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Abstra
t

Stati
 analysis of fun
tional programs turns out to be more 
hallenging than imperative

programs. The main reasons being a 
ompositional style of programming emphasizing


reation of user-de�ned fun
tions, use of algebrai
 data types and support for higher-

order programming 
onstru
ts. Te
hniques whi
h work well for analyzing imperative

programs do not su�
e for fun
tional programs. In this thesis, we formulate the problem

of 
ontext-sensitive dependen
e analysis for �rst-order fun
tional programs. However,

we are interested in a more general notion of dependen
e 
alled stru
ture-transmitted

dependen
e, whi
h 
an answer questions su
h as: For expressions e1 and e2 in a program,

if σ1 represents the parts of interest in the value of e1, then whi
h parts of the value of e2

are required to 
ompute σ1. We show that an analysis that is 
ontext-sensitive and models

stru
ture-transmitted dependen
es is unde
idable. While a di�erent formulation of this

problem has already been proved to be unde
idable, ours is an independent proof, both

in terms of formulation and the redu
tion strategy employed.

Using the formulation we de�ne an approximate dependen
e analysis whi
h mod-

els stru
ture-transmitted dependen
e pre
isely but over-approximates 
ontext-sensitivity.

The resulting analysis is still pre
ise enough to be useful for appli
ations su
h as garbage


olle
tion and program sli
ing. In spite of the analysis being 
ontext-sensitive, we ensure

that it is e�
ient�the body of a user de�ned fun
tion is analyzed only on
e, irrespe
tive

of the number of times the fun
tion is 
alled. Given an expression e1 and the parts of

interest σ1 expressed as a regular grammar, the result of the approximate analysis is a

regular grammar 
orresponding to e2 that answers the dependen
e question. We formally

prove the soundness of our analysis. As appli
ations, we use variants of the analysis for

i) 
omputing liveness of lazy �rst-order programs and use it for liveness-based garbage


olle
tion, and ii) stati
 program sli
ing.

We �rst use our dependen
e analysis to 
ompute liveness for lazy languages. A
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variable is live if there is a possibility of its value being used in future 
omputations and

dead if it is de�nitely not used. A liveness-based garbage 
olle
tor retains only referen
es

that are live as opposed to a rea
hability-based 
olle
tor whi
h retains all referen
es

that are rea
hable. Although it has been shown that liveness-based garbage 
olle
tion is

e�e
tive for eager �rst-order fun
tional languages, extending the s
heme to lazy languages

is not straight forward. The reasons are: i) In a lazy language the point of evaluation

of an expression 
an be determined stati
ally, ii) referen
es to values 
an es
ape their

s
ope of de
laration be
ause of lazy 
onstru
tors. Further, the garbage 
olle
tor in a lazy

language needs to handle unevaluated expressions (
losures) during garbage 
olle
tion. It

has to make a liveness-based de
ision on whi
h parts of the 
losure 
an be safely garbage


olle
ted. This is the �rst reported work that uses the results of an interpro
edural

liveness analysis to garbage 
olle
t both evaluated data and 
losures. We provide a proof

of 
orre
tness of the liveness-based garbage 
olle
tion s
heme. Using a prototype that we

have implemented, we show that the number of garbage 
olle
tions and the peak memory

required for exe
uting the program redu
es for all the programs in our test suite, and the

total time spent doing garbage 
olle
tion also redu
es for many programs.

Program sli
ing refers to the 
lass of te
hniques that delete parts of a given pro-

gram while preserving 
ertain desired behaviours. The desired behaviors are spe
i�ed

using what is 
alled as the sli
ing 
riterion. Sli
ing 
an be used for debugging, software

maintenan
e, optimization, program understanding and information �ow 
ontrol. We

show how program sli
ing 
an be modelled as a dependen
e analysis problem. Appli
a-

tions su
h as program spe
ialization, 
ohesion measurement and parallelization require

the same program to be sli
ed with more than one sli
ing 
riterion. Using 
ertain proper-

ties of our formulation of dependen
e analysis, we de�ne a novel in
remental method for

sli
ing programs, i.e., sli
ing the same program with di�erent input sli
ing 
riteria. We

show the performan
e bene�ts of in
remental sli
ing by implementing a sli
er 
apable of

sli
ing in
rementally and non-in
rementally. In the interest of 
ompleteness, we handle

higher-order programs by 
onverting them into �rst-order programs through a pro
ess


alled �rsti�
ation. We run dependen
e analysis on the �rst-order program and obtain its

sli
e. The resulting sli
ed program is mapped ba
k to the original higher-order program.

As an example implementation, we extend our sli
ing algorithm to handle higher-order

programs.
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Chapter 1

Introdu
tion

Stati
 analysis is a 
olle
tion of te
hniques that �nds useful information about programs.

Su
h information has a variety of uses�debugging, optimization and program veri�
ation

are examples. A stati
 analysis 
onsists of two parts: i) a suitable representation for

the information being 
omputed by the analysis, whi
h we shall generally 
all data�ow

information, and ii) a �xed point iteration over a representation of the program to 
ompute

the data�ow information. Given the di�eren
es in the imperative and the fun
tional

programming styles, the kind of information sought and 
onsequently the nature of the

analysis di�er, in general, for programs written in the two styles.

1.1 Analysis of imperative programs

A 
ommon example of an analysis in imperative languages is rea
hing de�nitions [7, 8℄.

This determines the de�nitions of a variable that may rea
h a parti
ular program point.

The data�ow information in this 
ase may be represented as sequen
e of boolean values,

also 
alled a bit-ve
tor, ea
h value representing a de�nition of a variable at a program

point. In 
ontrast, analyses whi
h 
ompute properties of programs that manipulate the

heap through re
ursive types require a more 
omplex data�ow representation. This is

be
ause su
h programs 
ould be used to a

ess unbounded regions of the heap memory

and the data�ow information is usually an abstra
tion of regions of the heap, often in the

form of graphs. Alias analysis or pointer analysis[9, 24, 28, 42, 48, 49, 52, 53, 95℄, liveness

analysis[5, 44, 46, 47℄ and shape analysis[84, 85℄ are examples of su
h analyses.

The �xed point iteration to 
ompute the analysis results 
an be performed on a

1



S1 : x = 5 ;

S2 : y = 3 ;

S3 : i f z > 0

S4 : x = y + 2 ;

S5 : e l s e

S6 : x = y − 1 ;

S7 : p r i n t ( x + y ) ;

start

x = 5

y = 3

z > 0

x = y + 2 x = y − 1

print(x+ y)

Exit

start

x0 = 5

y0 = 3

z > 0

x1 = y0 + 2 x2 = y0 − 1

x3 = φ(x1, x2)

print(x3 + y0)

Exit

(a) (b) (
)

Figure 1.1: Program representations for stati
 analysis. (a) An example program (b)

Control Flow Graph of the program in (a) (b) SSA representation of the program in (a)

stru
ture that models the program being analyzed. The program is usually represented

as a graph with the statements in the program as nodes and relations su
h as data/
ontrol

�ow among statements as edges. Examples of su
h representations are the Control Flow

Graph (CnFG), Stati
 Single Assignment (SSA) form and Program Dependen
e Graph

(PDG) [27℄. Figure 1.1 shows an example program and its representation as a CnFG is

shown in Figure 1.1(b). In this graph, nodes represent statements in the program. and

edges represent possible �ow of 
ontrol from one statement to another.

However, noti
e that the CnFG may separate statements that are 
omputationally


lose to ea
h other. As an example, statement S2 de�nes a variable y that is used in S4.

The pair (S2, S4), 
alled a def-use pair, represents a dire
t data dependen
e between S2

and S4. In general, data dependen
e is a transitive relation. In the example program, S7

is data dependent on S6 due to the use of x. S6 is data dependent on S2 due to its use of

y and hen
e transitively, S7 is data dependent on S2. Sin
e the de�nition and use might

be separated by other statements, data dependen
es are not obvious in a CnFG.

There is yet another sense in whi
h a statement Si 
an depend on Sj . The value


omputed by Sj de
ides whether the statement Si gets exe
uted or not. In su
h a 
ase we

2



say that Si is 
ontrol dependent on Sj. In the example program, exe
ution of statement S4

and S6 depends on what S3 evaluates to. Therefore both S4 and S6 are 
ontrol dependent

on S3.

There are two program representations that attempt to 
apture dependen
es dire
tly

namely Program Dependen
e Graph and Single Stati
 Assignment (SSA). In the SSA form,

ea
h variable being de�ned is renamed to a unique name, its uses are 
onne
ted to the use

by being renamed to the same name. However, a PDG 
aptures both data dependen
e

as well as 
ontrol dependen
e in the program through dire
t edges between 
onstituent

nodes. Appli
ations like sli
ing of programs requires information about both data and


ontrol dependen
es. For su
h appli
ations we use a PDG. PDGs have wide appli
ability

in imperative languages [27, 38℄. In this thesis we explore the 
on
ept and utility of

dependen
e in the 
ontext of fun
tional languages.

1.2 Analysis of fun
tional programs

An example of an analysis for fun
tional programs whi
h does not have a 
ounterpart in

the imperative world is stri
tness analysis. This analysis is appli
able in lazy fun
tional

languages in whi
h expressions are not evaluated unless their values are required. There-

fore, arguments to fun
tions are passed as unevaluated expressions (thunks or 
losures).

This is a sour
e of spa
e ine�
ien
y as 
losures may require more spa
e to store than

values. This may also a�e
t the exe
ution time sin
e the garbage 
olle
tor may have to

be invoked more often. One way of improving the e�
ien
y is to identify arguments whi
h

are guaranteed to be evaluated inside a fun
tion and then evaluate them before a 
all to

the fun
tion. Thus, stri
tness information is asso
iated with the arguments of a fun
tion

de�nition and 
omes in two forms. If the argument is a s
alar, the analysis says whether

the argument is guaranteed to be evaluated or not. And if the argument is a stru
tured

data su
h as a list, the analysis also indi
ates the extent of guaranteed evaluation�no

evaluation, head only, spine only and full evaluation.

For now, we assume the reader's familiarity with the S
heme programming language.

Consider the program in Figure 1.2, the main expression 
reates a list x whi
h 
ontains

two expressions e1 and e2. From the program, it is 
lear that the result of the main

expression is the car part of the result returned by fun
tion 
all (map square x). Hen
e,

3



(define (map f lst)

(if (null? lst)

nil

(cons (f (car lst)) (map f (cdr lst)))))

(define (square y)

(∗ y y))

main:(let x ← (cons e1 (cons e2 nil)) in

(car (map square x)))

Figure 1.2: Example for stri
tness analysis

this information will be propagated through the body of fun
tion map and it 
an be

determined that the expression (f (car lst)) will de�nitely be evaluated. Sin
e the

a
tual argument being passed to the fun
tion map is x, we get the information that the

car part of x whi
h is e1 will de�nitely be evaluated. Therefore, we 
an eagerly evaluate

e1 safely without violating the lazy semanti
s of this language.

Judged by this example, analysis of fun
tional programs 
ould di�er from their im-

perative 
ounterparts in the following ways.

1. In the nature of the information sought: In the world of imperative languages, it is

un
ommon to seek information like: Is the argument of a fun
tion likely to be evaluated

along all paths in the fun
tion, and if so, what is the 
ommon extent of evaluation along

all paths?.

2. Analysis for fun
tional programs must ne
essarily be interpro
edural: Limiting the anal-

ysis to intrapro
edural levels with 
onservative approximation at pro
edural boundaries

may not yield signi�
ant bene�ts.

3. Identifying stru
ture-transmitted data dependen
es [78℄ is important: Consider a vari-

able z bound to (cdr (cons x y)). The fa
t that the value of z does not depend

on x requires the analysis to in
orporate the identity (cdr (cons x y)) = y. While

this is important for the pre
ision of the analysis, identifying the 
onstru
tor-sele
tor

intera
tion interpro
edurally is unde
idable.

4. Additionally, 
ontrol �ow is hard to �gure out for fun
tional programs: This is due to

the presen
e of higher-order fun
tions and in the 
ase of lazy languages, 
losures.
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(define (LenNSum x)

(if (null? x)

(return (cons 0 0))

(let 
 ← (LenNSum (cdr x))) in

(return (cons (+ 1 (car 
))

(+ (car x) (cdr 
))))))

(let a ← . . . in

(let b ← . . . in

(let y ← π1:(LenNSum a) in

(let z ← π2:(LenNSum b) in

. . . more 
ode whi
h does not use a or b . . .

π:(cons (car y) (cdr z)))))))

Figure 1.3: Motivating example for dependen
e analysis of fun
tional programs

1.3 Dependen
e analysis of fun
tional programs

An analysis that is 
ommon to both imperative and fun
tional languages is �dependen
e

analysis�. In the imperative domain, for ea
h variable v in the program, dependen
e

analysis 
omputes the set of variables on whi
h v is data or 
ontrol dependent. Identifying

dependen
es (data or 
ontrol) in a program is key in many program optimizations and

appli
ations su
h as sli
ing. Knowing the dependen
es among variables, it is possible to

optimize the program by improving its run time or memory usage. For example, if we


an �nd out that a 
ertain value is 
omputed but never used, we 
an safely remove the


ode 
orresponding to the generation of this value. This results in faster exe
ution as

the 
ode for generating the value is not exe
uted. Also, the modi�ed program uses less

memory sin
e the memory required for storing the value 
an be avoided. In the fun
tional

domain, we need to 
ompute dependen
es among expressions instead of variables. Using

the example in Figure 1.3, we des
ribe some appli
ations of dependen
e information in

fun
tional programs.

Consider the example in Figure 1.3, the fun
tion LenNSum written in a S
heme

like language, takes a list of integers as input and 
omputes both the length of the list

as well as the sum of the elements of the list. The symbol π is not part of the program
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and is used to denote a program point. For an empty list it returns (cons 0 0), signifying

that the length of an empty list as well as the sum of the elements of an empty list are

both 0. For any non-empty list, the fun
tion re
ursively 
omputes the length and sum of

the cdr part of the input list and in
rements the car part of the result by 1 to 
ompute

the length and adds the car element of the input list to 
ompute the sum for the input

list. The fun
tion 
reates a cons 
ell to en
lose the 
omputed length and sum values and

returns it. Noti
e, the length of the list does not depend on the values of elements of the

list.

In an eager language, there are no uses of a beyond π1 and of b beyond π2. Therefore,

we 
an safely garbage 
olle
t the memory asso
iated with list a after π1 and b after π2.

A garbage 
olle
tor whi
h 
olle
ts only referen
es whi
h be
ome unrea
hable would not

have been able to 
olle
t a and b as they would still be in s
ope and hen
e rea
hable.

However, the situation gets interesting in the 
ase of lazy language. In a lazy language, a

let expression does not trigger the evaluation of the expression bound to the let variable

as soon as it is en
ountered. Instead, it 
reates a 
losure and defers its evaluation until its

value is a
tually required. Therefore, in the example program, assuming that the output

of main is being printed, only the length of the list a is required. Therefore, unlike

in an eager language, the fun
tion LenNSum does not evaluate the expressions whi
h


ompute the sum of the list a. Thus, the �nal output does not depend on any element of

the list a. Given this information, a garbage 
olle
tor 
ould e�
iently 
olle
t the memory


orresponding to the elements of a any time after the 
reation of the list a.

Another appli
ation of dependen
e information is program spe
ialization. The fun
-

tion LenNSum 
omputes both the sum and length of the input list. If we need a spe-


ialized fun
tion that just 
omputes the length of the list, we 
an remove expressions that

de�nitely do not 
ontribute to the car part of its output from the body of LenNSum to

get the spe
ialized fun
tion.

In this thesis, we 
onsider the problem of stati
 analysis of fun
tional programs to


ompute dependen
es. The analysis is interpro
edural and is de�ned for a S
heme-like

�rst-order fun
tional language. Lists are the only user-de�ned data stru
tures that are

supported as other data-stru
tures 
an be modelled using lists. Extending our analysis

to other user-de�ned data stru
tures does not present any 
on
eptual di�
ulties. Our

analysis strikes a balan
e between pre
ision and e�
ien
y by 
omputing fun
tion sum-

6



maries for user-de�ned fun
tions and using them to 
ompute dependen
es for fun
tion


all expressions.

1.4 Contributions of this thesis

This thesis presents an e�
ient and reasonably pre
ise interpro
edural dependen
e anal-

ysis for fun
tional programs. While Reps [78℄ has shown that an interpro
edural depen-

den
e analysis that is 
ontext-sensitive and pre
isely models stru
ture-transmitted data

dependen
es is unde
idable, we provide an independent proof of unde
idability and use our

formulation to propose an approximate dependen
e analysis. The analysis proposed in the

thesis pre
isely models stru
ture-transmitted data dependen
es while relaxing the 
ontext-

sensitivity requirement in some 
ases to allow the analysis to be
ome de
idable. Thus,

our analysis 
an be both 
ontext-sensitive and pre
isely model stru
ture-transmitted data

dependen
es in most 
ases. The loss of pre
ision when the 
ontext-sensitivity requirement

is relaxed is still tolerable to be useful in appli
ations like liveness-based garbage 
olle
tion

and sli
ing. To 
ompute dependen
es, we generalize the analysis des
ribed by Asati et

al [12℄ that 
omputes liveness in eager �rst-order fun
tional programs. The dependen
e

analysis is de�ned over a language whi
h has lazy semanti
s. This enhan
es the appli-


ability of the analysis by allowing us to perform liveness analysis of lazy languages and

perform stati
 program sli
ing.

1.4.1 Dependen
e analysis

In the 
ontext of imperative languages, dependen
e analysis answers the question: Given

a statement, say S1, what are the statements S2 that it depends on? The de�nition 
an

be generalized and made more interesting in the 
ase of fun
tional languages, espe
ially

when the value 
omputed by the program is an algebrai
 datatype. Let e be an expression

whi
h evaluates to an algebrai
 datatype and σ denote a substru
ture of this value. The

notion of dependen
e that we wish to address is: Given a part (or substru
ture) σ of the

value an expression e, what parts σi of the value of other expressions ei de
ide the value

of σ part of the value of e? As a 
on
rete example, for the program in Figure 1.4, our

analysis should yield the information that the only part of list 
 in the let expression π12
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(define (length lst)

π1: (let x ← (null? lst) in

π2: (if x

π3: (let v ← 0 in

π4: (return v)

π5: (let u ← (cdr lst) in

π6: (let y ← (length u) in

π7: (let z ← (+ 1 y) in

π8: (return z))))))))

(define (main)

π9: (let a ← . . . in

π10: (let b ← (+ a 1) in

π11: (let 
 ← (cons b nil) in

π12: (let w ← (length 
) in

π13: (return w)))))

(main)

Figure 1.4: An example program

that de
ides the value of (main) is its spine1, the elements of the list are not required.

We 
all substru
tures of a value that are of interest as demands and represent them

as follows. The demand ∅ indi
ates that no part of the value is of interest. For an integer,

we indi
ate that the value is of interest by using the demand ǫ. In the 
ase of algebrai


datatypes like lists, we 
an 
onstru
t a tree and label its bran
hes by sele
tors, using the

notations 0 and 1 to represent sele
tions using car and cdr respe
tively. This is shown

in Figure 1.5. The substru
ture of interest 
an then be identi�ed by a path from the

root of the tree. As an example, the substru
ture represented by the highlighted path in

blue, is represented by the set {10}. Similarly, the spine of the list (highlighted in red)

is represented by the set {11}. If the size of the list is unknown, then the spine 
an be

approximated by the in�nite set {ǫ, 1, 11, . . .} or, 1∗
in short. Paraphrasing our earlier

observation, a demand of ǫ on (main) is de
ided by (or depends on) the demand 1∗
on


, and, interestingly, ∅ (or no part) of the value of (+ a 1).

The idea behind dependen
e analysis is to propagate demands from an outer ex-

pression to inner expressions, in the example from the body of main to the expressions


 and (+ a 1). We give rules to do this outside-in propagation for the let and the if

expressions, and the built-in operators, cons, car, cdr, null? and +. However, we also

uniformly extend the outside-in propagation prin
iple to user de�ned fun
tion 
alls (f x ),

1

The spine of a list is the substru
ture obtained by starting with at the root and a performing a series

of cdr sele
tions rea
hing the end of the list. For the list in Figure 1.5, the edges in red is the spine.
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1

0

ǫ ǫ

1

1

Figure 1.5: A list represented as a tree with edges labelled with the 
orresponding sele
tor

operations.

by 
omputing a transfer fun
tion, denoted DSf . If σ is the demand on a fun
tion 
all

(f x ), then DSf (σ) is the propagation of this demand to its argument x. Our proposed

analysis gives DSlength for a non-null σ as:

DSlength(σ) = ǫ ∪ 1DSlength(ǫ)

The important point to note that the unknown in this equation is the fun
tion

DSlength, and the reader 
an verify that DSlength(σ) = 1∗
is a solution of this equation.

What this means is that any non-null demand on (length 
) will propagate a spine

demand on 
. This mat
hes our intuition as the length fun
tion re
ursively traverses the

spine of its argument till the end of the list. Therefore, the demand on 
 is 1∗
, and, sin
e


 is bound to (cons b nil), the same demand is transferred to this expression. Going

inwards still further, sin
e b is the head of the list (cons b nil) with the demand 1∗
,

the demand on b is ∅, a fa
t that we infer through algebrai
 rules. This ∅ demand is

transferred to (+ a 1), and we 
on
lude that the output of main does not depend on any

part of (+ a 1).

More spe
i�
ally, our 
ontributions in this part are as follows:

1. We generalize liveness analysis to a more general notion of dependen
e, and propose a


ontext-sensitive interpro
edural analysis that pre
isely models stru
ture-transmitted

data dependen
es to 
ompute dependen
es in a program.

2. Independent of Reps [78℄ and using a di�erent redu
tion, we show that 
ontext-sensitive
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and pre
ise modelling of stru
ture-transmitted data dependen
es is unde
idable. Using

our formulation we propose an approximate analysis whi
h pre
isely models stru
ture-

transmitted data dependen
es but relaxes 
ontext-sensitivity requirement in some


ases.

3. The analysis results in re
ursive equations, where the unknowns are transfer fun
tions

su
h as DSf (σ). The solution takes the form DSf σ (DSf 
on
atenated with σ, with


on
atenation lifted naturally to sets of strings). Here DSf is the start symbol of a

CFG with two �xed non-CFG produ
tions

2

We prove that the membership problem of

the resulting grammar is unde
idable. We get around the problem by approximating

the CFG by a regular grammar.

4. Based on a demand driven operational semanti
s for the language, we prove the sound-

ness of the analysis.

1.4.2 Liveness-based garbage 
olle
tion for lazy languages

The runtime system of most fun
tional languages in
ludes a garbage 
olle
tor to re
laim

memory, however empiri
al studies on S
heme [45℄ and Haskell [82℄ programs have shown

that garbage 
olle
tors leave un
olle
ted a large number of memory obje
ts that are rea
h-

able but are not live, i.e. these memory obje
ts are guaranteed not be used when exe
ution

resumes from the 
urrent state after garbage 
olle
tion. This results in unne
essary re-

tention of memory whi
h 
an be safely garbage 
olle
ted. The situation is even worse in

the 
ase of lazy fun
tional languages as they might have to 
arry large 
losures (runtime

representations of unevaluated expressions) instead of values. To remedy this, Asati [12℄

proposes a liveness-based garbage 
olle
tor instead of a rea
hability-based 
olle
tor to

in
rease the number of 
ells garbage 
olle
ted. However, the proposal was for a eager

language.

We use the example in Figure 1.6 to demonstrate the bene�ts of a liveness-based

garbage 
olle
tion s
heme and also the 
hallenges fa
ed in implementing a liveness-based


olle
tor for lazy languages. We represent the heap as a graph in whi
h a node either

represents atomi
 values (nil, integers, et
.), or a cons 
ell 
ontaining car and cdr �elds,

2

We reiterate the di�eren
es between DSf and DSf . DSf is a transfer fun
tion and is the unknown in

the equation generated by the analysis. DSf is a grammar symbol representing a set of strings, and is a

part of the solution. The solution of DSf maps a demand σ to DSf σ.
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(define (length lst)

(if (null? lst)

0
(+ 1 (length (cdr lst)))))

(define (append l1 l2)

(if (null? l1) l2

(cons (car l1)

(append (cdr l1) l2))))

(define f)

(let x ← . . . in
(let y ← . . . in
(let z ← (append x y) in
(if (null? (car z))

0
π:(length z)

. . . more 
ode not involving x, y or z

))))

x

×

×
×

z

y

×

(b)

x

×

×

×

z

y

×

(
)

(a)

denotes a 
losure. Thi
k edges denote live links. Traversal stops at edges marked × during garbage


olle
tion for a liveness-based 
olle
tor.

Figure 1.6: An example program and its memory graph. (b) represents the heap state in

an eager language and (
) represents the heap state in a lazy language.

or a 
losure (represented by shaded 
louds) in the 
ase of lazy languages. Edges in the

graph are referen
es and represent values of variables or �elds. The situation in the 
ase

of eager languages is shown in Figure 1.6(b). At program point π, the liveness asso
iated

with z is 1∗
and with x and y it is ∅ as there are no more uses for x and y beyond π.

Thus, if a GC takes pla
e at π with the heap shown in Figure 1.6(b), a liveness-based


olle
tor will preserve only the 
ell referen
ed by the spine of z.

In 
ontrast, Figure 1.6(
) shows the lists x and z partially evaluated due to the if


ondition (null? (car z)). Due to this evaluation, the car �eld of z points to the car of

x and the cdr �eld of z points to the 
losure (cons (car x) (append (cdr x) y)) (shown

as the bubble outlined in blue). Here we fa
e a situation that is di�erent from eager

evaluation in the following senses: (i) Laziness di
tates that (length z) will be evaluated

on demand, so it is stati
ally not possible to �gure out where this evaluation will take
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pla
e. In fa
t it may even take pla
e beyond the s
ope in whi
h z has been de
lared,

indeed even outside the fun
tion f. (ii) Given that the spine of z has not been evaluated

yet, how would a liveness-based garbage 
olle
tor, if invoked at π, 
olle
t the spine of z?

Our solution to these problems is as follows. We think of the free variables inside a


losure as root set variables, and 
arry their liveness information inside the 
losure. Thus

the 
losure (length z) 
arries the liveness of z as 1∗
. Se
ond, if a variable is not fully

evaluated during garbage 
olle
tion, we have devised a me
hanism of garbage 
olle
ting

(parts of the ) 
losure. Roughly the idea is as follows: If the demand on, say (length

z) is ∅, the 
losure is garbage 
olle
ted. Otherwise, we 
onsult the re
orded liveness to

garbage 
olle
t whatever is bound to z. If z happens to be evaluated, we use the re
orded

liveness 1∗
to garbage 
olle
t the value, else, if it is bound to a 
losure, we repeat the

same pro
ess as we did for (length z).

We use a variation of dependen
e analysis to 
ompute liveness information and store

them as Deterministi
 Finite Automata (DFA) at program points of interest. Sin
e our

appli
ation is garbage 
olle
tion, the program points of interest are the ones whi
h 
ould

potentially trigger a garbage 
olle
tion, whi
h, for lazy languages, is the point where a

let expression requests memory to 
reate a 
losure that is bound to the letvariable. If

the garbage 
olle
tor is invoked at any of these program points, it uses the asso
iated

automata to 
urtail rea
hability during marking phase. This results in an in
rease in the

garbage re
laimed and 
onsequently in fewer 
olle
tions.

Our 
ontributions in this part are:

1. Whereas the idea of using stati
 analysis to improve memory utilization has been shown

to be e�e
tive for eager languages [12, 36, 41, 56℄, a straightforward extension of the

te
hnique is not possible for lazy languages, where heap-allo
ated obje
ts may in
lude


losures. We de�ne a liveness analysis for �rst-order lazy languages. To make liveness-

based GC e�e
tive for lazy languages we extend it to 
losures apart from evaluated

data. Closures 
arry liveness information of its free variables whi
h is used by the

garbage 
olle
tor during garbage 
olle
tion. As an optimization, to keep the 
losure

liveness pre
ise, we update it during the exe
ution.

2. To prove the soundness of our method, we modify the demand-guided semanti
s intro-

du
ed for dependen
e analysis by introdu
ing an updatable Heap as part of the state.

We also simulate a Garbage Colle
tion in the semanti
s whi
h goes to a spe
ial state

12




alled bang if a referen
e whi
h has been de
lared dead by our analysis. The soundness

analysis 
onsists of proving that for any program, the exe
ution of the demand-guided

semanti
s 
annot enter a bang state.

3. Using a prototype implementation we demonstrate the bene�ts of liveness-based garbage


olle
tion for lazy languages, in
rease in the garbage re
laimed and 
onsequently in

fewer 
olle
tions. Be
ause a liveness-based 
olle
tor identi�ed more 
ells that would

not be used, the peak memory use also improved for all the programs. Our experiments

show up to 10X redu
tion in the number of garbage 
olle
tions and 20X redu
tion in

peak memory requirements.

1.4.3 Program sli
ing

Program sli
ing is a powerful te
hnique with appli
ations ranging from debugging, soft-

ware maintenan
e, optimization, program analysis and information �ow 
ontrol. Program

sli
ing refers to the 
lass of te
hniques that delete parts of a given program while preserv-

ing 
ertain desired behaviours. The desired behaviors are spe
i�ed using what is 
alled as

the 'sli
ing 
riterion'. We 
onsider one su
h version of sli
ing where the sli
ing 
riterion

identi�es parts of the �nal output of the program that the user of the sli
ing tool may be

interested in, and the goal is to produ
e the parts of the program whi
h a�e
t only the

parts of the output identi�ed by the sli
ing 
riterion. Program spe
ialization, paralleliza-

tion, dead 
ode analysis and 
ohesion measurement are examples of su
h appli
ations.

