ 0σall .

However at π5, the liveness is 0σall as the liveness no longer inludes the use of xs in

(append xs ys).

2. In ontrast, losure-liveness of xs at π3 is only due to its use in (append xs ys).

77

(define (main)

π1:(let xs . . . in

π2:(let ys . . . in

π3:(let y ← (append xs ys) in

π4:(let ← (null? y) in

π5:(if ψ1:

π6:(let u ← (car xs) in

π7:(return ψ2:u))))

π8:(let z ← (length y) in

π9:(return ψ3:z))))))

DS
1
append(DS

1
length(σall))

∪ 0σall

DS
1
append(DS

1
length(σall))

0σall DS
1
append(DS

1
length(σall))

Figure 4.6: Stak and losure liveness for variable xs at program points π3 and π5. Stak

liveness is indiated in red and Closure liveness in blue. Stak liveness hanges between π3

and π5 as the expression (append xs ys) is not onsidered at π5 for liveness omputation.

Closure variable remains unhanged.

Closure-liveness of xs due to the evaluation point ψ3 is omputed by starting with the

expression at ψ3 and transferring demands via the expressions (length y), till we reah

xs at π3. Notie, the expression (car xs) is not onsidered as the expression is not

evaluated along the path starting from ψ3.

4.4 Computing liveness information

We now use the liveness of the losure variable xsπ3
in example 4.1 to illustrate liveness

omputation. The liveness of the variable xsπ3
is determined by how the funtion append

uses its �rst argument and how the stak variable y is used in the program. The liveness

of the stak variable y is given by the union of the liveness of the losure variables yπ4

and yπ8
. To ompute the liveness value, we require the demand transformers for the

user-de�ned funtions append and length. The demand transformers of append and

length are given by:

78

DS
1
length(σ) = ∅ǫσ ∪ 1DS

1
length(∅ǫσ)

DS
1
append(σ) = ∅ǫσ ∪ 00̄σ ∪ 1DS

1
append(1̄σ)

We now use the property that all rules of our analysis always pre�x σ with symbols to

rewrite DS
i
f (σ) as DS

i
f σ (DSi

f onatenated with σ). After the rewrite we an anel out

σ from both the LHS and RHS to get the modi�ed equations for DSlength and DSappend:

D1
length = ∅ǫ ∪ 1D1

length∅ǫ

D1
append = ∅ǫ ∪ 00̄ ∪ 1D1

append1̄

Viewing these equation as a CFGs with {1, 1, 0̄, 1̄,∅ǫ} as terminal symbols and

D1
length and D1

append as non-terminals, we get the following produtions:

D1
length → ∅ǫ | 1D

1
length∅ǫ

D1
append → ∅ǫ | 00̄ | 1D

1
append1̄

The liveness of xsπ3
is given by the equation:

Lπ3
(xs)→ ∅ǫσall | D

1
appendD

1
length∅ǫσall

Both

D1
length and

D1
append ontain ontext-free produtions. Hene, we perform the

Mohri-Nederhof transformation on these non-terminals to onvert them to strongly regular

grammars. The grammar post onversion is:

D1
length

′
→ ∅ǫ

D1
length

′
| ǫ

D1
length → 1D

1
length | ∅ǫ

D1
length

′

D1
append

′
→ 1̄D1

append

′
| ǫ

D1
append → 00̄D

1
append

′
| ∅ǫ

D1
append

′
| 1D1

append

We now onstrut the automaton orresponding to xsπ3
using the strongly regular

grammars. The automaton and the orresponding simpli�ations are shown in Figure 4.7.

When no more simpli�ation rules are appliable, all the bar-edges are dropped from the

79

q′s q1
ǫ

1

q2 q3
0 0̄

1̄

q4 q5
ǫ

1

∅ǫ

∅ǫ

0 | 1∅ǫ

(a)

q′s q1
ǫ

1

q2 q3
0 0̄

1̄

q4 q5
ǫ

1

∅ǫ

∅ǫ

0 | 1∅ǫ

(b)

q′s q1
ǫ

1

q2 q3
0 0̄

1̄

q4 q5
ǫ

1

∅ǫ

∅ǫ

0 | 1∅ǫ

ǫ

()

q′s q1
ǫ

1

q2 q3
0 0̄

1̄

q4 q5
ǫ

1

∅ǫ

∅ǫ

0 | 1∅ǫ

ǫ

(d)

q′s q1
ǫ

1

q2 q3
0 q4 q5

ǫ

1

0 | 1

ǫ

(e)

q′s

1

(f)

Figure 4.7: Simpli�ation proess of automaton orresponding to

Lπ3
(xs)

automaton. In this automaton all states whih lie on the path from the start state to a

�nal state are marked as �nal. This ensures that the liveness automaton aepts a pre�x-

80

losed language whih is needed for the liveness-based garbage olletor. The simpli�ed

automaton aepts the language 1∗
indiating that only the spine of the list xs is live.

This mathes our intuition as only the spine of the list y was needed by the length

funtion and y was onstruted by appending xs and ys.

4.4.1 Liveness-based garbage olletion sheme

In this setion we desribe a garbage olletion sheme whih uses the result of the liveness

analysis desribed in Setion 4.2.1 to ollet more garbage. The liveness analysis desribed

in Setion 4.2.1 omputes program-point-wise stak-liveness and losure-liveness for eah

losure variable. While we ompute liveness at all program points, sine the liveness is

applied for garbage olletion, we need to store liveness only at potential garbage olletion

points i.e. where the program an potentially alloate heap memory. However, unlike

eager languages, where memory from the heap is alloated only for cons ells and for

passing arguments to funtions, in a lazy language eah let de�nition requires memory for

reating losures. And sine suh de�nitions abound in programs, almost every program

point in a lazy language an beome a trigger point for potential garbage olletion,

and would therefore require liveness information to be stored. For a pratial liveness-

based garbage olletor, the memory overhead required to store liveness information at all

program points may be prohibitively large. Thus, we have to restrit the possible garbage

olletion points in a funtion body.

We would like to ensure that a garbage olletion is never triggered at a let de�nition

inside the body of a funtion. To do this, we need to ensure that su�ient number of heap

ells are available before evaluating a funtion body. Therefore, we ompute the estimated

number of heap ells required to reate losures while exeuting the body of the funtion.

For a primitive operation, seletor or tester a single heap ell is su�ient. For a funtion

all, assuming that eah heap ell an hold a single argument of the funtion, the number

of heap ells is equal to the number of arguments of the alled funtion. Using these

estimates for appliations we an ompute the number of heap ells required for reating

losures for a funtion body. In ase the funtion body has a branh, we onsider the

maximum among the two branhes. During exeution, before evaluating a funtion all,

we hek whether the available heap ells an over the estimated number of ells. If the

available ells are less than the estimated value a garbage olletion is triggered. Although

81

at the beginning of a funtion body, the liveness is empty for the urrent funtion, the

garbage olletor an ollet garbage from the other funtions in the all stak. This way

we ensure that before evaluating a funtion body we always have su�ient ells to reate

losures for the funtion body.

While triggering garbage olletion at the beginning of a funtion body su�es when

the funtion body does not have if expressions, we need more hek points for a funtion

body ontaining branhes. The reason for this is that evaluation of the ondition in

an if expression ould potentially lead to evaluation of losures. In ase the losure

being evaluated is a primitive operator/tester/onstrutor/seletor then no extra spae

is required as the same ell an be updated to hold the result of evaluation. But if the

losure is a funtion all, evaluation of the funtion body ould lead to reation of more

losures requiring extra ells. The alling funtion does not inlude these ells as part of

its estimate and depends on the alled funtion to hek for the required memory. If the

ondition evaluation in if expression triggers the evaluation of a funtion all, it invalidates

the memory hek at the beginning of the funtion body. Therefore, a memory hek with

the required heap ells for the seleted branh with the updated memory availability is

neessary. Thus, for eah funtion we store the estimated number of heap ells required at

the beginning of the funtion and at the beginning of eah branh. Liveness information

is stored at the beginning of eah branh

3

.

In summary the modi�ed garbage olletion sheme is,

1. We statially over-approximate the memory required to reate the losures for eah

funtion body. On entering a funtion, if the available memory is less than this re-

quirement for the funtion, a GC is triggered.

2. Sine the evaluation of a if ondition may trigger a olletion, after evaluating the

ondition the available memory is heked one again against a revised estimate of the

memory (based on value of the ondition) required to exeute the rest of the program.

A GC is triggered if enough memory is unavailable.

Another drawbak of the analysis is the fat that the losure-liveness is omputed

one and it remains unhanged. Closure-liveness is omputed at the point of reation of

the losure by transferring the liveness of the stak variable to whih the losure is bound.

This liveness is never updated during the analysis even if at a di�erent program point

3

Storing liveness at beginning of funtion body is not required as it is empty

82

the liveness of the assoiated stak variable itself hanges. While this keeps the analysis

simple, using onstant liveness during garbage olletion ould leave a lot of garbage

unolleted. Considering the liveness of losure variables along only feasible evaluation

paths leads to more preise liveness information and improved garbage olletion. Assume,

for the sake of onreteness, that ep1 and ep2 are two evaluation points. During GC, we

would like to use more preise liveness, based on the atual paths taken during exeution.

Therefore, we reate separate liveness automata for dependenes along paths to ep1 and

ep2, in addition to automata for dependenes along paths to both ep1 and ep2. The losure

arries the liveness environment for its free variables (as pointers to automata, one for eah

variable). Initially the liveness environment is based on the dependenes along both ep1

and ep2. However, after evaluating an if ondition, the liveness environments are updated

to one based on either ep1 or ep2, so that subsequent garbage olletions are based on more

preise liveness information. As an example, in Figure 4.3, a dependene hain for xsπ1

begins with the variable z at the evaluation point ψ3 and z in turn depends on y through

(length yπ3
). We denote this hain of dependenes as [ψ3 : z← (length yπ3

)]. Indeed, the

hains of losures in the heap are runtime representations of these dependenes. Sine z is

evaluated at ψ3 due to the expression return z, the demand made by the alling ontext(s)

of f plaes a demand on z whih will impart a liveness to yπ1
. Other dependene hains

whih result in a liveness for xsπ1
are [ψ1 : ← (null? yπ4

), y ← (append xsπ3
ysπ3

)]

and [ψ2 : u← (car xsπ6
)]. The liveness analysis delares the liveness of xsπ3

to be a union

of the liveness arising from these dependene hains. To be safe, a GC during evaluation

of y at ψ1 has to use this liveness to opy the heap starting from xsπ3
. However, notie

that if a GC takes plae while evaluating u at ψ3, it an safely onsider only the liveness

arising from the dependene hain [ψ2 : u← (car xsπ6
)]. The liveness due to the branh

terminating with the evaluation point ψ3 is not feasible after the ondition in π5 evaluates

to true.

Figure 4.8 shows the stak and losure liveness for the variable xs orresponding

to the evaluation point ψ2. Assuming that the ondition evaluates to true, the next

expression that is exeuted has program point π6. At this point, the stak-liveness of xs

is only due to u. The losure variable xsπ6
also gets the same liveness. However, notie

that the liveness of the losure variable xsπ3
, aquired from the variable y at π3 remains

unhanged, although there is no future use of y in this branh. This leads to less preise

83

(define (main)

π1:(let xs . . . in

π2:(let ys . . . in

π3:(let y ← (append xs ys) in

π4:(let ← (null? y) in

π5:(if ψ1:

π6:(let u ← (car xs) in

π7:(return ψ2:u))))

π8:(let z ← (length y) in

π9:(return ψ3:z))))))

xsπ3
7→ DS

1
append(DS

1
length(σall))

xsπ3
7→ ∅

Figure 4.8: Advantages of updating losure liveness for variable xs at runtime. Closure

liveness of xs at π3 needs to take into aount liveness in both branhes. Assuming the

ondition evaluates to true at ψ1 at runtime, losure liveness of xs an be updated to ∅.

liveness for the losure variable xsπ3
and may prevent it from being garbage olleted. To

avoid this, we update the losure-liveness after evaluation of a ondition in if expression.

4.4.2 The garbage olletion algorithm

We shall all a unit of alloatable memory as a ell. A ell an hold a basi value (bas),

the onstrutor cons (cons arg1 arg2) or a losure. The losure, in turn, an be one of

(unop arg), (binop arg1 arg2) and funtion appliation (f arg). Here eah argi is a referene

to another heap ell. In addition, the losure also arries a pointer to a DFA (denoted

argi.dfai) for eah argi.

Algorithm 6 desribes the garbage olletion sheme. Starting with the root set,

eah ell pointed by a live referene (i.e., whose assoiated DFA state is �nal) is opied

using copy. Copying a cons ell involves opying the ell itself and onditionally opying

the car and the cdr �elds after referring to the next states of the DFA. If the referene

points to a losure, then, as mentioned earlier, the losure arries pointers to the liveness

DFAs of its arguments. These are used to reursively initiate opying of the arguments.

84

proedure lgc():

for eah referene ref in root set:

ref = copy (ref, init(ref.dfa));

copyReferencesOnPrintStack();

return;

funtion copy(ref, state):

if ¬final(state):

return ref;

newRef = dupHeapCell(ref);

if ref.cell(ref) is a ons ell (cons arg1 arg2):

newRef.arg1 = copy(arg1, next(state, 0));

newRef.arg2 = copy(arg2, next(state, 1));

if ref.cell is a losure ell, generially (binop arg1 arg2):

newRef.arg1 = copy(arg1, init(arg1.dfa));

newRef.arg2 = copy(arg2, init(arg2.dfa));

return newRef;

Algorithm 6: Liveness-based garbage olletion.

Note that the opying strategy for (unop arg1) or (f arg1) are similar to (binop arg1 arg2)

and have not been shown.

The evaluation of the top-level expression in a program is driven by a printing fun-

tion (Setion 4.1.1) that is ommon to all user programs. We desribe a generi algorithm

for printing values in lazy-languages in Algorithm 7. The print funtion takes a heap

referene as input and heks if it ontains an evaluated value or a losure. If it ontains

a losure, it triggers an evaluation of the losure to produe a value whih is in WHNF.

In ase the value is an atomi value (number) it prints the value. If it is a cons ell,

then it reursively alls print on the car part and then the cdr part. Notie that one

the car part is printed it beomes dead, even though it is reahable from the stak. We

extend liveness-based garbage olletion to the print funtion to take advantage of this

observation.

85

Funtion evalAndPrint(ref)

Data: ref is the expression being evaluated

val ← evalToWHNF(ref)

if (pair?(val)):

Display �(�

evalAndPrint(car(val))

Display �.�

evalAndPrint(cdr(val))

Display �)�

else:

Display val

Algorithm 7: Funtion to print result of a lazy program.

4.4.3 Experimental evaluation

Our experimental setup onsists of the prototypes of (a) an interpreter for our language,

(b) a liveness analyzer, and () a single generation opying garbage olletor. The garbage

olletor an be on�gured to work on the basis of reahability (RGC mode) or use liveness

DFAs (LGC mode). Our benhmark onsists of programs taken from no�b [66℄ and other

repositories for funtional programs [2�4℄. We ran the experiments on 8 ore Intel

R©

Core

TM

i7-4770 3.40GHz CPU having 8192KB L2 ahe, 16GB RAM, running 64 bit

Ubuntu 14.04.

The statistis related to liveness analysis and DFA generation are shown in Table 4.1.

We observe that the analysis of all programs exept treejoin and sudoku require reason-

able time. The bottlenek in our analysis is the NFA to DFA onversion with worst-ase

exponential behaviour. However, sine the analysis has to be done only one and its results

an be ahed and re-used, the time spent in analysis may be onsidered aeptable.