In general, a sli
ing 
riterion is modeled as a pair 〈e, σ〉, where e represents an

expression in the program P and σ represents the parts of the value of e that is of

interest. The goal of sli
ing is to identify the set of expressions belonging to P whi
h

may a�e
t the parts identi�ed by σ. The sli
ing problem thus 
an be formulated as an

instan
e of dependen
e analysis as the question: Given a sli
ing 
riterion 〈e, σ〉, what are

the expressions ei in P su
h that σ of e depends on σi of ei, and σi is not ∅? While

the general form of dependen
e analysis 
an answer the question for any expression e, we


onsider the spe
ial but useful 
ase in whi
h e is the main expression (main). Figure

1.7a shows a simple program in a S
heme-like language taken from [79℄. It takes a string

as input and returns a pair 
onsisting of the number of 
hara
ters and lines in the string.

Figure 1.7b shows the program when it is sli
ed with respe
t to the �rst 
omponent of

the output pair, namely the number of lines in the string (l
). All referen
es to the 
ount
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(define (lcc str l
 

)

(if (null? str)

(return (cons l
 

))

(if (eq? (car str) nl)

(return (lcc (cdr str) (+ l
 1) (+ 

 1)))

(return (lcc (cdr str) π1:l
 π2:(+ 

 1))))))

(define (main)

(return (lcc . . . 0 0))))

(main)

(a) Program to 
ompute the number of lines and 
hara
ters in a string.

(define (lcc str l
 �)

(if (null? str)

(return (cons l
 �))

(if (eq? (car str) nl)

(return (lcc (cdr str) (+ l
 1) �))

(return (lcc (cdr str) π1:l
 π2:�)))))

(define (main)

(return (lcc . . . 0 �))))

(main)

(b) Sli
e of program in (a) to 
ompute the number of lines only

(define (lcc str � 

)

(if (null? str)

(return (cons � 

))

(if (eq? (car str) nl)

(return (lcc (cdr str) � (+ 

 1)))

(return (lcc (cdr str) π1:� π2:(+ 

 1))))))

(define (main)

(return (lcc . . . � 0))))

(main)

(
) Sli
e of program in (a) to 
ompute the number of 
hara
ters only.

Figure 1.7: A program in S
heme-like language and its sli
es. The parts that are sli
ed

away are denoted by �.
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of 
hara
ters (

) and the expressions responsible for 
omputing 

 only have been sli
ed

away (denoted �).

To produ
e a sli
e for a given program, we use the sli
ing 
riterion (a set of strings

over (0+1)∗) as a demand on the main expression (main), and 
ompute the demands on

ea
h expression in the program. Any expression whi
h gets a ∅ demand 
an be sli
ed from

the program. Sin
e we model the sli
ing problem as an instan
e of dependen
e analysis,

we inherit both its advantages and its weaknesses. One of the weaknesses is the large time

required for automata 
onstru
tion. This was a

eptable in the 
ase of garbage 
olle
tion

as the automata were 
reated only on
e and the same would be 
onsulted whenever a

garbage 
olle
tion was triggered. However, in 
ase of sli
ing the automata have to be

re
onstru
ted every time the sli
ing 
riterion 
hanges (even when the program remains

same). Program spe
ialization is an example appli
ation where the same program is sli
ed

with di�erent 
riteria. We thus turned to the problem of in
remental sli
ing that is useful

in su
h situations.

In
remental sli
ing

The program in Figure 1.7a 
an also be sli
ed with respe
t to the se
ond 
omponent

of the output (the 
hara
ter 
ount). The resulting program in whi
h all expressions

related to 
omputation of l
 have been removed is shown in Figure 1.7
. If we use

the non-in
remental sli
ing method, the whole pro
edure of dependen
e analysis has to

be repeated for the new sli
ing 
riterion. Appli
ations su
h as program spe
ialization,


ohesion measurement and parallelization whi
h require the same program to be sli
ed

with more than one sli
ing 
riterion 
an bene�t from a sli
ing method whi
h avoids

repeated 
omputation of information. We propose an in
remental algorithm based on

dependen
e analysis that avoids this repetition of 
omputation when the same program

is sli
ed with di�erent 
riteria.

The in
remental sli
ing algorithm involves a one-time pre
omputation step that 
om-

putes information whi
h is 
ommon to all sli
ing 
riteria. The key idea is that for ea
h

expression, the pre
omputation step 
omputes the set of all sli
ing 
riteria whi
h keeps

the expression in the sli
e. It is an interesting fa
t that this 
an be done by 
onsider-

ing only one spe
i�
 
riterion, namely {ǫ}. The resulting set 
an be represented as a

�nite state automaton. Now, given any other 
riterion (also represented as a �nite state
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automaton), the in
remental sli
ing pro
edure simply �nds the interse
tion of the two

automata. If the language of the resulting automaton is ∅, the expression 
an be sli
ed

out. Noti
e, that even when the sli
ing 
riterion 
hanges the automata 
omputed in the

pre
omputation step do not 
hange and hen
e they don't need to be re
omputed.

Finally, for the sake of 
ompleteness we des
ribe a method to extend our depen-

den
e analysis to handle higher-order programs. We �rst 
onvert the input higher-order

program to its equivalent �rst-order program by a pro
ess 
alled �rsti�
ation [60℄ while

maintaining a mapping between the original program and the �rsti�ed program. We

perform dependen
e analysis on the �rsti�ed program and obtain the results. Using the

mapping generated during the �rsti�
ation pro
ess, we transfer the demands generated

on the �rsti�ed program to the original program. We extend the stati
 sli
er to handle

higher-order programs.

Our 
ontributions in this part are:

1. We use dependen
e analysis to stati
ally sli
e fun
tional programs. We de�ne a novel

in
remental sli
ing me
hanism whi
h is very e�
ient when the same program is sli
ed

multiple times. The 
orre
tness of our stati
 sli
ing algorithm follows from the 
or-

re
tness of dependen
e analysis.

2. We formally prove that our in
remental sli
ing is sound with respe
t to non-in
remental

sli
ing.

3. We extend sli
ing to handle higher-order programs by performing �rsti�
ation.

4. We have implemented a prototype of a sli
er that 
an run in in
remental or non-

in
remental mode. The sli
er 
an handle both �rst-order and higher-order programs

written in a S
heme like language. Our experiments 
on�rm that the in
remental


omputation runs orders of magnitude faster than the non-in
remental version. We

obtain nearly 1000X speed in nearly all of the experiments.

1.5 Related work

The dependen
e analysis that we de�ned involved starting with a demand σ on an expres-

sion e and 
omputing demands on ea
h sub-expression of e. Similar approa
hes of taking

an abstra
t value and propagating its e�e
ts "inwards� have been used in di�erent analy-

sis. Wadler [101℄ uses proje
tion fun
tions whi
h he 
alls "
ontexts� to perform stri
tness
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analysis. Given the 
ontext on the result of a fun
tion f , stri
tness analysis 
omputes the

parts of the arguments of f that 
ould be safely evaluated eagerly. Wadler [100℄ shows how


ontexts 
an be used to 
ompute the time 
omplexity of lazy programs. The propagation

of abstra
t values 
an also be done in the "outwards� dire
tion, starting from arguments

of an expression to the result of the expression. Binding time analysis [40, 61, 65℄ is an

example of su
h an analysis. It is used in partial evaluators to determine the parts of the

program 
an be evaluated if some input is known. In the rest of this se
tion we mainly

dis
uss work whi
h has similar appli
ations to our analysis, improving garbage 
olle
tion

using stati
 analysis and stati
 sli
ing of fun
tional programs.

There have been di�erent approa
hes to improving memory utilization in fun
tional

programs. An interesting approa
h by Mohnen [62℄ uses abstra
t interpretation to handle

garbage 
olle
tion of nested lists. A list having n levels is abstra
ted to an n-tuple, a

boolean denoting the possibility of sharing between any element at ea
h level in the list

and the result of the fun
tion to whi
h the list is passed as a parameter. A false value in

the tuple indi
ates that values at that level are not shared with the return value and hen
e


an be garbage 
olle
ted. This leads to very 
oarse approximations as the use of a single


ell will make the whole list at that level live. The approa
h due to Lee et. al. [55, 56℄

uses memory types to des
ribe usage of heap 
ells and a
hieves 
ontext sensitivity by

using dynami
 �ags passed as extra arguments to fun
tions to 
olle
t 
ells inside fun
tion

bodies. Passing di�erent values from di�erent 
all sites for the dynami
 �ags allows the

same fun
tion to have di�erent deallo
ation behaviors. A pra
ti
al approa
h involves


opying only the heap obje
ts whose root variables are live [6℄. The drawba
k of this

approa
h is that an entire obje
t rea
hable from a live root variable is 
onsidered live,

even if some parts of it are never used. For example, even when only the spine of a list

is live (used as an argument to the length fun
tion) all its elements will also be 
opied.

Asati et al [12℄ des
ribe a liveness-based garbage 
olle
tor for a �rst-order eager fun
tional

language based on an analysis similar to ours. It demonstrated the utility of a liveness-

based 
olle
tor over a rea
hability-based 
olle
tor for a language whi
h had support for

heap based lists. The analysis des
ribed was limited to liveness analysis of �rst-order data

values in an eager language. In this thesis, we generalize their analysis and demonstrate

its utility by implementing a liveness-based garbage 
olle
tor for a lazy language and then

using the same analysis to stati
ally sli
e fun
tional programs.
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Most of the e�orts in sli
ing have been for imperative programs. The surveys [16, 92,

97℄ give good overviews of the variants of the sli
ing problem and their solution te
hniques.

A natural way is to use data and 
ontrol dependen
es between statements to 
ompute the

sli
e. The program to be sli
ed is transformed into a graph 
alled the program dependen
e

graph (PDG) [39, 72℄, in whi
h nodes represent individual statements and edges represent

dependen
es between them. The sli
e 
onsists of the nodes in the PDG that are rea
hable

through a ba
kward traversal starting from the node representing the sli
ing 
riterion.

Horwitz, Reps and Binkley [39℄ extend PDGs by de�ning a System Dependen
e Graph

(SDG) to handle interpro
edural sli
ing.

Silva, Tamarit and Tomás [93℄ adapt SDGs for fun
tional languages, in parti
ular

Erlang. The adaptation is straightforward ex
ept that they handle dependen
es that

arise out of pattern mat
hing. Be
ause of the use of SDGs, they 
an manage 
alling


ontexts pre
isely. However, as pointed out by the authors themselves, they fail to han-

dle 
onstru
tor-sele
tor intera
tions. The sli
ing te
hnique that is 
losest to ours is due

to Reps and Turnidge [79℄ whi
h uses proje
tion fun
tions to spe
ify a sli
ing 
riteria.

The sli
ing 
riterion is propagated ba
kwards to all subexpressions of the program. After

propagation, any expression with the proje
tion fun
tion ⊥ (
orresponding to our ∅ de-

mand), is sli
ed out of the program. Liu and Stoller [57℄ use a similar method for dead


ode analysis and elimination. Both these methods, unlike ours, do not derive 
ontext-

independent summaries of fun
tions. Thus, we do not see any way of 
omputing multiple

sli
es in
rementally.

A graph based approa
h has also been used by Rodrigues and Barbosa [80℄ for 
om-

ponent identi�
ation in Haskell programs whi
h is very 
oarse for our purpose. Rodrigues

and Barbosa [81℄ use program 
al
ulation in the Bird-Meerteens formalism for obtaining

a sli
e. Given a program P and a proje
tion fun
tion ψ, they 
al
ulate a program whi
h

is equivalent to ψ ◦ P.

1.6 Organization of the thesis

We formalize the notion of an interpro
edural 
ontext-sensitive dependen
e analysis that

pre
isely models stru
ture-transmitted data dependen
es in Chapter 2. We prove that

su
h an analysis is unde
idable using a non-standard operation semanti
s 
alled demand-
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guided semanti
s. In Chapter 3, we use the dependen
e analysis formulation de�ned in the

previous 
hapter to devise an approximate dependen
e analysis whi
h models stru
ture-

transmitted data dependen
es pre
isely but relaxes 
ontext-sensitivity for some 
ases.

We prove its soundness with respe
t to demand-guided semanti
s. The �rst appli
ation

of our dependen
e analysis, a liveness-based garbage 
olle
tion s
heme for a �rst-order

lazy language is des
ribed in Chapter 4 and proved 
orre
t. In Chapter 5, we show how

fun
tional programs 
an be stati
ally sli
ed using dependen
e analysis. We also present

an e�
ient sli
ing te
hnique 
alled in
remental sli
ing for sli
ing the same program with

di�erent 
riteria. We prove its 
orre
tness with respe
t to the non-in
remental sli
ing

algorithm. We des
ribe a way to extend our analysis to handle higher-order programs.

We demonstrate it by extending our stati
 sli
er to handle higher-order programs. Finally,

we summarize our 
ontributions and dis
uss potential extensions to our work in Chapter 6.

19



20



Chapter 2

Dependen
e analysis of fun
tional

programs

In this 
hapter, we �rst look at the notion of dependen
e for imperative programs. We then

introdu
e an useful generalization of the notion of dependen
e for fun
tional programs

by introdu
ing a 
on
ept 
alled demand. A demand des
ribes a part of the value of an

expression, whose dependen
e is of interest and the analysis 
omputes part of values of

other expressions that this expression depends on. We then des
ribe the syntax of a

�rst-order fun
tional language without imperative features that we shall use throughout

the thesis. We then formally spe
ify the dependen
e analysis problem�an algorithmi


solution of the problem would 
ompute the generalized notion of dependen
e mentioned

above for programs written in this language. We show that the dependen
e analysis

problem is unde
idable and therefore there is no su
h algorithm. In the next 
hapter, we

propose an approximate algorithm to 
ompute dependen
e and prove its soundness.

2.1 Dependen
e Analysis of Imperative Programs

In the 
ontext of imperative languages, dependen
e analysis answers the question: Given

a statement, say S1, what are the statements S2 that it depends on? Dependen
es be-

tween statements arise be
ause of two distin
t reasons. In the example in Figure 2.1, the

statement S7 assigns the value x+y to z. Thus any 
hange in the values of x or y will

a�e
t the value of x+y and therefore the value assigned to z. Sin
e statements S3, S5 and

S6 de�ne x and y, S7 is said to be dependent on S3, S5 and S6. This kind of dependen
e
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S0: b = 2

S1: a = 5

S2: if b < 0

S3: x = a+ 5

S4: else

S5: x = a− 2

S6: y = a + 1

S7: z = x + y

S8: print z

start

S0 S1

S2

S3 S5 S6

S7

S8

Figure 2.1: Imperative program and its PDG. Solid lines indi
ate data dependen
e and

dashed lines 
ontrol dependen
e.

is 
alled data dependen
e. In summary, if Si de�nes a value that is dire
tly or transitively

used by Sj we say that Sj is data dependent on Si.

There is a se
ond reason due to whi
h a statement 
an be seen as depending on

another. For the present dis
ussion, we shall regard a boolean expression representing the


ondition of a if as a statement. In the example, the sele
tion of S3 or S5 for exe
ution

depends upon the 
ondition b > 0 in S2. We say that S3 and S5 are 
ontrol dependent

on S2. This is viewed as a dependen
e be
ause the value of x that rea
hes S7 depends on

the statement sele
ted by S2. In general, we say that Sj is 
ontrol dependent on Si if Si

de
ides whether Sj is exe
uted or not.

Dependen
e is a transitive relation. In the example, S7 is data dependent on S3, and

S3, in turn, is data dependent on S1. This makes S7 data dependent on S1. Similarly, the

fa
t that S3 is 
ontrol dependent on S2 makes S7 dependent on S2, though the resulting

dependen
e 
annot be 
lassi�ed as either data or 
ontrol dependen
e. It is 
ustomary to

represent the dependen
es in a program as a graph, with the data and 
ontrol dependen
e

represented by di�erent kinds of edges, as shown in Figure 2.1. This graph is 
alled a

Program Dependen
e Graph (PDG). For te
hni
al reasons, a syntheti
 node START is

added to the graph and all the statements are made 
ontrol dependent on this node.
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let

b = 2

a = 5

x = if (< b 0) (+ a b)

(− a 2)

y = (+ a 1)

z = (+ y x)

in z

+(z)

+(y) if(x)

<

0

1

+

-

2

5(a)

2(b)

Figure 2.2: Fun
tional program and its tree representation. 2(b) denotes that the node

represents a value 2 held through a let binding to a variable b

2.2 Dependen
es in fun
tional programs

We 
an de�ne dependen
es for fun
tional programs in a similar way. Sin
e fun
tional

programs do not have assignments of values to variables, the dependen
es are between

expressions instead of statements. Dependen
e in the 
ontext of fun
tional programs


ould be des
ribed as: Given an expression e in a program, what other expressions in the

program does the value of e depend on? While we shall formally des
ribe the language for

whi
h we propose our analysis, for now we assume the reader's familiarity with a S
heme

like language. Consider the earlier imperative program now written as a let expression.

This 
an be viewed as a tree as shown in Figure 2.2 with some of the nodes labeled by the

variables of let. In the absen
e of fun
tion 
alls, dependen
e analysis as de�ned above

would be very easy to 
ompute�an expression depends on ea
h of its sub-expressions.

In the 
ontext of fun
tional programs, however, the de�nition 
an be generalized and

made more interesting, espe
ially when the value 
omputed by the program is an algebrai


data type. Most fun
tional languages have a set of pre-de�ned algebrai
 datatypes (lists,

for example) and additionally provide features for users to de�ne their own algebrai


datatypes. Values of an algebrai
 datatype are 
onstru
ted with 
onstru
tors for example

(cons, nil) and de-
onstru
ted with sele
tors (car , cdr).

Figure 2.3 shows a program fragment 
omputing a stru
ture. As a generalization, we

may be interested in knowing the dependen
es of a "part" of the value of an expression

instead of the entire value of the expression. The part that we may be interested in is
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e1: let


 ← e2:(cons a b)

in

e3:(if e4:(< a b) e5:(car 
) e6:d))

Figure 2.3: A fun
tional program evaluating to a stru
ture. Labels su
h as e are used to

refer to expressions in the ensuing dis
ussion and are not part of the language.

spe
i�ed through a set of paths, ea
h path representing a 
omposition of sele
tor fun
tions.

As an example, assume that we are interested in the part of (the value of) e1 
orresponding

to the 
omposition of sele
tors {car◦cdr} of the value of e1. It is 
onvenient to write this

as a set of paths, ea
h path 
onsisting of a sequen
e of sele
tors in the order in whi
h these

would be applied. In this 
ase the set would 
onsist of a single path cdr car (cdr followed

by car). Ea
h pre�x of a path represents the root of interest of some sub-stru
ture of e1.

They are, for this example, the root of e1 itself represented by the pre�x ǫ (the empty

pre�x of cdr car), the root of the stru
ture obtained after a cdr sele
tion on e1 (the

pre�x cdr of cdr car), and a cdr sele
tion followed by a car sele
tion (
orresponding to

the entire path cdr car).

Given that we are interested in {cdr car} of e1, let us see what sub-stru
tures of

other expressions does this depend on. e1. Sin
e the value of e1 is also the value of

e3, {cdr car} of e1 would obviously depend on {cdr car} of e3. Further, the value of

e3 is de
ided by the 
ondition e4 of the if . Therefore there is a 
ontrol dependen
e of

e3 (and therefore of e1) on {ǫ} of e4.1 Going further down the if , Sin
e the value of

e3 is one of e5 and d, {cdr car} of e1 is also dependent {cdr car} of e5 and d. Also

observe that sin
e the spe
i�ed part of e1 depends on {cdr car} of e5, and e5 happens

to be (car 
), the dependen
e of e1 on 
 is the set {car cdr car}. 
, a car sele
tion


 to be (cons a b), {car cdr car} part of 
 translates to {cdr car}. Observe that in

obtaining this dependen
e, we have used the rule (car (cons x y)) = x of 
onstru
tor-

sele
tor intera
tion. More importantly, this rule also leads to the 
on
lusion that the

1

Sin
e e4 is a s
alar, its value is represented by the root ǫ.
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spe
i�ed part of e1 is not dependent on b, and we would not have been able to obtain

this pre
ision without in
orporating 
onstru
tor-sele
tor intera
tion in our analysis.

However, in
orporating su
h rules in the analysis is not simple. In the example,

the sele
tor appli
ation immediately followed the pair 
reation. Therefore, it was easy to

observe the fa
t that the result of the appli
ation was a. In general this may not be the


ase, the sele
tor and 
onstru
tor 
an be widely separated�in fa
t, they 
ould even be in

di�erent fun
tions. Another thing that 
ompli
ates identifying this sele
tor-
onstru
tion

intera
tion is the fa
t that the a
tual pair that takes part in the sele
tion might take

part in further 
onstru
tions and subsequent sele
tions. For example, in the expression

(car (car (cons (cons a b) (cons b a))), the analysis has to 
orre
tly identify that the

outermost car intera
ts with the 
onstru
tor (cons a b). Therefore, any analysis whi
h


an pre
isely 
ompute su
h dependen
es must 
ontain the identity (car (cons x y)) = x

as its part.

Let e be an expression whi
h evaluates to an algebrai
 datatype and σ denote a part

of this stru
ture. The notion of dependen
e that we wish to address 
an now be generalized

to: Given the part σ of an expression e, what parts σi of other expressions ei de
ide the

value of σ part of the value of e? One 
an easily see the appli
ability of this notion of

dependen
e. For example, in the 
ase of sli
ing, one 
an fo
us on the seemingly erroneous

part of the value of an expression and ask what (ei, σi)s does it depend on. If it does not

depend on any part of an expression ei, it 
an be sli
ed out. We 
all the parts of interest

σi as demands. In the following se
tions, we des
ribe an analysis whi
h in
orporates


onstru
tor-sele
tor intera
tion and 
omputes pre
ise dependen
e information.

2.3 Syntax

Figure 2.4 shows the syntax of our language. We assume familiarity with the basi
 features

of a S
heme-like language. A program in our language is a 
olle
tion of fun
tion de�nitions

followed by a main expression denoted as emain whi
h for our purposes will always be

(main). Appli
ations (denoted by the synta
ti
 
ategory App) 
onsist of fun
tions or

operators applied to variables. Constants are regarded as 0-ary fun
tions. Expressions

(Expr) are either an if expression, a let expression that evaluates an appli
ation and binds

the result to a variable, or a return expression. The return keyword is used to mark a
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p ∈ Prog ::= d1 . . . dn emain � program

df ∈ Fdef ::= (define (f x1 . . . xn) e) � fun
tion def

e ∈ Expr ::=



















(if x e1 e2) � 
onditional

(let x← s in e) � let binding

(return x) � return from fun
tion

s ∈ App ::=



































































k � 
onstant (numeri
 or nil)

(cons x1 x2) � 
onstru
tor

(car x) � sele
ts �rst part of cons

(cdr x) � sele
ts se
ond part of cons

(null? x) � returns true if x is nil

(+ x1 x2) � generi
 arithmeti


(f x1 . . . xn) � fun
tion appli
ation

Figure 2.4: The syntax of our language

variable in a returning 
ontext of a fun
tion. Notable omissions are lambda expressions

and a provision for user-de�ned algebrai
 datatypes.

For ease of presentation, we restri
t the language to Administrative Normal Form

(ANF) [83℄. In this form, the arguments to fun
tions 
an only be variables. This re-

stri
tion does not a�e
t expressibility, but has an important notational advantage. As

we shall see later, the semanti
s that we shall as
ribe to this language is a generalization

of lazy semanti
s, and every appli
ation that is asso
iated with a let de�nition 
an also

be seen as an expli
ation of 
losure 
reation. We assume that lets in our language are

non-re
ursive�in the expression let x← s in e, x should not o

ur in s. The restri
tion

of let to a single de�nition is for ease of exposition�generalization to multiple de�nitions

does not add 
on
eptual di�
ulties. To avoid dealing with s
ope-shadowing, we assume

that all variables in a program are distin
t. Neither of these two restri
tions a�e
t the

expressibility of our language. In fa
t, in our implementation, we translate a pure sub-

set of S
heme to our language, and, in the sli
ing tool, map the sli
ed program ba
k to

S
heme. To refer to an expression e, we may annotate it with a label π as π :e; however

the label is not part of the language. To keep the des
ription simple, we shall assume that

ea
h program has its own unique set of labels. In other words, a label identi�es both the
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program point and the program that 
ontains it. We denote the body of a fun
tion f as

ef . We assume that ea
h program has a distinguished expression, emain, and the program

begins exe
ution with the evaluation of main.

2.4 Dependen
e analysis as propagation of demands

Re
all from Se
tion 2.1 that dependen
e analysis of a fun
tional program, as we wish to

view it, answers the following question: Given that we are interested in a spe
i�
 part

of the stru
ture representing the value of an expression, what parts of other expressions

does this value depend on? The substru
ture of interest 
an be identi�ed by a set, whose

elements are 
ompositions of sele
tor fun
tions. Ea
h su
h 
omposition is a sequen
e of

dereferen
es of cons 
ells through its car and cdr �elds, and ends in the root of some sub-

stru
ture. We view this sequen
e of dereferen
es as a path from the root of the stru
ture.

We introdu
e the notations 0 to represent dereferen
ing using the car �eld and 1 for

dereferen
ing using cdr. As an example, 
onsider the stru
ture 
reated by the expression

(cons (cons a b) c). The set {00, 01} represents dereferen
ing paths to the root of various

sub-stru
tures of the value of this expressions. This is shown in Figure 2.5. Ea
h element

in this set is 
alled an a

ess path and the entire set {00, 01} is 
alled a demand.

A demand on an expression e represents parts of its value that the 
ontext of e may

be interested in. Here, by 
ontext we mean all future 
omputations that may make use

of e. Sin
e these parts 
an be represented by paths from the root of the value, a demand

is represented by a set of strings over (0+ 1)∗. As an example, a demand of {10} on the

expression (cons x y) means its 
ontext may be interested in the car �eld of y. This is

represented by the pre�x 1 of the string 10 in the demand. The absen
e of the string 0 as

a pre�x of any string in the demand, on the other hand, indi
ates that x is de�nitely not

of interest. Noti
e that 
omputation of {10} of (cons x y), requires {0} of y. Thus we

may think of dependen
y analysis as 
omputation of a demand transformer transforming

(or propagating) the demand {10} on (cons x y) to demands on its parts�{0} on y

and the empty demand (represented by ∅) on x. As one more example, 1∗
in whi
h the


ontext is interested in the spine of a list. The length fun
tion would represent su
h a

demand on its argument. Similarly if e evaluates to a list, then the demand {0, 10, 110}

means that the 
ontext may only refer up to the third element of e.
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ǫ

0 


b 0100 a

Figure 2.5: A

ess paths 
orresponding to the stru
ture (cons (cons a b) c). Paths 
orre-

sponding to demand {00, 01} are shown in bold.

The dependen
e analysis problem is now modeled as follows: Given a demand σ on

e, we would like to �nd the demand σi on ea
h of the expressions ei in the program. Thus

dependen
e analysis lies in 
omputing a demand transformer that, given a demand on

e, 
omputes a demand environment�a mapping of ea
h expression (represented by its

program point π) to its demand. While in the general formulation e 
an be any expression

in the program, in the restri
ted formulation whi
h su�
es for our appli
ations of garbage


olle
tion and sli
ing, e is spe
i�
ally a 
all to the main fun
tion main.

We use σ to represent demands and α to represent a

ess paths. Given two a

ess

paths α1 and α2, we use the juxtaposition α1α2 to denote their 
on
atenation. We extend

this notation to a 
on
atenate a pair of demands and even to the 
on
atenation of a

symbol with a demand: σ1σ2 denotes the demand {α1α2 | α1 ∈ σ and α2 ∈ σ2} and 0σ

is, through abuse of notation, a shorthand for {0α | α ∈ σ}. Also, note that σ1σ2, when

σ2 = ∅, is ∅.

2.4.1 Spe
i�
ation of dependen
e analysis

We now formally spe
ify the dependen
e analysis problem. To do this, we �rst de�ne a

non-standard small-step operational semanti
s 
alled Demand Guided Semanti
s (DGS)

that serves as a spe
i�
ation of the real demand on ea
h expression of the program that

is required to satisfy the given demand on a designated expression. While the expression

of 
on
ern 
an be any expression in the program, for the appli
ations 
onsidered in this

thesis, namely liveness-based garbage 
olle
tion and sli
ing, we shall 
onsider this to be

the fun
tion main, and the user supplied demand will be denoted σmain.
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Fun
tion evalAndPrint(expr)

Data: expr is the expression being evaluated

val ← evalToWHNF(expr)

if (pair?(val)) then

Display �(�

evalAndPrint(car(val))

Display �.�

evalAndPrint(cdr(val))

Display �)�

else

Display val

Algorithm 1: evalAndPrint fun
tion that drives the evaluation in a lazy lan-

guage.

Starting with the demand σmain on (main), DGS propagates demands to ea
h ex-

pression as it is being evaluated during exe
ution. We 
all the demand thus propagated

to an o

urren
e of an expression as the dynami
 demand and denote it as δ. A key

aspe
t of DGS is that an expression is evaluated only if the dynami
 demand on it is

not ∅. Given an expression and a program point of an arbitrary program, any algorithm

whi
h 
aptures the union of the dynami
 demands on all o

urren
e of this expression in

the tra
e of any DGS exe
ution of the program through stati
 analysis is deemed to be a

solution of the dependen
e analysis problem.

Demand Guided Semanti
s

The exe
ution state of Demand Guided Semanti
s has the dynami
 demand as a 
om-

ponent. The evaluation aspe
t of Demand Guided Semanti
s 
an be thought of as a

generalization of lazy semanti
s. In lazy semanti
s, the evaluation of the user supplied

main program main is mediated through a runtime support, whi
h we 
an model as

a fun
tion 
alled evalAndPrint. evalAndPrint evaluates main till it rea
hes Weak

Head Normal Form (WHNF) [74℄. Sin
e our language is �rst order, this means that an

expression has to be evaluated to its value and printed in the 
ase of a base type, and to

a partially evaluated expression with the outer 
onstru
tor (cons) exposed, in the 
ase

of a pair or a list. evalAndPrint then re
ursively evaluates and prints the (possibly)
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Fun
tion evalAndPrint(expr, δ)

Data: expr is the expression to be evaluated

Data: δ is the demand on expr

if (¬(δ == ∅)) then

val ← evalToWHNF(expr)

if (pair?(val)) then

Display �(�

evalAndPrint(car(val), δ1) // δ1 = {α | 0α ∈ δ}

Display �.�

evalAndPrint(cdr(val), δ2) // δ2 = {β | 1β ∈ δ}

Display �)�

else

Display val

Algorithm 2: Modi�ed evalAndPrint fun
tion to drive evaluation in demand

guided semanti
s.

unevaluated expressions 
onstituting the head and the tail of main, printing appropriate

delimiters in between. This is shown in Figure 1. We wish to point out that:

1. The reason why a program in a lazy language is evaluated in this way is to re
on
ile two

requirements. First, lazy semanti
s di
tates that the evaluation of any expression in

the program means 'evaluation till WHNF'. However, the top level expression must be

fully evaluated for the user to see the results. Therefore, ea
h expression is evaluated

by default till WHNF. However, the top-level expression main is guided to a full

evaluation by evalAndPrint.

2. This strategy e�e
tively puts a demand of (0 + 1)∗ (full evaluation) on the main

expression.

In DGS, we generalize the notion of lazy evaluation, so that instead of evaluating the

main expression fully, it is evaluated to the extent given by an arbitrary demand δ. As

examples, if e is a list and δ is 1∗, then e is evaluated to expose its entire spine, the

individual elements of the list 
an remain unevaluated. The modi�ed evalAndPrint

fun
tion for a demand guided evaluation is shown in Figure 2.
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Premise Transition Rule name

δ is ∅ ρ, (ρ′, y, e′, δ′ ) :S, e, δ  ρ′, S, e′, δ′ no-eval

ρ, (ρ′, y, e, δ′ ) :S, κ, δ  ρ′ ⊕ {y 7→ v}, S, e, δ′ 
onst

ρ(x) is 〈s, ρ′〉 ρ, S, x, δ  ρ′, S, s, δ var

ρ(x) is 〈(id y), ρ′〉 ρ, S, x, δ  ρ′, S, y, δ id

ρ, S, (car x), δ  ρ, S, x, 0δ 
ar

ρ, S, (cdr x), δ  ρ, S, x, 1δ 
dr

ρ, (ρ′, w, e, δ′ ) :S, (cons x y), ǫ  

ρ′ ⊕ {w 7→ (〈(id x), ρ〉, 〈(id y), ρ〉)}, S, e, δ′


ons

δ′ = {α | 0α ∈ δ} ρ, S, (cons x y), δ  ρ, S, x, δ′ 
ar-
ons

δ′ = {α | 1α ∈ δ} ρ, S, (cons x y), δ  ρ, S, x, δ′ 
dr-
ons

ρ(x), ρ(y) ∈ N ρ, (ρ′, z, e, δ′ ) :S, (+ x y), δ  

ρ′ ⊕ {z 7→ (+ ρ(x) ρ(y))}, S, e, δ′

prim-add

ρ(x) is 〈s, ρ′〉 ρ, S, (+ x y), δ  ρ, (ρ, x, (+ x y), δ ) :S, x, ǫ prim-1-
lo

ρ(y) is 〈s, ρ′〉 ρ, S, (+ x y), δ  ρ, (ρ, y, (+ x y), δ ) :S, y, ǫ prim-2-
lo

f de�ned as (define (f ~y) ef ) ρ, S, (f ~x), δ  [~y 7→ ~〈(id x), ρ〉], S, ef , δ fun
all

ρ, S, (let x← s in e), δ  ρ⊕ {x 7→ 〈s, ρ〉}, S, e, δ let

ρ(x) ∈ N & ρ(x) 6= 0 ρ, S, (if x e1 e2), δ  ρ, S, e1, δ if-true

ρ(x) ∈ N & ρ(x) = 0 ρ, S, (if x e1 e2), δ  ρ, S, e2, δ if-false

ρ(x) is 〈s, ρ′〉 ρ, S, (if x e1 e2), δ  ρ, (ρ, x, (if x e1 e2), δ ) :S, x, ǫ if-
lo

ρ(x) is 〈s, ρ′〉 ρ, S, (return x), δ  ρ, S, x, δ return-
lo

Figure 2.6: Demand guided exe
ution semanti
s. no-eval has pre
eden
e over all rules.

We now spe
ify the domains used by the semanti
s:

d : Data = Val + Clo � Values & Closures

v : Val = N+ {nil}+ Data × Data � Values

c : Clo = (App × Env) � Closures

ρ : Env = Var → Data � Environment

A data value d may either be an evaluated value, denoted by v, or a 
losure. A


losure is a pair 〈s, ρ〉 in whi
h s is an unevaluated appli
ation, and ρ maps free variables

of s to data values. An environment is a mapping from the set of variables of the program

Var to Data. The notation [~y 7→ ρ(~x)] represents an environment that maps the formal
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arguments yi to the bindings of the a
tual arguments xi. ρ⊕ρ
′
represents the environment

ρ shadowed by ρ′ and ⌊ρ⌋X represents the environment restri
ted to the variables in the

set X . Finally FV (s) represents the free variables in the appli
ation s.

The DGS of our language is shown in Figure 2.6. The semanti
s of expressions and

appli
ations are given by transitions of the form ρ, S, e, δ  ρ′, S ′, e′, δ′. Here ρ is an

environment that maps variables to their bindings, S is a sta
k of 
ontinuation frames, e

is the 
urrent expression being evaluated, and δ is the demand on e. Ea
h 
ontinuation

frame is a 4-tuple (ρ, x, enext, δ), signifying that the variable x has to be updated with the

value of the 
urrently evaluating expression and enext is the next expression to be evaluated

in the environment ρ with the demand on enext being δ. The initial state of the transition

system is: ([ ]ρ, [ ([ ]ρ, ans, (evalAndPrint), δmain) ], (main), {ǫ}) in whi
h [ ]ρ is the

empty environment. The initial sta
k 
onsists of a single 
ontinuation frame in whi
h

ans is a distinguished variable that will eventually be updated with the value of (main)

and (evalAndPrint) will be pi
ked next for exe
ution. The fun
tion evalAndPrint

halts the program if the value of (main) is already fully evaluated, else it �rst produ
es a

DGS tra
e starting from the state ([ ]ρ, [ ([ ]ρ, ans, (evalAndPrint), δ1) ], (car main), ǫ)

where δ1 = {α | 0α ∈ δ}, followed by the DGS tra
e starting from ([ ]ρ, [ ([ ]ρ, ans,

(evalAndPrint),δ2) ],(cdr main),ǫ) where δ2 = {β | 1β ∈ δ}.

In the demand guided semanti
s shown in Figure 2.6, evaluation of a let expression

(let x ← s in e) does not result in the evaluation of s. Instead, as the let rule shows,

a 
losure is 
reated and bound to x. While evaluating a fun
tion body, evaluation of


losures is initially triggered while 
he
king an if 
ondition (IF-
lo) or at a return

(return-
lo). This, in turn, may trigger evaluation of more 
losures. As an example

of 
losure evaluation, we explain the rules for car and cons. If the demand δ on (car x)

is ∅ then it is not evaluated at all (no-eval). If δ is non-null, then x is evaluated with

the propagated demand 0δ. In a well typed program, the evaluation of x should result

in a 
losure say (cons y z). The DGS semanti
s now uses the 
ar-
ons rule to sele
t y

for evaluation with the propagated demand obtained by stripping o� leading 0 from all

strings in 0δ. This gives ba
k δ as the demand to be propagated to y. However, if the

surrounding 
ontext of (cons y z) had been a cdr instead of car, then this would have

resulted in ∅ and then y would not have been evaluated any further (no-eval). Also

noti
e that the rule for fun
tion 
alls is de�ned through the use of the identity fun
tion
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id. We have introdu
ed this due to purely te
hni
al reasons. The evaluation of (id x) is

de�ned by the rule id, it results in the evaluation of x in the same exe
ution 
ontext. Its

introdu
tion simpli�es the de�nition of subsumption in Se
tion 3.3.

The set operation {α | 0α ∈ δ} 
an be des
ribed algebrai
ally by introdu
ing the

symbol 0̄ de�ned as 0̄δ = {α | 0α ∈ δ} with the derived property that 0̄0 rewrites to ǫ.

Similarly, we de�ne 1̄δ = {α | 0̄α ∈ δ} with the derived property that 1̄1 rewrites to ǫ.

We now formally de�ne the dependen
e analysis problem as follows:

De�nition 2.1 The dependen
e analysis problem is to �nd an algorithm A su
h that

given a program P , a demand δ, a 
ontrol point π, and a string w ∈ (0+ 1)∗ will answer

yes if there exists a DGS tra
e of P and δ in whi
h the expression at π appears with a

dynami
 demand δ′ 
ontaining w, and no otherwise.

We introdu
e a predi
ate prop(e, δ, π : e′, δ′) to denote that there exists a DGS tra
e

of an expression e with demand δ su
h that the expression e′ at the program point π

appears on the tra
e with a dynami
 demand δ′. Thus the dependen
e analysis problem

is to �nd an algorithm A su
h that ∀P∀δ∀π∀w.A(P, δ, π, w) = ∃δ′.prop(P, δ, π, δ′), and

w ∈ δ′. We are now ready to prove a result that shows that dependen
e analysis is

unde
idable.

2.4.2 Unde
idability of dependen
e analysis

We use the symbol w to denote strings in (0 + 1)∗, α and β to denote strings in (0 +

1 + 0̄ + 1̄)∗, and γ to denote strings of grammar symbols, i.e. strings of non-terminals

and terminals. We also name the set 
onsisting of the two non-
ontext-free produ
tions

0̄0 → ǫ and 1̄1 → ǫ as unrestricted. We �rst show that for a 
lass of grammars CG


onsisting of a set of 
ontext-free produ
tions over the terminal symbols {0, 1, 0̄, 1̄} along

with the �xed set of non-
ontext-free produ
tions unrestricted, the problem of whether ǫ

belongs to an arbitrary grammar in the 
lass is unde
idable. We then 
onsider a subset of

CG, say CG′
, that is large enough to replay the Unde
idability proof. Spe
i�
ally, the set

CG′

orresponds to the set of all Turing Ma
hines. Finally we show that any grammar G

in CG′

an be 
onverted to a program P su
h that the problem of whether ǫ belongs to

L (G) 
an be redu
ed to the dependen
e analysis problem of P .

33



0011 101. . .000 000 . . . L0̄0̄0̄1̄1̄S0101000R
⇓

Figure 2.7: Figure illustrating the 
orresponden
e between TM state and grammar sen-

tential form. Shaded part represents the region of interest and ⇓ represents the lo
ation

of the TM head. Underlined symbols are spurious symbols produ
ed by the L and R

produ
tions that 
an be erased later by Sc
final.

Lemma 2.2 Consider the 
lass of grammars CG in whi
h ea
h grammar G is of the kind

(N, {0, 1, 0̄, 1̄}, p ∪ unrestricted, S). Here N is a set of non-terminals and p is a set

of 
ontext-free produ
tions 
ontaining the distinguished produ
tion S → γ, where γ is a

string of grammar symbols that does not 
ontain S. The problem of whether an arbitrary

grammar G in this set re
ognizes ǫ is unde
idable.

Proof. We redu
e the Halting problem to the ǫ-re
ognition problem of grammars in CG.

We assume that the Turing Ma
hine (TM) is deterministi
, the input w to the Turing

Ma
hine is a unary string in 1∗
and the blank symbol is represented by 0. We shall

represent a TM 
on�guration as wl(S, c)wr, where wl and wr are regions of the tape that

have either been visited or 
ontain the symbol 1, c is the symbol under the head and S

is the 
urrent state of the TM. We shall 
all wlcwr as the region of interest in the tape.

We 
onstru
t a grammar G su
h that the ma
hine will halt on w if and only if ǫ ∈ L (G).

The grammar will have the following produ
tions:

1. Fixed produ
tions: These are the produ
tions in unrestricted and the produ
tions L→

L 0̄ | ǫ and R→ 0R | ǫ.

2. Produ
tions related to TM transitions: For ea
h 
ombination of state and symbol (S, c),

the grammar will 
ontain the non-terminal Sc
. Corresponden
es between the moves of

the TM and the grammar produ
tions are as follows:

(a) For ea
h transition (Si, c)→ (Sj, c
′, L), there are two produ
tions Sc

i → 0S0
j c

′
and

Sc
i → 1S1

j c
′
.

(b) For ea
h transition (Si, c)→ (Sj, c
′, R), there are two produ
tions Sc

i → c′S0
j 0̄ and

Sc
i → c′S1

j 1̄.

3. Produ
tions related to the �nal state: For every symbol c, there is a non-terminal

Sc
final where Sfinal is the �nal state of the TM. We add the produ
tions Sc

final → 0Sc
final ,
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wl0(Si, c)wr Lwl0̄S
c
i wrR

wl(Sj, 0)c
′wr Lwl0̄0S

0
j c

′wrR

LwlS
0
j c

′wrR

θ

(S
i
,c)→(S

j
,c′,L) Sc

i
→0S0

j
c′

θ
0̄0→ǫ

(Si, c)wr LSc
i wrR

(Sj, 0)c
′wr L0S0

j c
′wrR

L0̄0S0
j c

′wrR

LS0
j c

′wrR

θ

(S
i
,c)→(S

j
,c′,L) Sc

i
→0S0

j
c′

θ

L→L0̄

0̄0→ǫ

(a) (b)

Figure 2.8: Commutative diagrams illustrating the invariant θ mapping TM moves to

sentential forms.

Sc
final → 1Sc

final , S
c
final → Sc

final 0̄, S
c
final → Sc

final 1̄ and Sc
final → ǫ.

4. Produ
tion related to the start state: Assume that the TM starts in a state Sinit with an

input w and the head positioned to the immediate left of w. Then there is a produ
tion

S → LS0
initwR, where S would be regarded as the start symbol of the grammar.

We now �rst show that if the TM halts on w, then there is a derivation S
∗
⇒ ǫ. To

do this, we de�ne a mapping θ that serves as an invariant relation from 
on�gurations of

the TM to sentential forms.

θ maps a TM 
on�guration wl(S, c)wr to the sentential form LwlS
c wrR, where

wl is the same as wl but with ea
h tape symbol c in wl repla
ed by c. The L

and the R non-terminals a
t as markers that delimit the in�nite tape to its

region of interest.

Thus, if S0
initw is the initial 
on�guration of the TM, then the mat
hing sentential

form is LwlS
0
initwrR, whi
h 
an be derived in a single step from S. For any move of the

TM, we now spe
ify the sequen
e of derivation steps that would maintain the invariant.

1. Assume that the TM moves left using the transition rule (Si, c) → (Sj, c
′, L). There

are two sub 
ases:

(a) If the 
urrent 
on�guration of the TM is wl0(Si, c)wr, then θ de�nes the 
urrent

sentential form to be Lwl0̄S
c
i wrR. The 
orresponding derivation �rst uses the

produ
tion Sc
i → 0S0

j c
′
and follows it up using 0̄0 → ǫ. This is shown in Fig-

ure 2.8(a). Noti
e that the invariant 
ontinues to be maintained between the new
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state of the TM and the sentential form at the end of these two derivation steps.

Similarly, if the TM 
on�guration is wl1(Si, c)wr and the TM transition remains

the same, then the 
orresponding derivation �rst uses the produ
tion Sc
i → 1S1

j c
′

and then simpli�es using 1̄1→ ǫ.

(b) Let the 
urrent 
on�guration of the TM be (Si, c)wr. Then θ de�nes the 
urrent

sentential form as LSc
i wrR. The 
orresponding steps in the derivation are: �rst

move the left marker using the produ
tion L → L0̄, expand Sc
i using the Sc

i →

0S0
j c

′
and simplify using 0̄0→ ǫ. Figure 2.8(b) shows that the invariant 
ontinues

to be maintained.

2. Now assume that the TM makes a right move using the transition rule (Si, c) →

(Sj , c
′, R). There are again two sub 
ases:

(a) If the 
urrent 
on�guration of the TM is wl(Si, c)0wr, then the 
urrent sentential

form is LwlS
c
i 0wrR. The 
orresponding derivation �rst uses the produ
tion Sc

i →

c′S0
j 0̄ and follows it up using 0̄0 → ǫ. Similarly, if the TM 
on�guration is

wl(Si, c)1wr, then the 
orresponding derivation �rst uses the produ
tion Sc
i →

c′S1
j 1̄ and then simpli�es using 1̄1→ ǫ.

(b) Let the 
urrent 
on�guration of the TM be wl(Si, c). Then the 
orresponding steps

in the derivation are: �rst move the right marker using the produ
tion R→ 0R,

expand Sc
i using the Sc

i → c′S0
j 0̄ and simplify using 0̄0 → ǫ. It is easy to verify

that in both the sub 
ases of 2, the invariant 
ontinues to be maintained.

The idea behind the produ
tions is explained with an example: Assume that the

traversed part of the TM is 01(Si, 0)00 and therefore the 
urrent sentential form is

L0̄1̄S0
i 00R. Also assume that the TM has a transition (Si, 0) → (Sj , 1, L). Sin
e the

next 
orresponding step in the derivation has to be done without any prior knowledge of

whether the symbol to the left of the tape is a 0 or a 1, two produ
tions are provided,

and the invariant will be maintained only if the produ
tion S0
i → 1S1

j1 is 
hosen for the

next step in the derivation. This gives the 
on�guration L0̄1̄1S1
j100R. Simpli�
ation

with the produ
tion 1̄1→ ǫ yields L0̄S1
j100R, whi
h exa
tly 
orresponds to the 
hanged


on�guration of the TM.

When the TM 
omes to a halt in a 
on�guration wlS
c
final wr, the 
orresponding

sentential form is LwlS
c
final wrR. In the subsequent derivations both L and R derive ǫ and

the Sc
final produ
tions are used to generate symbols that 
an be used by the produ
tions
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wl0(Si, c)wr Lαl0̄S
c
i αrR

wl(Sj, 0)c
′wr Lαl0̄0S

0
j c

′ αrR

(S
i
,c)→(S

j
,c′,L)

θ

Sc
i
→0S0

j
c′

θ

(Si, c)wr LSc
i αrR

(Sj, 0)c
′wr L0S0

j c
′ αrR

(S
i
,c)→(S

j
,c′,L)

θ

Sc
i
→0S0

j
c′

θ

(a) (b)

Figure 2.9: Commutative diagrams illustrating the invariant θ mapping sentential forms

to TM moves.

in unrestricted to erase wl and wr. The derivation ends with Sc
final deriving ǫ. Clearly if

the TM halts on the input string, then there is a derivation S
∗
⇒ ǫ.

Before proving the 
onverse, we state a property of derivations in the 
onstru
ted

grammar. The produ
tions used for derivations 
an be 
ategorized as (1) produ
tions

with Sc
i on the LHS, (2) produ
tions with L or R on the LHS, and (3) produ
tions in

unrestricted.

Lemma 2.3 Consider a derivation S
∗
⇒ γ in whi
h produ
tions are applied in some

sequen
e. The following pairs of 
onse
utive produ
tions in the derivation 
an be inter-


hanged:

1. Sc
i → γ1 L→ γ2 and L→ γ2 Sc

i → γ1

2. Sc
i → γ1 R→ γ2 and R→ γ2 Sc

i → γ1

3. L→ γ1 R→ γ2 and R→ γ2 L→ γ1

Also, the pair of 
onse
utive produ
tions, 0̄0 → ǫ X → γ1 
an be repla
ed by X → γ1

0̄0 → ǫ where X is one of Sc
i , L or R. Similarly, 1̄1 → ǫ X → γ1 
an be repla
ed by

X → γ1 1̄1→ ǫ.

As a 
onsequen
e of Lemma 2.3, if S
∗
⇒ γ through a sequen
e of produ
tions, we 
an

derive γ through an alternate derivation that re-orders the sequen
e by applying the

Sc
i produ
tions �rst, followed by the L and R produ
tions and �nally the unrestricted

produ
tions. Noti
e that the new derivation must retain the order of produ
tions in the

same 
ategory.

Also noti
e another property of sentential forms. A 0̄ (or 1̄) 
an only be 
an
elled

by a 0 (or 1) on its immediate right. Similarly, a 0 (or 1) 
an only be 
an
elled by a 0̄

(or 1̄) on its immediate left. De�ne an un
an
ellable-pair as the string 0̄1 or 1̄0. We then

make the following 
laim:
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Claim 2.4 If a sentential form 
ontains an un
an
ellable-pair it 
an never derive ǫ.

We are now in a position to prove the 
onverse result, that if S → LS0
initwR

∗
⇒ ǫ,

then starting with the 
on�guration (Sinit, c)w, the TM rea
hes a �nal state. Be
ause

of Lemma 2.3, we 
an assume that the produ
tions with Sc
i are employed before L, R

or unrestricted. Consider the segment of the derivation that starts with LS0
initwR and

ends with the sentential form that has Sc
final for the �rst time. To derive ǫ there must be

su
h a sentential form. We now spe
ify an invariant θ mapping sentential forms to TM


on�gurations.

Ea
h sentential form has the stru
ture LαlS
c
iαrR, where αl, αr ∈ (0+ 1+ 0̄+

1̄)∗. Given su
h a sentential form, the 
orresponding TM state is wl(Si, c)wr,

where αl
∗
⇒ βlwl, and αr

∗
⇒ wrβr where βl ∈ 0∗

and βr ∈ 0̄∗
.

The 
orresponden
e between derivation steps and TM moves is as follows:

1. Assume that the produ
tion 
hosen for the next step in the derivation is Sc
i → 0S0

j c
′
.

This produ
tion 
orresponds to the unique left move (Si, c) → (Sj , c
′, L). To derive

ǫ without getting stu
k, the 
urrent sentential form has to be either Lαl0̄S
c
iαrR or

LSc
iαrR.

(a) If the sentential form is Lαl0̄S
c
iαrR, then be
ause of the invariant θ, the 
urrent

TM 
on�guration is wl0(Si, c)wr, where αl0̄
∗
⇒ βlwl0̄, αr

∗
⇒ wrβr, βl ∈ 0∗

and

βr ∈ 0̄∗
. Clearly the next sentential form is Lαl0̄0S

0
jc

′αrR and the next TM


on�guration is wl(Sj, 0)c
′wr. The invariant is maintained on
e again, be
ause

αl0̄0
∗
⇒ βlwl and c

′αr
∗
⇒ c′wrβr. This is shown in Figure 2.9(a).

(b) If the sentential form is LSc
iαrR, then the 
urrent TM 
on�guration is (Si, c)wr,

where αr
∗
⇒ wrβr and βr ∈ 0̄∗

. The next sentential form is L0S0
jc

′αrR and the

next TM 
on�guration is (Sj , 0)c
′wr. The invariant is maintained be
ause 0 ∈ 0∗

and c′αr
∗
⇒ c′wrβr. This is shown in Figure 2.9(b).

2. If the next produ
tion 
hosen is Sc
i → 1S1

j c
′
, then it also 
orresponds to the left

move (Si, c) → (Sj , c
′, L). The 
urrent sentential form ne
essarily has the stru
ture

Lαl1̄S
c
iαrR and the 
orresponding TM 
on�guration is wl1(Si, c)wr, where αl1̄

∗
⇒

βlwl1̄, αr
∗
⇒ wrβr, βl ∈ 0∗

and βr ∈ 0̄∗
. The next sentential form is Lαl1̄1S

0
jc

′αrR and

the next TM 
on�guration is wl(Sj, 1)c
′wr. The invariant is maintained on
e again,

be
ause αl1̄1
∗
⇒ βlwl and c

′αr
∗
⇒ c′wrβr.
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3. The produ
tions Sc
i → c′S0

j 0̄ or Sc
i → c′S1

j 1̄ 
orrespond to a right move of the TM

(Si, c)→ (Sj , c
′, R) and 
an be reasoned similarly.

It is important to noti
e that a wrong 
hoi
e of produ
tion for the 
urrent sentential form

will result in a sentential form that will 
ontain an un
an
ellable-pair and will not be able

to derive ǫ.

Sin
e the original derivation derived ǫ, it had to arrive at a sentential form 
ontaining

Sc
final. Therefore, the re-ordered derivation will also rea
h a sentential form su
h as

LαlS
c
finalαrR. Be
ause of the invariant the TM will be in a 
on�guration wl(Sfinal, c)wr

and halt. This 
ompletes the redu
tion. �

Let us enumerate the kinds of 
ontext-free produ
tions used in the proof of Lemma 2.2.

They are (i) the produ
tions 
orresponding to the starting state of the TM, S → LSiwR,

w ∈ (0 + 1)∗ (ii) the produ
tions 
orresponding to the intermediate states, Si → 0Sjc,

Si → 1Sjc, Si → cSj0̄ and Si → cSj 1̄, where c ∈ {0, 1}, (iii) the produ
tions 
orre-

sponding to the �nal state, Si → cSi, Si → Sic and Si → ǫ, and (iv) the produ
tions


orresponding to L and R. The following lemma is obvious:

Lemma 2.5 Consider the sub
lass CG′
of grammars (N, {0, 1, 0̄, 1̄}, p ∪ unrestricted,S),

in whi
h the produ
tions in p are restri
ted to the forms des
ribed above. The ǫ-re
ognition

problem for CG′
is unde
idable.

For grammars in CG′
, de�ne a 
anoni
al derivation as one whi
h �rst uses the R-

produ
tions, then the S-produ
tions, followed by the L-produ
tions, and �nally uses the

produ
tions in unrestricted. In other words, a 
anoni
al derivation is a rightmost derivation

S
∗
⇒rm α, followed by the use of produ
tions in unrestricted. We present the following


laim without proof:

Claim 2.6 Consider a grammar in CG′
. For every derivation of a string in G, there is

also a 
anoni
al derivation of the same string.

We now show how to 
onstru
t a program P from given a grammar G ∈ CG′
, su
h

that the language re
ognition of G is related to the result of dependen
e analysis of P .

This is shown in Algorithm 3. The reader 
an verify that for the example produ
tions

shown in Figure 2.10, appli
ation of pgm will result in the program shown alongside. We

now have the following result.
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Fun
tion pgm(P)

Data: P is a produ
tion of the form S → γ or S → γ1 | γ2

Result: F , fun
tion 
orresponding to P

begin

var ← createNewVar()

swit
h P do


ase S → γ do

F ← (define (S var))(pgm'(γ, var))


ase S → γ1 | γ2 do

F ← (define (S var))(if ∗ (pgm'(γ1, var)) (pgm'(γ2, var)))

return F

Fun
tion pgm'(γ, 
urvar)

Data: A string γ of grammar symbols representing the RHS of a produ
tion and


urvar, the 
ontext variable for γ

Result: The program fragment for γ

begin

var ← createNewVar()

swit
h γ do


ase ǫ do

(return 
urvar)


ase 0γ′ do

(let var ← (car 
urvar) in pgm'(γ′, var))


ase 1γ′ do

(let var ← (cdr 
urvar) in pgm'(γ′, var))


ase 0̄γ′ do

(let var ← (cons 
urvar _) in pgm'(γ′, var))


ase 1̄γ′ do

(let var ← (cons _ 
urvar) in pgm'(γ′, var))


ase Sγ′ do

(let var ← (S 
urvar) in pgm'(γ′, var))

Algorithm 3: Algorithm to 
onstru
t fun
tions 
orresponding to grammars in

CG′
.

Lemma 2.7 Consider a grammar G in CG′
with start symbol S. The grammar has a


anoni
al derivation S
∗
⇒ α if and only if prop((S v), {ǫ}, x, δ), where α ∈ δ, x is the

formal parameter of S and v is an arbitrary value of appropriate type.
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S → LS11R

(define (S x)

(let a ← (L x) in
(let b ← (S1 a) in
(let 
 ← (cdr b) in
(let d ← (R 
) in
(return d))))))

S1 → 0S20 | 1S30

(define (S1 x)

(if 0
(let a ← (car x) in
(let b ← (S2 a) in
(let 
 ← (car b) in
(return 
))))

(let a ← (cdr x) in
(let b ← (S3 a) in
(let 
 ← (car b) in
(return 
))))))

Figure 2.10: Sample grammar rules and the 
orresponding programs generated by pgm.

Instead of proving Lemma 2.7, we prove the following generalization.

Lemma 2.8 Consider a grammar G in CG′
. For any non-terminal symbol T and a string

α ∈ (0 + 1 + 0̄ + 1̄)∗, the grammar, Tα
∗
⇒ β in a 
anoni
al derivation, if and only if

prop((T v), {α}, x, δ), where β ∈ δ, x is the formal parameter of T and v is any value of

an appropriate type.

Proof. Assume without loss of generality that β is the string obtained without applying

any of the rules in unrestricted, so that β is α′α for some α′
derivable from T.

First 
onsider only the if part. The proof is by indu
tion on the number of steps in

the derivation. As the base 
ase, 
onsider a 1-step derivation of T
∗
⇒ α′α. This means

that α′
is ǫ and the produ
tion used is T → ǫ. The program fragment 
orresponding to

this 
hoi
e of produ
tion for T simply returns the formal parameter x of T. It follows

from the rules of DGS that prop((T v), {α}, x, {α}).

Now 
onsider the 
ase where T
∗
⇒ α′

in n steps. For the �rst step of the derivation,

we have to do a 
ase analysis on all produ
tions with a non-ǫ RHS. Let us 
onsider only

one of them, say T→ 0T′1, we 
an reason about other produ
tions similarly. Further, we

assume that T′ ∗
→ α′′

and sin
e this derivation takes n− 1 steps, we assume as indu
tion

hypothesis prop((T′ v), {1α}, y, δ′) where α′′1α ∈ δ′, y is the formal parameter of T′
and

v′ is some value.

From the program 
orresponding to T, it is 
lear that (a) the 
dr rule will pre�x a

1 to the demand {α} on the return value of T whi
h then be
omes the demand on the
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fun
tion 
all (T′
a), (b) from the indu
tion hypothesis and be
ause of id rule used while

binding the a
tual to the formal parameter y during a fun
tion 
all, the a
tual argument

a appears on the DGS tra
e with a demand δ′ 
ontaining α′′1α and (
) the 
ar rule adds

a 0 to this demand giving the demand on the formal argument of T that 
ontains 0α′′1α,

or α′α.