Table 4.2 ompares GC statistis for RGC and LGC. We report the number of GC

events, average number of ells relaimed per GC, average number of ells touhed per

GC and the total time to perform all olletions. It is no surprise that the number of ells

relaimed per garbage olletion is higher and the number of garbage olletions lower

for LGC. The ost of LGC is higher garbage olletion time, whih inreases the overall

exeution time even with redued number of olletions. However, the exeution time

86

Table 4.1: Statistis for liveness analysis

Program #CFG Nonterminals #CFG Rules #DFA States #DFA Transitions DFA Gen Time (se)

f

i

b

h

e

a

p

621 1176 1761 2829 37.28

s

u

d

o

k

u

1422 2009 4283 7690 655.41

n

p

e

r

m

662 866 1546 2522 0.94

p

a

r

a

f

f

i

n

s

1174 1773 3346 6086 13.22

l

s

s

642 1206 1666 2726 8.66

h

u

f

f

m

a

n

499 818 1414 2528 4.00

k

n

i

g

h

t

s

t

o

u

r

660 883 1519 2420 10.97

n

q

u

e

e

n

s

404 643 889 1170 0.36

d

e

r

i

v

328 468 809 1435 0.61

t

r

e

e

j

o

i

n

615 1328 1803 2797 903.14

l

a

m

b

d

a

669 1088 1703 2580 11.01

g

_

b

e

n

h

390 450 571 788 0.10

Data for Liveness Analysis

of LGC is still omparable for most benhmarks (slowdown within 5X of RGC in most

ases) and better for 3 benhmarks (2X speedup in the best ase).

Memory usage graphs for the benhmarks are shown Figure . In all the programs

we an see that the urve orresponding to LGC (blue line) dips below the RGC urve

(red line) during GC. The graphs also inlude the urve for reahable ells (blak) and

live ells (light-blue). These were obtained by foring RGC to run at very high frequeny.

The urve for live ells were obtained by reording heap aess times and post proessing

the data at the end of the program. Note that the size of an LGC ell is 1.16 times the

size of a RGC ell.

As demonstrated by the gap between the red and the light-blue lines, a large number

of ells whih are unused by the program are still opied during RGC. LGC does a muh

better job of losing this gap but still falls short of the preision ahieved by LGC in ase

of eager languages [12℄. A major soure of ine�ieny in LGC is multiple traversals of

already opied heap ells. Sine LGC does not mark the heap ells after the �rst visit,

the same ells an be repeatedly visited with di�erent liveness states.

The hu�man benhmark performs extremely well with liveness-based GC in terms

of both the peak memory required and the number of GCs. The benhmark takes a list

of haraters and �rst enodes it and then takes the enoded list and deodes it, printing

87

T

a

b

l

e

4

.

2

:

S

t

a

t

i

s

t

i

s

f

o

r

g

a

r

b

a

g

e

o

l

l

e

t

i

o

n

P

r

o

g

r

a

m

f

i

b

h

e

a

p

s

u

d

o

k

u

n

p

e

r

m

p

a

r

a

f

f

i

n

s

l

s

s

h

u

f

f

m

a

n

k

n

i

g

h

t

s

t

o

u

r

n

q

u

e

e

n

s

d

e

r

i

v

t

r

e

e

j

o

i

n

l

a

m

b

d

a

g

_

b

e

n

h

#

C

e

l

l

s

o

l

l

e

t

e

d

/

G

C

3

4

6

6

.

2

9

3

1

.

3

4

6

8

4

.

4

6

6

1

.

7

8

0

6

4

.

7

1

0

5

3

3

.

8

1

7

9

1

5

5

.

0

2

6

0

7

.

4

8

5

4

.

6

5

0

2

8

4

.

2

7

2

7

1

.

7

1

4

9

3

2

.

7

#

C

e

l

l

s

o

l

l

e

t

e

d

/

G

C

4

1

6

4

.

5

2

3

2

8

.

7

1

4

2

1

2

.

5

2

9

2

0

.

5

1

8

2

6

8

.

7

1

0

0

0

1

0

.

0

3

1

2

4

5

4

.

0

9

5

2

9

.

1

1

0

7

5

5

.

3

9

3

6

5

2

5

.

0

8

4

4

8

.

4

2

0

4

7

7

4

.

0

#

C

e

l

l

s

t

o

u

h

e

d

/

G

C

3

3

5

7

6

.

6

3

1

3

4

.

6

2

2

7

4

3

.

2

4

5

2

2

.

6

1

4

1

7

7

.

9

8

9

5

3

6

.

1

4

9

8

6

4

5

.

0

7

4

9

3

.

4

1

0

2

6

9

.

3

1

5

6

6

2

5

0

.

0

1

3

1

9

4

.

2

1

8

9

8

8

0

.

0

#

C

e

l

l

s

t

o

u

h

e

d

/

G

C

5

0

9

5

7

.

9

2

9

5

0

.

2

2

3

1

2

7

.

1

2

9

3

3

.

0

4

6

0

4

.

4

8

8

.

6

5

3

4

5

6

2

.

0

8

2

9

.

0

4

2

0

.

3

7

0

0

7

5

6

.

0

2

9

1

5

6

.

3

3

3

.

2

#

G

C

s

1

3

3

3

1

7

9

7

1

0

1

6

3

0

3

5

6

5

2

9

3

3

4

5

3

1

1

1

6

7

7

5

4

8

#

G

C

s

1

1

0

8

7

2

2

3

5

4

1

4

3

8

3

0

4

9

1

6

3

5

6

6

7

4

P

e

a

k

M

e

m

o

r

y

R

e

q

u

i

r

e

d

3

7

0

4

3

4

0

6

6

2

7

4

2

8

5

1

8

5

2

2

2

4

3

1

0

0

0

7

0

6

7

7

8

0

0

1

0

1

0

1

1

1

1

2

4

1

6

1

6

5

3

3

2

0

4

6

6

2

0

4

8

1

3

P

e

a

k

M

e

m

o

r

y

R

e

q

u

i

r

e

d

3

7

0

4

3

2

9

6

0

2

5

3

4

3

3

7

3

3

1

6

2

9

6

7

2

6

4

2

3

0

3

1

0

8

2

5

8

9

8

8

7

0

0

5

1

8

1

6

9

7

2

L
G
C

R
G
C

1

.

1

6

0

.

8

4

1

.

0

7

0

.

8

3

0

.

8

4

0

.

0

0

1

.

0

9

0

.

1

2

0

.

0

6

0

.

6

3

1

.

0

2

0

.

0

0

G

C

t

i

m

e

(

s

e

)

1

.

4

6

0

.

0

1

0

.

2

4

0

.

0

0

0

.

0

1

0

.

6

4

6

.

2

4

0

.

3

6

0

.

0

0

3

.

8

4

0

.

1

7

0

.

1

1

G

C

t

i

m

e

(

s

e

)

2

0

.

0

0

0

.

0

4

1

.

2

4

0

.

0

0

0

.

0

2

0

.

0

1

6

4

.

4

3

0

.

1

8

0

.

0

0

1

.

9

0

4

.

7

0

0

.

0

0

L
G
C

R
G
C

1

3

.

7

0

4

.

6

4

5

.

2

0

2

.

0

1

3

.

0

2

0

.

0

2

1

0

.

3

2

0

.

4

9

0

.

0

5

0

.

4

9

2

8

.

4

8

0

.

0

0

T

o

t

a

l

E

x

e

t

i

m

e

(

s

e

)

1

3

.

8

2

0

.

1

1

1

.

8

0

0

.

0

1

0

.

1

3

2

.

7

0

5

5

.

2

9

4

.

6

8

0

.

0

5

6

.

6

6

2

.

7

7

1

.

4

5

T

o

t

a

l

E

x

e

t

i

m

e

(

s

e

)

3

3

.

2

3

0

.

1

6

3

.

3

9

0

.

0

2

0

.

1

8

2

.

5

5

1

3

4

.

3

5

5

.

8

7

0

.

0

5

5

.

5

0

8

.

3

2

1

.

2

2

L
G
C

R
G
C

2

.

4

0

1

.

5

1

.

8

8

1

.

2

1

.

3

6

0

.

9

4

2

.

4

3

1

.

2

5

0

.

9

0

.

8

2

3

.

0

0

0

.

8

4

C

o

m

p

a

r

i

n

g

R

G

C

w

i

t

h

L

G

C

.

N

o

t

e

t

h

a

t

t

h

e

s

i

z

e

o

f

a

n

L

G

C

e

l

l

i

s

1

.

1

6

t

i

m

e

s

t

h

e

s

i

z

e

o

f

a

n

R

G

C

e

l

l

,

T

o

t

a

l

E

x

e

t

i

m

e

i

n

l

u

d

e

s

G

C

t

i

m

e

.

88

0

85

0 7 14 21 28 35

huffman

2

4

.03 .06 .09 .12 .15

paraffins

(a) (b)

0

4.5

9.0

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

nqueens

0

330

660

990

1320

0 7 14 21 28 35 42 49 56 63

treejoin

() (d)

Figure 4.9: Memory usage. The red and the blue urves indiate the number of ons

ells in the ative semi-spae for RGC and LGC respetively. The blak urve represents

the number of reahable ells and the light-blue urve represents the number of ells that

are atually live (of whih liveness analysis does a stati approximation). x-axis is the

time measured in number of ons-ells alloated (saled down by fator 105). y-axis is the

number of ons-ells (saled down by 103).

out the deoded list. Notie that in a lazy language, the printing of the �nal deoded

list is what fores the evaluation to move forward. Ideally, one the element is printed

the memory alloated to that element an be freed and re-used, but a reahability-based

olletor will not be able to ollet it as a referene to the cons ell ontaining the element

will be still on the stak. Sine the evalAndPrint funtion is also annotated with liveness

information our liveness-based olletor will be able to ollet it. The input harater list

to the program is generated using a loop and hene the program an exeute in onstant

memory irrespetive of the length of input list. The benhmark demonstrates that our

garbage olletor is very e�etive when the program has a produer-onsumer nature.

Tail all optimization Tail all optimization is a very important optimization for

improving spae utilization of programs. In spite of this, many languages do not require

89

tail alls to be optimized. Not optimizing tail alls not only uses up stak size but it an

also hog heap memory if a reahability-based olletor is used. For example, a list whih is

traversed using a tail all will hold referenes to already proessed elements of the list on

the stak. This makes them reahable during garbage olletion preventing the memory

from being garbage olleted. Our liveness analysis detets that beyond the tail all the

car part of the argument list is not used and hene marks it dead. A liveness-based

olletor would use this information and ollet the ells as garbage.

4.5 Soundness of liveness-based garbage olletion

We shall now present a proof of the soundness of the liveness-based garbage olletion

sheme. It is easy to see that the analysis orretly identi�es the liveness of stak variables.

A stak variable is live between its introdution through a let and its last use to reate

a losure variable. This is orretly aptured by the let rule. Proving soundness for root

set traversals starting with losure variables is more omplex. Here are the ideas behind

the proof.

1. As in DGS, we extend the abstrat mahine state ρ, S,H, e to ρ, S,H, e, δ. We all

suh a state a mine�eld state. Here δ is the �dynami� demand on the expression e.

The demand for the initial state is (0 + 1)∗ (also abbreviated as δall), and eah

transition transforms the demand aording to the liveness rules of Setion 4.2.1. The

information in ontinuation frames on the stak S are also similarly augmented with

their demands. Thus, a staked entry now takes the form (ρ, ℓ, e, δ). The initial state of

the mine�eld semantis is assumed to be ([]ρ, (ρinit , ans, (evalAndPrint ans), δall) :

[]S, []H, emain, ǫ).

2. We augment the standard semantis in Figure 4.2 to simulate a GC before the exeution

of eah let de�nition. We reiterate that, unlike eager languages, memory is alloated

only during exeution of let expressions. GC(ρ, S,H, e, δ) models a liveness-based

garbage olletion that returns (ρ′, S ′,H′). The hanges in ρ, S and H are due to non-

live referenes being replaed by ⊥4

. This simulates the at of garbage olleting the

ells pointed to by these referenes during an atual garbage olletion. Any attempt

4

In our faniful imagination, ⊥ in the heap are mines and liveness analysis is the mine detetor. A

wrong liveness analysis an ause ⊥ to be be dereferened resulting in the bang state.

90

Premise Transition Rule name

δ is ∅ ρ, (ρ′, ℓ, e′, δ′) :S,H, e, δ ρ′, S,H, e′, δ′ no-eval

ρ, (ρ′, ℓ, e, δ′) :S,H, κ, δ ρ′, S,H[ℓ := κ], e, δ′ onst

ρ(x) is 〈s, ρ′〉 ρ, S,H, x, δ ρ′, S,H, s, δ var

ρ(x) is ⊥ ρ, S,H, x, δ bang var-bang

ρ(x) is 〈(id y), ρ′〉 ρ, S,H, x, δ ρ′, S,H, y, δ id

ρ, (ρ′, ℓ, e, δ′) :S,H, (cons x y), δ

ρ′, S,H[ℓ := (ρ(x), ρ(y))], e, δ′

ons

H(ρ(x)) is (v, d) ρ, (ρ′, ℓ, e, δ′) :S,H, (car x), δ

ρ′, S,H[ℓ := v], e, δ′

ar-selet

H(ρ(x)) is 〈s, ρ′〉 ρ, S,H, (car x), δ

ρ′, (ρ, ρ(x), (car x), δ) :S,H, s, 0δ

ar-lo

H(ρ(x)) is (〈s, ρ′〉, d) ρ, S, H, (car x), δ

ρ′, (ρ, addr(〈s, ρ′〉), (car x), δ) :S, H, s, δ

ar-1-lo

H(ρ(x)),H(ρ(y)) ∈ N ρ, (ρ′, ℓ, e, δ′) :S,H, (+ x y), δ

ρ′, S,H[ℓ := H(ρ′(x)) +H(ρ′(y))], e, δ′

prim-add

H(ρ(x)) /∈ N ρ, S,H, (+ x y), δ

ρ′, (ρ, ρ(x), (+ x y), δ) :S,H, x, ǫ

prim-1-lo

H(ρ(y)) /∈ N ρ, S,H, (+ x y), δ

ρ′, (ρ, ρ(y), (+ x y), δ) :S,H, y, ǫ

prim-2-lo

f de�ned as (define (f ~y) ef) ρ, S,H, (f ~x), δ

[~y 7→ ~〈(id x), ρ〉], S,H, ef , δ

funall

GC(ρ1, S1,H1, (let x← s in e), δ)

= (ρ, S,H) ,

ℓ is a new loation

ρ, S,H, (let x← s in e), δ

ρ⊕ [x 7→ ℓ], S,H[ℓ := 〈s, ⌊ρ⌋FV (s), δx〉], e, δ

where δx = ⌊L(e, δ,DS)⌋{x}

let

H(ρ(x)) 6= 0 ρ, S,H, (if x e1 e2), δ ρ, S,H, e1, δ if-true

H(ρ(x)) = 0 ρ, S,H, (if x e1 e2), δ ρ, S,H, e2, δ if-false

H(ρ(x)) = 〈s, ρ′〉 ρ, S,H, (if x e1 e2), δ

ρ′, (ρ, ρ(x), (if x e1 e2), δ) :S,H, x, ǫ

if-lo

H(ρ(x)) = 〈s, ρ′〉 ρ, S,H, (return x), δ

ρ′, (ρ, ρ(x), (return x), δ) :S,H, x, δ

return

Figure 4.10: Mine�eld semantis. The di�erenes with the small-step semantis have been

highlighted by shading.

91

to dereferene suh referenes during exeution results in the transition system entering

a speial state denoted bang. GC(. . .) needs to onsider the following environments:

(1) the environment in the urrent state, (2) the environment in eah of the staked

ontinuations and (3) the environment in eah of the losures in the heap.

(a) For eah of these environments, GC(. . .) alulates a liveness environment L for

the orresponding s with the dynami demand δ.

(b) For eah loation ℓ, GC(. . .) sets H(ℓ) to ⊥ i� for eah environment ρ above, for

eah x ∈ domain(ρ), and eah pre�x α′
of an aess path α, it is not the ase that

x.α ∈ L and HJρ(x), α′K = ℓ.