Now 
onsider the if part. We show by an indu
tion on the depth of 
alls that if

prop((T v), {α}, x, δ′) su
h that α′α ∈ δ′, then (T v)
∗
→ α′α. The proof is by indu
tion on

the 
all depth of (T v). As base 
ase, assume that the 
all depth of (T v) is 0, i.e. (T v)

results in no further 
alls. Then the program fragment exe
uted in T immediately returns

the formal parameter, say x of T. From the rules of DGS, prop((T v), {α}, x, {α}), or in

other words α′
is ǫ. Also, it follows from the des
ription of pgm that 
orresponding to

the program fragment above, T has a produ
tion that goes to ǫ, and therefore Tα
∗
⇒ α.

For the indu
tive 
ase, we on
e again 
onsider a single illustrative fun
tion de�nition:

(define (T x)

(if 0
(let a ← (car x) in
(let b ← (T′

a) in
(let 
 ← (cdr b) in
(return 
))))

. . .

As indu
tion hypothesis, assume that prop((T′
a), {1α}, y, δ′) su
h that α′′ ∈ δ′ implies

T′1α
∗
⇒ α′′1α, where y is the assumed formal parameter of T′

. Further, from the 
dr rule

of DGS and the indu
tion hypothesis, we have prop((T′
a), {1α}, y, δ′) su
h that α′′1α ∈ δ′

and the fa
t that a is bound to (id y) gives prop((T v), {α}, a, δ′) Finally, by the 
ar rule,

prop((T v), {α}, x, δ) su
h that 0α′′1α ∈ δ, so that α′
is 0α′′1. Now, pgm di
tates that the

program fragment must have been generated from the produ
tion T → 0T′1, and thus Tα
∗
⇒

0α′′1α, or Tα
∗
⇒ α′α �

Theorem 2.9 The dependen
e analysis problem is unde
idable.

Proof. Assume to the 
ontrary that there is an algorithm A for dependen
e analysis.

Then given a grammar G ∈ CG′
, we 
onstru
t a program P that 
onsists of a main

program de�ned as (define (main) (let a ← (S v) in (return a))) where v is a value

of an appropriate type. By Lemma 2.7, the ǫ-re
ognition problem of G, translates to the

predi
ate ∃δ′prop(P, {ǫ}, x, δ′) su
h that ǫ ∈ δ′ and x is the formal parameter of S. This


an be answered by using A as A(P, {ǫ}, x, ǫ). However, sin
e the ǫ-re
ognition problem
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(define (f u v)

(cons (u v)))

(define (main)

(let a ← (car (f b 
))

(let z ← (cdr (f x y))

(cons a z))))

b c x y

call f

u v

return from f

a z

{1 {1 {2 {2

( [

}1 }2

) ]

Figure 2.11: (a) Example s
heme program (b) Labelled dependen
e graph 
orresponding

to the program in (a). Dotted edges indi
ate interpro
edural dependen
e, {i }i pair

indi
ate mat
hing 
all-return, ( indi
ates putting a value in 
ar part, [ indi
ates putting

value in 
dr part, ) indi
ates a 
ar sele
tion and ] a 
dr sele
tion. A valid dependen
e will

have a path in whi
h all parenthesis mat
h ({ and ( ( [ )) 
an be interleaved).

of G has been shown to be unde
idable, no su
h A 
an exist. Hen
e, the dependen
e

analysis problem is unde
idable. �

2.4.3 Related work

The problem of devising a 
ontext-sensitive pre
ise dependen
e analysis that 
an han-

dle stru
ture-transmitted dependen
e has been shown to be unde
idable by Reps [78℄.

Unlike our redu
tion, the unde
idability is shown by redu
ing a variant of the Post's

Corresponden
e Problem (PCP) 
alled parenthesis PCP or P-PCP.

Reps models dependen
e analysis as a graph rea
hability problem on a dire
ted
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graph, where the nodes of the graph represent program variables and the edges represent

data dependen
e. A variable u is dependent on variable v if and only if there exists a path

between the nodes 
orresponding to u and v satisfying some property. Figure 2.11 shows

an example program and the 
orresponding graph. The fun
tion f takes two arguments u

and v and returns a cons 
ell with u as the 
ar-part and v as 
dr-part. The main expression

has two 
alls to f , the 
ar-part of the result of the 
all (f b 
) is assigned to a and the


dr-part of the result of the 
all (f y z) is assigned to x. A dependen
e analysis would

answer questions su
h as: Is a dependent on b? What are the variables on whi
h a may

be dependent? Ignoring the property that needs to be satis�ed, and, as a 
onsequen
e,

the labels on the edges for the time being, we will try to answer these questions by doing

a rea
hability 
he
k on the graph shown in Figure 2.11(b). Variable a depends on b as

there is a path in the graph between the nodes 
orresponding to a and b. Noti
e, however,

that sin
e there exists a path between 
 and a, we 
on
lude that a is dependent on 
 and

for similar reasons, also a is dependent on y. However, it is 
lear from the program that

these dependen
es are spurious as a is not dependent on 
 when one 
onsiders stru
ture

transmitted dependen
e (
aptured by rules of the kind (car (cons x y)) = x), and a is not

dependent on y when 
ontext-sensitivity (dependen
es are propagated only along mat
hed


all-return paths) is 
onsidered. These spurious dependen
es are generated be
ause simple

rea
hability 
annot 
apture stru
ture-transmitted dependen
es or 
ontext-sensitivity.

Reps uses the fa
t that program-analysis problems 
an be ta
kled by modelling them

as CFL-rea
hability [77, 104℄ on labelled graphs. In a labelled graph, a node t is CFL-

rea
hable from s if the string obtained from 
on
atenating the labels on the path belongs

to a given 
ontext-free language de�ning the property that su
h a path should have. In

parti
ular, 
ontext-sensitivity 
an be modelled by adding labels {i }i to 
all-return edges

and de�ning a 
ontext-free grammar, say G1 that a

epts only those paths that have

mat
hed {i }i. In the graph in Figure 2.11, 
onsidering the CFL-rea
hability using G1,

it is 
lear that the spurious path 
onne
ting a with y will be invalid. Similarly, we 
an

add ( to represent a value being passed as the �rst argument of cons [ to represent the

value being passed as the se
ond argument of cons, ) to represent car sele
tion and

] to represent a cdr sele
tion and a di�erent 
ontext-free grammar G2 a

epting only

mat
hed-parenthesis paths. Again, in this 
ase, 
onsidering only paths along whi
h the

parenthesis (both ( ) and [ ]) are 
orre
tly mat
hed, the fa
t that a is dependent on 
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an be ruled out. However, noti
e that just 
onsidering 
ontext-sensitivity or stru
ture-

transmitted dependen
e alone is not su�
ient to rule out all spurious paths and a fully

pre
ise dependen
e analysis should 
onsider both. In terms of the graph, only paths

along whi
h both sets of parenthesis mat
h ({ } for 
ontext-sensitivity and ( ) [ ]

for stru
ture-transmitted dependen
es) should be 
onsidered valid i.e. only paths in the

language G1∩G2. The reader 
an verify that the path from b to a is valid and paths from


 to a and y to a are invalid. Therefore, dependen
e analysis problem redu
es to �nding

an algorithm that �nds all and only fully mat
hed paths of the type des
ribed above in

the data dependen
e graph of a program.

Reps shows that this question is unde
idable by redu
ing a variant of the Post's

Corresponden
e Problem (PCP) to �nding parenthesis mat
hed paths. The PCP problem

is de�ned as follows: Given 2 lists of k strings X and Y over the language (0 + 1)+, an

instan
e of PCP has a solution if there exists a non-empty sequen
e of indi
es i1, i2, . . . im

where 1 ≤ k ≤ m and xi1xi2 . . . xim = yi1yi2 . . . yim. The following instan
e of the PCP

problem from [78℄ where, X = {0101, 101, 111} and Y = {01, 011, 0111101} has the

solution 1, 2, 3, 1 be
ause,

x1x2x3x1 = 01011011110101 = y1y2y3y1

Reps introdu
es a variant of PCP 
alled Parenthesis-PCP (P-PCP) and shows how to


onstru
t an instan
e of P-PCP given an instan
e of PCP. Given an instan
e of PCP with

X = x1x2x3 . . . xk and Y = y1y2y3 . . . yk we 
onstru
t the instan
e of P-PCP as,

X = x1 x2 . . . xk

Y
R
= y1

R y2
R . . . yk

R

where ,

1. xi are 
onstru
ted by repla
ing 0 in xi by ( and 1 by [.

2. yRi are 
onstru
ted by repla
ing 0 in yi by ) and 1 by ] and then reversing the string.

is reversed.

An instan
e of P-PCP is said to have a solution if it has a non-empty sequen
e

xi1 xi2 . . . xim # yim
R . . . yi2

R yi1
R

where for all 1 ≤ m, we have 1 ≤ ij ≤ k and the parenthesis are mat
hed. The 
orrespond-

ing sets X and Y
R
for the earlier instan
e are, X = {([([, [([, [[[} and Y R = {]), ]]), ])]]]])}.
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L i s t ∗x ;

void f1 ( ){

/∗En
odes ( [ ( [ ∗ /

x = 
ons (NULL, ( 
ons ( 
ons NULL,

( 
ons x , NULL) ) , NULL) ) ;

i f ( . . .) f ( ) ;

/∗En
odes ℄ )∗/

x = 
ar ( 
dr ( x ) ) ;

}

void f2 ( ){

/∗En
odes [ ( [ ∗ /

x = 
ons (NULL,

( 
ons ( 
ons NULL, x ) , NULL) ) ;

i f ( . . .) f ( ) ;

/∗En
odes ℄ ℄ ) ∗ /

x = 
ar ( 
dr ( 
dr ( x ) ) ) ;

}

void f3 ( ){

/∗En
odes [ [ [ ∗ /

x = 
ons (NULL,

( 
ons NULL, ( 
ons NULL, x ) ) ) ;

i f ( . . .) f ( ) ;

/∗En
odes ℄ ) ℄ ℄ ℄ ℄ ) ∗ /

x = 
ar ( 
dr ( 
dr ( 
dr ( 
dr ( 
ar ( 
dr ( x ) ) ) ) ) ) ) ;

}

call f1

{1

(

[

(

[

if ∗

}1

ret f1

)

]

#

call f2

{2

[

(

[

if ∗

}2

ret f2

)

]

]

#

call f3

{3

[

[

[

}3

)

]

]

]

]

)

]

if ∗

ret f3

#

ret f

<1
>1

<2 >2

<3

>3

call f

s t

<0 >0

(a) (b)

Figure 2.12: (a)Program 
orresponding to the P-PCP instan
e under dis
ussion (b) De-

penden
e graph for the program in (a).

It 
an be veri�ed that the sequen
e 1,2,3,1 is a solution to this instan
e of P-PCP also.

It is 
lear from the 
onstru
tion that if an instan
e of P-PCP has a solution then the


orresponding instan
e of PCP also has a solution. This shows that P-PCP is also unde-


idable. Reps shows that given an instan
e of P-PCP, one 
an 
onstru
t a program su
h

that if and only if there exists a parenthesis mat
hed path in the dependen
e graph then

the 
orresponding P-PCP problem has a solution.

The program fragment that is equivalent to the instan
e of the P-PCP problem is
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void f ( ){

i f ( . . . ) f1 ( ) ;

e l s e i f ( . . . ) f2 ( ) ;

. . .

e l s e fk ( ) ;

}

void main ( ){

s : x = atom(A) ;

f ( ) ;

t : /∗ 
an x have the value A here ?∗/

}

Figure 2.13: The stru
ture of main and the 
ommon fun
tion f .

shown in Figure 2.12. Ea
h fun
tion fi in the program en
odes the xi as a sequen
e of 
on-

stru
tor operations and the 
orresponding yi
R
as a sequen
e of sele
tors. For example, the

sequen
e for x1, ([([ is en
oded as cons(NULL, (cons(consNULL, (consx,NULL)), NULL))

and y1
R
, ]) as car(cdr(x)). A non-deterministi
 
ondition ensures that ea
h fi 
an 
all any

other fj (in
luding itself) any number of times. Fun
tion 
all and returns are mat
hed

using the symbols {i }i (<i >i). Fun
tions f and main are shown in Figure 2.13.

From the 
onstru
tion it is 
lear that any fi 
an be 
alled from f any number

of times and in any order, 
apturing the fa
t that any xi 
an be used any number

of times and in any order. On
e the fun
tions start returning from f only the 
ode


orresponding to yi
R
s will be exe
uted. A 
ontext-sensitive dependen
e analysis 
apa-

ble of 
orre
tly modelling stru
ture transmitted dependen
es should be able to identify

that variable x may have the value atom(A) at program point t (be
ause the 
orre-

sponding instan
e of P-PCP has the solution 1,2,3,1). It 
an be veri�ed that the path,

<0 {1 ( [ ( [ <1 {2 [ ( [ <2 {3 [ [ [ <3 {1 ( [ ( [ ] ) }1 >3 ] ) ] ] ] ] ) }3 >2 ] ] ) }2 >1 ] ) }1 >0


orresponding to the sequen
e 1,2,3,1 is indeed well mat
hed. The unde
idability of


ontext-sensitive stru
ture transmitted data dependen
e analysis follows from the fa
t

that if we had an algorithm that 
ould 
he
k if su
h a path exists in the dependen
e

graph then we 
ould solve the P-PCP problem whi
h is already known to be unde
idable.

The unde
idability proof presented in this thesis di�ers from Reps' in two respe
ts, 1)

While Reps uses PCP to show the unde
idability we use the Turing ma
hine halting prob-

lem 2) our proof is tightly 
oupled with the operational semanti
s that we have de�ned

to give a formal de�nition of dependen
e analysis. The fa
t that it is 
loser to the opera-

tional semanti
s allows us to de�ne an analysis whi
h 
omputes safe over-approximation
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of dependen
es whi
h we dis
uss in the following 
hapter. Most approximate analyses

drop the requirement of either 
ontext-sensitivity [79℄ or stru
ture transmitted data de-

penden
e [93℄ to be
ome de
idable. As we shall see later, our approximate dependen
e

analysis is modelled as the emptiness question on interse
tion of 2 CFGs. However, it ap-

proximates the requirement of 
ontext-sensitivity by a regular grammar instead of a CFG.

While the emptiness question of interse
tion of 2 CFGs is known to be unde
idable, the

emptiness question of the interse
tion of a CFG with a regular grammar is de
idable [64℄.

We model stru
ture transmitted dependen
e pre
isely using a CFG but over approximate

the CFG 
orresponding to 
ontext-sensitivity by a regular grammar and use the interse
-

tion to 
ompute approximate dependen
es. An analysis whi
h is only 
ontext-sensitive or

whi
h only models stru
ture transmitted dependen
es 
annot eliminate spurious paths in

the example in Figure 2.11, however the analysis that we will be presenting in the next


hapter rules out all spurious dependen
es for the example.
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Chapter 3

An approximate dependen
e analysis

and its proof of 
orre
tness

In the previous 
hapter, we formulated the problem of dependen
e analysis and showed

that 
omputing pre
ise dependen
e information is unde
idable. In this 
hapter, we de-

s
ribe an analysis to 
ompute an over-approximation of dependen
es for �rst-order fun
-

tional programs. Interestingly, our formulation of the problem leads naturally to the

approximate analysis. Our analysis is driven with a demand supplied by the user on

a designated expression, whi
h, for the appli
ations 
onsidered in this thesis, namely

liveness-based garbage 
olle
tion and sli
ing, is a 
all to the fun
tion main. The user

supplied demand will be denoted σmain. The result of the analysis is a (non-
ontext-free)

grammar 
orresponding to ea
h expression in the program. These grammars e�e
tively

des
ribe the parts of the expression on whi
h the result of main is dependent. Answer-

ing queries related to dependen
e questions amounts to �nding out membership of a

ess

paths in the generated grammars. Sin
e we have already shown that pre
ise dependen
e

analysis is unde
idable, the unde
idability manifests in the membership question also

turning out to be unde
idable. We get around this unde
idability by settling for an ap-

proximate answer to the membership problem. Finally, we prove the 
orre
tness of our

formulation of dependen
e analysis using DGS.
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3.1 An approximate dependen
e analysis

We now des
ribe an analysis to 
ompute dependen
es in fun
tional programs. As men-

tioned earlier, this analysis should be interpro
edural, sin
e the 
entral 
onstru
t in a

fun
tional program is a fun
tion 
all. In the interest of pre
ision, the handling of fun
tion


alls should be 
ontext sensitive, and for reasons of e�
ien
y, a fun
tion body should

not be analyzed more than on
e. Finally, for an a

urate modelling of the state of the

heap, the intera
tion between 
onstru
tors and sele
tors should be modeled as part of the

analysis, in other words we should model stru
ture-transmitted dependen
e in the model

of Reps [78℄.

The analysis that we 
onsider addresses s
alability and pre
ision 
on
erns by 
om-

puting 
ontext independent summaries of the e�e
t of fun
tions and then using these

summaries at 
all sites to mimi
 the e�e
t of the fun
tion 
all on its arguments. These

summaries a
t as demand transformers whi
h transform the demand on the fun
tion 
all

to demand on the arguments of the 
all. Thus, if the demands on di�erent 
alls to the same

fun
tion are di�erent, the demands propagated to the arguments will also be di�erent.

This e�e
tively 
aptures 
ontext sensitivity.

Figure 3.1 des
ribes our analysis. First noti
e that a null demand (denoted by ∅)

on any expression

1

results in a null demand on the 
onstituents of the expression. This


aptures the fa
t that when no part of the value of the expression is required, none of its


onstituents need to be 
omputed. This means that the evaluation of the language is a

generalization of lazy evaluation�the extent of evaluation of an appli
ation or expression

is determined by the demand on it.

The fun
tion A, takes an appli
ation s and a demand σ and returns a demand

environment that maps the demand on ea
h argument of s (represented by its program

point) due to the appli
ation. The third parameter to A, denoted DS, represents 
ontext-

independent summaries of the fun
tions in the program and is used to analyze fun
tion


alls. This will be explained shortly. A demand environment is a mapping from program

points to a demand, expressed as {π1 7→ {ǫ, 1, 11}, π2 7→ {ǫ}, π3 7→ {}}. In this notation,

π2 7→ {ǫ} indi
ates that the demand on the expression at π2 is the root of the value of the

expression. Similarly π3 7→ {} indi
ates an empty demand on the expression at π3. We

1

In general, we shall 
all elements of both Expr and App expressions, distinguishing them only when

required by the 
ontext
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A :: (App,Demand, FuncSummaries) → DemandEnvironment

A(π:κ, σ,DS) = {π 7→ σ}, for 
onstants in
luding nil

A(π:(null? π1:x), σ,DS) = {π1 7→ if σ 6= ∅ then {ǫ} else ∅}

A(π:(+ π1:x π2:y), σ,DS) = {π1 7→ if σ 6= ∅ then {ǫ} else ∅,

π2 7→ if σ 6= ∅ then {ǫ} else ∅}

A(π:: (car π1: x), σ,DS) = {π1 7→ if σ 6= ∅ then 0σ else ∅}

A(π:: (cdr π1: x), σ,DS) = {π1 7→ if σ 6= ∅ then 1σ else ∅}

A(π:(cons π1:x π2:y), σ,DS) = {π1 7→ {α | 0α ∈ σ}, π2 7→ {β | 1β ∈ σ}}

A(π:(f π1:y1 · · · πn:yn), σ,DS) =
⋃n

i=1{πi 7→ DS
i
f (σ)}

D :: (Exp,Demand, FuncSummaries) → DemandEnvironment

D(π:(return π1:x), σ,DS) = {π1 7→ σ, π 7→ σ}

D(π:(if π1:x e1 e2), σ,DS) = D(e1, σ,DS) ∪ D(e2, σ,DS) ∪

{π1 7→ if σ 6= ∅ then {ǫ} else ∅, π 7→ σ}

D(π:(let x ← π1:s in e), σ,DS) = A(s, σ′,DS) ∪ {π 7→ σ, π1 7→ σ′}

where Π is the set of program points

representing all o

urren
es of x in e

DE = D(e, σ,DS), and σ′ = ∪π′∈ΠDE(π
′),

DS ∈ FuncSummaries :: Funcname→ (Demand→ (Demand1, . . . ,Demandn))

∀f, ∀i, ∀σ : D(ef , σ,DS) = DE,DS
i
f =

⋃

π∈Π DE(π)

df1 . . . dfk ⊢
l DS

(fun
tion-summaries)

(define (f z1 . . . zn) ef ) is one of df1 . . . dfk , 1 ≤ i ≤ n,

and Π represents all o

urren
es of zi in ef

Figure 3.1: Demand equations and judgment rule

use DE to range over demand environments. The demand on the expression at a program

point π is denoted as DE(π), but 
an also be written as DEπ.

Now the A rules: A demand of σ on the appli
ation (car x), is transformed to the

demand 0σ on the argument x. This is illustrated in Figure 3.2(a). To 
ompute σ of

(car x), we have to start with the root of x, dereferen
e using the car �eld and then


ompute σ of the tree thus obtained, resulting in the path 0σ. The rule for (cdr x) is
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x(0σ)

(car x) σ

0

(cons x y) 0σ1 ∪ 1σ2

x σ1
y σ20 1

f x y

(f x y) σ

x DS
1
f (σ) y DS

2
f (σ)

(a) (b) (
)

Figure 3.2: Illustration of appli
ation rules (a) A demand of σ on (car x) resulting in a

demand of 0σ on x (b) cons rule (
) Fun
tion appli
ation.

similar. In an opposite sense, illustrated in Figure 3.2(b), the demand of 0σ1 on (cons x y)

is transformed to the demand σ1 on x and a ∅ demand on y , and a demand of 1σ2 on

(cons x y) is transformed into a demand of σ2 on y and ∅ demand on x. Sin
e (null? x)

only requires the root of x to examine the 
onstru
tor, a non-null demand on (null? x)

translates to the demand ǫ on x. A similar reasoning also explains the rule for (+ x y).

Sin
e, both x and y evaluate to integers in a well typed program, a non-null demand on

(+ x y) translates to the demand ǫ on both x and y.

Just as A de�nes how a primitive like car maps a demand on itself to demands on

its arguments, we would like to derive a similar transformation for user-de�ned fun
tions.

Sin
e user-de�ned fun
tions are, in general, mutually dependent, we de�ne this transfor-

mation simultaneously for all user-de�ned fun
tions. This is given by the inferen
e rule

demand-summary and results in a set of fun
tions DS
i
f , de�ning how a demand σ on a


all to f is propagated to its ith parameter. The rule for fun
tion 
alls uses DS to propa-

gate demands to the arguments of a spe
i�
 
all. We look upon the fun
tions for DSf as

a 
ontext-independent summary of f�
ontext-independent be
ause it is parameterized

with respe
t to the demand that will be instantiated at the pla
e where the fun
tion is


alled.

The rule fun
tion-summaries spe
i�es the �xed-point property to be satis�ed by

DS, namely, the demand transformation assumed for ea
h fun
tion in the program should

be the same as the demand transformation 
al
ulated from the body of the fun
tion.

The reader will noti
e the similarity between this rule and the rule for re
ursive lets in
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(define (length lst)

π1: (let x ← (null? lst) in

π2: (if ψ1: x

π3: (let v ← 0 in

π4: (return ψ2 : v)

π5: (let u ← (cdr lst) in

π6: (let y ← (length u) in

π7: (let z ← (+ 1 y) in

π8: (return ψ3 : z))))))))

(define (main)

π9: (let a ← 5 in

π10: (let b ← (+ a 1) in

π11: (let 
 ← (cons b nil) in

π12: (let w ← (length 
) in

π13: (return ψ4:w)))))

Figure 3.3: An example program

the Hindley-Milner system of type inferen
e [34, 59, 76℄. An operational interpretation

of the rule to �nd DS
i
f (σ) pro
eeds by analyzing ef , the body of f , with respe
t to a

symboli
 demand σ. Then DS
i
f (σ) is the union of the demands on all o

urren
es of the

ith argument in ef . A 
all to a fun
tion, say g, in ef is analyzed using the summary DSg .

In general, this results in a re
ursive des
ription of DS
i
f (σ). We explain in Se
tion 3.2

how to 
onvert this to a 
losed form.

We next des
ribe the fun
tion D that propagates demands a
ross expressions. Con-

sider the D-rules for let, if , and return. Sin
e the value of (return x) is the value of x, a

demand σ on (return x) gives a demand of σ. The demand of the expression (if x e1 e2)

is a union of the demands of e1 and e2. In addition, sin
e the 
ondition x is also evaluated,

the demand {ǫ} is 
reated and added to the union. Note that, the 
ondition x needs to

be evaluated only if the result of the if expression is required, i.e. demand on σ is not

∅. Hen
e, the demand {ǫ} is added only if the demand on if is not ∅. Finally, sin
e the

value of (let x← s in e) is the value of its body e, the rule for let �rst uses σ to 
al
ulate

the demand environment DE of e. The demand on s is the union of the demands on all

o

urren
es of x in e. Noti
e that the demand environment for ea
h expression e also

in
ludes the demand on e itself apart from its subexpressions.

3.1.1 An Example

For the rest of the 
hapter, we 
onsider the program in Figure 3.3 as our running example.

The program takes a list as input and 
omputes its length. Consider DS
1
length, the fun
tion
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that propagates the demand on a 
all to length to its �rst (in fa
t, only) argument.

An operational interpretation of the rule fun
tion-summaries rule requires us to do a

dependen
e analysis of the body of length with a symboli
 demand σ, union the resulting

demands on all o

urren
es of the argument lst in the body, and equate it to DS
1
length.

Assume for the sake of simpli
ity that σ is not ∅. Firstly noti
e that, a

ording to the rules

of let and if , the demand on z is also σ. This is propagated to y through (+ 1 y), whi
h

in turn is propagated to u through (length u), and �nally to lst through (cdr lst). The

reader 
an verify that the resulting demand on this o

urren
e of lst is 1DS
1
length(ǫ). On

the other hand the demand on x is also ǫ (the if rule), and this is propagated to the lst

in (null? lst) resulting in a demand of ǫ for this o

urren
e of lst. Thus:

DS
1
length = ǫ ∪ 1DS

1
length(ǫ)

Noti
e that this equation is re
ursive in DS
1
length, and in order to be able to use it

to 
ompute dependen
es, we have to bring it to a 
losed form.

3.2 Computing dependen
es

The analysis in Se
tion 3.1 is pre
ise and 
ontext-sensitive, des
ribing the demands inside

a fun
tion body in terms of a symboli
 demand σ and the fun
tion summaries DS. What

we have not said so far is how the demand on the fun
tion body is to be determined. This

is as follows:

1. The demand on the body of the main program, emain, is user supplied, and is denoted

by σmain.

2. The demand on a fun
tion body ef is the union of demand over all 
alls to f .

The fun
tion bodies are analyzed using the demands des
ribed above. The advantage of

summarizing a fun
tion in a 
ontext-sensitive manner using a symboli
 demand is that

while analyzing a fun
tion body, it helps us to propagate a demand a
ross several 
alls

to a fun
tion without analyzing its body ea
h time. Additionally, as we shall show in

Chapter 5, it is the key to our in
remental sli
ing method.

However, some of the rules of dependen
e analysis requires us to do operations

that 
annot be done on a symboli
 demand. For example, the cons rule de�ned as

{α | 0α ∈ σ} 
learly requires us to know strings belonging to σ that start with 0.
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Re
all from Se
tion 2.4.1, we were able to des
ribe the set operations of the cons rule

algebrai
ally by introdu
ing symbols 0̄ and 1̄. We repla
e the rule {α | 0α ∈ σ} with the

rule 0̄σ and {α | 1α ∈ σ} with 1̄σ. While 0 represents sele
tion using the car sele
tor, the

symbol 0̄ represents the use of a value as the �rst argument of cons. Thus, 0̄0 represents

�rst putting a value in the car part of a cons 
ell and following it with a car sele
tion,

e�e
tively 
an
elling out ea
h other. We therefore add the rule 0̄0→ ǫ to 
apture this fa
t.

Similarly, for the analysis to handle lazy semanti
s, the if rule should pla
e an ǫ demand

on its 
onditional expression only if the in
oming demand in non-null. We introdu
e the

symbol ∅ǫ

2

to 
apture this operation. ∅ǫ represents the symboli
 transformation of any

non-null demand to ǫ and null demand to itself. The simpli�
ation fun
tion S de�nes and

makes these transformations deterministi
.

S({ǫ}) = {ǫ}

S(0σ) = 0S(σ)

S(1σ) = 1S(σ)

S(0̄σ) = {α | 0α ∈ S(σ)}

S(1̄σ) = {α | 1α ∈ S(σ)}

S(∅ǫσ) =







∅ if S(σ) = ∅

{ǫ} otherwise

S(σ1 ∪ σ2) = S(σ1) ∪ S(σ2)

Noti
e that 0̄ strips the leading 0 from the string following it, as required by the rule for

cons. Similarly, ∅ǫ examines the string following it and repla
es it by ∅ or {ǫ}; this is

required by several rules. The A rules for cons and null? in terms of the new symbols

are:

A(π: (cons π1:x π2:y), σ,DS) = {π1 7→ 0̄σ, π2 7→ 1̄σ}

A(π: (null? π1:x), σ,DS) = {π1 7→ ∅ǫσ}

2

Odd as it may seem, 
hoi
e of the symbol ∅ǫ is to 
he
k whether the demand following it is the null

demand ∅.
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and the D rule for if is:

D(π: (if π1:x e1 e2), σ,DS) = D(e1, σ,DS) ∪ D(e2, σ,DS) ∪

{π1 7→ if σ 6= ∅ then {ǫ} else ∅,

π 7→ σ}

The rules for + are also modi�ed similarly. We keep applying the simpli�
ation rules

starting from the right, the simpli�
ation pro
ess stops when no rules are appli
able. If

the �nal string does not have any bar-edge symbols the string belongs to the language

generated otherwise it does not. The following examples show the pro
ess of simpli�
ation,

{1∅ǫ0̄1̄10}
S
→ 1S({∅ǫ0̄1̄10})

S
→ 1∅ǫS({0̄1̄10})

S
→ 1∅ǫ0̄S({1̄10})

S
→ 1∅ǫ0̄1̄S({10})

S
→ 1∅ǫ0̄1̄1S({0})

S
→ 1∅ǫ0̄1̄10S({ǫ})

S
→ 1∅ǫ0̄1̄1S({0})

S
→ 1∅ǫ0̄1̄S({10})

S
→ 1∅ǫ0̄S({0})

S
→ 1∅ǫS({ǫ})

S
→ 1

In this example, the �nal string 
ontains no bar-edge symbols and therefore is a valid

string.

{0∅ǫ01̄1̄10̄}
S
→ 0S({∅ǫ01̄1̄10̄})

S
→ 0∅ǫS({01̄1̄10̄})

S
→ 0∅ǫ0S({1̄1̄10̄})

S
→ 0∅ǫ01̄S({1̄10̄})

S
→ 0∅ǫ01̄1̄S({10̄})

S
→ 0∅ǫ01̄1̄1S({0̄})

S
→ 0∅ǫ01̄1̄10̄S({ǫ})

S
→ 0∅ǫ01̄1̄10̄∅

S
→ 0∅ǫ01̄1̄1∅

S
→ 0∅ǫ01̄1̄∅

S
→ 0∅ǫ01̄∅

S
→ 0∅ǫ0∅

S
→ 0∅ǫ∅

S
→ 0∅

S
→ ∅

In the se
ond example, S generates an ∅ when it en
ounters an ǫ following a 0̄

symbol. On
e ∅ is generated, the semanti
s of 
on
atenation of strings ensures that the

�nal result of S is an empty string, indi
ating that the string is not valid.

Now the demand summaries 
an be obtained symboli
ally with the new symbols as

markers indi
ating the operations that should be performed on the string following it.

When the �nal demand environments are obtained with σmain a
ting a 
on
rete demand

for the main expression emain, the symbols 0̄, 1̄ and ∅ǫ are eliminated using the simpli-

�
ation fun
tion S. The original rules and the modi�ed rules are related through the

simpli�
ation fun
tion S as follows:

Proposition 3.1 Assume that a demand 
omputation based on the original set of rules

gives the demand on the expression π : e as σ (symboli
ally, DE(π) = σ). Further, let

DE(π) = σ′
when the modi�ed rules are used instead of D. Then σ = S(σ′).
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To see why the proposition is true, 
onsider an analysis based on the modi�ed rules

in whi
h σ appears in the 
ontext A((cons x y), σ,DS). Let α ∈ σ. The symbol 0̄(1̄)

merely marks a pla
e in α where the original cons rule would have erased an immediately

following 0(1), or, in absen
e of su
h a symbol, would have dropped α itself. Sin
e the

appli
ation of the modi�ed rules merely add symbols at the beginning of α, the markers

and other symbols in α are propagated to other dependent parts of program in their same

relative positions. Consequently, the erasure 
arried out at the end of the analysis with S

gives the same result as obtained through the original rules. The proposition also holds

for other modi�ed rules for similar reasons.

3.2.1 Obtaining 
losed form for fun
tion summaries DS

As mentioned earlier, and illustrated in the example in the last se
tion, to obtain the


ontext-independent summary of a fun
tion f with respe
t to its ith argument, DS
i
f ,

we start with a symboli
 demand σ and 
ompute the demand environment for ef , the

body of f . From this we 
al
ulate the overall demand on the ith argument of f , say

x. This is the union of demands of all o

urren
es of x in ef . This demand on the ith

argument is equated to DS
i
f(σ). Sin
e the body may 
ontain other 
alls, the dependen
e

analysis within ef makes use of DS in turn. Thus, on the whole, DS will be given by a

set of equations, one for every argument of ea
h fun
tion. For the running example, the

equation shown below de�nes DS
1
length(σ). DE(π1) and DE(π5) are the demands on the

two o

urren
es of lst in the body of length.

DS
1
length(σ) = DE(π1) ∪ DE(π5) = ∅ǫσ ∪ 1DS

1
length(∅ǫσ)

This looks di�erent from the equation for DS
1
length(σ) in Se
tions 1.4.1 and 3.1.1 be
ause

of two reasons: We no longer assume that σ is non-empty, and the equation is written

using the modi�ed rules of dependen
e analysis that make use of the symbols 0̄, 1̄ and

∅ǫ.

As noted in [79℄, the main di�
ulty in obtaining a 
onvenient fun
tion summary is

to �nd a 
losed-form for DS
1
length(σ) instead of the re
ursive des
ription. Our solution to

the problem lies in the following observation: Sin
e we know that the rules of dependen
e

analysis always pre�x σ with symbols, we 
an write DS
i
f (σ) as DS

i
f σ (DSi

f 
on
atenated

with σ), where DSi
f is a set of strings over the alphabet {0, 1, 0̄, 1̄,∅ǫ}, and represents
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the e�e
t of DS
i
f on σ. The modi�ed equation after substituting the guessed form of

DS
1
length(σ) in the equation will be:

DS1
lengthσ = ∅ǫσ ∪ 1DS1

length∅ǫσ

Substituting the guessed form in the equation des
ribing DSf , and fa
toring out σ,

we get an equation for Di
f that is independent of σ. Applied to DSlength, we get:

DS
1
length(σ) = DS1

lengthσ, and

DS1
length = ∅ǫ ∪ 1DS1

length∅ǫ

Any solution for DSi
f yields a solution for DSf . Note that the equation 
an also be viewed

as a CFG with {1, ∅ǫ} as terminal symbols and DS1
length as the sole non-terminal.

3.2.2 Computing the demand environment for fun
tion bodies

While the 
omputation of fun
tion summary assumed a symboli
 demand for ea
h fun
-

tion, to 
ompute the demand environment, we have to supply the 
on
rete demand for

ea
h fun
tion. The 
on
rete demand on a fun
tion denoted as σf is 
omputed in a manner

similar to 0-CFA [91℄, by taking the union of the demands at all 
all-sites of f . This a
ts

as a safe over-approximation and keeps the analysis sound. The demand environment of

a fun
tion body ef is 
al
ulated using σf . If there is a 
all to g inside ef , the demand

summary DSg is used to propagate the demand a
ross the 
all. Continuing with our

example, we assume that the 
on
rete demand on the body of length to be denoted by

σlength and the demand on emain to be σmain. Sin
e length has 
alls from main with a

demand σmain and a re
ursive 
all at π6 with a demand ∅ǫσlength. Thus:

σlength = σmain ∪ ∅ǫσlength

We 
al
ulate the demands on all expressions arguments of length in terms of σlength.

Thus the demand on u at π6, denoted by Dπ6
, is DS1

length∅ǫσlength.

At the end of this step, we shall have (i) A set of equations de�ning the demand

summaries DS
i
f for ea
h argument of ea
h fun
tion, (ii) Equations spe
ifying the demand

Dπ at ea
h program point π, and (iii) an equation for ea
h 
on
rete demand σf on the

body of ea
h fun
tion f .
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3.2.3 Converting equations to grammars:

Noti
e that the equations for DS1
length and σlength are still re
ursive. However, these

equations 
an also be viewed as a grammar with {0, 1, 1̄, 0̄,∅ǫ} as terminal symbols and

DS1
length, Dπ6

and σlength as non-terminals. Thus �nding the solution to the set of equa-

tions generated by the dependen
e analysis redu
es to �nding the language generated

by the 
orresponding grammar. In fa
t the language generated by the grammar is the

least solution of equations above. The least solution 
orresponds to the most pre
ise

dependen
e analysis. The equations 
an now be re-written as grammar rules:

Dπ6 → DS1
length∅ǫ

σlength

DS1
length → ∅ǫ ∪ 1DS1

length ∅ǫ

σlength → σmain ∪ ∅ǫ σlength

(3.1)

Information required for several appli
ations 
an be posed as language re
ognition prob-

lems for this grammar. For example, During garbage 
olle
tion, we may need to know

whether a path in the heap, say 0010, starting from the variable u in the root set is possi-

bly live at program point π6. This translates to the question of whether the language of Dπ,

after simpli�
ation using the fun
tion S, 
ontains 0010. Formally, 0010 ∈ S(L (Dπ))?

Noti
e that we ask the membership question for strings belonging to (0 + 1)∗, as these

represent valid paths in the heap.

If the membership question was de
idable, the dependen
e question would also be

de
idable. But, as we have already shown, the dependen
e question is unde
idable and

hen
e the membership question is also unde
idable. The membership question 
an be

shown to be unde
idable in a similar way to the dependen
e question. Fortunately, the

membership question be
omes de
idable if the grammars generated are regular. In the

next se
tion, we des
ribe a method to safely over-approximate the CFGs generated from

our analysis by regular grammars.

3.2.4 Over-approximating dependen
e grammars

We 
ir
umvent the problem of unde
idability by over approximating the CFG by non-

deterministi
 �nite state automata (NFA) using the method of Mohri and Nederhof [63℄.

This method transforms a CFG G into a strongly regular grammar R su
h that L (G) ⊆

L (R). This makes the membership question de
idable at the 
ost of some pre
ision.
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Fun
tion 
reateStronglyRegularGrammar(G)

Data: A 
ontext-free grammar G

Result: R, the strongly regular grammar over approximating G


reate grammar R

/* M is the set of mutually re
ursive non-terminals in G */

M ← {A,B1, B2, ..., Bn}

add to R new non-terminals {A,B1, B2, ..., Bn}

forea
h (produ
tion P ∈ G) do

add to R produ
tion A→ ǫ

/* αi not empty */

if (P is A→ α0B1α1B2α2...Bmαm and m > 0) then

add to R produ
tion A→ α0B1

add to R produ
tion B1 → α1B2

. . .

add to R produ
tion Bm → αmA

else

add to R produ
tion A→ α0A

return R

Algorithm 4: Fun
tion to approximate a CFG by a strongly regular gram-

mar [63℄.

If a CFG 
onsists of a set of mutually re
ursive non-terminals su
h that the rules

involved are not all left regular or not all right regular, then the method breaks the rules

into right regular rules by introdu
ing fresh non-terminals. For our example, the rule

D1
length has a non-regular produ
tion 1D

1
length∅ǫ. Algorithm 4 des
ribes the pro
edure to

over approximate a 
ontext free grammar by a strongly regular grammar. The steps for

transforming these produ
tions into right regular produ
tions are:

1. Add a new non-terminal D1
length to the grammar with the rule D1

length → ǫ.

2. Repla
e

D1
length → ∅ǫ by

D1
length → ∅ǫD

1
length

3. Repla
e

D1
length → 1D1

length∅ǫ by

D1
length → 1D1

length and

D1
length → ∅ǫD

1
length

The detailed algorithm and explanation of this approximation is des
ribed in Mohri
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Input: A program P with a fun
tion main as entry point and σmain as the user

supplied demand

Output: A �nite-state automaton (FSM) for every program point π su
h that for

every string w ∈ (0+ 1)∗,

∃dprop((main), σmain, π, δ) and w ∈ δ ⇒ w ∈ L (FSM)

Step 1 : (Se
tion 3.2.1)

forea
h (define (f x) ef (x)) do

Obtain summary DSif with respe
t to a symboli
 demand σ resulting in equations :

DSif (σ) = . . .DSjg(σ
′) . . . /* 1 ≤ i < #Args(f) */

Step 2: (Se
tion 3.2.2)

forea
h ef do

if f is main then

σf = σmain

else

σf =
⋃

π′∈ΠDEπ′

where Π is the set of all program points where f is 
alled in P

Compute demand D(ef , σf ,DS) to give DEπ at ea
h π : e in ef

Step 3: (Se
tion 3.2.3)

Obtain 
losed form, by expressing DS
i
f (σ) as DS

i
f σ

DSif is given by a CFG over {0+ 1+ 0̄+ 1̄+ ∅ǫ}

Express all DEπ as CFG in terms of DEπ′
and DSif

Step 4: (Se
tion 3.2.4)

forea
h DEπ do

Convert DEπ to strongly regular grammar using Mohri-Nederhof transformation

Convert regular grammar to FSM and perform S-simpli�
ation

Algorithm 5: Algorithm to 
onvert the dependen
e analysis spe
i�
ation in

Figure 3.1 to a 
omputable form.

and Nederhof [63℄. The rules for

D1
length after the transformation are:

D1
length → ∅ǫD

1
length | 1D

1
length

D1
length → ∅ǫD

1
length | ǫ

The strongly regular grammar is 
onverted into a set of NFAs, one for ea
h non-
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terminal. The simpli�
ation is now done on the NFAs by repeatedly introdu
ing ǫ edges

to bypass pairs of 
onse
utive edges labeled 0̄0 or 1̄1 and 
onstru
ting the ǫ-
losure until a

�xed point is rea
hed, after whi
h the edges labeled 0̄ and 1̄ are deleted. The simpli�
ation

does not 
hange the semanti
s of the path in that the node rea
hed by the path remains

the same and no new edge is added to the path . The details of the algorithm to perform

simpli�
ation on the NFAs, its 
orre
tness and termination proofs are given in [12, 44℄.

Finally, we remove all the edges labeled ∅ǫ and 
onvert the automaton into a deterministi


automaton. These steps e�e
tively implement the simpli�
ation fun
tion S rules for 0̄

and 1̄ to obtain forward a

ess paths. This 
on
ludes our analysis pro
edure and these

automata 
onstitute the output of our dependen
e analysis. The entire pro
edure to bring

the spe
i�
ation of dependen
e analysis to a 
omputable form is shown in Algorithm 5.

3.3 Soundness of approximate dependen
e analysis

We now prove the 
orre
tness of our proposed dependen
e analysis. This involves showing

that the demand 
omputed by our analysis 
onservatively approximates the "real" demand

on ea
h expression that would meet the demand σmain on the designated expression

(main) in any exe
ution of the program.

Consider the tra
e of a program in exe
ution under DGS. Let δ represent the runtime

or dynami
 demand on an expression. Assume that an expression e appears on the tra
e

for evaluation with an exe
ution 
ontext E = (ρ, S,_, δ). The evaluation of e under the


ontext E is deemed to be over, when its value v rea
hes the extent of evaluation spe
i�ed

by δ and is repla
ed by the 
ontinuation on the top of S. During this evaluation (of

e under the 
ontext E), 
onsider a sub-expression e′ of e that appears on the tra
e for

evaluation with a 
ontext, say E ′ = (ρ′, S ′,_, δ′). Then the soundness of our analysis

involves showing that if σ and σ′
are the stati
 demands on e and e′ respe
tively, then

δ ⊆ σ implies δ′ ⊆ σ′
. In other words, if δ ⊆ σ and prop(e, δ,e', δ′), then δ′ ⊆ σ′

. If

this happens for every exe
ution 
ontext E and every sub-expression e′, we say that the

expression e preserves subsumption. One 
an similarly talk about appli
ations preserving

subsumption.

We �rst show that every expression preserves the subsumption relation, provided

appli
ations, in parti
ular fun
tion 
alls, preserve subsumption.
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Lemma 3.2 Assuming that appli
ations preserve subsumption, expressions also preserves

subsumption.

Proof. The proof is by indu
tion on the stru
ture of expressions. The base 
ase is a

return expression for whi
h the proof is trivial. Now 
onsider a let expression e given

as (let x ← s in e′). Assume as indu
tion hypothesis that e′ preserves the subsumption

relation. Let e appear for evaluation on the tra
e of the program with a 
ontext 
arrying

the demand δ. We assume that the stati
 demand on e is σ and that δ ⊆ σ. Then, by

the rules of dependen
e analysis the stati
 demand on e′ is also σ. Further, the rules

of DGS gives that e′ appears on the tra
e with the 
ontext (ρ ⊕ {x 7→ 〈s, ρ〉},_,_, δ),

i.e. the dynami
 demand on e′ is also δ. So the premise of the indu
tion hypothesis

holds for e′, and thus for ea
h sub-expression of e′ the subsumption relation holds. In

parti
ular, this subsumption relation will hold for the dynami
 and stati
 demands on x,

if x appears on the tra
e for exe
ution. i.e. if the dynami
 and stati
 demands on x are δ′

and σ′
respe
tively, then δ′ ⊆ σ′

. Further, if x appears on the tra
e of the DGS exe
ution

with a demand δ′, then in the next step of DGS, s also appears on the tra
e with the

same dynami
 demand δ′. By the dependen
e analysis rule for let, the stati
 demand

on s will in
lude σ′
. Sin
e s is an appli
ation, be
ause of the premise of the lemma, the

subsumption relation will hold for the sub-expressions of s. Sin
e the sub-expressions of

e are made up of the sub-expressions of s and e′, the result follows for let.

The 
ase when e is an if expression dire
tly follows from the indu
tion hypothesis

and the rules of dependen
e analysis and DGS. �

We now have to show that the assumption regarding appli
ations in Lemma 3.2

a
tually holds.

Lemma 3.3 Appli
ations preserve subsumption.

Proof. For an appli
ation that is not a fun
tion 
all, it is 
lear that the statement of the

lemma holds. This is be
ause su
h appli
ations propagate the demand to their arguments

in the same way in both the stati
 analysis and the DGS.

To prove the lemma for a fun
tion 
all, say (f x), we indu
t on the depth of the


all. Assume that the fun
tion f is de�ned as (define (f a) ef ) and also assume that the

evaluation 
ontext of (f x) in the tra
e is (_, S,_, δ), the demand on the 
all in the stati
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analysis is σ, and δ ⊆ σ. The DGS tra
e then evaluates ef with a demand δ. Consider

a stati
 analysis of ef with the demand σ. For the base 
ase, assume that evaluation

of ef does not result in any more fun
tion 
alls. Therefore, by lemma 3.2, if the formal

argument a 
omes on the tra
e with a demand δ′ and the stati
 demand on this o

urren
e

of a is σ′
, we have δ′ ⊆ σ′

. Sin
e a is bound to (id x), the dynami
 demand on x is δ′

while the stati
 demand is x is DS
1
f (σ). We have to show that δ′ ⊆ DS

1
f (σ). This dire
tly

follows from the rule demand-summary.

For the indu
tive hypothesis, assume that all 
alls in ef preserve subsumption. Due to

the indu
tive hypothesis the premise of lemma 3.2 is satis�ed and we 
an on
e again replay

the argument of the base 
ase and prove that if the dynami
 demand on an o

urren
e of

the argument a is δ′ and the stati
 demand is σ′
, we have δ′ ⊆ σ′

. And for the reason as

in the base 
ase, we have δ′ ⊆ DS
1
f (σ), where DS

1
f (σ) is the stati
 demand on x. �

Theorem 3.4 Consider the DGS tra
e of an arbitrary program. For any expression e

that appears on the tra
e, the dynami
 demand on e is subsumed by the stati
 demand on

e.

Proof. We �rst de�ne the dynami
 level of an expression e on the tra
e as follows. The

only expression at level 0 is (main), and if a fun
tion 
all to f appears at level n, then

ea
h sub-expression e of the 
urrent in
arnation of ef that appears on the tra
e is at level

n + 1. The proof is by indu
tion on the dynami
 level n of expressions.

The base 
ase n = 0 is trivial as both the dynami
 and the stati
 demands on

(main) are the same, σmain. Now assume that the statement of the theorem holds for

all expressions at level n. Consider any 
all (f x) at level n. If the dynami
 and stati


demands on (f x) are δ and σ respe
tively, then from the indu
tion hypothesis δ ⊆ σ.

While the dynami
 demand on ef is also δ, the stati
 demand is σf whi
h 
ontains σ.

Thus, the dynami
 demand on ef is subsumed by the stati
 demand and therefore by

Lemmas 3.2 and 3.3, for all sub-expressions of ef that appear on the tra
e, the stati


demand subsumes the dynami
 demand. Sin
e this happens for all 
alls at dynami
 level

n, the theorem holds for all expressions at dynami
 level n+ 1. �
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Chapter 4

Liveness-based garbage 
olle
tion for

lazy languages

Fun
tional programs make extensive use of dynami
ally allo
ated memory. The allo
ation

is either expli
it (i.e., while using 
onstru
tors) or impli
it (while 
reating the runtime

representations of unevaluated expressions, also 
alled 
losures). Programs in lazy fun
-

tional languages put additional demands on memory, as they require 
losures to be 
arried

from the point of 
reation to the point of evaluation.

Although the runtime system of most fun
tional languages in
ludes a garbage 
ol-

le
tor to re
laim memory, empiri
al studies on S
heme [45℄ and Haskell [82℄ programs

have shown that garbage 
olle
tors leave un
olle
ted a large number of memory obje
ts

that are rea
hable but will assuredly not be used by the program later. This results in

unne
essary retention of memory whi
h 
an be safely garbage 
olle
ted.

In this 
hapter, we propose the use of liveness analysis of heap 
ells to improve

garbage 
olle
tion (GC) in a lazy �rst-order fun
tional language. Liveness analysis 
an

identify 
ells whi
h will de�nitely not be used by the program in future. By making this

information available during garbage 
olle
tion, these 
ells 
an be garbage 
olle
ted, even

if they are rea
hable. We use a modi�ed version of the dependen
e analysis that was

de�ned in 
hapter 2 to 
ompute liveness information. The result of liveness analysis is

an annotation of 
ertain program points with deterministi
 �nite-state automata (DFA),

one for ea
h variable in s
ope, 
apturing the liveness of the variables at these points.

Depending on where GC is triggered, the 
olle
tor 
onsults a set of automata to restri
t

rea
hability during marking. This results in an in
rease in the garbage re
laimed and
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onsequently in fewer 
olle
tions.

Whereas the idea of using stati
 analysis to improve memory utilization has been

shown to be e�e
tive for eager languages [12, 36, 41, 56℄, a straightforward extension

of the te
hnique is not possible for lazy languages, where heap-allo
ated obje
ts may

in
lude 
losures. The additional 
omplexity of replaying su
h te
hniques for lazy languages

are as follows: Firstly, sin
e data is made live by evaluation of 
losures, and in lazy

languages the pla
e in the program where this evaluation takes pla
e 
annot be stati
ally

determined, laziness 
ompli
ates liveness analysis itself. Moreover, for liveness-based GC

to be e�e
tive, we need to extend it to 
losures apart from evaluated data. Sin
e a 
losure


an es
ape the s
ope in whi
h it was 
reated, during garbage 
olle
tion, it is not enough

to refer to the liveness of only variables in s
ope. As we shall see later, we require 
losures

to 
arry liveness information of its free variables. As a further optimization, as exe
ution

progresses and possible future uses are eliminated, we update the liveness information in a


losure with a more pre
ise version. For these reasons, the garbage 
olle
tor also be
omes

signi�
antly more 
ompli
ated than a liveness-based 
olle
tor for an eager language.

Experiments with a single generation 
opying 
olle
tor (Se
tion 4.4.3) 
on�rm the

expe
ted performan
e bene�ts. Liveness-based 
olle
tion results in an in
rease in garbage

re
laimed. As a 
onsequen
e, there is a redu
tion in the number of 
olle
tions and a

de
rease in the minimum memory requirement. As an added bene�t, there is also a

redu
tion in the overall exe
ution time in some of the ben
hmark programs.

4.1 Motivating example

Figure 4.1 shows an example in whi
h the heap is represented by a graph in whi
h a node

either represents atomi
 values (nil, integers, et
.), or a cons 
ell 
ontaining car and

cdr �elds, or a 
losure (represented by shaded 
louds). Edges in the graph are referen
es

and represent values of variables or �elds. Figure 4.1(b) shows the lists x and z partially

evaluated due to the if 
ondition (null? (car z)). The edges shown by thi
k arrows are

those whi
h are live at π.

Thus, if a GC takes pla
e at π with the heap shown in Figure 4.1(b), a liveness-based


olle
tor (LGC) will preserve only the 
ell referen
ed by z and the live 
ells 
onstituting

the 
losure referen
ed by (cdr z). In 
ontrast, a rea
hability-based 
olle
tor (RGC) will
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(define (length lst)

(if (null? lst) 0 (+ 1 (length (cdr lst)))))

(define (append l1 l2)

(if (null? l1) l2

(cons (car l1) (append (cdr l1) l2))))

(define main)

(let x ← (cons 5 (cons (cons 6 nil) nil) in

(let y ← (cons 3 nil) in

(let z ← (append x y) in

(if (null? (car z)) 0 π: (length z))))))

(main)

5

x

×

×
×

z

y

×

(a) Example program. (b) Memory graph at π.

denotes a 
losure. Thi
k edges denote live links. Traversal stops at edges marked × during garbage


olle
tion for a liveness-based 
olle
tor.

Figure 4.1: Example Program and its Memory Graph

preserve all 
ells. In this 
hapter, we propose a stati
 analysis of heap data that helps in

determining the live referen
es in the heap. Similar to dependen
e analysis, the result is

a set of automata des
ribing the liveness of variables at 
hosen program points. We also

des
ribe a GC s
heme whi
h uses the automata to 
olle
t the non-live areas of the heap

during GC and implement a 
opying 
olle
tor based on the s
heme. Our experiments

reveal interesting spa
e-time trade-o�s in the engineering of the 
olle
tor�for example,

updating liveness information 
arried in 
losures during exe
ution results in more garbage

being 
olle
ted.
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Premise Transition Rule name

ρ, (ρ′, ℓ, e) :S, H, κ ρ′, S, H[ℓ := κ], e 
onst

ρ(x) is 〈s, ρ′〉 ρ, S,H, x  ρ′, S,H, s var

ρ, (ρ′, ℓ, e) :S, H, (cons x y) 

ρ′, S, H[ℓ := (ρ(x), ρ(y))], e 
ons

H(ρ(x)) is (v, d)

ρ, (ρ′, ℓ, e) :S, H, (car x) 

ρ′, S, H[ℓ := v], e 
ar-sele
t

H(ρ(x)) is (〈s, ρ′〉, d)

ρ, S, H, (car x) 

ρ′, (ρ, addr(〈s, ρ′〉), (car x)) :S, H, s 
ar-1-
lo

H(ρ(x)) is 〈s, ρ′〉

ρ, S, H, (car x) 

ρ′, (ρ, ρ(x), (car x)) :S, H, s 
ar-
lo

H(ρ(x)),H(ρ(y)) ∈ N

ρ, (ρ′, ℓ, e) :S, H, (+ x y) 

ρ′, S, H[ℓ := H(ρ′(x)) +H(ρ′(y))], e prim-add

H(ρ(x)) /∈ N

ρ, S, H, (+ x y) 

ρ′, (ρ, ρ(x), (+ x y)) :S, H, x prim-1-
lo

H(ρ(y)) /∈ N

ρ, S, H, (+ x y) 

ρ′, (ρ, ρ(y), (+ x y)) :S, H, y prim-2-
lo

f de�ned as (define (f ~y) ef ) ρ, S, H, (f ~x) [~y 7→ ρ(~x)], S, H, ef fun
all

ℓ is a new lo
ation

ρ, S, H, (let x← s in e) 

ρ⊕ [x 7→ ℓ], S, H[ℓ := 〈s, ⌊ρ⌋FV (s)〉], e let

H(ρ(x)) 6= 0 ρ, S, H, (if x e1 e2) ρ, S, H, e1 if-true

H(ρ(x)) = 0 ρ, S, H, (if x e1 e2) ρ, S, H, e2 if-false

H(ρ(x)) = 〈s, ρ′〉

ρ, S, H, (if x e1 e2) 

ρ′, (ρ, ρ(x), (if x e1 e2)) :S, H, x if-
lo

ρ, S, H, (return x) 

ρ′, (ρ, ρ(x), (return x)) :S, H, x return

Figure 4.2: A small-step semanti
s for the language.
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4.1.1 Semanti
s

We now give a small-step semanti
s for the language des
ribed in Se
tion 2.3. We �rst

spe
ify the domains used by the semanti
s:

H : Heap = Loc → (Data+ {empty}) � Heap

d : Data = Val + Clo � Values & Closures

v : Val = N+ {nil}+ Data ×Data � Values

c : Clo = (App × Env) � Closures

ρ : Env = Var → Loc � Environment

Here Loc is a 
ountable set of lo
ations in the heap. A non-empty lo
ation either


ontains a 
losure, or a value in Weak Head Normal Form (WHNF)[74℄. For our imple-

mentation, a value in WHNF is either a number, or the empty list nil or a cons 
ell with

possibly unevaluated 
onstituents. A 
losure is a pair 〈s, ρ〉 in whi
h s is an unevaluated

appli
ation, and ρ maps free variables of s to their respe
tive lo
ations. Sin
e all data

obje
ts are boxed, we model an environment as a mapping from the set of variables of

the program Var to lo
ations in the heap.

The semanti
s of expressions (and appli
ations

1

) are given by transitions of the form

ρ, S,H, e  ρ′, S ′,H′, e′. Here S is a sta
k of 
ontinuation frames. Ea
h 
ontinuation

frame is a triple (ρ′′, ℓ, enext), signifying that the lo
ation ℓ has to be updated with the

value of the 
urrently evaluating expression and enext is to be evaluated next in the

environment ρ′′. The initial state of the transition system is:

([ ]ρ, (ρinit , ℓans, (evalAndPrint ans)) : [ ]S, [ ]H, (main))

in whi
h [ ]ρ, [ ]H and [ ]S are the empty environment, heap and sta
k respe
tively. The

initial sta
k 
onsists of a single 
ontinuation frame in whi
h ans is a distinguished variable

that will eventually be updated with the value of (main), and ρinit maps ans to a lo
ation

ℓans. As is 
ustomary for lazy languages, the result of evaluation of (main) is in WHNF.

Full evaluation is a
hieved through intera
tion with a printing me
hanism modelled as a

fun
tion evalAndPrint whi
h evaluates the unevaluated parts of (main), in 
ase (main)

is a stru
ture. This is a standard runtime support assumption for lazy languages [74℄.

The operator : pushes elements on top of the sta
k.

1

In most 
ontexts, we shall use the term 'expression' and the notation e to stand for both expressions

and appli
ations.
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The notation [~x 7→ ~ℓ] represents an environment that maps variables xi to lo
ations

ℓi and H[ℓ := d] indi
ates an update of H at ℓ with d. ρ⊕ ρ′ represents the environment

ρ shadowed by ρ′ and ⌊ρ⌋X represents the environment restri
ted to the variables in X .