3. Note that the modeled GC is done on the basis of dynami demand rather than stati

demand. However, by a reasoning similar to Theorem 3.4, the stati liveness that is

onsulted during atual GC is omputed from an over-approximation of this demand.

Thus, the soundness result on the modeled GC will also apply for the atual GC. The

soundness proof onsists in showing that the exeution of no program enters the bang

state.

Figure 4.10 shows the mine�eld rules. As mentioned earlier, the transition for a

let is preeded by GC(. . .). Also onsider, as an example, the transition for the modi�ed

ar-lo. If an earlier all to GC(. . .) results in ρ(x) being bound to ⊥, then the step

enters the bang state (ar-bang). Otherwise, the transition is similar to the earlier

ar-lo rule.

4.5.1 Soundness result

Note that our proofs will be for a single round of mine�eld exeution i.e., the evalua-

tion of (main) to its WHNF driven by the printing mehanism (Setion 4.1.1). With

minor variations, the proof will also be appliable for subsequent evaluations initiated by

evalAndPrint. We now present the result whih shows that the liveness-based garbage

olletion sheme is sound.

Theorem 4.1 The mine�eld exeution of no program an enter a bang state.

Proof. Consider a state (ρ, S,H, e, δ) in the mine�eld exeution of a program. We show

by indution on the number n of steps leading to this state that the next transition an-

not enter a bang state. When n is 0, the state is ([]ρ, (ρinit , ℓans, (evalAndPrint ans), δall) :

92

[]S, []H, emain, ǫ). Sine the all to GC(. . .) in this state does nothing, we just have to

show that the transition annot enter a bang state. Sine our programs are in ANF,

emain an only be a let expression. A let step does not involve dereferening, and thus

annot result in a bang.

For the indutive step, we shall show that none of the mine�eld steps that involves

dereferening results in a bang. These are the steps whih have aH(ρ(...)) in the premise.

If we are in the the state (_,_,_, e, δ) after n steps of mine�eld exeution, then, beause

of the no-eval rule δ is not null. Now a step an go bang beause it dereferenes a

⊥ inserted by an earlier GC(. . .). However, again by a reasoning similar to Lemma 3.2,

the demand δ′ on the basis of whih the GC(. . .) would have inserted a ⊥ would have

inluded the urrent demand δ. Thus it is enough to show that the step would also

not lead to a bang.

We only onsider the rules for the ase when e is (car x). The rest of the rules

involve similar reasoning. For the ar-lo rule in the state (ρ, S,H, (car x), δ), we know

that δ is non-null. Therefore the liveness of x inludes ǫ. Now sine garbage olletion

on (car x) was done on the basis of a demand that inluded δ, GC(. . .) would not have

inserted a ⊥ for x and therefore the dereferening H(ρ(x)) will go without bang.

Similarly for the ar-1-lo rule, observe that there are two dereferenes. First x

is dereferened to get a ons ell and then the head of the ons ell is dereferened to

obtain a losure. If the demand δ on (car x) is non-null, then the liveness of x will have

as its pre�xes both ǫ and 0, and GC(. . .) on (car x) with a liveness that inludes δ will

neither bind x to a ⊥, nor insert ⊥ at the �rst omponent of the ons ell. Thus both

dereferenes an take plae without entering the bang state. �

4.6 Related work

The impat of liveness on the e�etiveness of GC is investigated in [35℄. They observe that

liveness an signi�antly impat garbage olletion, but only when it is interproedural.

As far as memory requirement is onerned, our paper demonstrates this observation. To

the best of our knowledge, this is the �rst work that uses the results of an interproe-

dural liveness analysis to garbage ollet both evaluated data and losures. Thomas [96℄

desribes a opying garbage olletor for the Three Instrution Mahine (TIM) [25℄ that

93

only preserves live losures in a funtion's environment (also alled a frame). However, in

the absene of details, it is not lear whether a) the sope of the method is interproedu-

ral, and b) it handles algebrai datatypes like lists (the original design of TIM did not).

All other previous attempts [12, 45, 87�89℄ involved either imperative or eager funtional

languages.

There have been several attempts to use liveness analysis to improve GC for imper-

ative languages. [49℄ presents a liveness analysis and uses the results for inserting nulli-

fying statements in Java programs. In [89℄, temporal properties like liveness are heked

against an automaton modeling heap aesses. Both these approahes are intraproedural

in sope.

In the spae of funtional languages, there are: rewriting methods suh as deforesta-

tion [21, 29, 99℄, sharing analysis based realloation [75℄, region based analysis [98℄, and

insertion of ompile-time nullifying statements [41, 56℄. The analysis desribed by Inoue

et. al. [41℄ handles the spei� ase that arises when list-valued funtions F and G are used

in an expression of type F (G(. . .)). If a ell c reated by G and is not part of the result

returned by F , c an be garbage olleted whenever F ompletes exeution. Similar to

our method, the result of their analysis is also represented using grammars(CFG). How-

ever their method introdues (under)approximation in the CFG itself to remove symbols

equivalent to 0̄ and 1̄ from CFG rules. Another approah to detet garbage ells gener-

ated by expressions of type F (G(. . .)) due to Mohnen [62℄ uses abstrat interpretation.

A list having n levels is abstrated to an n-tuple, a boolean denoting the possibility of

sharing between any element at eah level in the list and the result of the funtion to

whih the list is passed as a parameter. A false value in the tuple indiates that values at

that level are not shared with the return value and hene an be garbage olleted. This

leads to very oarse approximations as the use of a single ell will make the whole list at

that level live. The bigger limitation with both approahes is that garbage olletion an

happen only at end of funtion bodies.

Another approah due to Lee et. al. [55, 56℄ uses memory types to desribe usage

of heap ells by expressions. Their analysis also ahieves ontext sensitivity by doing

a parameterized analysis of funtions. The method uses dynami �ags passed as extra

arguments to funtions to ollet ells inside funtion bodies. Passing di�erent values

from di�erent all sites for the dynami �ags allows the same funtion to have di�erent

94

dealloation behaviors.

Another method that omes lose to our approah is the Heap Safety Automaton

[89℄. The goal of this method is to safely insert null statements and it uses an automaton

to model safety of null insertion statement at a given point. The program is abstrated

by a shape graph and this graph is used to do model-heking against the heap safety

automaton. A key aspet of any approah whih tries to improve preision of garbage

olletion is to identify the earliest program point where a referene an be set to null.

The Heap Safety Automaton based approah does not address this issue, it an only

answer whether a given aess expression be set to null immediately after a program

point. It fails to answer the following question, Whih expressions should be onsidered

at whih program point? This is a very ruial question as onsidering every pair of aess

expression and program point is impratial.

A pratial approah involves opying only the heap objets whose root variables

are live [6℄. The drawbak of this approah is that an entire objet reahable from a live

root variable is onsidered live, even if some parts of it are never used. For example, even

when only the spine of a list is live (used as an argument to the length funtion) all its

elements will also be opied.

The only work in the spae of lazy languages seems to be [31℄ whih touhes upon only

basi tehniques of ompile-time garbage marking, expliit dealloation and destrutive

alloation. An interesting approah suggested in [36℄ is to annotate the heap usage of �rst-

order programs through linear types. The annotations are then used to serve memory

requests through re-alloation. However, this requires the user to write programs in a

spei� way. Safe-for-spae [11℄ approahes [23, 90℄ redue the amount of heap used by a

program by alloating losures in registers and through tail all optimizations. However,

these approahes take are of only part of the problem addressed by our analysis as the

program an still ontain unused objets and losures that are reahable.

Simpli�ers [68℄ are abstratly desribed as lightweight daemons that attah them-

selves to program data and, when ativated, improve the e�ieny of the program. Our

liveness-based GC an be seen as an instane of a simpli�er whih is tightly oupled with

garbage olletors. The approah that is losest to the method desribed in this paper is

the liveness-based garbage olletor implemented in [12, 44℄ and address eager languages.

We extend this to handle lazy evaluation and losures.

95

96

Chapter 5

Stati program sliing using demand

propagation

Program sliing is a powerful tehnique that is widely used for debugging, software main-

tenane, optimization, program analysis and information �ow ontrol. Program sliing

refers to the lass of tehniques that delete parts of a given program while preserving

ertain desired behaviours. The desired behaviors are spei�ed using what is alled as the

'sliing riterion'. Aording to the original de�nition of sliing given by Weiser [103℄, a

slie of a program P with respet to a statement x and variable v is the set of state-

ments of P whih a�et the value of v at statement x for all possible inputs. The

main appliations of sliing inlude software testing [15, 30, 32, 33, 38℄, program de-

bugging [58, 102℄, measurement [14, 69�71℄, validation [50℄, program parallelization [103℄,

program integration [37℄, reverse engineering and program omprehension [1, 13℄, program

restruturing [18, 22, 43, 51, 94℄, program speialization [79℄ and identi�ation of reusable

funtions [10, 19, 54℄.

The de�nition of what onstitutes a slie has been modi�ed in multiple ways depend-

ing on the appliation. We onsider one suh version of sliing where the sliing riterion

identi�es parts of the �nal output of the program and the goal is to produe only those

parts of the program whih a�et the parts of the output identi�ed by the sliing riterion.

Program speialization, parallelization, dead ode analysis and ohesion measurement are

examples of suh appliations. In this hapter, we formulate the sliing problem as a

dependene analysis problem and use the analysis de�ned in Chapter 3.2 to solve it. As

an interesting onsequene of our formulation, we were able to ome up with a novel and

97

e�ient way of sliing alled Inremental sliing to slie the same program multiple times

with di�erent riteria. The soundness of our sliing algorithm follows diretly from the

soundness of dependene analysis. We prove the orretness of inremental sliing with

respet to the non-inremental sliing method.

5.1 Program sliing using dependene analysis

The example from [79℄ shown in Figure 5.1a motivates the need for program sliing. It

takes a string as input and returns a pair onsisting of the number of haraters and

lines in the string. Figure 5.1b shows the program when it is slied with respet to the

�rst omponent of the output pair, namely the number of lines in the string (l). All

referenes to the ount of haraters () and the expressions responsible for omputing

 only have been slied away (denoted �). The same program an also be slied to

produe only the har ount and the resulting program is shown in Figure 5.1. �

Formally, Weiser [103℄ de�nes sliing riterion as a pair 〈p, V 〉, where p is a program

point and V is a subset of program variables. A program slie on the sliing riterion 〈p, V 〉

is a subset of program statements that preserves the behavior of the original program at

the program point p with respet to the program variables in V, i.e., the values of the

variables in V at program point p are the same in both the original program and the

slie. Similarly, we de�ne sliing riterion for a funtional program P as the pair 〈e, σ〉,

where e represents a partiular expression in the program P and σ represents the parts of

the value of e that is of interest. The goal of sliing is to identify the set of expressions

belonging to P whih may a�et the parts identi�ed by σ. In general, the question we

want to answer is: Given a sliing riterion 〈e, σ〉, whih other expressions ei ∈ P deide

σ part of the value of e?

Notie the similarity between the sliing problem and the problem of omputing

dependenes in funtional programs. Indeed, given a sliing riterion 〈e, σ〉, an expression

ei deides the value of σ part of the value of e only if σ part of e depends on ei. We

view the sliing riterion (a set of strings over (0 + 1)∗) as a demand on the expression

(main), using this we ompute the demand on eah expression in the program. Unlike

liveness analysis where the demand is always (0 + 1)∗, the sliing riterion an be any

subset of (0+1)∗ and is supplied by a ontext that is external to the program. To deide

98

(define (lcc str l)

(if (null? str)

(return (cons l))

(if (eq? (car str) nl)

(return (lcc (cdr str) (+ l 1) (+ 1)))

(return (lcc (cdr str) π1:l π2:(+ 1))))))

(define (main)

(return (lcc . . . 0 0))))

(main)

(a) Program to ompute the number of lines and haraters in a string.

(define (lcc str l �)

(if (null? str)

(return (cons l �))

(if (eq? (car str) nl)

(return (lcc (cdr str) (+ l 1) �))

(return (lcc (cdr str) π1:l π2:�)))))

(define (main)

(return (lcc . . . 0 �))))

(main)

(b) Slie of program in (a) to ompute the number of lines only

(define (lcc str �)

(if (null? str)

(return (cons �))

(if (eq? (car str) nl)

(return (lcc (cdr str) � (+ 1)))

(return (lcc (cdr str) π1:� π2:(+ 1))))))

(define (main)

(return (lcc . . . � 0))))

(main)

() Slie of program in (a) to ompute the number of haraters only.

Figure 5.1: A program in Sheme-like language and its slies. The parts that are slied

away are denoted by �.

99

1. (define (mmp xs p nv np xv xp)

2. (if (null? xs)

3. (return (cons (cons nv np) (cons xv xp)))

4. (let p1← (+ π : p 1) in

5. (if (< (car xs) nv)

6. (mmp (cdr xs) p1 (car xs) p xv xp))

7. (if (> (car xs) xv)

8. (mmp (cdr xs) p1 nv np (car xs) p)

9. (mmp (cdr xs) p1 nv np xv xp)))))

10. (define (main)

11. (return (mmp (cdr xs) 2 (car xs) 1 (car xs) 1)))

12. (main)

Figure 5.2: A program to ompute the min and max elements in a list along with their

positions.

whether to slie a partiular expression ei, we only need to know whether the part of the

program output identi�ed by the sliing riterion is dependent on ei or not. Spei�ally,

if the demand on the expression ei turns out to be ∅, the expression does not ontribute

to the parts identi�ed by the sliing riterion and an be removed from the slie. We now

formally de�ne the sliing problem and show that it is undeidable.

De�nition 5.1 The sliing problem is to �nd an algorithm A suh that given a program

P , a demand δ, and a ontrol point π will answer yes if there exists a DGS trae of P in

whih π ours with a non-null demand, and no otherwise.

Theorem 5.2 The sliing problem as stated in 5.1 is undeidable.

Proof. To prove this, it is enough to prove that the problem of whether for an arbitrary

grammar G ∈ CG′
(desribed in Setion 2.4.1) the language L (G) = ∅ is undeidable.

Assume to the ontrary that we have a null-heker that an deide whether L (G)

is empty or not. We show that this implies that the ǫ-reognition problem of G also

beomes deidable, thereby resulting in a ontradition. If the null-heker for L (G) says

yes, then it is lear that ǫ /∈ L (G). Otherwise onsider a string α ∈ L (G). Clearly,

100

S
∗
⇒ α and we an assume without loss of generality that in this derivation S-produtions

appear before any other ategory of produtions. Thus, the derivation must go through

a sentential form ontaining Sc
final for the �rst time, say LαlS

c
finalαrR. In the segment of

the derivation from LSinitwR to LαlS
c
finalαrR onsider any prodution. This prodution

will orrespond to a valid TM move. Thus the TM will reah a halting state. However,

by Lemma 2.7, it follows that, starting from S, there is an (possibly) alternate derivation

S
∗
⇒ ǫ. Thus, either L (G) = ∅ or ǫ ∈ L (G). So, if the null-heker returns no, we an

onlude that ǫ ∈ L (G). This gives an algorithm for deiding the ǫ-membership of G, a

ontradition. Hene the emptiness question of G is undeidable. �

It turns out that similar to the ǫ-membership question, the emptiness question also

beomes deidable if the grammar is regular. Therefore we model our sliing problem as a

dependene analysis problem. Modelling the sliing problem as an instane of dependene

analysis in Chapter 2 provides several advantages: i) the previously introdued notion of

aess paths (set of pre�x-losed strings of seletors) is rih enough to de�ne interesting

and meaningful sliing riteria, ii) the sliing method shares the advantages of omputing

ontext independent summaries for user-de�ned funtions that an be used to analyze

funtion all without analyzing the funtion body multiple times, and most importantly,

iii) funtion summaries allow us to de�ne a very e�ient, inremental way of sliing a

program multiple times with di�erent riteria. The inremental sliing algorithm will be

disussed in Setion 5.2.