Finally FV (s) represents the free variables in the appli
ation s and addr(c) gives the

address of the 
losure c in the heap. As a 
onvention, we use d to represent a data value

whi
h may either be in WHNF or a 
losure and v to represent values whi
h are always in

WHNF.

The small-step semanti
s is shown in Figure 4.2. Unlike an eager language, evaluation

of a let expression (let x← s in e) does not result in the evaluation of s. Instead, as the

let rule shows, a 
losure is 
reated and bound to x. The program points whi
h trigger the

evaluation of these 
losures are an if 
ondition (IF-
lo) and a return (return-
lo).

We 
all su
h points evaluation points (ep) and label them with ψ instead of π. As an

example of 
losure evaluation, we explain the three rules for (car x). If x is a 
losure, it

is evaluated to WHNF, say (d1, d2). This is given by the rule 
ar-
lo. If d1 is not in

WHNF, it is also evaluated (
ar-1-
lo). The address to be updated with the evaluated

value is re
orded in a 
ontinuation frame. This is required for the evaluation to be lazy,

else d1 may be evaluated more than on
e due to sharing [74℄. Only after this is the a
tual

sele
tion done (
ar-sele
t).

4.2 Liveness

A variable is live if there is a possibility of its value being used in future 
omputations and

dead if it is de�nitely not used. Classi
al liveness analysis models liveness as a boolean

value�a variable is either live or it is dead. Heap-allo
ated data needs a ri
her model than


lassi
al liveness�a model whi
h talks about liveness of referen
es possibly pointing to

stru
tured data. As an example, 
onsider a list x. Assume that, at a program point, future


omputations only refer up to the third member of x. A pre
ise liveness model should be

able to 
learly 
apture su
h liveness values. Liveness, in this sense, signi�es future a

esses

of parts of a stru
ture, and therefore the notion of a

ess paths that was introdu
ed in

Chapter 2 
an be used as its natural representation. For example, the liveness of the list x

mentioned earlier 
an be represented as the set of a

ess paths {0, 10, 110}. However, the

notion of a

ess paths (or what it represents) has to be modi�ed to a

ount for stru
tures
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whi
h are not fully evaluated. We shall provide the semanti
s of a

ess path in terms of

heap a

esses later, espe
ially in the 
ontext of a lazy language.

In 
ontrast to dependen
e, liveness is a property that is appli
able only to variables.

Sin
e a liveness-based garbage 
olle
tion is guided by the liveness of variables, it has to

be 
omputed (or, at the least, approximated) for ea
h program point where a garbage


olle
tor 
ould be potentially invoked. While our method is not restri
ted to a parti
ular

garbage 
olle
tion me
hanism, we explain our method using a 
opying 
olle
tor [20, 26℄.

Whenever a garbage 
olle
tion is triggered, starting with the root set (variable referen
es

on the sta
k), the garbage 
olle
tor 
onsults the liveness value asso
iated with the variable

and 
opies only the parts of the value whi
h are live.

We now 
onne
t liveness with dependen
e analysis. For 
omputing liveness, we are

interested in the entire output, hen
e the designated expression is (main) and the e�e
tive

demand on (main) is (0 + 1)∗ whi
h we also refer as σall. We reiterate the point made

in Se
tion 2.4.1 that the demand of σall on (main) is a
hieved indire
tly through the

repeated invo
ation of evalAndPrint. Dependen
e analysis propagates this demand to

every expression, however in the 
ontext of liveness analysis we would be interested in

the demands on variables only. The demand on a variable o

urren
e gives the use of the

variable's value in 
omputing the result of the fo
us expression. On the other hand, the

liveness of a variable at a program point π takes into a

ount all the future uses of the

variable beyond π. Therefore, liveness of a variable at a program point is the union of

demands of all o

urren
es of the variable beyond the program point. As an example,


onsider the liveness of the variable xs in program 4.3 between the program points π1 and

π3. There are two o

urren
es of xs beyond π1, in (append xs ys) at π3 and (car xs)

at π6. The liveness of xs between π1 and π3 is the union of demands on both these

o

urren
es. Now, 
onsider the liveness of xs at π4. The only use of xs beyond π4 is

(car xs) at π6. Hen
e, the liveness at π4 is given by the demand on xs at π6. This

des
ribes the liveness of sta
k variables, i.e. the fun
tion arguments and the variables

de�ned in a let (also 
alled the root set). We 
all liveness of su
h variables sta
k-liveness

to distinguish it from the liveness of 
losure variables whi
h we will introdu
e shortly.
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(define (append lst1 lst2)

(let 
ond ← (null? lst1) in

(if 
ond

(return lst2)

(let hd ← (car lst1) in

(let tl ← (cdr lst1) in

π:(let rest ← (append tl lst2) in

(let zs ← (cons hd rest) in

(return zs)))))))

(define (main)

π1:(let xs . . . in

π2:(let ys . . . in

π3:(let y ← (append xs ys) in

π4:(let 
 ← (null? y) in

π5:(if ψ1:


π6:(let u ← (car xs) in

π7:(return ψ2:u))))

π8:(let z ← (length y) in

π9:(return ψ3:z))))))

Figure 4.3: Example illustrating liveness of 
losures

4.2.1 Liveness analysis for lazy languages

In an eager language, the order of evaluation of the expression (let x ← s in π :e) is

as follows: s is evaluated �rst and its value is bound to x and then e is evaluated. Now


onsider a variable y that o

urs free in s, and 
onsider the program point π just before

e. Sin
e s has already been evaluated, the o

urren
e of y in s does not 
ontribute to

the liveness of the sta
k variable y at π. In general, the demand on any variable whi
h is

part of s need not be 
onsidered in 
omputing liveness of the 
orresponding sta
k variable

at or beyond this program point. As an example, in Figure 4.3, it 
an be seen from the

program text itself that (append xs ys) would be evaluated before π4, and hen
e liveness

of the sta
k variable xs need not 
onsider the demand generated by the use of xs in the

expression (append xs ys). Further, as des
ribed in [12℄, during garbage 
olle
tion,

sta
k variables always point to fully evaluated values and hen
e it is su�
ient to 
onsider

sta
k-liveness while doing liveness-based garbage 
olle
tion of eager languages.

In 
ontrast, a lazy evaluation of the expression (let x ← s in e) 
reates a 
losure

for s instead of evaluating it and binds this 
losure to x. In a lazy language stati
ally

determining the order of evaluation of 
losures is not possible and hen
e, it is not possible

to determine stati
ally whether a variable is bound to a 
losure or to an evaluated value at

a given program point. Thus, during liveness-based garbage 
olle
tion for lazy languages,

a sta
k variable may point to an evaluated value or a 
losure. If the value is fully evaluated,

we 
an just use the sta
k-liveness to garbage 
olle
t it, but if it is a 
losure then sta
k-

liveness 
annot be used dire
tly to garbage 
olle
t the 
losure. This is illustrated in
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y

xs

append xs ys

(a)

y

xs

(b)

y

hd

rest

car
lst1

append tl lst2

(
)

Figure 4.4: Di�erent liveness situations en
ountered during garbage 
olle
tion of y in a

lazy language, (a)Liveness at π4 when y is a 
losure (b) Liveness at ψ3 when the spine of

y is evaluated (
) Liveness at π8 where y points to a cons 
ell 
ontaining referen
es to

rest and hd de
lared in fun
tion append

Figure 4.3, where determining whether (append xs ys) would be evaluated before π4 is

not possible. Therefore, if the garbage 
olle
tor en
ounters the 
losure 
orresponding to

(append xs ys) at π4, there are two alternatives: either to treat the 
losure as useful

data and 
opy it, or to do a liveness-based garbage 
olle
tion on the 
losure itself. The

latter 
an result in some more spa
e being re
laimed.

Figure 4.4 depi
ts the s
enarios des
ribed earlier. Figure 4.4(a) shows the situation

where y has not been evaluated, i.e. it is a 
losure. Noti
e that the memory 
orresponding

to xs has referen
es from the sta
k and also from the 
losure 
ontaining it. Figure 4.4(b)

depi
ts the situation when y is fully evaluated. In this 
ase, the future use of y is fully
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a

ounted for by its sta
k-liveness, and this 
an be used for garbage 
olle
ting y at π4.

There is yet another reason why sta
k-liveness alone is not su�
ient for liveness-

based garbage 
olle
tion of lazy languages. In a lazy language, data 
onstru
tors (for

example, cons) are lazy, i.e. they do not evaluate their arguments. Therefore, when a

cons 
ell is returned from a fun
tion, it might 
ontain 
losures. These 
losures in turn

hold referen
es to variables whi
h may be de�ned lo
ally in the fun
tion returning the

cons. Let us 
onsider a garbage 
olle
tion after the cons is returned. When the cons 
ell

is being garbage 
olle
ted, the 
urrent root set has only variables whi
h are in the 
urrent

s
ope. Sin
e the referen
es inside the cons 
ell were de�ned in a s
ope whi
h is no longer

on the program sta
k it is not possible to determine the liveness of the referen
es inside

the cons 
ell. In Figure 4.3, the variable rest is de�ned lo
ally in the fun
tion append.

This variable es
apes from the s
ope when returned as part of the cons 
ell zs. In any

garbage 
olle
tion triggered beyond this return point, none of the root sets 
ontains a

referen
e to the variable rest whi
h is part of the returned cons 
ell. Thus, determining

the liveness of the referen
e be
omes impossible. This situation is shown in Figure 4.4(
).

The solution to both the 
hallenges is to treat variables whi
h are part of a 
losure

as �rst 
lass 
itizens from the point of view of garbage 
olle
tion, and treat them as

being separate from the variables introdu
ed by lets or fun
tion arguments. We 
all su
h

variables as 
losure variables and 
onsider liveness of both sta
k variables and 
losure

variables during garbage 
olle
tion. It is important to 
larify that a sta
k variable and its


orresponding 
losure variables are di�erent referen
es to the same memory lo
ation.

Notationally, a 
losure variable is distinguished from its 
orresponding sta
k variable

by subs
ripting it with the label of the program point where the 
losure was 
reated. As an

example, in Figure 4.3, the 
losure variables yπ4
and yπ8


orrespond to the sta
k variable

y de�ned at π3
2

. Ea
h 
losure 
arries liveness information of the variables whi
h are

part of a 
losure within the 
losure itself. Liveness of a 
losure variable is exa
tly the

demand on that parti
ular o

urren
e of the variable and hen
e is di�erent from sta
k-

liveness. For example, the 
losure-liveness of xs is just the demand on xs due to its use

in the evaluation of the expression (append xs ys) in the 
ontext of the demand on the

expression. The 
losure for (append xs ys) needs to 
arry this liveness information of

2

Multiple o

urren
es of the same variable in an appli
ation are further distinguished by their positions

in the appli
ation.
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xs and ys within itself. In the modi�ed garbage 
olle
tion s
heme, if the referen
e being

garbage 
olle
ted originates from the sta
k, the 
orresponding sta
k-liveness is used to

garbage 
olle
t it and if the referen
e originates inside a 
losure the 
losure-liveness is

used. While garbage 
olle
ting a referen
e on the sta
k, if we en
ounter a 
losure, the


losure arguments are treated as referen
es from whi
h garbage 
olle
tion, guided by the


losure-liveness of the referen
es, is initiated.

In summary, the major di�eren
es between the formulations of liveness-based garbage


olle
tion of lazy languages and eager languages [12℄ are:

1. Introdu
ing the notion of 
losure variable and treating them as �rst-
lass 
itizens from

the perspe
tive of garbage 
olle
tion.

2. The asso
iation of liveness with 
losure variables.

3. Handling evaluated values and 
losures di�erently during garbage 
olle
tion.

We have been using a

ess paths to represent liveness of variables. Assume that a garbage


olle
tion is triggered at π, where a variable x has a liveness α. In a lazy language, x may

point to a 
losure or to a stru
ture that may 
ontain 
losures. While α still represents

the set of a

esses that might be performed in future when the 
losure is fully evaluated,

a garbage 
olle
tion triggered at π would use α to a

ess only the evaluated parts of

the stru
ture, till a 
losure is en
ountered. Beyond those points, the garbage 
olle
tor

uses the liveness values of the 
losure variables to do the garbage 
olle
tion. Formally,

given an initial lo
ation ℓ (usually a referen
e 
orresponding to a variable) and a heap H,

semanti
ally an a

ess path α represents a referen
e, denoted HJℓ, αK, in the heap that

is obtained by starting with ℓ and 
hasing the car or cdr �elds in the heap as spe
i�ed

by the a

ess path. HJℓ, αK denotes the liveness of the heap rooted at ℓ only if the path

followed in the heap is 
losure-free. If this path is inter
epted by a 
losure, say (car yπ),

then the liveness of the path starting from yπ is given by the demand on yπ. As we shall

see in Se
tion 4.4.1, the liveness of the 
losure variable yπ is re
orded along with the


losure for s so that the GC 
an refer to it during garbage 
olle
tion.

4.2.2 The analysis

Figure 4.5 shows the dependen
e analysis introdu
ed in Se
tion 3.1 modi�ed for liveness.

Unlike demands whi
h 
an be asso
iated with both variables or expressions, liveness is

always asso
iated with variables. Hen
e, we modify the rules of dependen
e analysis to
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A :: (App,Demand, FuncSummaries) → LivenessEnvironment

A(π:κ, σ,DS) = {}, for 
onstants in
luding nil

A(π:(null? x), σ,DS) = {x 7→ ∅ǫσ}

A(π:(+ x y), σ,DS) = {x 7→ ∅ǫσ} ∪ {y 7→ ∅ǫσ}

A(π:: (car x), σ,DS) = {x 7→ 0σ}

A(π:: (cdr x), σ,DS) = {x 7→ 1σ}

A(π:(cons x y), σ,DS) = {x 7→ 0̄σ} ∪ {y 7→ 1̄σ}

A(π:(f y1 · · · yn), σ,DS) =
⋃n

i=1{yi 7→ DS
i
f (σ)}

D :: (Exp,Demand, FuncSummaries) → LivenessEnvironment

D(π:(return x), σ,DS) = Lπ

where Lπ = {x 7→ σ}

D(π:(if x π1:e1 π2:e2), σ,DS) = Lπ1
∪ Lπ2

∪ {x 7→ ∅ǫσ}

Lπ1
= D(π1:e1, σ,DS)

Lπ2
= D(π1:e2, σ,DS)

D(π:(let x ← π1:s in π2:e), σ,DS) = Lπ2
\ x. ∗ ∪ Lπ1

Lπ1
= A(π1:s, σ

′,DS)

σ′ = Lπ2
(x)

Lπ2
= D(π2:e, σ,DS)

where x.∗ represents all a

ess paths starting from x

DS ∈ FuncSummaries :: Funcname→ (Demand→ (Demand1, . . . ,Demandn))

∀f, ∀i, ∀σ : D(π : ef , σ,DS) = Lπ,DS
i
f =

⋃

π∈Π Lπ(zi)

df1 . . . dfk ⊢
l DS

(fun
tion-summaries)

(define (f z1 . . . zn) ef ) is one of df1 . . . dfk , 1 ≤ i ≤ n,

and Π represents all o

urren
es of zi in ef

Figure 4.5: Dependen
e analysis modi�ed to 
ompute liveness

now 
ompute demands only for variables. While a demand environment was a mapping

from a program-point to a demand, a liveness environment is a mapping from a variable

to a demand. It is often expressed as a set, for example by writing {x.11, y.1, z.0}

instead of [x 7→ {11}, y 7→ {ǫ}, z 7→ {0}]. The fun
tion A takes an appli
ation s and a

demand σ and returns a liveness environment that maps the free variables of s to sets of

a

ess paths representing their 
losure-liveness. The 
losure-liveness is stored as part of
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the 
losure itself, and 
onsulted while exploring the heap starting from 
losure variables

during garbage 
olle
tion. The fun
tion D uses A to propagate liveness a
ross expressions

and 
omputes program-point-wise sta
k-liveness. We use σ to range over demands, α to

range over a

ess paths and Lπ to denote the liveness environment at program point π.

The liveness of an individual variable y at program point π is Lπ(y).

In a lazy language, an expression is not evaluated unless required. Our analysis 
ap-

tures this by ensuring that no liveness generated is independent of the in
oming demand.

The ∅ǫ symbol ensures that an ǫ liveness is generated only if the in
oming demand is

non-null. Fun
tion 
alls are handled as in dependen
e analysis, using the third parameter

DS that represents the summaries of all fun
tions in the program. In 
ase of liveness

also, we prefer the least solution as it ensures the safe 
olle
tion of the greatest amount

of garbage.

The major modi�
ation in the dependen
e analysis rule happens in the rule for let.

To understand the liveness rule for π:(let x ← π1:s in π2:e), observe that the value of

let is the value of its body e. Thus the liveness environment Lπ2
of e is 
al
ulated for

the given demand σ. The sta
k variable x gets its liveness from the liveness environment

of e and this liveness is transferred to s generating 
losure-liveness of the variables of s.

Finally, the liveness environment at π is 
omputed by killing the sta
k-liveness of x, and

taking a union of the 
losure-liveness in s and the sta
k-liveness in e. Apart from the

fa
t that liveness is 
omputed only for variables, killing of sta
k-liveness is the primary

di�eren
e between dependen
e analysis and liveness analysis.

4.3 An example

We now use an example program to show liveness 
omputation and the di�eren
es between

sta
k-liveness and 
losure-liveness. Let us 
onsider the liveness of variable xs due to the

evaluation point ψ3.

1. The sta
k-liveness of xs just before exe
uting the expression at π3 is due to its uses

in the expressions (append xs ys), (car xs) and is DS
1
append(DS

1
length(σall )) ∪ 0σall .

However at π5, the liveness is 0σall as the liveness no longer in
ludes the use of xs in

(append xs ys).

2. In 
ontrast, 
losure-liveness of xs at π3 is only due to its use in (append xs ys).
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(define (main)

π1:(let xs . . . in

π2:(let ys . . . in

π3:(let y ← (append xs ys) in

π4:(let 
 ← (null? y) in

π5:(if ψ1:


π6:(let u ← (car xs) in

π7:(return ψ2:u))))

π8:(let z ← (length y) in

π9:(return ψ3:z))))))

DS
1
append(DS

1
length(σall ))

∪ 0σall

DS
1
append(DS

1
length(σall ))

0σall DS
1
append(DS

1
length(σall ))

Figure 4.6: Sta
k and 
losure liveness for variable xs at program points π3 and π5. Sta
k

liveness is indi
ated in red and Closure liveness in blue. Sta
k liveness 
hanges between π3

and π5 as the expression (append xs ys) is not 
onsidered at π5 for liveness 
omputation.

Closure variable remains un
hanged.

Closure-liveness of xs due to the evaluation point ψ3 is 
omputed by starting with the

expression at ψ3 and transferring demands via the expressions (length y), till we rea
h

xs at π3. Noti
e, the expression (car xs) is not 
onsidered as the expression is not

evaluated along the path starting from ψ3.

4.4 Computing liveness information

We now use the liveness of the 
losure variable xsπ3
in example 4.1 to illustrate liveness


omputation. The liveness of the variable xsπ3
is determined by how the fun
tion append

uses its �rst argument and how the sta
k variable y is used in the program. The liveness

of the sta
k variable y is given by the union of the liveness of the 
losure variables yπ4

and yπ8
. To 
ompute the liveness value, we require the demand transformers for the

user-de�ned fun
tions append and length. The demand transformers of append and

length are given by:
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DS
1
length(σ) = ∅ǫσ ∪ 1DS

1
length(∅ǫσ)

DS
1
append(σ) = ∅ǫσ ∪ 00̄σ ∪ 1DS

1
append(1̄σ)

We now use the property that all rules of our analysis always pre�x σ with symbols to

rewrite DS
i
f (σ) as DS

i
f σ (DSi

f 
on
atenated with σ). After the rewrite we 
an 
an
el out

σ from both the LHS and RHS to get the modi�ed equations for DSlength and DSappend:

D1
length = ∅ǫ ∪ 1D1

length∅ǫ

D1
append = ∅ǫ ∪ 00̄ ∪ 1D1

append1̄

Viewing these equation as a CFGs with {1, 1, 0̄, 1̄,∅ǫ} as terminal symbols and

D1
length and D1

append as non-terminals, we get the following produ
tions:

D1
length → ∅ǫ | 1D

1
length∅ǫ

D1
append → ∅ǫ | 00̄ | 1D

1
append1̄

The liveness of xsπ3
is given by the equation:

Lπ3
(xs)→ ∅ǫσall | D

1
appendD

1
length∅ǫσall

Both

D1
length and

D1
append 
ontain 
ontext-free produ
tions. Hen
e, we perform the

Mohri-Nederhof transformation on these non-terminals to 
onvert them to strongly regular

grammars. The grammar post 
onversion is:

D1
length

′
→ ∅ǫ

D1
length

′
| ǫ

D1
length → 1D

1
length | ∅ǫ

D1
length

′

D1
append

′
→ 1̄D1

append

′
| ǫ

D1
append → 00̄D

1
append

′
| ∅ǫ

D1
append

′
| 1D1

append

We now 
onstru
t the automaton 
orresponding to xsπ3
using the strongly regular

grammars. The automaton and the 
orresponding simpli�
ations are shown in Figure 4.7.

When no more simpli�
ation rules are appli
able, all the bar-edges are dropped from the
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q′s q1
ǫ

1

q2 q3
0 0̄

1̄

q4 q5
ǫ

1

∅ǫ

∅ǫ

0 | 1∅ǫ

(a)

q′s q1
ǫ

1

q2 q3
0 0̄

1̄

q4 q5
ǫ

1

∅ǫ

∅ǫ

0 | 1∅ǫ

(b)

q′s q1
ǫ

1

q2 q3
0 0̄

1̄

q4 q5
ǫ

1

∅ǫ

∅ǫ

0 | 1∅ǫ

ǫ

(
)

q′s q1
ǫ

1

q2 q3
0 0̄

1̄

q4 q5
ǫ

1

∅ǫ

∅ǫ

0 | 1∅ǫ

ǫ

(d)

q′s q1
ǫ

1

q2 q3
0 q4 q5

ǫ

1

0 | 1

ǫ

(e)

q′s

1

(f)

Figure 4.7: Simpli�
ation pro
ess of automaton 
orresponding to

Lπ3
(xs)

automaton. In this automaton all states whi
h lie on the path from the start state to a

�nal state are marked as �nal. This ensures that the liveness automaton a

epts a pre�x-

80




losed language whi
h is needed for the liveness-based garbage 
olle
tor. The simpli�ed

automaton a

epts the language 1∗
indi
ating that only the spine of the list xs is live.

This mat
hes our intuition as only the spine of the list y was needed by the length

fun
tion and y was 
onstru
ted by appending xs and ys.

4.4.1 Liveness-based garbage 
olle
tion s
heme

In this se
tion we des
ribe a garbage 
olle
tion s
heme whi
h uses the result of the liveness

analysis des
ribed in Se
tion 4.2.1 to 
olle
t more garbage. The liveness analysis des
ribed

in Se
tion 4.2.1 
omputes program-point-wise sta
k-liveness and 
losure-liveness for ea
h


losure variable. While we 
ompute liveness at all program points, sin
e the liveness is

applied for garbage 
olle
tion, we need to store liveness only at potential garbage 
olle
tion

points i.e. where the program 
an potentially allo
ate heap memory. However, unlike

eager languages, where memory from the heap is allo
ated only for cons 
ells and for

passing arguments to fun
tions, in a lazy language ea
h let de�nition requires memory for


reating 
losures. And sin
e su
h de�nitions abound in programs, almost every program

point in a lazy language 
an be
ome a trigger point for potential garbage 
olle
tion,

and would therefore require liveness information to be stored. For a pra
ti
al liveness-

based garbage 
olle
tor, the memory overhead required to store liveness information at all

program points may be prohibitively large. Thus, we have to restri
t the possible garbage


olle
tion points in a fun
tion body.

We would like to ensure that a garbage 
olle
tion is never triggered at a let de�nition

inside the body of a fun
tion. To do this, we need to ensure that su�
ient number of heap


ells are available before evaluating a fun
tion body. Therefore, we 
ompute the estimated

number of heap 
ells required to 
reate 
losures while exe
uting the body of the fun
tion.

For a primitive operation, sele
tor or tester a single heap 
ell is su�
ient. For a fun
tion


all, assuming that ea
h heap 
ell 
an hold a single argument of the fun
tion, the number

of heap 
ells is equal to the number of arguments of the 
alled fun
tion. Using these

estimates for appli
ations we 
an 
ompute the number of heap 
ells required for 
reating


losures for a fun
tion body. In 
ase the fun
tion body has a bran
h, we 
onsider the

maximum among the two bran
hes. During exe
ution, before evaluating a fun
tion 
all,

we 
he
k whether the available heap 
ells 
an 
over the estimated number of 
ells. If the

available 
ells are less than the estimated value a garbage 
olle
tion is triggered. Although
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at the beginning of a fun
tion body, the liveness is empty for the 
urrent fun
tion, the

garbage 
olle
tor 
an 
olle
t garbage from the other fun
tions in the 
all sta
k. This way

we ensure that before evaluating a fun
tion body we always have su�
ient 
ells to 
reate


losures for the fun
tion body.

While triggering garbage 
olle
tion at the beginning of a fun
tion body su�
es when

the fun
tion body does not have if expressions, we need more 
he
k points for a fun
tion

body 
ontaining bran
hes. The reason for this is that evaluation of the 
ondition in

an if expression 
ould potentially lead to evaluation of 
losures. In 
ase the 
losure

being evaluated is a primitive operator/tester/
onstru
tor/sele
tor then no extra spa
e

is required as the same 
ell 
an be updated to hold the result of evaluation. But if the


losure is a fun
tion 
all, evaluation of the fun
tion body 
ould lead to 
reation of more


losures requiring extra 
ells. The 
alling fun
tion does not in
lude these 
ells as part of

its estimate and depends on the 
alled fun
tion to 
he
k for the required memory. If the


ondition evaluation in if expression triggers the evaluation of a fun
tion 
all, it invalidates

the memory 
he
k at the beginning of the fun
tion body. Therefore, a memory 
he
k with

the required heap 
ells for the sele
ted bran
h with the updated memory availability is

ne
essary. Thus, for ea
h fun
tion we store the estimated number of heap 
ells required at

the beginning of the fun
tion and at the beginning of ea
h bran
h. Liveness information

is stored at the beginning of ea
h bran
h

3

.

In summary the modi�ed garbage 
olle
tion s
heme is,

1. We stati
ally over-approximate the memory required to 
reate the 
losures for ea
h

fun
tion body. On entering a fun
tion, if the available memory is less than this re-

quirement for the fun
tion, a GC is triggered.

2. Sin
e the evaluation of a if 
ondition may trigger a 
olle
tion, after evaluating the


ondition the available memory is 
he
ked on
e again against a revised estimate of the

memory (based on value of the 
ondition) required to exe
ute the rest of the program.

A GC is triggered if enough memory is unavailable.

Another drawba
k of the analysis is the fa
t that the 
losure-liveness is 
omputed

on
e and it remains un
hanged. Closure-liveness is 
omputed at the point of 
reation of

the 
losure by transferring the liveness of the sta
k variable to whi
h the 
losure is bound.

This liveness is never updated during the analysis even if at a di�erent program point

3

Storing liveness at beginning of fun
tion body is not required as it is empty
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the liveness of the asso
iated sta
k variable itself 
hanges. While this keeps the analysis

simple, using 
onstant liveness during garbage 
olle
tion 
ould leave a lot of garbage

un
olle
ted. Considering the liveness of 
losure variables along only feasible evaluation

paths leads to more pre
ise liveness information and improved garbage 
olle
tion. Assume,

for the sake of 
on
reteness, that ep1 and ep2 are two evaluation points. During GC, we

would like to use more pre
ise liveness, based on the a
tual paths taken during exe
ution.

Therefore, we 
reate separate liveness automata for dependen
es along paths to ep1 and

ep2, in addition to automata for dependen
es along paths to both ep1 and ep2. The 
losure


arries the liveness environment for its free variables (as pointers to automata, one for ea
h

variable). Initially the liveness environment is based on the dependen
es along both ep1

and ep2. However, after evaluating an if 
ondition, the liveness environments are updated

to one based on either ep1 or ep2, so that subsequent garbage 
olle
tions are based on more

pre
ise liveness information. As an example, in Figure 4.3, a dependen
e 
hain for xsπ1

begins with the variable z at the evaluation point ψ3 and z in turn depends on y through

(length yπ3
). We denote this 
hain of dependen
es as [ψ3 : z← (length yπ3

)]. Indeed, the


hains of 
losures in the heap are runtime representations of these dependen
es. Sin
e z is

evaluated at ψ3 due to the expression return z, the demand made by the 
alling 
ontext(s)

of f pla
es a demand on z whi
h will impart a liveness to yπ1
. Other dependen
e 
hains

whi
h result in a liveness for xsπ1
are [ψ1 : 
 ← (null? yπ4

), y ← (append xsπ3
ysπ3

)]

and [ψ2 : u← (car xsπ6
)]. The liveness analysis de
lares the liveness of xsπ3

to be a union

of the liveness arising from these dependen
e 
hains. To be safe, a GC during evaluation

of y at ψ1 has to use this liveness to 
opy the heap starting from xsπ3
. However, noti
e

that if a GC takes pla
e while evaluating u at ψ3, it 
an safely 
onsider only the liveness

arising from the dependen
e 
hain [ψ2 : u← (car xsπ6
)]. The liveness due to the bran
h

terminating with the evaluation point ψ3 is not feasible after the 
ondition in π5 evaluates

to true.