5.1.1 Sliing algorithm

For the rest of the disussion, we onsider the program in Figure 5.2 as our running

example. The program takes a list of integers as input and omputes the minimum and

maximum values along with their positions in the input list. The funtion mmp keeps

trak of the urrent minimum and maximum value using the arguments xv and nv. It

ompares every element with xv and if the urrent element is greater, it updates xv to be

the urrent element and proesses the rest of the list. p whih keeps trak of the position

of the urrent element is used to update xp. The minimum value and its position are also

omputed similarly.

We an extrat di�erent slies from the example program by speifying di�erent

101

Funtion omputeSlie(P , σ)

Data: program P , sliing riteria σ

Result: Slie of P for the sliing riterion σ

S ← P

DE ← Compute demand environment for P with demand on main as σ

foreah (grammar Gπ ∈ DE)do

Mπ ← Over-approximate Gπ using Mohri-Nederhof transformation

M ′
π = S(Mπ)

Mark as �nal eah state in M ′
π whih has a path to a �nal state in M ′

π

foreah (π :e ∈ S)do

if (L (M ′
π) = ∅):

Replae π :e with �

return S

Algorithm 8: Funtion to ompute slie of a program using dependene analysis.

sliing riterion. For example, we might be interested in only the maximum value and

its position in the list, or we might be interested in only the maximum and minimum

values without needing their positions. The demand {ǫ, 1, 10, 01} selets the part of

the output whih orresponds to the maximum value and its position and similarly, the

demand {ǫ, 0, 1, 10, 00} selets only the maximum and minimum values. We ompute

the demand environment for the example program with the given sliing riterion σ as

the demand on (main). The question whether the expression at π an be slied for the

sliing riterion σ is equivalent to asking whether the language S(L (Dπ)) is empty.

Algorithm 8 desribes our sliing algorithm. It takes a program P and sliing riterion

σ as input. It omputes the demand environment for P using σ as the demand on (main)

of P. We use Mohri-Nederhof transformation to over-approximate any ontext-free gram-

mars by strongly regular grammars. The strongly-regular grammars are then onverted

to a set of non-deterministi �nite automata (NFA) and the simpli�ation operation S()

is performed on these NFA. Post simpli�ation, we ensure that the language generated is

pre�x-losed by setting all states that are in a path from the start node to a �nal node

as �nal (inluding the start state). Finally, the required slie is omputed by heking

if the language generated by the grammar orresponding to an expression is empty and

removing the expression from the slie if language is empty. We now use our running

102

example to explain our sliing algorithm. We show the working of our sliing algorithm

for the sliing riteria {ǫ, 1, 10, 01} and {ǫ, 0, 1, 10, 00}. Spei�ally, we onsider the o-

urrene of the variable p identi�ed by the program point π at line 4 and hek whether

it an be slied or not for the given sliing riterion. Consider DS
2
mmp, the funtion that

propagates the demand on a all to mmp to its seond argument. Firstly notie that,

aording to the rules of if and let, the demand σ is propagated without hange to the

three alls at lines 6, 8 and 9. Further, p appears as the fourth argument to the all to

mmp at line 6 and the sixth in the all to mmp at line 8. Clearly the demands on these

two ourrenes of p are DS
4
mmp(σ) and DS

6
mmp(σ). Also notie that the demands of the

three ourrenes of p1 at lines 6, 8 and 9 are the same, namely DS
2
mmp(σ). And sine p

is being used to de�ne p at line 4, by the let rule, the demand on this ourrene of p is:

if (DS
2
mmp(σ)) 6= ∅ then {ǫ} else ∅

Bringing everything together, we get:

DS
2
mmp(σ) = DS

4
mmp(σ) ∪ DS

6
mmp(σ) ∪

if (DS
2
mmp(σ)) 6= ∅ then {ǫ} else ∅

We have to bring this equation to a losed-form by substituting the values of DS
4
mmp(σ)

and DS
6
mmp(σ) and eliminating the reursion in DS

2
mmp(σ).

The equations shown below de�ne DS
2
mmp(σ). Notie that the earlier equation for

DS
2
mmp(σ) has been rewritten in terms of the symbols 0̄, 1̄ and ∅ǫ.

DS
2
mmp(σ) = DS

6
mmp(σ) ∪DS

4
mmp(σ) ∪ ∅ǫDS

2
mmp(σ)

DS
4
mmp(σ) = 1̄0̄σ ∪DS

4
mmp(σ)

DS
6
mmp(σ) = 1̄1̄σ ∪DS

6
mmp(σ)

Assuming the onrete demand on the body of mmp to be σmmp, it is easy to see

that this demand propagates without hange to the three alls in the body of mmp. The

all in main has a demand that is the same as the sliing riterion σsc. Thus we get:

σmmp = σmmp ∪ σsc

Whih gives the value of σmmp as σsc. When the body of mmp is analyzed with the

demand σmmp, the demand on p1 is DS2
mmpσmmp. Thus, by the let rule, the demand on

p at π, denoted Dπ, is ∅ǫDS
2
mmpσmmp.

103

q0 q1
∅ǫ

q31̄

q21̄
q4

0̄

1̄
q50

q6
0 q7

0

1

∅ǫ

q0 q1
∅ǫ

q31̄

q21̄
q4

0̄

1̄
q81

q9
0 q10

0

0

∅ǫ

(a) (d)

q0 q1
∅ǫ

q3
1̄

q21̄
q4

0̄

1̄
q50

q6
0 q7

0

1

ǫ
ǫ

∅ǫ

q0 q1
∅ǫ

q31̄

q21̄
q4

0̄

1̄
q81

q9
0 q10

0

0

ǫ

ǫ∅ǫ

(b) (e)

q0 q1
∅ǫ

∅ǫ q0 q1
∅ǫ

∅ǫ

() (f)

Figure 5.3: The simpli�ation of the automaton Mσ
π : (a), (b) and () show the sim-

pli�ation for the sliing riterion σ = {ǫ, 0, 01, 00}, while (d), (e) and (f) show the

simpli�ation for the riterion σ = {ǫ, 1, 0, 10, 00}.

The equations an now be re-written as: grammar rules:

Dπ → ∅ǫ
DS2

mmpσmmp

DS2
mmp → DS4

mmp | DS
6
mmp | ∅ǫ

DS2
mmp

DS4
mmp → 1̄0̄ | DS

4
mmp

DS6
mmp → 1̄1̄ | DS

6
mmp

σmmp → σsc

Similar to liveness, we are interested in the least solution of equations as it orre-

sponds to the most preise slie. For our running example, the grammar after dependene

analysis is already regular, and thus remains unhanged by Mohri-Nederhof transforma-

tion. The automata in Figure 5.3a� and 5.3d�f orrespond to the two sliing riteria

σmmp = {ǫ, 0, 00, 01} and σmmp = {ǫ, 0, 00, 1, 10} and illustrate the simpli�ation of

orresponding Mohri-Nederhof automata M
σmmp

π . It an be seen that, when the sliing

riterion is {ǫ, 0, 00, 1, 10}, the language of Dπ is empty and hene the argument p an

be slied away, giving us the required slie.

104

In our formulation, any expression whih gets a demand ∅ for a given sliing riterion

is onsidered dead ode and an be removed from the program. As a onsequene of this,

the dead ode elimination ompiler optimization beomes a speial ase where the sliing

riterion is set to (0+ 1)∗.

The orretness of our stati sliing algorithm follows from the orretness of our

dependene analysis. For a given sliing riterion σ, our sliing algorithm replaes ex-

pressions with � only when the statially omputed demand on it is ∅. This implies

that no DGS trae of the program with demand on main as σ will evaluate the removed

expression.

Lemma 5.3 The stati sliing algorithm desribed in Algorithm 8 is sound.

5.2 Inremental Sliing

Appliations suh as program speialization, ohesion measurement and parallelization

require the same program to be slied with more than one sliing riterion. These ap-

pliations an bene�t from an inremental stati sliing method in whih some of the

omputations for sliing with respet to one riterion ould be reused for another.

In this setion, we onsider the problem of inremental sliing for �rst order funtional

programs. The inremental algorithm avoids the repetition of omputation when the same

program is slied with di�erent riteria. This is done by a one time preomputation that

omputes that part of the slie whih is ommon to all sliing riteria. The result is then

onverted to a set of automata, one for eah expression in the program. This ompletes

the preomputation step. To deide whether an expression is in the slie for a given sliing

riterion, we onvert the sliing riterion to a NFA and hek if the intersetion of this

NFA with the preomputed automaton is ∅. If the result is ∅, the expression an be slied

out.

The reason for the e�ieny of our inremental method is that most of the e�orts

in sliing an be fatored out in a one time preomputation step (per program) whih

omputes, for eah expression, all sliing riteria that keep an expression in the slie

and store it as an NFAs. Even more interesting, we an ompute all the sliing riteria

that keep an expression in the slie by performing a dependene analysis on the program

with σmain = ǫ. The NFAs whih result from the dependene analysis are onverted

105

into a anonial form whih we will shortly disuss. The purpose of this onversion is

to ensure that the language generated by the NFAs have (0̄ + 1̄)s only towards the end

of the string. Now, given suh an NFA, we an onstrut a orresponding NFA, alled

ompleting automaton, whih exatly aptures strings that would anel out the bar-edges

in the original NFA. The ompleting automata an be stored and sliing with a spei�

riterion is a small additional omputation over the result of this preomputation step.

5.2.1 Motivating example

We will use the example in Figure 5.4 to motivate the need for an inremental sliing

algorithm. Reall that the program takes a list of integers as input and omputes the

minimum and maximum values along with their positions in the input list. The funtion

mmp keeps trak of the urrent minimum and maximum value using the arguments xv

and nv. The original program an be speialized to ompute only the min and max values

in the list (Figure 5.4b) by sliing the program with the sliing riterion {ǫ, 0, 1, 00, 10}.

Similarly, by using the sliing riterion {ǫ, 0, 00, 01}, we get a program whih omputes

the minimum value and its position (Figure 5.4). If we were to use the sliing algorithm

desribed in Algorithm 8, the proess of omputing automata, simpli�ation of automata

has to be repeated. The goal of our inremental algorithm is to avoid the dupliation of

this e�ort.

The key observation driving our inremental sliing algorithm is the fat that the

we treat the sliing riterion to be pre�x-losed. Therefore, a ertain kind of ontainment

relation exists between the slies of a program. We say that a slie P ontains Q, if

all the expressions in Q are also present in P. For example, the slie orresponding to

the riterion {ǫ, 0} should ontain the slie orresponding to the riterion {ǫ}. Sine {ǫ}

riterion is the smallest non-trivial sliing riterion that an be used, an expression that

is slied away in the ǫ-slie annot be part of a slie omputed using any other sliing

riterion. We use this observation to perform a preomputation step to slie the original

program with ǫ sliing riterion. The result of this sliing is then proessed to bring it to

a ertain anonial form and stored. Given a sliing riterion the stored results are used

to ompute the slie orresponding to the given sliing riterion.

We now desribe the atual steps of our preomputation in detail:

1. Use the non-inremental sliing method with sliing riterion {ǫ} to ompute the de-

106

(define (mmp xs p nv np xv xp)

(if (null? xs)

(return (cons (cons nv np) (cons xv xp)))

(let p1← (+ π : p 1) in

(if (< (car xs) nv)

(mmp (cdr xs) p1 (car xs) p xv xp))

(if (> (car xs) xv)

(mmp (cdr xs) p1 nv np (car xs) p)

(mmp (cdr xs) p1 nv np xv xp)))))

(define (main)

(return (mmp (cdr xs) 2 (car xs) 1 (car xs) 1)))

(main)

(a) Program to ompute the min and max values in the list

(define (mmp xs � nv � xv �)

(if (null? xs)

(return (cons (cons nv �) (cons xv �)))

(let p1← � in

(if (< (car xs) nv)

(mmp (cdr xs) � (car xs) � xv �))

(if (> (car xs) xv)

(mmp (cdr xs) � nv � (car xs) �)

(mmp (cdr xs) � nv � xv �)))))

(define (main)

(return (mmp (cdr xs) � (car xs) � (car xs) �)))

(main)

(b) Slie of program in (a) to ompute only the min and max value

(define (mmp xs p nv np xv �)

(if (null? xs)

(return (cons (cons nv np) (cons xv �)))

(let p1← (+ p 1) in

(if (< (car xs) nv)

(mmp (cdr xs) p1 (car xs) p xv �))

(if (> (car xs) xv)

(mmp (cdr xs) p1 nv np (car xs) �)

(mmp (cdr xs) p1 nv np xv �)))))

(define (main)

(return (mmp (cdr xs) 2 (car xs) 1 (car xs) �)))

(main)

() Slie of program in (a) to ompute the min value and its position.

Figure 5.4: A program in Sheme-like language and its slies. The parts that are slied

away are denoted by �.

mand at eah expression π: e

2. Apply the Mohri-Nederhof proedure to onstrut the orresponding automaton M
{ǫ}
π

3. A step alled anonialization whih applies the simpli�ation rules onM
{ǫ}
π , but stops

107

q0 q1
∅ǫ

q31̄

q21̄
q4

0̄

1̄

∅ǫ

q′s q′4
ǫ

q′30

q′21
q′1 q′0

1

1

(a) (b)

Figure 5.5: (a) The anonial automaton Aπ and (b) the orresponding ompleting au-

tomaton Aπ

when the symbols 0̄ and 1̄ of every aepting string of the resulting automaton are

only at the end

4. From the anonial automaton, onstruting an automaton alled the ompleting au-

tomaton, the output of the preomputation step

Sine the �rst two steps have already been desribed in Chapter 3, we desribe only the

next two steps in detail.

5.2.2 Canonialization

The simpli�ation step de�ned in Setion 3.2 redues all strings whih ontains un-erased

bar-edge symbols to null strings. The anonialization step instead retains all strings that

either have no 0̄ and 1̄ symbols or have 0̄ and 1̄ symbols only at the end. All bar-edge free

strings orrespond to expressions whih will be present in the ǫ-slie and as a onsequene

in every non-trivial slie. Strings that have 0̄ and 1̄ symbols only at the end orrespond

to expressions whih ould potentially be part of a slie, given the right sliing riterion.

We now give a set of rules, denoted by C, that aptures anonialization.

108

C({ǫ}) = {ǫ} C(0σ) = 0C(σ)

C(1σ) = 1C(σ) C(∅ǫσ) = ∅ǫC(σ)

C(0̄σ) = {0̄ | C(σ) is {ǫ}} ∪ {α | 0α ∈ C(σ)}

∪ {0̄1̄α | 1̄α ∈ C(σ)} ∪ {0̄0̄α | 0̄α ∈ C(σ)}

C(1̄σ) = {1̄ | C(σ) is {ǫ}} ∪ {α | 1α ∈ C(σ)}

∪ {1̄1̄α | 1̄α ∈ C(σ)} ∪ {1̄0̄α | 0̄α ∈ C(σ)}

C(σ1 ∪ σ2) = C(σ1) ∪ C(σ2)

C di�ers from S in that it aumulates ontinuous run of 0̄ and 1̄ at the end of a

string. Notie that C, like S, simpli�es its input string from the right. Here is an example

of C simpli�ation:

{0∅ǫ01̄1̄10̄}
C
→ 0C({∅ǫ01̄1̄10̄})

C
→ 0∅ǫC({01̄1̄10̄})

C
→ 0∅ǫ0C({1̄1̄10̄})

C
→ 0∅ǫ01̄C({1̄10̄})

C
→ 0∅ǫ01̄1̄C({10̄})

C
→ 0∅ǫ01̄1̄1C({0̄})

C
→ 0∅ǫ01̄1̄10̄C({ǫ})

C
→ 0∅ǫ01̄1̄10̄{ǫ}

C
→ 0∅ǫ01̄1̄1{0̄}

C
→ 0∅ǫ01̄1̄{10̄}

C
→ 0∅ǫ01̄{0̄}

C
→ 0∅ǫ0{1̄0̄}

C
→ 0∅ǫ{01̄0̄}

C
→ 0{∅ǫ01̄0̄}

C
→ {0∅ǫ01̄0̄}

In ontrast the simpli�ation of the same string using S gives:

{0∅ǫ01̄1̄10̄}
S
→ 0S({∅ǫ01̄1̄10̄})

S
→ 0∅ǫS({01̄1̄10̄})

S
→ 0∅ǫ0S({1̄1̄10̄})

S
→ 0∅ǫ01̄S({1̄10̄})

S
→ 0∅ǫ01̄1̄S({10̄})

S
→ 0∅ǫ01̄1̄1S({0̄})

S
→ 0∅ǫ01̄1̄10̄S({ǫ})

S
→ 0∅ǫ01̄1̄10̄∅

S
→ 0∅ǫ01̄1̄1∅

S
→ 0∅ǫ01̄1̄∅

S
→ 0∅ǫ01̄∅

S
→ 0∅ǫ0∅

S
→ 0∅ǫ∅

S
→ 0∅

S
→ ∅

C satis�es two important properties:

1. The result of C always has the form (0+1+∅ǫ)
∗(0̄+ 1̄)∗. Further, if σ ⊆ (0+1+∅ǫ)

∗
,

then C(σ) = σ.