Figure 4.8 shows the sta
k and 
losure liveness for the variable xs 
orresponding

to the evaluation point ψ2. Assuming that the 
ondition 
 evaluates to true, the next

expression that is exe
uted has program point π6. At this point, the sta
k-liveness of xs

is only due to u. The 
losure variable xsπ6
also gets the same liveness. However, noti
e

that the liveness of the 
losure variable xsπ3
, a
quired from the variable y at π3 remains

un
hanged, although there is no future use of y in this bran
h. This leads to less pre
ise
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(define (main)

π1:(let xs . . . in

π2:(let ys . . . in

π3:(let y ← (append xs ys) in

π4:(let 
 ← (null? y) in

π5:(if ψ1:


π6:(let u ← (car xs) in

π7:(return ψ2:u))))

π8:(let z ← (length y) in

π9:(return ψ3:z))))))

xsπ3
7→ DS

1
append(DS

1
length(σall ))

xsπ3
7→ ∅

Figure 4.8: Advantages of updating 
losure liveness for variable xs at runtime. Closure

liveness of xs at π3 needs to take into a

ount liveness in both bran
hes. Assuming the


ondition evaluates to true at ψ1 at runtime, 
losure liveness of xs 
an be updated to ∅.

liveness for the 
losure variable xsπ3
and may prevent it from being garbage 
olle
ted. To

avoid this, we update the 
losure-liveness after evaluation of a 
ondition in if expression.

4.4.2 The garbage 
olle
tion algorithm

We shall 
all a unit of allo
atable memory as a 
ell. A 
ell 
an hold a basi
 value (bas),

the 
onstru
tor cons (cons arg1 arg2) or a 
losure. The 
losure, in turn, 
an be one of

(unop arg), (binop arg1 arg2) and fun
tion appli
ation (f arg). Here ea
h argi is a referen
e

to another heap 
ell. In addition, the 
losure also 
arries a pointer to a DFA (denoted

argi.dfai) for ea
h argi.

Algorithm 6 des
ribes the garbage 
olle
tion s
heme. Starting with the root set,

ea
h 
ell pointed by a live referen
e (i.e., whose asso
iated DFA state is �nal) is 
opied

using copy. Copying a cons 
ell involves 
opying the 
ell itself and 
onditionally 
opying

the car and the cdr �elds after referring to the next states of the DFA. If the referen
e

points to a 
losure, then, as mentioned earlier, the 
losure 
arries pointers to the liveness

DFAs of its arguments. These are used to re
ursively initiate 
opying of the arguments.
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pro
edure lgc():

for ea
h referen
e ref in root set:

ref = copy (ref, init(ref.dfa));

copyReferencesOnPrintStack();

return;

fun
tion copy(ref, state):

if ¬final(state):

return ref;

newRef = dupHeapCell(ref);

if ref.cell(ref) is a 
ons 
ell (cons arg1 arg2):

newRef.arg1 = copy(arg1, next(state, 0));

newRef.arg2 = copy(arg2, next(state, 1));

if ref.cell is a 
losure 
ell, generi
ally (binop arg1 arg2):

newRef.arg1 = copy(arg1, init(arg1.dfa));

newRef.arg2 = copy(arg2, init(arg2.dfa));

return newRef;

Algorithm 6: Liveness-based garbage 
olle
tion.

Note that the 
opying strategy for (unop arg1) or (f arg1) are similar to (binop arg1 arg2)

and have not been shown.

The evaluation of the top-level expression in a program is driven by a printing fun
-

tion (Se
tion 4.1.1) that is 
ommon to all user programs. We des
ribe a generi
 algorithm

for printing values in lazy-languages in Algorithm 7. The print fun
tion takes a heap

referen
e as input and 
he
ks if it 
ontains an evaluated value or a 
losure. If it 
ontains

a 
losure, it triggers an evaluation of the 
losure to produ
e a value whi
h is in WHNF.

In 
ase the value is an atomi
 value (number) it prints the value. If it is a cons 
ell,

then it re
ursively 
alls print on the car part and then the cdr part. Noti
e that on
e

the car part is printed it be
omes dead, even though it is rea
hable from the sta
k. We

extend liveness-based garbage 
olle
tion to the print fun
tion to take advantage of this

observation.
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Fun
tion evalAndPrint(ref)

Data: ref is the expression being evaluated

val ← evalToWHNF(ref )

if (pair?(val)):

Display �(�

evalAndPrint(car(val))

Display �.�

evalAndPrint(cdr(val))

Display �)�

else:

Display val

Algorithm 7: Fun
tion to print result of a lazy program.

4.4.3 Experimental evaluation

Our experimental setup 
onsists of the prototypes of (a) an interpreter for our language,

(b) a liveness analyzer, and (
) a single generation 
opying garbage 
olle
tor. The garbage


olle
tor 
an be 
on�gured to work on the basis of rea
hability (RGC mode) or use liveness

DFAs (LGC mode). Our ben
hmark 
onsists of programs taken from no�b [66℄ and other

repositories for fun
tional programs [2�4℄. We ran the experiments on 8 
ore Intel

R©

Core

TM

i7-4770 3.40GHz CPU having 8192KB L2 
a
he, 16GB RAM, running 64 bit

Ubuntu 14.04.

The statisti
s related to liveness analysis and DFA generation are shown in Table 4.1.

We observe that the analysis of all programs ex
ept treejoin and sudoku require reason-

able time. The bottlene
k in our analysis is the NFA to DFA 
onversion with worst-
ase

exponential behaviour. However, sin
e the analysis has to be done only on
e and its results


an be 
a
hed and re-used, the time spent in analysis may be 
onsidered a

eptable.

Table 4.2 
ompares GC statisti
s for RGC and LGC. We report the number of GC

events, average number of 
ells re
laimed per GC, average number of 
ells tou
hed per

GC and the total time to perform all 
olle
tions. It is no surprise that the number of 
ells

re
laimed per garbage 
olle
tion is higher and the number of garbage 
olle
tions lower

for LGC. The 
ost of LGC is higher garbage 
olle
tion time, whi
h in
reases the overall

exe
ution time even with redu
ed number of 
olle
tions. However, the exe
ution time
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Table 4.1: Statisti
s for liveness analysis

Program #CFG Nonterminals #CFG Rules #DFA States #DFA Transitions DFA Gen Time (se
)

f

i

b

h

e

a

p

621 1176 1761 2829 37.28

s

u

d

o

k

u

1422 2009 4283 7690 655.41

n

p

e

r

m

662 866 1546 2522 0.94

p

a

r

a

f

f

i

n

s

1174 1773 3346 6086 13.22

l




s

s

642 1206 1666 2726 8.66

h

u

f

f

m

a

n

499 818 1414 2528 4.00

k

n

i

g

h

t

s

t

o

u

r

660 883 1519 2420 10.97

n

q

u

e

e

n

s

404 643 889 1170 0.36

d

e

r

i

v

328 468 809 1435 0.61

t

r

e

e

j

o

i

n

615 1328 1803 2797 903.14

l

a

m

b

d

a

669 1088 1703 2580 11.01

g




_

b

e

n




h

390 450 571 788 0.10

Data for Liveness Analysis

of LGC is still 
omparable for most ben
hmarks (slowdown within 5X of RGC in most


ases) and better for 3 ben
hmarks (2X speedup in the best 
ase).

Memory usage graphs for the ben
hmarks are shown Figure . In all the programs

we 
an see that the 
urve 
orresponding to LGC (blue line) dips below the RGC 
urve

(red line) during GC. The graphs also in
lude the 
urve for rea
hable 
ells (bla
k) and

live 
ells (light-blue). These were obtained by for
ing RGC to run at very high frequen
y.

The 
urve for live 
ells were obtained by re
ording heap a

ess times and post pro
essing

the data at the end of the program. Note that the size of an LGC 
ell is 1.16 times the

size of a RGC 
ell.

As demonstrated by the gap between the red and the light-blue lines, a large number

of 
ells whi
h are unused by the program are still 
opied during RGC. LGC does a mu
h

better job of 
losing this gap but still falls short of the pre
ision a
hieved by LGC in 
ase

of eager languages [12℄. A major sour
e of ine�
ien
y in LGC is multiple traversals of

already 
opied heap 
ells. Sin
e LGC does not mark the heap 
ells after the �rst visit,

the same 
ells 
an be repeatedly visited with di�erent liveness states.

The hu�man ben
hmark performs extremely well with liveness-based GC in terms

of both the peak memory required and the number of GCs. The ben
hmark takes a list

of 
hara
ters and �rst en
odes it and then takes the en
oded list and de
odes it, printing
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Figure 4.9: Memory usage. The red and the blue 
urves indi
ate the number of 
ons


ells in the a
tive semi-spa
e for RGC and LGC respe
tively. The bla
k 
urve represents

the number of rea
hable 
ells and the light-blue 
urve represents the number of 
ells that

are a
tually live (of whi
h liveness analysis does a stati
 approximation). x-axis is the

time measured in number of 
ons-
ells allo
ated (s
aled down by fa
tor 105). y-axis is the

number of 
ons-
ells (s
aled down by 103).

out the de
oded list. Noti
e that in a lazy language, the printing of the �nal de
oded

list is what for
es the evaluation to move forward. Ideally, on
e the element is printed

the memory allo
ated to that element 
an be freed and re-used, but a rea
hability-based


olle
tor will not be able to 
olle
t it as a referen
e to the cons 
ell 
ontaining the element

will be still on the sta
k. Sin
e the evalAndPrint fun
tion is also annotated with liveness

information our liveness-based 
olle
tor will be able to 
olle
t it. The input 
hara
ter list

to the program is generated using a loop and hen
e the program 
an exe
ute in 
onstant

memory irrespe
tive of the length of input list. The ben
hmark demonstrates that our

garbage 
olle
tor is very e�e
tive when the program has a produ
er-
onsumer nature.

Tail 
all optimization Tail 
all optimization is a very important optimization for

improving spa
e utilization of programs. In spite of this, many languages do not require
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tail 
alls to be optimized. Not optimizing tail 
alls not only uses up sta
k size but it 
an

also hog heap memory if a rea
hability-based 
olle
tor is used. For example, a list whi
h is

traversed using a tail 
all will hold referen
es to already pro
essed elements of the list on

the sta
k. This makes them rea
hable during garbage 
olle
tion preventing the memory

from being garbage 
olle
ted. Our liveness analysis dete
ts that beyond the tail 
all the

car part of the argument list is not used and hen
e marks it dead. A liveness-based


olle
tor would use this information and 
olle
t the 
ells as garbage.

4.5 Soundness of liveness-based garbage 
olle
tion

We shall now present a proof of the soundness of the liveness-based garbage 
olle
tion

s
heme. It is easy to see that the analysis 
orre
tly identi�es the liveness of sta
k variables.

A sta
k variable is live between its introdu
tion through a let and its last use to 
reate

a 
losure variable. This is 
orre
tly 
aptured by the let rule. Proving soundness for root

set traversals starting with 
losure variables is more 
omplex. Here are the ideas behind

the proof.

1. As in DGS, we extend the abstra
t ma
hine state ρ, S,H, e to ρ, S,H, e, δ. We 
all

su
h a state a mine�eld state. Here δ is the �dynami
� demand on the expression e.

The demand for the initial state is (0 + 1)∗ (also abbreviated as δall), and ea
h  

transition transforms the demand a

ording to the liveness rules of Se
tion 4.2.1. The

information in 
ontinuation frames on the sta
k S are also similarly augmented with

their demands. Thus, a sta
ked entry now takes the form (ρ, ℓ, e, δ). The initial state of

the mine�eld semanti
s is assumed to be ([ ]ρ, (ρinit , ans, (evalAndPrint ans), δall) :

[ ]S, [ ]H, emain, ǫ).

2. We augment the standard semanti
s in Figure 4.2 to simulate a GC before the exe
ution

of ea
h let de�nition. We reiterate that, unlike eager languages, memory is allo
ated

only during exe
ution of let expressions. GC(ρ, S,H, e, δ) models a liveness-based

garbage 
olle
tion that returns (ρ′, S ′,H′). The 
hanges in ρ, S and H are due to non-

live referen
es being repla
ed by ⊥4

. This simulates the a
t of garbage 
olle
ting the


ells pointed to by these referen
es during an a
tual garbage 
olle
tion. Any attempt

4

In our fan
iful imagination, ⊥ in the heap are mines and liveness analysis is the mine dete
tor. A

wrong liveness analysis 
an 
ause ⊥ to be be dereferen
ed resulting in the bang state.
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Premise Transition Rule name

δ is ∅ ρ, (ρ′, ℓ, e′, δ′ ) :S,H, e, δ  ρ′, S,H, e′, δ′ no-eval

ρ, (ρ′, ℓ, e, δ′ ) :S,H, κ, δ  ρ′, S,H[ℓ := κ], e, δ′ 
onst

ρ(x) is 〈s, ρ′〉 ρ, S,H, x, δ  ρ′, S,H, s, δ var

ρ(x) is ⊥ ρ, S,H, x, δ  bang var-bang

ρ(x) is 〈(id y), ρ′〉 ρ, S,H, x, δ  ρ′, S,H, y, δ id

ρ, (ρ′, ℓ, e, δ′ ) :S,H, (cons x y), δ  

ρ′, S,H[ℓ := (ρ(x), ρ(y))], e, δ′


ons

H(ρ(x)) is (v, d) ρ, (ρ′, ℓ, e, δ′ ) :S,H, (car x), δ  

ρ′, S,H[ℓ := v], e, δ′


ar-sele
t

H(ρ(x)) is 〈s, ρ′〉 ρ, S,H, (car x), δ  

ρ′, (ρ, ρ(x), (car x), δ ) :S,H, s, 0δ


ar-
lo

H(ρ(x)) is (〈s, ρ′〉, d) ρ, S, H, (car x), δ  

ρ′, (ρ, addr(〈s, ρ′〉), (car x), δ ) :S, H, s, δ


ar-1-
lo

H(ρ(x)),H(ρ(y)) ∈ N ρ, (ρ′, ℓ, e, δ′ ) :S,H, (+ x y), δ  

ρ′, S,H[ℓ := H(ρ′(x)) +H(ρ′(y))], e, δ′

prim-add

H(ρ(x)) /∈ N ρ, S,H, (+ x y), δ  

ρ′, (ρ, ρ(x), (+ x y), δ ) :S,H, x, ǫ

prim-1-
lo

H(ρ(y)) /∈ N ρ, S,H, (+ x y), δ  

ρ′, (ρ, ρ(y), (+ x y), δ ) :S,H, y, ǫ

prim-2-
lo

f de�ned as (define (f ~y) ef ) ρ, S,H, (f ~x), δ  

[~y 7→ ~〈(id x), ρ〉], S,H, ef , δ

fun
all

GC(ρ1, S1,H1, (let x← s in e), δ)

= (ρ, S,H) ,

ℓ is a new lo
ation

ρ, S,H, (let x← s in e), δ  

ρ⊕ [x 7→ ℓ], S,H[ℓ := 〈s, ⌊ρ⌋FV (s), δx〉], e, δ

where δx = ⌊L(e, δ,DS)⌋{x}

let

H(ρ(x)) 6= 0 ρ, S,H, (if x e1 e2), δ  ρ, S,H, e1, δ if-true

H(ρ(x)) = 0 ρ, S,H, (if x e1 e2), δ  ρ, S,H, e2, δ if-false

H(ρ(x)) = 〈s, ρ′〉 ρ, S,H, (if x e1 e2), δ  

ρ′, (ρ, ρ(x), (if x e1 e2), δ ) :S,H, x, ǫ

if-
lo

H(ρ(x)) = 〈s, ρ′〉 ρ, S,H, (return x), δ  

ρ′, (ρ, ρ(x), (return x), δ ) :S,H, x, δ

return

Figure 4.10: Mine�eld semanti
s. The di�eren
es with the small-step semanti
s have been

highlighted by shading.
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to dereferen
e su
h referen
es during exe
ution results in the transition system entering

a spe
ial state denoted bang. GC(. . .) needs to 
onsider the following environments:

(1) the environment in the 
urrent state, (2) the environment in ea
h of the sta
ked


ontinuations and (3) the environment in ea
h of the 
losures in the heap.

(a) For ea
h of these environments, GC(. . .) 
al
ulates a liveness environment L for

the 
orresponding s with the dynami
 demand δ.

(b) For ea
h lo
ation ℓ, GC(. . .) sets H(ℓ) to ⊥ i� for ea
h environment ρ above, for

ea
h x ∈ domain(ρ), and ea
h pre�x α′
of an a

ess path α, it is not the 
ase that

x.α ∈ L and HJρ(x), α′K = ℓ.

3. Note that the modeled GC is done on the basis of dynami
 demand rather than stati


demand. However, by a reasoning similar to Theorem 3.4, the stati
 liveness that is


onsulted during a
tual GC is 
omputed from an over-approximation of this demand.

Thus, the soundness result on the modeled GC will also apply for the a
tual GC. The

soundness proof 
onsists in showing that the exe
ution of no program enters the bang

state.

Figure 4.10 shows the mine�eld rules. As mentioned earlier, the transition for a

let is pre
eded by GC(. . .). Also 
onsider, as an example, the transition for the modi�ed


ar-
lo. If an earlier 
all to GC(. . .) results in ρ(x) being bound to ⊥, then the  step

enters the bang state (
ar-bang). Otherwise, the transition is similar to the earlier


ar-
lo rule.

4.5.1 Soundness result

Note that our proofs will be for a single round of mine�eld exe
ution i.e., the evalua-

tion of (main) to its WHNF driven by the printing me
hanism (Se
tion 4.1.1). With

minor variations, the proof will also be appli
able for subsequent evaluations initiated by

evalAndPrint. We now present the result whi
h shows that the liveness-based garbage


olle
tion s
heme is sound.

Theorem 4.1 The mine�eld exe
ution of no program 
an enter a bang state.

Proof. Consider a state (ρ, S,H, e, δ) in the mine�eld exe
ution of a program. We show

by indu
tion on the number n of steps leading to this state that the next transition 
an-

not enter a bang state. When n is 0, the state is ([ ]ρ, (ρinit , ℓans, (evalAndPrint ans), δall) :
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[ ]S, [ ]H, emain, ǫ). Sin
e the 
all to GC(. . .) in this state does nothing, we just have to

show that the  transition 
annot enter a bang state. Sin
e our programs are in ANF,

emain 
an only be a let expression. A let step does not involve dereferen
ing, and thus


annot result in a bang.

For the indu
tive step, we shall show that none of the mine�eld steps that involves

dereferen
ing results in a bang. These are the steps whi
h have aH(ρ(...)) in the premise.

If we are in the the state (_,_,_, e, δ) after n steps of mine�eld exe
ution, then, be
ause

of the no-eval rule δ is not null. Now a  step 
an go bang be
ause it dereferen
es a

⊥ inserted by an earlier GC(. . .). However, again by a reasoning similar to Lemma 3.2,

the demand δ′ on the basis of whi
h the GC(. . .) would have inserted a ⊥ would have

in
luded the 
urrent demand δ. Thus it is enough to show that the  step would also

not lead to a bang.

We only 
onsider the rules for the 
ase when e is (car x). The rest of the rules

involve similar reasoning. For the 
ar-
lo rule in the state (ρ, S,H, (car x), δ), we know

that δ is non-null. Therefore the liveness of x in
ludes ǫ. Now sin
e garbage 
olle
tion

on (car x) was done on the basis of a demand that in
luded δ, GC(. . .) would not have

inserted a ⊥ for x and therefore the dereferen
ing H(ρ(x)) will go without bang.

Similarly for the 
ar-1-
lo rule, observe that there are two dereferen
es. First x

is dereferen
ed to get a 
ons 
ell and then the head of the 
ons 
ell is dereferen
ed to

obtain a 
losure. If the demand δ on (car x) is non-null, then the liveness of x will have

as its pre�xes both ǫ and 0, and GC(. . .) on (car x) with a liveness that in
ludes δ will

neither bind x to a ⊥, nor insert ⊥ at the �rst 
omponent of the 
ons 
ell. Thus both

dereferen
es 
an take pla
e without  entering the bang state. �

4.6 Related work

The impa
t of liveness on the e�e
tiveness of GC is investigated in [35℄. They observe that

liveness 
an signi�
antly impa
t garbage 
olle
tion, but only when it is interpro
edural.

As far as memory requirement is 
on
erned, our paper demonstrates this observation. To

the best of our knowledge, this is the �rst work that uses the results of an interpro
e-

dural liveness analysis to garbage 
olle
t both evaluated data and 
losures. Thomas [96℄

des
ribes a 
opying garbage 
olle
tor for the Three Instru
tion Ma
hine (TIM) [25℄ that
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only preserves live 
losures in a fun
tion's environment (also 
alled a frame). However, in

the absen
e of details, it is not 
lear whether a) the s
ope of the method is interpro
edu-

ral, and b) it handles algebrai
 datatypes like lists (the original design of TIM did not).

All other previous attempts [12, 45, 87�89℄ involved either imperative or eager fun
tional

languages.

There have been several attempts to use liveness analysis to improve GC for imper-

ative languages. [49℄ presents a liveness analysis and uses the results for inserting nulli-

fying statements in Java programs. In [89℄, temporal properties like liveness are 
he
ked

against an automaton modeling heap a

esses. Both these approa
hes are intrapro
edural

in s
ope.

In the spa
e of fun
tional languages, there are: rewriting methods su
h as deforesta-

tion [21, 29, 99℄, sharing analysis based reallo
ation [75℄, region based analysis [98℄, and

insertion of 
ompile-time nullifying statements [41, 56℄. The analysis des
ribed by Inoue

et. al. [41℄ handles the spe
i�
 
ase that arises when list-valued fun
tions F and G are used

in an expression of type F (G(. . .)). If a 
ell c 
reated by G and is not part of the result

returned by F , c 
an be garbage 
olle
ted whenever F 
ompletes exe
ution. Similar to

our method, the result of their analysis is also represented using grammars(CFG). How-

ever their method introdu
es (under)approximation in the CFG itself to remove symbols

equivalent to 0̄ and 1̄ from CFG rules. Another approa
h to dete
t garbage 
ells gener-

ated by expressions of type F (G(. . .)) due to Mohnen [62℄ uses abstra
t interpretation.

A list having n levels is abstra
ted to an n-tuple, a boolean denoting the possibility of

sharing between any element at ea
h level in the list and the result of the fun
tion to

whi
h the list is passed as a parameter. A false value in the tuple indi
ates that values at

that level are not shared with the return value and hen
e 
an be garbage 
olle
ted. This

leads to very 
oarse approximations as the use of a single 
ell will make the whole list at

that level live. The bigger limitation with both approa
hes is that garbage 
olle
tion 
an

happen only at end of fun
tion bodies.

Another approa
h due to Lee et. al. [55, 56℄ uses memory types to des
ribe usage

of heap 
ells by expressions. Their analysis also a
hieves 
ontext sensitivity by doing

a parameterized analysis of fun
tions. The method uses dynami
 �ags passed as extra

arguments to fun
tions to 
olle
t 
ells inside fun
tion bodies. Passing di�erent values

from di�erent 
all sites for the dynami
 �ags allows the same fun
tion to have di�erent
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deallo
ation behaviors.

Another method that 
omes 
lose to our approa
h is the Heap Safety Automaton

[89℄. The goal of this method is to safely insert null statements and it uses an automaton

to model safety of null insertion statement at a given point. The program is abstra
ted

by a shape graph and this graph is used to do model-
he
king against the heap safety

automaton. A key aspe
t of any approa
h whi
h tries to improve pre
ision of garbage


olle
tion is to identify the earliest program point where a referen
e 
an be set to null.

The Heap Safety Automaton based approa
h does not address this issue, it 
an only

answer whether a given a

ess expression be set to null immediately after a program

point. It fails to answer the following question, Whi
h expressions should be 
onsidered

at whi
h program point? This is a very 
ru
ial question as 
onsidering every pair of a

ess

expression and program point is impra
ti
al.

A pra
ti
al approa
h involves 
opying only the heap obje
ts whose root variables

are live [6℄. The drawba
k of this approa
h is that an entire obje
t rea
hable from a live

root variable is 
onsidered live, even if some parts of it are never used. For example, even

when only the spine of a list is live (used as an argument to the length fun
tion) all its

elements will also be 
opied.

The only work in the spa
e of lazy languages seems to be [31℄ whi
h tou
hes upon only

basi
 te
hniques of 
ompile-time garbage marking, expli
it deallo
ation and destru
tive

allo
ation. An interesting approa
h suggested in [36℄ is to annotate the heap usage of �rst-

order programs through linear types. The annotations are then used to serve memory

requests through re-allo
ation. However, this requires the user to write programs in a

spe
i�
 way. Safe-for-spa
e [11℄ approa
hes [23, 90℄ redu
e the amount of heap used by a

program by allo
ating 
losures in registers and through tail 
all optimizations. However,

these approa
hes take 
are of only part of the problem addressed by our analysis as the

program 
an still 
ontain unused obje
ts and 
losures that are rea
hable.

Simpli�ers [68℄ are abstra
tly des
ribed as lightweight daemons that atta
h them-

selves to program data and, when a
tivated, improve the e�
ien
y of the program. Our

liveness-based GC 
an be seen as an instan
e of a simpli�er whi
h is tightly 
oupled with

garbage 
olle
tors. The approa
h that is 
losest to the method des
ribed in this paper is

the liveness-based garbage 
olle
tor implemented in [12, 44℄ and address eager languages.

We extend this to handle lazy evaluation and 
losures.
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Chapter 5

Stati
 program sli
ing using demand

propagation

Program sli
ing is a powerful te
hnique that is widely used for debugging, software main-

tenan
e, optimization, program analysis and information �ow 
ontrol. Program sli
ing

refers to the 
lass of te
hniques that delete parts of a given program while preserving


ertain desired behaviours. The desired behaviors are spe
i�ed using what is 
alled as the

'sli
ing 
riterion'. A

ording to the original de�nition of sli
ing given by Weiser [103℄, a

sli
e of a program P with respe
t to a statement x and variable v is the set of state-

ments of P whi
h a�e
t the value of v at statement x for all possible inputs. The

main appli
ations of sli
ing in
lude software testing [15, 30, 32, 33, 38℄, program de-

bugging [58, 102℄, measurement [14, 69�71℄, validation [50℄, program parallelization [103℄,

program integration [37℄, reverse engineering and program 
omprehension [1, 13℄, program

restru
turing [18, 22, 43, 51, 94℄, program spe
ialization [79℄ and identi�
ation of reusable

fun
tions [10, 19, 54℄.

The de�nition of what 
onstitutes a sli
e has been modi�ed in multiple ways depend-

ing on the appli
ation. We 
onsider one su
h version of sli
ing where the sli
ing 
riterion

identi�es parts of the �nal output of the program and the goal is to produ
e only those

parts of the program whi
h a�e
t the parts of the output identi�ed by the sli
ing 
riterion.

Program spe
ialization, parallelization, dead 
ode analysis and 
ohesion measurement are

examples of su
h appli
ations. In this 
hapter, we formulate the sli
ing problem as a

dependen
e analysis problem and use the analysis de�ned in Chapter 3.2 to solve it. As

an interesting 
onsequen
e of our formulation, we were able to 
ome up with a novel and
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e�
ient way of sli
ing 
alled In
remental sli
ing to sli
e the same program multiple times

with di�erent 
riteria. The soundness of our sli
ing algorithm follows dire
tly from the

soundness of dependen
e analysis. We prove the 
orre
tness of in
remental sli
ing with

respe
t to the non-in
remental sli
ing method.

5.1 Program sli
ing using dependen
e analysis

The example from [79℄ shown in Figure 5.1a motivates the need for program sli
ing. It

takes a string as input and returns a pair 
onsisting of the number of 
hara
ters and

lines in the string. Figure 5.1b shows the program when it is sli
ed with respe
t to the

�rst 
omponent of the output pair, namely the number of lines in the string (l
). All

referen
es to the 
ount of 
hara
ters (

) and the expressions responsible for 
omputing



 only have been sli
ed away (denoted �). The same program 
an also be sli
ed to

produ
e only the 
har 
ount and the resulting program is shown in Figure 5.1
. �

Formally, Weiser [103℄ de�nes sli
ing 
riterion as a pair 〈p, V 〉, where p is a program

point and V is a subset of program variables. A program sli
e on the sli
ing 
riterion 〈p, V 〉

is a subset of program statements that preserves the behavior of the original program at

the program point p with respe
t to the program variables in V, i.e., the values of the

variables in V at program point p are the same in both the original program and the

sli
e. Similarly, we de�ne sli
ing 
riterion for a fun
tional program P as the pair 〈e, σ〉,

where e represents a parti
ular expression in the program P and σ represents the parts of

the value of e that is of interest. The goal of sli
ing is to identify the set of expressions

belonging to P whi
h may a�e
t the parts identi�ed by σ. In general, the question we

want to answer is: Given a sli
ing 
riterion 〈e, σ〉, whi
h other expressions ei ∈ P de
ide

σ part of the value of e?

Noti
e the similarity between the sli
ing problem and the problem of 
omputing

dependen
es in fun
tional programs. Indeed, given a sli
ing 
riterion 〈e, σ〉, an expression

ei de
ides the value of σ part of the value of e only if σ part of e depends on ei. We

view the sli
ing 
riterion (a set of strings over (0 + 1)∗) as a demand on the expression

(main), using this we 
ompute the demand on ea
h expression in the program. Unlike

liveness analysis where the demand is always (0 + 1)∗, the sli
ing 
riterion 
an be any

subset of (0+1)∗ and is supplied by a 
ontext that is external to the program. To de
ide
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(define (lcc str l
 

)

(if (null? str)

(return (cons l
 

))

(if (eq? (car str) nl)

(return (lcc (cdr str) (+ l
 1) (+ 

 1)))

(return (lcc (cdr str) π1:l
 π2:(+ 

 1))))))

(define (main)

(return (lcc . . . 0 0))))

(main)

(a) Program to 
ompute the number of lines and 
hara
ters in a string.

(define (lcc str l
 �)

(if (null? str)

(return (cons l
 �))

(if (eq? (car str) nl)

(return (lcc (cdr str) (+ l
 1) �))

(return (lcc (cdr str) π1:l
 π2:�)))))

(define (main)

(return (lcc . . . 0 �))))

(main)

(b) Sli
e of program in (a) to 
ompute the number of lines only

(define (lcc str � 

)

(if (null? str)

(return (cons � 

))

(if (eq? (car str) nl)

(return (lcc (cdr str) � (+ 

 1)))

(return (lcc (cdr str) π1:� π2:(+ 

 1))))))

(define (main)

(return (lcc . . . � 0))))

(main)

(
) Sli
e of program in (a) to 
ompute the number of 
hara
ters only.