2. S subsumes C, i.e., S(C(σ1)C(σ2)) = S(σ1σ2).

Note that while we have de�ned anonialization over a language, the atual anon-

ialization takes plae over an automaton�spei�ally the automaton Mπ obtained after

Mohri-Nederhof transformation. The proess of anonialization over an automaton is a

minor variation of the simpli�ation proess [44℄. Spei�ally,

109

1. Adjaent 0̄0 and 1̄1 edges are replaed by an ǫ edge and the resulting automaton is

made deterministi, until there are no more suh edges

2. Edges with labels 0̄ or 1̄ are retained only if their targets have a path reahing some

�nal node, and the labels on this path onsist only of 0̄ or 1̄ symbols.

It is in the seond step that the anonialization di�ers from simpli�ation. For the

example program, the anonial automaton for π is shown in Figure 5.5a. Notie that all

the strings in the language of M
{ǫ}
π will have the form ∅ǫ∅ǫ

∗
1̄1̄ or ∅ǫ∅ǫ

∗
1̄0̄. The 1̄ and 0̄

symbols are all towards the end of the string in both ases. One all the automata have

been onverted into the anonial form, the next step is to onvert eah one of them into

a ompleting automaton.

5.2.3 Completing automata generation

The ompleting automata generation step takes an automaton orresponding to expression

e in anonial form, and omputes an automaton whih aepts all possible sliing riterion

strings that keeps e in slie. For the motivating example 5.4, the automaton M
{ǫ}
π for the

sliing riterion {ǫ} is shown in Figure 5.5a. In this automaton, eah aepting string has

0̄ and 1̄ symbols only at the end. Thus the automaton is anonial, and we shall denote

it as Aπ. It is lear that if Aπ is onatenated with a sliing riterion that starts with the

symbol 01, the result, after simpli�ation, will be non-empty, and the expression at π will

be retained in the slie. We all suh a string a ompleting string for Aπ. Deteting the

ompleting string beame easy beause the anonialization step pushed all the 0̄ and 1̄

symbols towards the �nal state in the anonial automaton. Similarly, the string 11 is

also a ompleting string for the same automaton.

Algorithm 9 desribes the proess for onverting an automaton in anonial form to

a ompleting automaton. The funtion reateCompletingAutomaton takes Aπ, the

anonial Mohri-Nederhof automaton for the sliing riterion {ǫ}, as input, and onstruts

the ompleting automaton, denoted as Aπ. Reollet that the strings reognized by Aπ

are of the form (0+ 1+ ∅ǫ)
∗(0̄+ 1̄)∗. Call the set of states reahable from the start state

using only edges with labels {0, 1,∅ǫ} as the frontier set. The ompleting automaton

is a opy of anonial automaton with edges labeled by 0̄ and 1̄ symbols reversed, and

the symbols themselves replaed by 0 and 1 respetively. All edges with labels {0, 1,∅ǫ}

are dropped. Further, all states in the frontier set are marked as �nal states, and a new

110

Funtion reateCompletingAutomaton(A)

Data: The Canonialized Automaton A = 〈Q, {0,1, 0̄, 1̄,∅ǫ}, δ, q0, F 〉

Result: A, the ompleting automaton for A

F ′ ← {qfr | qfr ∈ Q, hasBarFreeTransition(q0, qfr, δ)}

/* Reverse the �bar� transitions: diretions as well as labels */

foreah (transition δ(q, 0̄)→ q′)do

add transition δ′(q′,0)→ q

foreah (transition δ(q, 1̄)→ q′)do

add transition δ′(q′,1)→ q

q′s ← new state /* start state of A */

foreah (state q ∈ F)do

add transition δ′(q′s, ǫ)→ q

return 〈Q ∪ {q′s}, {0,1}, δ
′ , q′s, F

′〉

Funtion inSlie(e, σ)
Data: expression e, sliing riteria σ

Result: Deides whether e should be retained in slie

return (L (Ae) ∩ σ 6= ∅)

Algorithm 9: Funtion to reate the ompleting automaton and the sliing fun-

tion.

start node is added with transitions to the states orresponding to the �nal states of

anonial automaton. For the example program, the frontier set orresponding to M
{ǫ}
π is

{q0, q1} sine these are the only states reahable from the start state using only edges with

{0, 1,∅ǫ} labels. The ompleting automaton for π is the automaton in Figure 5.5b. After

dropping edges with {0, 1,∅ǫ} symbols there is no path from the new state to the state

orresponding to q0. Sine, state orresponding to q1 is also �nal state, the ompleting

automaton will have a non-null language.

Notie that for the anonial automata in Figure 5.5a, any string whih has the

pre�x (01 + 11) is a valid ompleting string. Therefore, the automaton orresponding

to the regular expression{(01 + 11)(0 + 1)∗} reognizes all ompleting strings for Aπ

and nothing else. Thus for an arbitrary sliing riterion σ, it su�es to interset σ with

this automaton to deide whether the expression at π will be in the slie. In fat, it is

enough for the ompleting automaton to reognize just the language {(01+ 11)} instead

of {(01 + 11)(0 + 1)∗}. The reason is that any sliing riterion, say σ, is pre�x losed,

111

and therefore σ ∩ {(01 + 11)} is empty if and only if σ ∩ {(01 + 11)(0 + 1)∗} is empty.

For our running example, the automaton in Figure 5.5b, gives the ompleting automaton

that reognizes the language (01+ 11).

The inremental sliing algorithm uses the fat that a ompleting automaton aepts

all sliing riterion strings that prevents the orresponding expression from being slied.

Whenever a sliing riterion is presented, we onstrut an automaton representing the

riterion, whih is then interseted with the ompleting automaton of every expression

in the program. If the intersetion turns out to be non-null, then the sliing riterion

ontains at least one string whih would prevent the expression from being slied. This

fat is used to deide whether an expression an be slied out or not. For the example

program, we an see that the ompleting automaton orresponding to the program point

π has a non-null intersetion with the riterion {ǫ, 0, 00, 01} and hene it is retained in the

slie, whereas it has a null intersetion with {ǫ, 0, 1, 00, 10} allowing the orresponding

expression to be slied out. This mathes our intuition that if neither the position of

the minimum element nor the maximum element is required then the expression traking

the urrent position an be slied out. We formally prove the orretness of inremental

sliing in the next setion.

5.3 Corretness of inremental sliing

We now show that the inremental algorithm to ompute inremental slies is orret.

Reall that we use the following notations:

1. Gσ
π is the grammar generated by dependene analysis (Figure 3.1) for an expression

π: e in the program of interest, when the sliing riteria is σ

2. Aπ is the automaton orresponding to G
{ǫ}
π after Mohri-Nederhof transformation and

anonialization

3. Aπ is the ompleting automaton for e

We �rst show that the result of the dependene analysis for an arbitrary sliing riterion

σ an be deomposed as the onatenation of the grammar obtained from the dependene

analysis with the �xed sliing riterion {ǫ} and σ itself.

Lemma 5.4 For all expressions e and sliing riteria σ, L (Gσ
π) = L (G

{ǫ}
π) σ.

112

Proof. The proof is by indution on the struture of e. Observe that all the rules of the

dependene analysis (Figure 3.1) add symbols only as pre�xes to the inoming demand.

Hene, the sliing riteria will always appear as a su�x of any string that is produed by

the grammar. Thus, any grammar L (Gσ
π) an be deomposed as σ′ σ for some language

σ′
. Substituting {ǫ} for σ, we get G

{ǫ}
π = σ′

. Thus L (Gσ
π) = L (G

{ǫ}
π) σ. �

Given a string s over (0̄+ 1̄)∗, we use the notation s to stand for the reverse of s in whih

all ourrenes of 0̄ are replaed by 0 and 1̄ replaed by 1. Clearly, S({ss}) = {ǫ}.

We next prove the ompleteness and minimality of Aπ.

Lemma 5.5 {s | S(L (M
{s}
π)) 6= ∅} = L (Aπ) (0+ 1)∗

Proof. We �rst prove LHS ⊆ RHS. Let the string s ∈ S(L (M
{s}
π)). Then by

Lemma 5.4, s ∈ S(L (M
{ǫ}
π) {s}). By Property 2, this also means that s ∈ S(C(L (M

{ǫ}
π)) {s}).

Sine strings in C(L (M
{ǫ}
π)) are of the form (0 + 1 + ∅ǫ)

∗(0̄ + 1̄))∗ (Property 1), this

means that there is a string p1 p2 suh that p1 ∈ (0 + 1 + ∅ǫ)
∗
and p2 ∈ (0̄ + 1̄)∗,

and S({p2}{s}) ⊆ (0 + 1)∗. Thus s an be split into two strings s1 and s2, suh that

S({p2} {s1}) = {ǫ}. Therefore s1 = p2. From the onstrution of Aπ we have p2 ∈ L (Aπ)

and s2 ∈ (0+ 1)∗. Thus, s ∈ L (Aπ) (0+ 1)∗.

Conversely, for the proof of RHS ⊆ LHS, we assume that a string s ∈ L (Aπ) (0+ 1)∗.

From the onstrution of Aπ we have strings p1, p2, s
′
suh that p1p2 ∈ C(L (M ǫ

π)),

p1 ∈ (0 + 1 + ∅ǫ)
∗
, p2 ∈ (0̄ + 1̄)∗, s is p2s

′
and s′ ∈ (0 + 1)∗. Thus, S(L (M

{s}
π)) =

S(L (M
{ǫ}
π {s})) = S(C(L (M

{ǫ}
π)){s}) = S({p1 p2 p2 s

′}) = {p1s
′}. Thus, S(L (M

{s}
π))

is non-empty and s ∈ LHS. �

We now prove our main result: Our sliing algorithm represented by inSlie (Algo-

rithm 9) returns true if and only if S(L (Aǫ
π) σ) is non-empty.

Theorem 5.6 The inremental sliing algorithm is sound i.e.

S(L (Mσ
π)) 6= ∅ ↔ inSlie(e, σ)

Proof. We �rst prove the forward impliation. Let s ∈ S(L (Mσ
π)). From Lemma 5.4,

s ∈ S(L (M ǫ
π) σ). From Property 2, s ∈ S(C(L (M ǫ

π)) σ). Thus, there are strings p1, p2

suh that p1 ∈ C(L (M ǫ
π)), p2 ∈ σ, s = S({p1p2}). Further p1 in turn an be deomposed

as p3p4 suh that p3 ∈ (0+1+∅ǫ)
∗
and p4 ∈ (0̄+ 1̄)∗. We also have S({p4p2}) ⊆ (0+1)∗.

Thus p4 is a pre�x of p2.

113

From the onstrution of Aπ, we know p4 ∈ L (Aπ). Further, p4 is a pre�x of p2 and

p2 ∈ σ, from the pre�x losed property of σ we have p4 ∈ σ. This implies Aπ ∩ σ 6= ∅ and

thus inSlie(e, σ) returns true.

Conversely, if inSlie(e, σ) is true, then ∃s : s ∈ L (Aπ) ∩ σ. In partiular, s ∈

L (Aπ). Thus, from Lemma 5.5 we have S(L (M
{s}
π)) 6= ∅. Further, sine s ∈ σ we have

S(L (Mσ
π)) 6= ∅. �

114

T

a

b

l

e

5

.

1

:

S

t

a

t

i

s

t

i

s

f

o

r

i

n

r

e

m

e

n

t

a

l

a

n

d

n

o

n

-

i

n

r

e

m

e

n

t

a

l

s

l

i

i

n

g

P

r

o

g

r

a

m

P

r

e

o

m

p

u

t

a

t

i

o

n

#

e

x

p

r

s

i

n

S

l

i

i

n

g

w

i

t

h

{ǫ
}

S

l

i

i

n

g

w

i

t

h

{ǫ
,0
}

S

l

i

i

n

g

w

i

t

h

{ǫ
,1
}

t

i

m

e

(

m

s

)

p

r

o

g

r

a

m

N

o

n

-

i

n

t

i

m

e

(

m

s

)

I

n

t

i

m

e

(

m

s

)

#

e

x

p

r

i

n

s

l

i

e

N

o

n

-

i

n

t

i

m

e

(

m

s

)

I

n

t

i

m

e

(

m

s

)

#

e

x

p

r

i

n

s

l

i

e

N

o

n

-

i

n

t

i

m

e

(

m

s

)

I

n

t

i

m

e

(

m

s

)

#

e

x

p

r

i

n

s

l

i

e

F

i

r

s

t

-

o

r

d

e

r

P

r

o

g

r

a

m

s

t

r

e

e

j

o

i

n

6

9

0

0

.

0

5

8

1

6

1

6

3

.

2

2

.

4

5

3

6

5

5

7

7

.

2

2

.

8

5

3

8

5

8

6

1

.

4

4

.

6

5

3

8

d

e

r

i

v

3

9

9

.

6

3

8

9

2

6

8

.

0

1

.

6

2

4

1

3

1

1

.

2

1

.

6

2

4

9

3

3

3

.

2

2

.

3

2

6

6

p

a

r

a

�

n

s

3

2

5

2

.

8

1

1

5

2

2

2

8

7

.

3

5

.

2

1

0

6

7

2

5

2

9

.

2

5

.

1

1

0

6

7

2

6

5

8

.

7

5

.

1

1

0

6

7

n

q

u

e

e

n

s

3

9

5

.

4

3

5

0

3

0

9

.

9

1

.

5

3

5

0

3

2

4

.

6

1

.

5

3

5

0

3

2

8

.

1

1

.

6

3

5

0

m

i

n

m

a

x

p

o

s

2

7

.

9

1

8

2

1

8

.

1

0

.

9

1

4

7

1

9

.

5

0

.

8

1

4

9

2

0

.

5

0

.

9

1

4

9

n

p

e

r

m

9

4

3

.

1

5

9

0

6

2

7

.

4

2

.

1

2

0

6

6

9

8

.

4

1

1

.

2

3

8

1

6

6

4

.

0

1

1

.

8

2

4

2

l

i

n

e

h

a

r

o

u

n

t

1

1

.

7

9

1

7

.

0

0

.

5

6

9

7

.

5

0

.

5

7

8

7

.

4

0

.

5

8

2

s

t

u

d

e

n

t

i

n

f

o

1

1

2

0

.

6

3

0

5

8

5

8

.

2

1

.

2

9

6

8

5

4

.

6

1

.

3

1

0

1

1

0

4

3

.

3

7

.

5

9

8

k

n

i

g

h

t

s

t

o

u

r

2

9

2

6

.

5

6

3

0

2

1

8

8

.

1

2

.

8

4

3

6

2

5

8

0

.

6

1

2

.

2

4

3

6

2

4

9

2

.

8

7

.

4

4

3

6

t

a

k

l

7

1

.

6

1

5

1

4

6

.

1

0

.

7

9

9

4

9

.

5

0

.

8

1

0

5

4

8

.

5

0

.

7

9

9

l

a

m

b

d

a

4

0

1

2

.

9

7

2

1

3

0

8

9

.

0

2

.

7

2

6

3

3

7

7

.

4

1

3

.

2

7

0

5

2

7

1

9

.

8

5

.

3

3

3

115

5.4 Experiments and results

In this setion, we present the results obtained from our implementation of the sliing

algorithm desribed. Sine sliing time and auray (number of expressions slied) are

not reported for other sliing methods, we implemented both an inremental slier and

a non-inremental slier and ompared the two. The non-inremental sliing part was

implemented as part of a BTP [86℄. The non-inremental version does not onstrut

ompleting automatons and hene needs to simplify automatons at eah program point

for every sliing riteria. Our experiments show that the inremental sliing algorithm

is e�ient when the overhead of reating the ompleting automata is amortized over the

omputation of a number of slies with di�erent riteria.

For eah sliing riteria, we ompare the times for inremental step and omputed

non-inremental sliing. The results in Table 5.1 show that for all benhmarks the time

required to ompute the ompleting automatons is less than twie the time for sliing

non-inrementally. The results on�rm our hypothesis that inremental sliing is orders

of magnitude faster than non-inremental sliing.

5.5 Stati sliing of higher-order programs

We now desribe a method using whih our dependene analysis an be extended to

handle higher-order programs. We ahieve this by �rst onverting the input higher-order

program to its equivalent �rst-order program by a proess alled �rsti�ation [60℄. During

the �rsti�ation proess we maintain a mapping between the original program and the

�rsti�ed program. We perform dependene analysis on the �rsti�ed program and obtain

the results. Using the mapping generated during the �rsti�ation proess, we transfer the

demands generated on the �rsti�ed program to the original program. We desribe this

method with an example for extending our stati sliing algorithm to handle higher-order

programs.

We now desribe, using an example, how our method an be extended to handle

sliing of higher order programs. While this is work in progress, our desription will make

it lear that the extension is implementable. Our example for this setion will be the

program in Figure 5.6a. It ontains a higher order funtion hof whih takes a funtion f

and a seond argument lst and applies f to lst. The funtion main reates a list lst1

116

(define (hof f lst) (return π:(f lst)))

(define (foldr f id lst)

(if(null? lst)) (return id)

(return (f (car lst) (foldr f id (cdr lst)))))

(define (fun x y) (return (+ y 1)))

(define (main)

(let lst1 ← (cons a (cons b nil)) in

(let g ← (foldr fun 0) in

(return (cons (hof car lst1) (hof g lst1)))))

(main)

(a) A program with higher order funtions.

(define (hof_g l) (return πf :(foldr_fun 0 l)))

(define (hof_car lst) (return πc:(car lst)))

(define (foldr_fun id lst)

(if(null? lst)) (return id)

(return (fun (car lst) (foldr_fun id (cdr lst)))))

(define (fun x y) (return (+ y 1)))

(define (main)

(let lst1 ← (cons a (cons b nil)) in

(let g ← (foldr_fun 0) in

(return (cons (hof_car lst1) (hof_g lst1))))))

(main)

(b) Program after speialization.

(define (hof f lst) (return π:(f lst)))

(define (main)

(let lst1 ← (cons a �) in

(let g ← �) in

(return (cons (hof car lst1) �))))

(main)

() Slie of program in (a) with sliing riterion {ǫ,0}.

Figure 5.6: An example higher order program

117

and a funtion value through a partial appliation and binds it to g. It makes two alls

to hof . The �rst all to hof uses car and lst1 as arguments and the seond all uses

the built-in funtion even and (g lst1) as arguments. Finally, main returns a cons ell

reated from the result of these alls.

We �rst disuss how demands are propagated from a all to its arguments in the

ase of a higher-order funtion. Observe that in Figure 5.6a the demands on the seond

argument to hof depends not only on the demand on hof but also on the funtion being

passed as an argument to hof . To handle this, we speialize hof using the funtion

argument in a manner similar to [60℄. We reate two speialized versions hof_car and

hof_g orresponding to the two alls. The speialized program for our example is shown

in Figure 5.6b.

We an now �nd out the demands on eah expression of the speialized program

using our dependene analysis. Moreover, the separation of the two alls to hof through

speialization adds preision to the analysis. In the speialized program, the demands on

the arguments lst1 and (g lst1) now ome separately from hof_car and hof_g and

are not merged.

The body of hof , on the other hand, gets its demand from both the speialized

alls. Hene, we maintain a mapping from eah higher order funtion to all its �rst order

variants. One the demands for all the �rst order funtions are omputed, this mapping is

used to ompute the demands for the body of the higher order funtion. In the example,

we maintain the mapping π 7→ {πc, πf}. The demand on π is given by the union of the

demands on πc and πf .

Even after speialization, partial appliations, suh as (foldr_fun 0), may remain

in the residual program. Whenever a funtional value is reated via partial applia-

tion it needs to maintain information about the �rst order base funtion using whih

the funtional value gets reated. As an example, to ompute the demand on lst1 in

the speialized program, it is neessary to know that foldr_fun is the base for g and

lst1 is the seond argument to foldr_fun. The demand on the e�etive �rst order all

(foldr_fun 0 lst1) is obtained from the demand on (g lst1).

The atual proess of sliing remains same. At eah program point in the higher order

funtion we store the ompleting automaton and whenever a sliing riterion is applied we

just hek for the intersetion. For our example, given a sliing riterion {ǫ, 0}, the slied

118

program is shown in Figure 5.6. The speialization enables omputation of ontext-

independent-summaries, even in the presene of higher order funtions. As a result, the

cdr part of lst1 gets slied away.

5.5.1 Limitations

Note that our simple �rsti�er requires us to statially �nd all bindings of a funtional

parameter. This is not possible if we allow funtions to be returned as results or store

funtions in data-strutures. As an example we an onsider a funtion f , that, depending

on a alulated value n, returns a funtion g iterated n times (i.e. g ◦ g ◦ n times. . . ◦ g). A

higher-order funtion reeiving this value as a parameter annot be speialized using

the tehniques desribed, for example, in [60℄. A similar situation an show if we allow

funtions in lists.

5.6 Related work

Most of the e�orts in sliing have been for imperative programs. The surveys [16, 92, 97℄

give good overviews of the variants of the sliing problem and their solution tehniques.

In the ontext of imperative programs, a sliing riterion is a pair onsisting of a program

point, and a set of variables. The sliing problem is to determine those parts of the

program that deide the values of the variables at the program point [103℄. A natural

solution to the sliing problem is through the use of data and ontrol dependenes between

statements. Thus the program to be slied is transformed into a graph alled the program

dependene graph (PDG) [39, 72℄, in whih nodes represent individual statements and

edges represent dependenes between them. The slie onsists of the nodes in the PDG

that are reahable through a bakward traversal starting from the node representing the

sliing riterion. Horwitz, Reps and Binkley [39℄ extend PDGs to handle interproedural

sliing. They show that a naive extension ould lead to impreision in the omputed

slie due to the inorret traking of the alling ontext. Their solution is to onstrut a

ontext-independent summary of eah funtion through a linkage grammar, and then use

this summary to proess funtion alls. The resulting graph is alled a system dependene

graph (SDG). Our method generalizes SDGs to additionally keep trak of the onstrution

of algebrai data types (cons), seletion of omponents of data types (car and cdr) and

119

their interations (the cons-car and cons-cdr anellations), whih may span aross

funtion boundaries.

Silva, Tamarit and Tomás [93℄ adapt SDGs for funtional languages, in partiular

Erlang. The adaptation is straightforward exept that they handle dependenes that

arise out of pattern mathing. Beause of the use of SDGs, they an manage alling

ontexts preisely. However, as pointed out by the authors themselves, when given the

Erlang program: {main() -> x = {1,2}, {y,z} = x, y}, their method produes the im-

preise slie {main() -> x = {1,2}, {y,�} = x, y} when slied on the variable y.

Notie that the slie retains the onstant 2, and this is beause of inadequate han-

dling of the interation between cons and cdr. For the equivalent program (let x←

(cons 1 2) in (let y ← (car x) in y)) with the sliing riterion ǫ, our method would

orretly ompute the demand on the onstant 2 as 1̄(ǫ∪0). This simpli�es to the demand

∅, and 2 would thus not be in the slie. Another issue is that while the paper mentions

the need to handle higher order funtions, it does not provide details regarding how this

is atually done. This would have been interesting, given that the language onsidered

allows lambda expressions.

The sliing tehnique that is losest to ours is due to Reps and Turnidge [79℄. They

use projetion funtions, represented as tree grammars, as sliing riteria. Given a pro-

gram P and a projetion funtion ψ, their goal is to produe a program whih behaves

like ψ ◦ P. Their analysis onsists of propagating the projetion funtion bakwards to

all subexpressions of the program. After propagation, any expression with the proje-

tion funtion ⊥ (orresponding to our ∅ demand), is slied out of the program. Liu and

Stoller [57℄ use a similar method for dead ode analysis and elimination. As shown earlier,

our sliing algorithm subsumes dead ode elimination.

These tehniques di�er from ours in two respets. These methods, unlike ours, do

not derive ontext-independent summaries of funtions. This results in a loss of infor-

mation due to merging of ontexts and a�ets the preision of the slie. As mentioned

earlier, the omputation of funtion summaries using symboli demands enables the in-

remental version of our sliing method. Consider, as an example, the program fragment

π: (cons π1: x π2: y) representing the body of a funtion. Dependene analysis with the

symboli demand σ gives the demand environment {π 7→ σ, π1 7→ 0̄σ, π2 7→ 1̄σ}. Notie

that the demands π1 and π2 are in terms of the symbols 0̄ and 1̄. This is a result of

120

our deision to work with symboli demands. If we now slie with the default riterion

ǫ and then anonialize (instead of simplify), we are left with the demand environment

{π 7→ ǫ, π1 7→ 0̄, π2 7→ 1̄}. There is enough information in the demand environment to

dedue that π1 (π2) will be in the slie only if the sliing riterion inludes 0(1). Sine

the methods in [79℄ and [57℄ deal with demands in their onrete forms, it is di�ult to

see the inremental version being replayed with their methods.

There are other less related approahes to sliing. A graph based approah has

also been used by Rodrigues and Barbosa [80℄ for omponent identi�ation in Haskell

programs. Given the intended use, the nodes of the graph represents oarser strutures

suh as modules, funtions and data type de�nitions, and the edges represents relations

suh as ontainment (e.g. a module ontaining a funtion de�nition). On a ompletely

di�erent note, Rodrigues and Barbosa [81℄ use program alulation in the Bird-Meerteens

formalism for obtaining a slie. Given a program P and a projetion funtion ψ, they

alulate a program whih is equivalent to ψ ◦P. However the method is not automated.

Finally, dynami sliing tehniques have been explored for funtional programs by Perera

et al. [73℄, Ohoa et al. [67℄ and Biswas [17℄.

121

122

Chapter 6

Conlusions and future work

In this thesis we have de�ned a dependene analysis that is ontext-sensitive and takes into

aount struture transmitted data dependenes, i.e. dependenes arising from seletor-

onstrutor anellation rules. We provide a formal de�nition of dependene analysis

using an operational semantis alled Demand Guided Semantis (DGS). In addition

to the normal exeution state transitions, DGS also spei�es how demand on (main)

propagates to onstituent sub-expressions of the program. While this has been proved

by Reps [78℄ in a di�erent setting, we independently prove that omputing fully preise

dependene information as formulated in this thesis is undeidable. Reps shows that

ontext-sensitivity and struture transmitted dependene an be modelled as ontext-free

grammars individually. Modelling both at the same time is equivalent to �nding out

whether the intersetion of two CFGs is empty, whih is known to be undeidable.

Based on our formulation of dependene analysis, we ome up with an algorithm

that omputes an over-approximation of dependenes. We believe our analysis to be

more preise than [79℄, whih is not ontext-sensitive, and [93℄ whih is ontext-sensitive

but does not preisely model onstrutor-seletor anellation. The analysis de�ned in

this thesis is more preise beause instead of sari�ing either ontext-sensitivity or preise

modelling of struture transmitted data dependene, we over approximate the ontext-

sensitivity by a regular grammar instead of a CFG. Sine the emptiness question for an

intersetion of regular grammar and a CFG is known to be deidable [64℄ our analysis

aptures ontext-sensitivity preisely when the grammar is already regular and only over

approximates if it is a CFG. We show that the approximate dependene analysis is sound

with respet to DGS.

123

We show the usefulness of dependene analysis in two appliations, namely, liveness-

based garbage olletion in lazy languages and stati program sliing. While liveness-

based garbage olletion has been shown to be e�etive in eager languages [12℄, this is

the �rst attempt to handle lazy languages. Sine it is di�ult to determine exatly when

an expression will be evaluated in a lazy language, deiding when to delare a variable

dead beomes di�ult. This is further aggravated by the fat that lazy onstrutors arry

referenes to free variables in losures (whih we all losure variables) outside the sope in

whih the variables were delared. This fores the following design deisions with respet

to liveness analysis, 1) We introdue the notion of losure variables and treat them as

�rst-lass itizens from the perspetive of garbage olletion by extending the root set

(variables on the program stak) to inlude losure variables and 2) We arry liveness of

losure variables as part of the losure. The design of the garbage olletor also beomes

more omplex as the olletor has to deal with unevaluated expressions (losures) along

with data values. We have proved the orretness of the liveness-based garbage olletion

sheme for a lazy language.

We model sliing as a dependene analysis problem by viewing the sliing riterion

(a set of strings over (0 + 1)∗) as a demand on the main expression (main) and use it

to ompute the demand on eah expression in the program. Any expression whih gets

a ∅ demand an then be slied away. Sine appliations suh as program speialization

and parallelization require the same program to be slied with more than one sliing

riteria. We propose an e�ient way of sliing alled inremental sliing. The inremental

algorithm avoids repeated omputations of dependenes by a one time preomputation

that omputes for every expression all sliing riteria that keep the expression in the

slie. The interesting fat is that suh a set an be e�iently omputed and is related to

our deision of omputing funtion summaries in terms of symboli demands. Sine the

same program is slied multiple times, the ost of the preomputation step gets amortized

whenever the program is slied with a di�erent riterion.

6.1 Future work

The work presented in this thesis an be extended in multiple ways. In the formulation of

dependene analysis problem proposed in Chapter 2, the designated expression on whih

124

∅

ǫ

1 0

1∗

(0+ 1)∗

Figure 6.1: Lattie of demands

the user plaes the external demand is always (main). However, one may relax this

restrition and an arbitrary expression ê an be hosen as the designated expression on

whih the user plaes the demand σ̂. This is very similar to the way the problem is posed

for imperative languages. To handle this situation, we introdue the following rules that

determine the demand on the body of eah funtion in the program.

1. The demand on the main expression (main) is ∅.

2. The demand on a funtion body ef is the union of demand over all alls to f . As a

onsequene, the demand on emain is also ∅.

3. The demand propagation on the designated expression is arried out using D̂ instead of

D. These funtions "injet" a demand of σ̂ over the demand that reahes the designated

expression. Formally:

D̂(ŝ, σ,DS) = D(ŝ, σ ∪ σ̂,DS)

Notie that our earlier formulation is a speial ase of the rules above when the

designated expression is (main).

6.1.1 Liveness-based garbage olletion

Although liveness-based garbage olletion is e�ient in olleting more garbage per ol-

letion than reahability-based olletors, the total time spent in doing garbage olletion

for liveness-based olletors does not ompare favourably with reahability-based olle-

tors. As mentioned in Setion 4.4.3 and [12℄, this is mainly due to liveness-based olletors

125

(define (append x y)

(if (eq? x nil)

(return y)

(let a ← (cdr x) in

(let b ← (append a y) in

(let u ← (car x) in

(let w ← (cons u b) in

(return w))))))

(append x y) x y

∅ ∅ ∅

ǫ ǫ ǫ

0 0 0

1 1∗ 1

1∗ 1∗ 1∗

(0+ 1)∗ (0+ 1)∗ (0+ 1)∗

Figure 6.2: Funtion append and its funtion-summary table.

traversing the same memory loations multiple times where a reahability-based olletor

would do a single traversal. For liveness-based garbage olletion sheme to beome main-

stream, the e�ieny of the analysis and the garbage olletor itself have to be improved.

Another drawbak of liveness-based olletors is the extra memory required for storing

liveness automata. We disuss some ideas to mitigate these drawbaks.

Improve performane of liveness-based garbage olletor

Our experiments with liveness-based garbage olletion suggest that most programs do

not require the kind of preise liveness generated by our analysis. Su�ient gains an

be made over a reahability-based olletor even when we restrit our liveness values to

a small set of liveness values. We borrow ideas from stritness analysis and restrit the

possible liveness values to a �nite set of patterns. By sari�ing some preision, both the

analysis and the proess of garbage olletion itself an be made faster. Figure 6.1 shows

the lattie of allowed liveness values in our analysis. The input and output values an

only be one among the values represented in the lattie. While we desribe our method

for a lazy �rst-order language, the same is appliable to eager languages.

Consider the example shown in Figure 6.2, we show how to ompute the demand

transformer for the funtion append with the restrited set of demands. Sine we are

dealing with a �nite set of demands only, omputing ontext-independent summaries

beomes simpler. We take eah demand in the �nite set and use it as a onrete demand

on the funtion body and do a �xed-point omputation to obtain the demand transformer.

The �xed-point omputation an be done as shown by the example in Figure 6.3. Assume

that we need to ompute the demand transformer DS
1
append, we �rst assume that the

126

Iteration # Assumed value for DS
1
append ∅ǫσ ∪ 1DS

1
append(1̄σ) ∪ 00̄σ

0

∅ 7→ ∅

ǫ 7→ ∅

0 7→ ∅

1 7→ ∅

1∗ 7→ ∅

(0+ 1)∗ 7→ ∅

∅ 7→ ∅

ǫ 7→ ǫ

0 7→ (0+ 1)∗

1 7→ ǫ

1∗ 7→ ǫ

(0+ 1)∗ 7→ (0+ 1)∗

1

∅ 7→ ∅

ǫ 7→ ǫ

0 7→ (0+ 1)∗

1 7→ ǫ

1∗ 7→ ǫ

(0+ 1)∗ 7→ (0+ 1)∗

∅ 7→ ∅

ǫ 7→ ǫ

0 7→ (0+ 1)∗

1 7→ 1∗

1∗ 7→ 1∗

(0+ 1)∗ 7→ (0+ 1)∗

2

∅ 7→ ∅

ǫ 7→ ǫ

0 7→ (0+ 1)∗

1 7→ 1∗

1∗ 7→ 1∗

(0+ 1)∗ 7→ (0+ 1)∗

∅ 7→ ∅

ǫ 7→ ǫ

0 7→ (0+ 1)∗

1 7→ 1∗

1∗ 7→ 1∗

(0+ 1)∗ 7→ (0+ 1)∗

Figure 6.3: Table showing the �xed-point omputation for omputing the demand trans-

former for x, the �rst argument of append. In eah iteration, the assumed value is

substituted in the equation in the third olumn to get the atual demand on x.

demand transformer takes any demand and returns ∅. Using this we ompute the demand

on x whih is given by the equation,

DS
1
append(σ) = ∅ǫσ ∪ 1DS

1
append(1̄σ) ∪ 00̄σ

Using the assumed funtion for DS
1
append in the RHS, we get our next approximation. For

example, for the demand 1∗
, we get DS

1
append(1

∗) = {ǫ}. We use the new set of mappings

to get the next approximation where again some values get updated. Considering the

same input demand 1∗
as before, the new mapping is DS

1
append(1

∗) = {ǫ} ∪ {1}. Sine,

this value is not part of the �nite liveness values being onsidered we replae it with a

127

value in the lattie whih ontains both {ǫ} and {1} i.e. 1∗
. Repeating the proess one

more, we �nd that there are no more hanges in the mapping. We stop the iteration as

we have reahed a �xed-point. The mapping obtained at the end of the iteration is the

required demand transformer DS
1
append.

Working with a �nite set of liveness values avoids the simpli�ation/erasure proess

and thus improves the e�ieny of omputing liveness automata. Whenever we enounter

a funtion all with demand σ, we look-up the table orresponding to the funtion and use

the argument demands orresponding to σ. Another fator whih makes liveness-based

olletion slow is the need for onsulting liveness automata at eah step during garbage

olletion. By using a �nite set of liveness values we an hardode the proessing for eah

liveness value in the garbage olletor. The garbage olletor an then just hek the

liveness value assoiated with the root variable and all the speialized ode for handling

that liveness value. This not only saves time but also memory by avoiding the storing of

liveness automata ompletely. Liveness values now an be embedded inside the heap ell

itself as an enum.

Finally, sine the �xed set of values form a lattie, whenever a heap ell has been

visited with a value whih ontains the inoming value we an avoid traversing the heap

again. For example, if it is known that a referene has been traversed using the liveness

value (0+1)∗, then if the same root ell is being traversed with the value 1∗
the repeated

traversal an be avoided.

In ase of a lazy language we an further take advantage by reduing the extra

memory required for storing liveness automata referenes for losure arguments. Eah

losure need only store an enumeration orresponding to the liveness value of eah of its

argument.

Extending demand propagation to higher order programs

Our urrent way of handling higher-order programs requires the program to be onverted

to a �rst-order program. This an be avoided if we have an analysis whih an handle

higher-order programs. By restriting the demands to a �nite set, we an extend our

analysis to handle higher-order programs.

In the ase of a higher-order funtion, the demand on the non-funtional argument

an depend on the funtional argument. The �rst step in determining the demand on

128

(define (foldr f id lst)

(if(null? lst)) (return id)

(return (f (car lst)

(foldr f

id (cdr lst)))))

(a)

∅ → ∅
ǫ→ ∅

∅ → ∅
ǫ→ ǫ

∅ → ǫ
ǫ→ ǫ

(b)

Demand on all to foldr Demand on id Demand on lst

∅ ∅ ∅

{ǫ} {ǫ} 1∗

()

Figure 6.4: (a) De�nition of foldr (b) Potential demand transformers for the �rst ar-

gument of f when f is restrited to funtions that take integer arguments and return

an integer. () Funtion summary table orresponding to foldr when foldr is used to

ompute length of lst.

the non-funtional argument is to �nd out all potential demand transformers for the

higher-order argument and use them to reate a table.

Consider the higher-order funtion foldr in Figure 6.4(a). Restriting the argu-

ment f to funtions whih take integer values and return an integer we an generate the

summaries for funtions that ould be passed to foldr. Figure 6.4(b) lists the possible

funtion summaries for the �rst argument of f . Sine f takes two arguments, and the

seond argument also has similar potential transformers, onsidering all possible ombi-

nations we will have 9 potential funtion-summaries for f . One all the possible funtion

summaries have been generated, we generate the funtion summary for foldr onsidering

eah possible funtion summary for f . During analysis when a higher-order funtion all

is enountered, we an use the summary for the atual funtion being passed and ompute

the demands on the arguments of foldr. As an example, onsider the implementation of

length funtion using foldr, given as (foldr (a b (+ 1 b) 0 xs). The anonymous funtion

passed has demand-transformer whih maps both demands ∅ and {ǫ} to ∅ for its �rst

argument and the transformer for the seond argument maps ∅ to ∅ and {ǫ} to {ǫ}. The

129

funtion summary table for foldr for this funtion is shown in Figure 6.4(). Sine, the

passed funtion never uses its �rst argument, the demand on the elements of xs is always

∅. Thus, the demand transformer orresponding to xs transforms an {ǫ} demand on a

all to foldr into a 1∗
demand on xs.

Further, demand on the funtional argument has to be added to the demand-

summary of the atual funtion being passed. Demands on the expressions inside the

body of foldr are omputed as usual by onsidering the union of demands at all all

points. The major hallenge in using this method is to handle the huge number of poten-

tial demand transformers that needs to be onsidered for eah higher-order funtion.

Hybrid GC - (reahability and liveness)

Another way to improve the e�etiveness of garbage olletion is to have a hybrid garbage

olletor whih an invoke either reahability or liveness-based olletor. The intuition

behind this idea is that running a slow liveness-based olletion is justi�ed only if there

are su�iently large number of reahable but dead ells. Therefore, we invoke a liveness-

based olletor one after every k invoations of a fast reahability-based olletor. Over

several runs of a reahability-based olletor su�ient memory whih is reahable but

not live gets aumulated and hene running a liveness-based olletor will give su�ient

advantage. The ost of invoking a liveness-based olletor is thus amortized over several

alls of a reahability-based olletor. However, are has to be taken to ensure that after

a liveness-based olletion, any referenes whih point to the dead part of the heap are

orretly nulli�ed.

k-Liveness GC

This is an extension of the idea due to Agesen [6℄ whih just tests for the liveness of root

variables in Java. Instead of heking liveness of just the root variable, we use liveness

upto k levels. Beyond k levels everything that is reahable is opied. We an avoid

repeated traversals by maintaining an extra bit in eah heap ell whih an be set if it

was opied using reahability. During a traversal, if this bit is set the olletor need not

traverse the substruture. The only drawbak in this approah is that even for ommon

funtions like length whih only traverses the spine of its argument, a k-liveness olletor

ould end up opying extra ells.

130

(define (repeatN lst)

(if (eq? (cdr lst) 0)

()

(cons (car lst)

(repeatN (cons (car lst)

(- (cdr lst) 1))))))

(let x ← (cons 5 6) in

(let y ← (repeatN x) in

(cons (sum y)

(length y))))

Figure 6.5: Motivating example for forward demand propagation. If we take a forward

slie with respet to car part of x it an be seen that the expression (length y) an be

slied.

6.1.2 Forward sliing using demand propagation

The dependene analysis de�ned in this thesis is a bakward analysis i.e. it takes a

demand on the result of an expression and omputes the demand on the arguments of

the expression. This allowed us to use the result of the analysis to solve problems suh

as omputing liveness and bakward sliing. There are appliations whih an bene�t

from an analysis whih takes demands on the arguments of an expression and omputes

demands on the output of the expression i.e. a forward analysis. A forward version of

our dependene analysis would be a good extension. The example in Figure 6.5 shows

how forward analysis is useful. In the example, let us assume that we are interested in

knowing what parts of the �nal output might be a�eted when we modify the value of the

car part of x(5). We an take a forward slie of the program with respet to the car part

of x. The forward slie thus obtained will not ontain the cdr part of the �nal output.

This is intuitive, as the length of the list produed by the funtion repeatN depends only

on the cdr part of x.

131

132

Bibliography

[1℄ Program slie browser. In Proeedings of the 9th International Workshop on Program

Comprehension (Washington, DC, USA, 2001), IWPC '01, IEEE Computer Soiety,

pp. 50�.

[2℄ An arti�ial garbage olletion benhmark. http://www.hboehm.info/g/g_

benh.html, Nov 2015. (Last Aessed).

[3℄ Hu�man enoding trees. https://mitpress.mit.edu/sip/full-text/sip/

book/node41.html, Nov 2015. (Last Aessed).

[4℄ PLT Sheme Benhmark Suite. http://svn.plt-sheme.org/plt/trunk/

ollets/tests/, Nov 2015. (Last aessed).

[5℄ Agesen, O., Detlefs, D., and Moss, J. E. Garbage olletion and loal variable

type-preision and liveness in java virtual mahines. SIGPLAN Not. 33, 5 (May

1998), 269�279.

[6℄ Agesen, O., Detlefs, D., and Moss, J. E. Garbage olletion and loal variable

type-preision and liveness in Java virtual mahines. In PLDI (1998).

[7℄ Allen, F. E. Control �ow analysis. In Proeedings of a Symposium on Compiler

Optimization (New York, NY, USA, 1970), ACM, pp. 1�19.

[8℄ Allen, F. E. A basis for program optimization. In IFIP Congress (1) (1971),

pp. 385�390.

[9℄ Andersen, L. O. Program analysis and speialization for the programming

language. Teh. rep., 1994.

133

http://www.hboehm.info/gc/gc_bench.html
http://www.hboehm.info/gc/gc_bench.html
https://mitpress.mit.edu/sicp/full-text/sicp/book/node41.html
https://mitpress.mit.edu/sicp/full-text/sicp/book/node41.html
http://svn.plt-scheme.org/plt/trunk/collects/tests/
http://svn.plt-scheme.org/plt/trunk/collects/tests/

[10℄ ANIELLO, C., DE, L. A., and MALCOLM, M. A spei�ation driven sli-

ing proess for identifying reusable funtions. Journal of Software Maintenane:

Researh and Pratie 8, 3, 145�178.

[11℄ Appel, A. W. Compiling with Continuations. Cambridge University Press, New

York, NY, USA, 2007.

[12℄ Asati, R., Sanyal, A., Karkare, A., and Myroft, A. Liveness-based

garbage olletion. In Compiler Constrution - 23rd International Conferene, CC

2014.

[13℄ Bek, J., and Eihmann, D. Program and interfae sliing for reverse engineer-

ing. In Proeedings of the 15th International Conferene on Software Engineering

(Los Alamitos, CA, USA, 1993), ICSE '93, IEEE Computer Soiety Press, pp. 509�

518.

[14℄ Bieman, J. M., and Ott, L. M. Measuring funtional ohesion. IEEE Transa-

tions on Software Engineering 20 (1994), 644�657.

[15℄ Binkley, D. The appliation of program sliing to regression testing. In Infor-

mation and Software Tehnology Speial Issue on Program Sliing (1999), Elsevier,

pp. 583�594.

[16℄ Binkley, D., and Harman, M. A survey of empirial results on program sliing.

Advanes in Computers 62 (2004).

[17℄ Biswas, S. K. Dynami Sliing in Higher-order Programming Languages. PhD

thesis, University of Pennsylvania, Philadelphia, PA, USA, 1997.

[18℄ Canfora, G., Cimitile, A., Luia, A. D., and Lua, G. A. D. Deomposing

legay programs: a �rst step towards migrating to lient-server platforms. Journal

of Systems and Software 54, 2 (2000), 99�110.

[19℄ Canfora, G., De Luia, A., Di Lua, G., and Fasolino, A. Sliing large

programs to isolate reusable funtions, 10 1994.

[20℄ Cheney, C. J. A nonreursive list ompating algorithm. Commun. ACM 13, 11

(Nov. 1970), 677�678.

134

[21℄ Chitil, O. Type inferene builds a short ut to deforestation. In ICFP (1999).

[22℄ Cimitile, A., Luia, A. D., and Munro, M. Identifying reusable funtions using

spei�ation driven program sliing: a ase study. In Proeedings of the International

Conferene on Software Maintenane, ICSM 1995, Opio (Nie), Frane, Otober

17-20, 1995 (1995), pp. 124�133.

[23℄ Clinger, W. D. Proper tail reursion and spae e�ieny. SIGPLAN Not. 33, 5.

[24℄ Emami, M., Ghiya, R., and Hendren, L. J. Context-sensitive interproedural

points-to analysis in the presene of funtion pointers. In Proeedings of the ACM

SIGPLAN 1994 Conferene on Programming Language Design and Implementation

(New York, NY, USA, 1994), PLDI '94, ACM, pp. 242�256.

[25℄ Fairbairn, J., and Wray, S. Funtional Programming Languages and Computer

Arhiteture: Portland, Oregon, USA, September 14�16, 1987 Proeedings. Springer

Berlin Heidelberg, 1987, h. Tim: A simple, lazy abstrat mahine to exeute su-

perombinators, pp. 34�45.

[26℄ Fenihel, R. R., and Yohelson, J. C. A lisp garbage-olletor for virtual-

memory omputer systems. Commun. ACM 12, 11 (Nov. 1969), 611�612.

[27℄ Ferrante, J., Ottenstein, K. J., and Warren, J. D. The program depen-

dene graph and its use in optimization. Springer Berlin Heidelberg, 1984, pp. 125�

132.

[28℄ Gharat, P. M., Khedker, U. P., and Myroft, A. Flow- and ontext-

sensitive points-to analysis using generalized points-to graphs. In Stati Analysis -

23rd International Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016,

Proeedings (2016), pp. 212�236.

[29℄ Gill, A., Launhbury, J., and Peyton-Jones, S. L. A short ut to deforesta-

tion. In FPCA (1993).

[30℄ Gupta, R., Jean, M., Harrold, M. J., and Soffa, M. L. An approah to

regression testing using sliing. In In Proeedings of the Conferene on Software

Maintenane (1992), IEEE Computer Soiety Press, pp. 299�308.

135

[31℄ Hamilton, G. W. Compile-time garbage olletion for lazy funtional languages.

In IWMM (1995).

[32℄ Harman, M., and Danii, S. Using program sliing to simplify testing.

[33℄ Harrold, M. J., and Soffa, M. L. Interproedual data �ow testing. In Proeed-

ings of the ACM SIGSOFT '89 Third Symposium on Software Testing, Analysis,

and Veri�ation (New York, NY, USA, 1989), TAV3, ACM, pp. 158�167.

[34℄ Hindley, R. The prinipal type-sheme of an objet in ombinatory logi. Trans-

ations of the Amerian Mathematial Soiety 146 (1969), 29�60.

[35℄ Hirzel, M., Diwan, A., and Henkel, J. On the usefulness of type and liveness

auray for garbage olletion and leak detetion. TOPLAS (2002).

[36℄ Hofmann, M., and Jost, S. Stati predition of heap spae usage for �rst-order

funtional programs. In POPL (2003).

[37℄ Horwitz, S., Prins, J., and Reps, T. Integrating noninterfering versions of

programs. ACM Trans. Program. Lang. Syst. 11, 3 (July 1989), 345�387.

[38℄ Horwitz, S., Reps, T., and Binkley, D. Interproedural sliing using depen-

dene graphs. In Proeedings of the ACM SIGPLAN 1988 Conferene on Program-

ming Language Design and Implementation (1988), PLDI '88.

[39℄ Horwitz, S., Reps, T. W., and Binkley, D. Interproedural sliing using

dependene graphs. In Proeedings of the ACM SIGPLAN'88 Conferene on Pro-

gramming Language Design and Implementation (PLDI) 1988.

[40℄ Hunt, S., and Sands, D. Binding time analysis: A new perspetive. In

Proeedings of the 1991 ACM SIGPLAN Symposium on Partial Evaluation and

Semantis-based Program Manipulation (New York, NY, USA, 1991), PEPM '91,

ACM, pp. 154�165.

[41℄ Inoue, K., Seki, H., and Yagi, H. Analysis of funtional programs to detet

run-time garbage ells. TOPLAS (1988).

136

[42℄ Kanade, A., Khedker, U., and Sanyal, A. Heterogeneous �xed points with

appliation to points-to analysis. In Proeedings of the Third Asian Conferene

on Programming Languages and Systems (Berlin, Heidelberg, 2005), APLAS'05,

Springer-Verlag, pp. 298�314.

[43℄ Kang, B.-K., and Bieman, J. M. Using design abstrations to visualize, quantify,

and restruture software. J. Syst. Softw. 42, 2 (Aug. 1998), 175�187.

[44℄ Karkare, A., Khedker, U., and Sanyal, A. Liveness of heap data for fun-

tional programs. In Heap Analysis and Veri�ation, HAV 2007 (2007).

[45℄ Karkare, A., Sanyal, A., and Khedker, U. E�etiveness of garbage olletion

in MIT/GNU Sheme.

[46℄ Kennedy, K. A global �ow analysis algorithm. International Journal of Computer

Mathematis 3, 1-4 (1972), 5�15.

[47℄ Kennedy, K. W. Node listings applied to data �ow analysis. In Proeedings

of the 2Nd ACM SIGACT-SIGPLAN Symposium on Priniples of Programming

Languages (New York, NY, USA, 1975), POPL '75, ACM, pp. 10�21.

[48℄ Khedker, U. P., Myroft, A., and Rawat, P. S. Liveness-based pointer

analysis. In Stati Analysis - 19th International Symposium, SAS 2012, Deauville,

Frane, September 11-13, 2012. Proeedings (2012), pp. 265�282.

[49℄ Khedker, U. P., Sanyal, A., and Karkare, A. Heap referene analysis using

aess graphs. TOPLAS (2007).

[50℄ Krinke, J., and Snelting, G. Validation of measurement software as an appli-

ation of sliing and onstraint solving1a preliminary version of parts of this artile

appeared in the proeedings of the third stati analysis symposium [16℄.1. Informa-

tion and Software Tehnology 40, 11 (1998), 661 � 675.

[51℄ Lakhotia, A., and hristophe Deprez, J. Restruturing programs by tuking

statements into funtions, 1999.

[52℄ Landi, W., and Ryder, B. G. A safe approximate algorithm for interproedural

aliasing. In Proeedings of the ACM SIGPLAN 1992 Conferene on Programming

137

Language Design and Implementation (New York, NY, USA, 1992), PLDI '92, ACM,

pp. 235�248.

[53℄ Landi, W., Ryder, B. G., and Zhang, S. Interproedural modi�ation side

e�et analysis with pointer aliasing. In Proeedings of the ACM SIGPLAN 1993

Conferene on Programming Language Design and Implementation (New York, NY,

USA, 1993), PLDI '93, ACM, pp. 56�67.

[54℄ Lanubile, F., and Visaggio, G. Extrating reusable funtions by �ow graph-

based program sliing. IEEE Trans. Softw. Eng. 23, 4 (Apr. 1997), 246�259.

[55℄ Lee, O., Yang, H., and Yi, K. Inserting safe memory reuse ommands into

ML-like programs. In SAS (2003).

[56℄ Lee, O., Yang, H., and Yi, K. Stati insertion of safe and e�etive memory reuse

ommands into ML-like programs. Siene of Computer Programming (2005).

[57℄ Liu, Y. A., and Stoller, S. D. Eliminating dead ode on reursive data. Si.

Comput. Program. 47 (2003).

[58℄ Lyle, J. R., and Weiser, M. Automati Program Bug Loation by Program

Sliing. In 2nd International Conferene on Computers and Appliations (Peking,

1987), IEEE Computer Soiety Press, Los Alamitos, California, USA, pp. 877�882.

[59℄ Milner, R. A theory of type polymorphism in programming. Journal of Computer

and System Sienes 17, 3 (1978), 348 � 375.

[60℄ Mithell, N., and Runiman, C. Losing funtions without gaining data: An-

other look at defuntionalisation. In Proeedings of the 2nd ACM SIGPLAN Sym-

posium on Haskell (2009).

[61℄ Mogensen, T. A. Binding time analysis for polymorphially typed higher order

languages. In Proeedings of the International Joint Conferene on Theory and

Pratie of Software Development, Volume 2: Advaned Seminar on Foundations

of Innovative Software Development II and Colloquium on Current Issues in Pro-

gramming Languages (Berlin, Heidelberg, 1989), TAPSOFT '89, Springer-Verlag,

pp. 298�312.

138

[62℄ Mohnen, M. E�ient ompile-time garbage olletion for arbitrary data strutures.

In PLILPS (1995).

[63℄ Mohri, M., and Nederhof, M.-J. Regular approximation of ontext-free gram-

mars through transformation. In Robustness in Language and Speeh Tehnology.

Kluwer Aademi Publishers, 2000.

[64℄ Nederhof, M.-J., and Satta, G. The language intersetion problem for non-

reursive ontext-free grammars. Inf. Comput. 192, 2 (Aug. 2004), 172�184.

[65℄ Nielson, H. R., and Nielson, F. Automati binding time analysis for a typed

Λ-alulus. Si. Comput. Program. 10, 2 (Apr. 1988), 139�176.

[66℄ NoFib. Haskell Benhmark Suite. http://git.haskell.org/nofib.git, Feb

2017. (Last aessed).

[67℄ Ohoa, C., Silva, J., and Vidal, G. Dynami sliing of lazy funtional programs

based on redex trails. Higher Order Symbol. Comput. 21 (2008).

[68℄ O'Neill, M. E., and Burton, F. W. Smarter garbage olletion with simpli�ers.

In MSPC (2006).

[69℄ Ott, L. Using slie pro�les and metris during software maintenane. In In Pro-

eedings of the 10th Annual Software Reliability Symposium (1992), pp. 16�23.

[70℄ Ott, L. M., and Bieman, J. M. Program slies as an abstration for ohesion

measurement. Information and Software Tehnology 40, 11 (1998), 691 � 699.

[71℄ Ott, L. M., and Thuss, J. J. The relationship between slies and module ohe-

sion. In Proeedings of the 11th International Conferene on Software Engineering

(New York, NY, USA, 1989), ICSE '89, ACM, pp. 198�204.

[72℄ Ottenstein, K. J., and Ottenstein, L. M. The program dependene graph in

a software development environment. ACM SIGPLAN Noties 19 (1984).

[73℄ Perera, R., Aar, U. A., Cheney, J., and Levy, P. B. Funtional programs

that explain their work. In ACM SIGPLAN International Conferene on Funtional

Programming, ICFP 2012.

139

http://git.haskell.org/nofib.git

[74℄ Peyton-Jones, S. L. The Implementation of Funtional Programming Languages.

Prentie-Hall, 1987.

[75℄ Peyton-Jones, S. L., and Metayer, D. L. Compile-time garbage olletion by

sharing analysis. In FPCA (1989).

[76℄ Piere, B. C. Types and Programming Languages, 1st ed. The MIT Press, 2002.

[77℄ Reps, T. Program analysis via graph reahability. In Proeedings of the 1997

International Symposium on Logi Programming (Cambridge, MA, USA, 1997),

ILPS '97, MIT Press, pp. 5�19.

[78℄ Reps, T. Undeidability of ontext-sensitive data-dependene analysis. ACM

Trans. Program. Lang. Syst. 22, 1 (Jan. 2000), 162�186.

[79℄ Reps, T. W., and Turnidge, T. Program speialization via program sliing. In

Partial Evaluation, International Seminar, Dagstuhl Castle, Germany (1996).

[80℄ Rodrigues, N. F., and Barbosa, L. S. Component identi�ation through pro-

gram sliing. Eletroni Notes in Theoretial Computer Siene 160 (2006).

[81℄ Rodrigues, N. F., and Barbosa, L. S. Program sliing by alulation. Journal

of Universal Computer Siene (2006).

[82℄ Röjemo, N., and Runiman, C. Lag, drag, void and use�heap pro�ling and

spae-e�ient ompilation revisited. In ICFP (1996).

[83℄ Sabry, A., and Felleisen, M. Reasoning about programs in ontinuation-

passing style. SIGPLAN Lisp Pointers (1992).

[84℄ Sagiv, M., Reps, T., and Wilhelm, R. Parametri shape analysis via 3-valued

logi. In Proeedings of the 26th ACM SIGPLAN-SIGACT Symposium on Priniples

of Programming Languages (1999), POPL '99, ACM, pp. 105�118.

[85℄ Sagiv, M., Reps, T., and Wilhelm, R. Shape analysis and appliations. In

Compiler Design Handbook: Optimizations and Mahine Code Generation, Y. N.

Srikant and P. Shankar, Eds. CRC Press, In, 2002.

140

[86℄ Saswat Padhi. BTP Report. https://www.se.iitb.a.in/~saswatpadhi10/

btp/report.pdf, Marh 2014. (Last aessed).

[87℄ Shaham, R., Kolodner, E. K., and Sagiv, M. Heap pro�ling for spae-e�ient

java. In PLDI (2001).

[88℄ Shaham, R., Kolodner, E. K., and Sagiv, M. Estimating the impat of heap

liveness information on spae onsumption in Java. In ISMM (2002).

[89℄ Shaham, R., Yahav, E., Kolodner, E. K., and Sagiv, S. Establishing loal

temporal heap safety properties with appliations to ompile-time memory manage-

ment. In SAS (2003).

[90℄ Shao, Z., and Appel, A. W. E�ient and safe-for-spae losure onversion.

TOPLAS 22 (2000).

[91℄ Shivers, O. Control �ow analysis in sheme. In PLDI '88 (1988).

[92℄ Silva, J. A voabulary of program sliing-based tehniques. ACM Comput. Surv.

(2012).

[93℄ Silva, J., Tamarit, S., and Tomás, C. System dependene graphs in sequen-

tial erlang. In Proeedings of the 15th International Conferene on Fundamental

Approahes to Software Engineering (2012), FASE'12.

[94℄ Soo Kim, H., Rae Kwon, Y., and Chung, I. Restruturing programs through

program sliing. 349�368.

[95℄ Steensgaard, B. Points-to analysis in almost linear time. In Proeedings of

the 23rd ACM SIGPLAN-SIGACT Symposium on Priniples of Programming Lan-

guages (New York, NY, USA, 1996), POPL '96, ACM, pp. 32�41.

[96℄ Thomas, S. Garbage olletion in shared-environment losure reduers: Spae-

e�ient depth �rst opying using a tailored approah. Information Proessing Let-

ters 56, 1 (1995), 1 � 7.

[97℄ Tip, F. A survey of program sliing tehniques. Journal of Programming Languages

3 (1995).

141

https://www.cse.iitb.ac.in/~saswatpadhi10/btp/report.pdf
https://www.cse.iitb.ac.in/~saswatpadhi10/btp/report.pdf

[98℄ Tofte, M., and Birkedal, L. A region inferene algorithm. TOPLAS (1998).

[99℄ Wadler, P. Deforestation: transforming programs to eliminate trees. In ESOP

(1988).

[100℄ Wadler, P. Stritness analysis aids time analysis. In Proeedings of the 15th

ACM SIGPLAN-SIGACT Symposium on Priniples of Programming Languages

(New York, NY, USA, 1988), POPL '88, ACM, pp. 119�132.

[101℄ Wadler, P., and Hughes, J. Projetions for stritness analysis. In Proeed-

ings of the 1987 Conferene on Funtional Programming Languages and Computer

Arhiteture (Portland, Oregon, September 1987).

[102℄ Weiser, M. Programmers use slies when debugging. Commun. ACM 25, 7 (July

1982), 446�452.

[103℄ Weiser, M. Program sliing. IEEE Trans. Software Eng. 10 (1984).

[104℄ Yannakakis, M. Graph-theoreti methods in database theory. In Proeedings of

the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Priniples of Database

Systems (New York, NY, USA, 1990), PODS '90, ACM, pp. 230�242.

142

	Abstract
	List of Figures
	List of Tables
	Introduction
	Analysis of imperative programs
	Analysis of functional programs
	Dependence analysis of functional programs
	Contributions of this thesis
	Related work
	Organization of the thesis

	Dependence analysis of functional programs
	Dependence Analysis of Imperative Programs
	Dependences in functional programs
	Syntax
	Dependence analysis as propagation of demands

	An approximate dependence analysis and its proof of correctness
	An approximate dependence analysis
	Computing dependences
	Soundness of approximate dependence analysis

	Liveness-based garbage collection for lazy languages
	Motivating example
	Liveness
	An example
	Computing liveness information
	Soundness of liveness-based garbage collection
	Related work

	Static program slicing using demand propagation
	Program slicing using dependence analysis
	Incremental Slicing
	Correctness of incremental slicing
	Experiments and results
	Static slicing of higher-order programs
	Related work

	Conclusions and future work
	Future work