Figure 5.1: A program in S
heme-like language and its sli
es. The parts that are sli
ed

away are denoted by �.
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1. (define (mmp xs p nv np xv xp)

2. (if (null? xs)

3. (return (cons (cons nv np) (cons xv xp)))

4. (let p1← (+ π : p 1) in

5. (if (< (car xs) nv)

6. (mmp (cdr xs) p1 (car xs) p xv xp))

7. (if (> (car xs) xv)

8. (mmp (cdr xs) p1 nv np (car xs) p)

9. (mmp (cdr xs) p1 nv np xv xp)))))

10. (define (main)

11. (return (mmp (cdr xs) 2 (car xs) 1 (car xs) 1)))

12. (main)

Figure 5.2: A program to 
ompute the min and max elements in a list along with their

positions.

whether to sli
e a parti
ular expression ei, we only need to know whether the part of the

program output identi�ed by the sli
ing 
riterion is dependent on ei or not. Spe
i�
ally,

if the demand on the expression ei turns out to be ∅, the expression does not 
ontribute

to the parts identi�ed by the sli
ing 
riterion and 
an be removed from the sli
e. We now

formally de�ne the sli
ing problem and show that it is unde
idable.

De�nition 5.1 The sli
ing problem is to �nd an algorithm A su
h that given a program

P , a demand δ, and a 
ontrol point π will answer yes if there exists a DGS tra
e of P in

whi
h π o

urs with a non-null demand, and no otherwise.

Theorem 5.2 The sli
ing problem as stated in 5.1 is unde
idable.

Proof. To prove this, it is enough to prove that the problem of whether for an arbitrary

grammar G ∈ CG′
(des
ribed in Se
tion 2.4.1) the language L (G) = ∅ is unde
idable.

Assume to the 
ontrary that we have a null-
he
ker that 
an de
ide whether L (G)

is empty or not. We show that this implies that the ǫ-re
ognition problem of G also

be
omes de
idable, thereby resulting in a 
ontradi
tion. If the null-
he
ker for L (G) says

yes, then it is 
lear that ǫ /∈ L (G). Otherwise 
onsider a string α ∈ L (G). Clearly,
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S
∗
⇒ α and we 
an assume without loss of generality that in this derivation S-produ
tions

appear before any other 
ategory of produ
tions. Thus, the derivation must go through

a sentential form 
ontaining Sc
final for the �rst time, say LαlS

c
finalαrR. In the segment of

the derivation from LSinitwR to LαlS
c
finalαrR 
onsider any produ
tion. This produ
tion

will 
orrespond to a valid TM move. Thus the TM will rea
h a halting state. However,

by Lemma 2.7, it follows that, starting from S, there is an (possibly) alternate derivation

S
∗
⇒ ǫ. Thus, either L (G) = ∅ or ǫ ∈ L (G). So, if the null-
he
ker returns no, we 
an


on
lude that ǫ ∈ L (G). This gives an algorithm for de
iding the ǫ-membership of G, a


ontradi
tion. Hen
e the emptiness question of G is unde
idable. �

It turns out that similar to the ǫ-membership question, the emptiness question also

be
omes de
idable if the grammar is regular. Therefore we model our sli
ing problem as a

dependen
e analysis problem. Modelling the sli
ing problem as an instan
e of dependen
e

analysis in Chapter 2 provides several advantages: i) the previously introdu
ed notion of

a

ess paths (set of pre�x-
losed strings of sele
tors) is ri
h enough to de�ne interesting

and meaningful sli
ing 
riteria, ii) the sli
ing method shares the advantages of 
omputing


ontext independent summaries for user-de�ned fun
tions that 
an be used to analyze

fun
tion 
all without analyzing the fun
tion body multiple times, and most importantly,

iii) fun
tion summaries allow us to de�ne a very e�
ient, in
remental way of sli
ing a

program multiple times with di�erent 
riteria. The in
remental sli
ing algorithm will be

dis
ussed in Se
tion 5.2.

5.1.1 Sli
ing algorithm

For the rest of the dis
ussion, we 
onsider the program in Figure 5.2 as our running

example. The program takes a list of integers as input and 
omputes the minimum and

maximum values along with their positions in the input list. The fun
tion mmp keeps

tra
k of the 
urrent minimum and maximum value using the arguments xv and nv. It


ompares every element with xv and if the 
urrent element is greater, it updates xv to be

the 
urrent element and pro
esses the rest of the list. p whi
h keeps tra
k of the position

of the 
urrent element is used to update xp. The minimum value and its position are also


omputed similarly.

We 
an extra
t di�erent sli
es from the example program by spe
ifying di�erent
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Fun
tion 
omputeSli
e(P , σ)

Data: program P , sli
ing 
riteria σ

Result: Sli
e of P for the sli
ing 
riterion σ

S ← P

DE ← Compute demand environment for P with demand on main as σ

forea
h (grammar Gπ ∈ DE)do

Mπ ← Over-approximate Gπ using Mohri-Nederhof transformation

M ′
π = S(Mπ)

Mark as �nal ea
h state in M ′
π whi
h has a path to a �nal state in M ′

π

forea
h (π :e ∈ S)do

if (L (M ′
π) = ∅):

Repla
e π :e with �

return S

Algorithm 8: Fun
tion to 
ompute sli
e of a program using dependen
e analysis.

sli
ing 
riterion. For example, we might be interested in only the maximum value and

its position in the list, or we might be interested in only the maximum and minimum

values without needing their positions. The demand {ǫ, 1, 10, 01} sele
ts the part of

the output whi
h 
orresponds to the maximum value and its position and similarly, the

demand {ǫ, 0, 1, 10, 00} sele
ts only the maximum and minimum values. We 
ompute

the demand environment for the example program with the given sli
ing 
riterion σ as

the demand on (main). The question whether the expression at π 
an be sli
ed for the

sli
ing 
riterion σ is equivalent to asking whether the language S(L (Dπ)) is empty.

Algorithm 8 des
ribes our sli
ing algorithm. It takes a program P and sli
ing 
riterion

σ as input. It 
omputes the demand environment for P using σ as the demand on (main)

of P. We use Mohri-Nederhof transformation to over-approximate any 
ontext-free gram-

mars by strongly regular grammars. The strongly-regular grammars are then 
onverted

to a set of non-deterministi
 �nite automata (NFA) and the simpli�
ation operation S()

is performed on these NFA. Post simpli�
ation, we ensure that the language generated is

pre�x-
losed by setting all states that are in a path from the start node to a �nal node

as �nal (in
luding the start state). Finally, the required sli
e is 
omputed by 
he
king

if the language generated by the grammar 
orresponding to an expression is empty and

removing the expression from the sli
e if language is empty. We now use our running
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example to explain our sli
ing algorithm. We show the working of our sli
ing algorithm

for the sli
ing 
riteria {ǫ, 1, 10, 01} and {ǫ, 0, 1, 10, 00}. Spe
i�
ally, we 
onsider the o
-


urren
e of the variable p identi�ed by the program point π at line 4 and 
he
k whether

it 
an be sli
ed or not for the given sli
ing 
riterion. Consider DS
2
mmp, the fun
tion that

propagates the demand on a 
all to mmp to its se
ond argument. Firstly noti
e that,

a

ording to the rules of if and let, the demand σ is propagated without 
hange to the

three 
alls at lines 6, 8 and 9. Further, p appears as the fourth argument to the 
all to

mmp at line 6 and the sixth in the 
all to mmp at line 8. Clearly the demands on these

two o

urren
es of p are DS
4
mmp(σ) and DS

6
mmp(σ). Also noti
e that the demands of the

three o

urren
es of p1 at lines 6, 8 and 9 are the same, namely DS
2
mmp(σ). And sin
e p

is being used to de�ne p at line 4, by the let rule, the demand on this o

urren
e of p is:

if (DS
2
mmp(σ)) 6= ∅ then {ǫ} else ∅

Bringing everything together, we get:

DS
2
mmp(σ) = DS

4
mmp(σ) ∪ DS

6
mmp(σ) ∪

if (DS
2
mmp(σ)) 6= ∅ then {ǫ} else ∅

We have to bring this equation to a 
losed-form by substituting the values of DS
4
mmp(σ)

and DS
6
mmp(σ) and eliminating the re
ursion in DS

2
mmp(σ).

The equations shown below de�ne DS
2
mmp(σ). Noti
e that the earlier equation for

DS
2
mmp(σ) has been rewritten in terms of the symbols 0̄, 1̄ and ∅ǫ.

DS
2
mmp(σ) = DS

6
mmp(σ) ∪DS

4
mmp(σ) ∪ ∅ǫDS

2
mmp(σ)

DS
4
mmp(σ) = 1̄0̄σ ∪DS

4
mmp(σ)

DS
6
mmp(σ) = 1̄1̄σ ∪DS

6
mmp(σ)

Assuming the 
on
rete demand on the body of mmp to be σmmp, it is easy to see

that this demand propagates without 
hange to the three 
alls in the body of mmp. The


all in main has a demand that is the same as the sli
ing 
riterion σsc. Thus we get:

σmmp = σmmp ∪ σsc

Whi
h gives the value of σmmp as σsc. When the body of mmp is analyzed with the

demand σmmp, the demand on p1 is DS2
mmpσmmp. Thus, by the let rule, the demand on

p at π, denoted Dπ, is ∅ǫDS
2
mmpσmmp.
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Figure 5.3: The simpli�
ation of the automaton Mσ
π : (a), (b) and (
) show the sim-

pli�
ation for the sli
ing 
riterion σ = {ǫ, 0, 01, 00}, while (d), (e) and (f) show the

simpli�
ation for the 
riterion σ = {ǫ, 1, 0, 10, 00}.

The equations 
an now be re-written as: grammar rules:

Dπ → ∅ǫ
DS2

mmpσmmp

DS2
mmp → DS4

mmp | DS
6
mmp | ∅ǫ

DS2
mmp

DS4
mmp → 1̄0̄ | DS

4
mmp

DS6
mmp → 1̄1̄ | DS

6
mmp

σmmp → σsc

Similar to liveness, we are interested in the least solution of equations as it 
orre-

sponds to the most pre
ise sli
e. For our running example, the grammar after dependen
e

analysis is already regular, and thus remains un
hanged by Mohri-Nederhof transforma-

tion. The automata in Figure 5.3a�
 and 5.3d�f 
orrespond to the two sli
ing 
riteria

σmmp = {ǫ, 0, 00, 01} and σmmp = {ǫ, 0, 00, 1, 10} and illustrate the simpli�
ation of


orresponding Mohri-Nederhof automata M
σmmp

π . It 
an be seen that, when the sli
ing


riterion is {ǫ, 0, 00, 1, 10}, the language of Dπ is empty and hen
e the argument p 
an

be sli
ed away, giving us the required sli
e.
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In our formulation, any expression whi
h gets a demand ∅ for a given sli
ing 
riterion

is 
onsidered dead 
ode and 
an be removed from the program. As a 
onsequen
e of this,

the dead 
ode elimination 
ompiler optimization be
omes a spe
ial 
ase where the sli
ing


riterion is set to (0+ 1)∗.

The 
orre
tness of our stati
 sli
ing algorithm follows from the 
orre
tness of our

dependen
e analysis. For a given sli
ing 
riterion σ, our sli
ing algorithm repla
es ex-

pressions with � only when the stati
ally 
omputed demand on it is ∅. This implies

that no DGS tra
e of the program with demand on main as σ will evaluate the removed

expression.

Lemma 5.3 The stati
 sli
ing algorithm des
ribed in Algorithm 8 is sound.

5.2 In
remental Sli
ing

Appli
ations su
h as program spe
ialization, 
ohesion measurement and parallelization

require the same program to be sli
ed with more than one sli
ing 
riterion. These ap-

pli
ations 
an bene�t from an in
remental stati
 sli
ing method in whi
h some of the


omputations for sli
ing with respe
t to one 
riterion 
ould be reused for another.

In this se
tion, we 
onsider the problem of in
remental sli
ing for �rst order fun
tional

programs. The in
remental algorithm avoids the repetition of 
omputation when the same

program is sli
ed with di�erent 
riteria. This is done by a one time pre
omputation that


omputes that part of the sli
e whi
h is 
ommon to all sli
ing 
riteria. The result is then


onverted to a set of automata, one for ea
h expression in the program. This 
ompletes

the pre
omputation step. To de
ide whether an expression is in the sli
e for a given sli
ing


riterion, we 
onvert the sli
ing 
riterion to a NFA and 
he
k if the interse
tion of this

NFA with the pre
omputed automaton is ∅. If the result is ∅, the expression 
an be sli
ed

out.

The reason for the e�
ien
y of our in
remental method is that most of the e�orts

in sli
ing 
an be fa
tored out in a one time pre
omputation step (per program) whi
h


omputes, for ea
h expression, all sli
ing 
riteria that keep an expression in the sli
e

and store it as an NFAs. Even more interesting, we 
an 
ompute all the sli
ing 
riteria

that keep an expression in the sli
e by performing a dependen
e analysis on the program

with σmain = ǫ. The NFAs whi
h result from the dependen
e analysis are 
onverted
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into a 
anoni
al form whi
h we will shortly dis
uss. The purpose of this 
onversion is

to ensure that the language generated by the NFAs have (0̄ + 1̄)s only towards the end

of the string. Now, given su
h an NFA, we 
an 
onstru
t a 
orresponding NFA, 
alled


ompleting automaton, whi
h exa
tly 
aptures strings that would 
an
el out the bar-edges

in the original NFA. The 
ompleting automata 
an be stored and sli
ing with a spe
i�



riterion is a small additional 
omputation over the result of this pre
omputation step.

5.2.1 Motivating example

We will use the example in Figure 5.4 to motivate the need for an in
remental sli
ing

algorithm. Re
all that the program takes a list of integers as input and 
omputes the

minimum and maximum values along with their positions in the input list. The fun
tion

mmp keeps tra
k of the 
urrent minimum and maximum value using the arguments xv

and nv. The original program 
an be spe
ialized to 
ompute only the min and max values

in the list (Figure 5.4b) by sli
ing the program with the sli
ing 
riterion {ǫ, 0, 1, 00, 10}.

Similarly, by using the sli
ing 
riterion {ǫ, 0, 00, 01}, we get a program whi
h 
omputes

the minimum value and its position (Figure 5.4
). If we were to use the sli
ing algorithm

des
ribed in Algorithm 8, the pro
ess of 
omputing automata, simpli�
ation of automata

has to be repeated. The goal of our in
remental algorithm is to avoid the dupli
ation of

this e�ort.

The key observation driving our in
remental sli
ing algorithm is the fa
t that the

we treat the sli
ing 
riterion to be pre�x-
losed. Therefore, a 
ertain kind of 
ontainment

relation exists between the sli
es of a program. We say that a sli
e P 
ontains Q, if

all the expressions in Q are also present in P. For example, the sli
e 
orresponding to

the 
riterion {ǫ, 0} should 
ontain the sli
e 
orresponding to the 
riterion {ǫ}. Sin
e {ǫ}


riterion is the smallest non-trivial sli
ing 
riterion that 
an be used, an expression that

is sli
ed away in the ǫ-sli
e 
annot be part of a sli
e 
omputed using any other sli
ing


riterion. We use this observation to perform a pre
omputation step to sli
e the original

program with ǫ sli
ing 
riterion. The result of this sli
ing is then pro
essed to bring it to

a 
ertain 
anoni
al form and stored. Given a sli
ing 
riterion the stored results are used

to 
ompute the sli
e 
orresponding to the given sli
ing 
riterion.

We now des
ribe the a
tual steps of our pre
omputation in detail:

1. Use the non-in
remental sli
ing method with sli
ing 
riterion {ǫ} to 
ompute the de-
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(define (mmp xs p nv np xv xp)

(if (null? xs)

(return (cons (cons nv np) (cons xv xp)))

(let p1← (+ π : p 1) in

(if (< (car xs) nv)

(mmp (cdr xs) p1 (car xs) p xv xp))

(if (> (car xs) xv)

(mmp (cdr xs) p1 nv np (car xs) p)

(mmp (cdr xs) p1 nv np xv xp)))))

(define (main)

(return (mmp (cdr xs) 2 (car xs) 1 (car xs) 1)))

(main)

(a) Program to 
ompute the min and max values in the list

(define (mmp xs � nv � xv �)

(if (null? xs)

(return (cons (cons nv �) (cons xv �)))

(let p1← � in

(if (< (car xs) nv)

(mmp (cdr xs) � (car xs) � xv �))

(if (> (car xs) xv)

(mmp (cdr xs) � nv � (car xs) �)

(mmp (cdr xs) � nv � xv �)))))

(define (main)

(return (mmp (cdr xs) � (car xs) � (car xs) �)))

(main)

(b) Sli
e of program in (a) to 
ompute only the min and max value

(define (mmp xs p nv np xv �)

(if (null? xs)

(return (cons (cons nv np) (cons xv �)))

(let p1← (+ p 1) in

(if (< (car xs) nv)

(mmp (cdr xs) p1 (car xs) p xv �))

(if (> (car xs) xv)

(mmp (cdr xs) p1 nv np (car xs) �)

(mmp (cdr xs) p1 nv np xv �)))))

(define (main)

(return (mmp (cdr xs) 2 (car xs) 1 (car xs) �)))

(main)

(
) Sli
e of program in (a) to 
ompute the min value and its position.

Figure 5.4: A program in S
heme-like language and its sli
es. The parts that are sli
ed

away are denoted by �.

mand at ea
h expression π: e

2. Apply the Mohri-Nederhof pro
edure to 
onstru
t the 
orresponding automaton M
{ǫ}
π

3. A step 
alled 
anoni
alization whi
h applies the simpli�
ation rules onM
{ǫ}
π , but stops

107



q0 q1
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Figure 5.5: (a) The 
anoni
al automaton Aπ and (b) the 
orresponding 
ompleting au-

tomaton Aπ

when the symbols 0̄ and 1̄ of every a

epting string of the resulting automaton are

only at the end

4. From the 
anoni
al automaton, 
onstru
ting an automaton 
alled the 
ompleting au-

tomaton, the output of the pre
omputation step

Sin
e the �rst two steps have already been des
ribed in Chapter 3, we des
ribe only the

next two steps in detail.

5.2.2 Canoni
alization

The simpli�
ation step de�ned in Se
tion 3.2 redu
es all strings whi
h 
ontains un-erased

bar-edge symbols to null strings. The 
anoni
alization step instead retains all strings that

either have no 0̄ and 1̄ symbols or have 0̄ and 1̄ symbols only at the end. All bar-edge free

strings 
orrespond to expressions whi
h will be present in the ǫ-sli
e and as a 
onsequen
e

in every non-trivial sli
e. Strings that have 0̄ and 1̄ symbols only at the end 
orrespond

to expressions whi
h 
ould potentially be part of a sli
e, given the right sli
ing 
riterion.

We now give a set of rules, denoted by C, that 
aptures 
anoni
alization.
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C({ǫ}) = {ǫ} C(0σ) = 0C(σ)

C(1σ) = 1C(σ) C(∅ǫσ) = ∅ǫC(σ)

C(0̄σ) = {0̄ | C(σ) is {ǫ}} ∪ {α | 0α ∈ C(σ)}

∪ {0̄1̄α | 1̄α ∈ C(σ)} ∪ {0̄0̄α | 0̄α ∈ C(σ)}

C(1̄σ) = {1̄ | C(σ) is {ǫ}} ∪ {α | 1α ∈ C(σ)}

∪ {1̄1̄α | 1̄α ∈ C(σ)} ∪ {1̄0̄α | 0̄α ∈ C(σ)}

C(σ1 ∪ σ2) = C(σ1) ∪ C(σ2)

C di�ers from S in that it a

umulates 
ontinuous run of 0̄ and 1̄ at the end of a

string. Noti
e that C, like S, simpli�es its input string from the right. Here is an example

of C simpli�
ation:

{0∅ǫ01̄1̄10̄}
C
→ 0C({∅ǫ01̄1̄10̄})

C
→ 0∅ǫC({01̄1̄10̄})

C
→ 0∅ǫ0C({1̄1̄10̄})

C
→ 0∅ǫ01̄C({1̄10̄})

C
→ 0∅ǫ01̄1̄C({10̄})

C
→ 0∅ǫ01̄1̄1C({0̄})

C
→ 0∅ǫ01̄1̄10̄C({ǫ})

C
→ 0∅ǫ01̄1̄10̄{ǫ}

C
→ 0∅ǫ01̄1̄1{0̄}

C
→ 0∅ǫ01̄1̄{10̄}

C
→ 0∅ǫ01̄{0̄}

C
→ 0∅ǫ0{1̄0̄}

C
→ 0∅ǫ{01̄0̄}

C
→ 0{∅ǫ01̄0̄}

C
→ {0∅ǫ01̄0̄}

In 
ontrast the simpli�
ation of the same string using S gives:

{0∅ǫ01̄1̄10̄}
S
→ 0S({∅ǫ01̄1̄10̄})

S
→ 0∅ǫS({01̄1̄10̄})

S
→ 0∅ǫ0S({1̄1̄10̄})

S
→ 0∅ǫ01̄S({1̄10̄})

S
→ 0∅ǫ01̄1̄S({10̄})

S
→ 0∅ǫ01̄1̄1S({0̄})

S
→ 0∅ǫ01̄1̄10̄S({ǫ})

S
→ 0∅ǫ01̄1̄10̄∅

S
→ 0∅ǫ01̄1̄1∅

S
→ 0∅ǫ01̄1̄∅

S
→ 0∅ǫ01̄∅

S
→ 0∅ǫ0∅

S
→ 0∅ǫ∅

S
→ 0∅

S
→ ∅

C satis�es two important properties:

1. The result of C always has the form (0+1+∅ǫ)
∗(0̄+ 1̄)∗. Further, if σ ⊆ (0+1+∅ǫ)

∗
,

then C(σ) = σ.

2. S subsumes C, i.e., S(C(σ1)C(σ2)) = S(σ1σ2).

Note that while we have de�ned 
anoni
alization over a language, the a
tual 
anon-

i
alization takes pla
e over an automaton�spe
i�
ally the automaton Mπ obtained after

Mohri-Nederhof transformation. The pro
ess of 
anoni
alization over an automaton is a

minor variation of the simpli�
ation pro
ess [44℄. Spe
i�
ally,

109



1. Adja
ent 0̄0 and 1̄1 edges are repla
ed by an ǫ edge and the resulting automaton is

made deterministi
, until there are no more su
h edges

2. Edges with labels 0̄ or 1̄ are retained only if their targets have a path rea
hing some

�nal node, and the labels on this path 
onsist only of 0̄ or 1̄ symbols.

It is in the se
ond step that the 
anoni
alization di�ers from simpli�
ation. For the

example program, the 
anoni
al automaton for π is shown in Figure 5.5a. Noti
e that all

the strings in the language of M
{ǫ}
π will have the form ∅ǫ∅ǫ

∗
1̄1̄ or ∅ǫ∅ǫ

∗
1̄0̄. The 1̄ and 0̄

symbols are all towards the end of the string in both 
ases. On
e all the automata have

been 
onverted into the 
anoni
al form, the next step is to 
onvert ea
h one of them into

a 
ompleting automaton.

5.2.3 Completing automata generation

The 
ompleting automata generation step takes an automaton 
orresponding to expression

e in 
anoni
al form, and 
omputes an automaton whi
h a

epts all possible sli
ing 
riterion

strings that keeps e in sli
e. For the motivating example 5.4, the automaton M
{ǫ}
π for the

sli
ing 
riterion {ǫ} is shown in Figure 5.5a. In this automaton, ea
h a

epting string has

0̄ and 1̄ symbols only at the end. Thus the automaton is 
anoni
al, and we shall denote

it as Aπ. It is 
lear that if Aπ is 
on
atenated with a sli
ing 
riterion that starts with the

symbol 01, the result, after simpli�
ation, will be non-empty, and the expression at π will

be retained in the sli
e. We 
all su
h a string a 
ompleting string for Aπ. Dete
ting the


ompleting string be
ame easy be
ause the 
anoni
alization step pushed all the 0̄ and 1̄

symbols towards the �nal state in the 
anoni
al automaton. Similarly, the string 11 is

also a 
ompleting string for the same automaton.

Algorithm 9 des
ribes the pro
ess for 
onverting an automaton in 
anoni
al form to

a 
ompleting automaton. The fun
tion 
reateCompletingAutomaton takes Aπ, the


anoni
al Mohri-Nederhof automaton for the sli
ing 
riterion {ǫ}, as input, and 
onstru
ts

the 
ompleting automaton, denoted as Aπ. Re
olle
t that the strings re
ognized by Aπ

are of the form (0+ 1+ ∅ǫ)
∗(0̄+ 1̄)∗. Call the set of states rea
hable from the start state

using only edges with labels {0, 1,∅ǫ} as the frontier set. The 
ompleting automaton

is a 
opy of 
anoni
al automaton with edges labeled by 0̄ and 1̄ symbols reversed, and

the symbols themselves repla
ed by 0 and 1 respe
tively. All edges with labels {0, 1,∅ǫ}

are dropped. Further, all states in the frontier set are marked as �nal states, and a new
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Fun
tion 
reateCompletingAutomaton(A)

Data: The Canoni
alized Automaton A = 〈Q, {0,1, 0̄, 1̄,∅ǫ}, δ, q0, F 〉

Result: A, the 
ompleting automaton for A

F ′ ← {qfr | qfr ∈ Q, hasBarFreeTransition(q0, qfr, δ)}

/* Reverse the �bar� transitions: dire
tions as well as labels */

forea
h (transition δ(q, 0̄)→ q′)do

add transition δ′(q′,0)→ q

forea
h (transition δ(q, 1̄)→ q′)do

add transition δ′(q′,1)→ q

q′s ← new state /* start state of A */

forea
h (state q ∈ F )do

add transition δ′(q′s, ǫ)→ q

return 〈Q ∪ {q′s}, {0,1}, δ
′ , q′s, F

′〉

Fun
tion inSli
e(e, σ)
Data: expression e, sli
ing 
riteria σ

Result: De
ides whether e should be retained in sli
e

return (L (Ae) ∩ σ 6= ∅)

Algorithm 9: Fun
tion to 
reate the 
ompleting automaton and the sli
ing fun
-

tion.

start node is added with transitions to the states 
orresponding to the �nal states of


anoni
al automaton. For the example program, the frontier set 
orresponding to M
{ǫ}
π is

{q0, q1} sin
e these are the only states rea
hable from the start state using only edges with

{0, 1,∅ǫ} labels. The 
ompleting automaton for π is the automaton in Figure 5.5b. After

dropping edges with {0, 1,∅ǫ} symbols there is no path from the new state to the state


orresponding to q0. Sin
e, state 
orresponding to q1 is also �nal state, the 
ompleting

automaton will have a non-null language.

Noti
e that for the 
anoni
al automata in Figure 5.5a, any string whi
h has the

pre�x (01 + 11) is a valid 
ompleting string. Therefore, the automaton 
orresponding

to the regular expression{(01 + 11)(0 + 1)∗} re
ognizes all 
ompleting strings for Aπ

and nothing else. Thus for an arbitrary sli
ing 
riterion σ, it su�
es to interse
t σ with

this automaton to de
ide whether the expression at π will be in the sli
e. In fa
t, it is

enough for the 
ompleting automaton to re
ognize just the language {(01+ 11)} instead

of {(01 + 11)(0 + 1)∗}. The reason is that any sli
ing 
riterion, say σ, is pre�x 
losed,
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and therefore σ ∩ {(01 + 11)} is empty if and only if σ ∩ {(01 + 11)(0 + 1)∗} is empty.

For our running example, the automaton in Figure 5.5b, gives the 
ompleting automaton

that re
ognizes the language (01+ 11).

The in
remental sli
ing algorithm uses the fa
t that a 
ompleting automaton a

epts

all sli
ing 
riterion strings that prevents the 
orresponding expression from being sli
ed.

Whenever a sli
ing 
riterion is presented, we 
onstru
t an automaton representing the


riterion, whi
h is then interse
ted with the 
ompleting automaton of every expression

in the program. If the interse
tion turns out to be non-null, then the sli
ing 
riterion


ontains at least one string whi
h would prevent the expression from being sli
ed. This

fa
t is used to de
ide whether an expression 
an be sli
ed out or not. For the example

program, we 
an see that the 
ompleting automaton 
orresponding to the program point

π has a non-null interse
tion with the 
riterion {ǫ, 0, 00, 01} and hen
e it is retained in the

sli
e, whereas it has a null interse
tion with {ǫ, 0, 1, 00, 10} allowing the 
orresponding

expression to be sli
ed out. This mat
hes our intuition that if neither the position of

the minimum element nor the maximum element is required then the expression tra
king

the 
urrent position 
an be sli
ed out. We formally prove the 
orre
tness of in
remental

sli
ing in the next se
tion.

5.3 Corre
tness of in
remental sli
ing

We now show that the in
remental algorithm to 
ompute in
remental sli
es is 
orre
t.

Re
all that we use the following notations:

1. Gσ
π is the grammar generated by dependen
e analysis (Figure 3.1) for an expression

π: e in the program of interest, when the sli
ing 
riteria is σ

2. Aπ is the automaton 
orresponding to G
{ǫ}
π after Mohri-Nederhof transformation and


anoni
alization

3. Aπ is the 
ompleting automaton for e

We �rst show that the result of the dependen
e analysis for an arbitrary sli
ing 
riterion

σ 
an be de
omposed as the 
on
atenation of the grammar obtained from the dependen
e

analysis with the �xed sli
ing 
riterion {ǫ} and σ itself.

Lemma 5.4 For all expressions e and sli
ing 
riteria σ, L (Gσ
π) = L (G

{ǫ}
π ) σ.
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Proof. The proof is by indu
tion on the stru
ture of e. Observe that all the rules of the

dependen
e analysis (Figure 3.1) add symbols only as pre�xes to the in
oming demand.

Hen
e, the sli
ing 
riteria will always appear as a su�x of any string that is produ
ed by

the grammar. Thus, any grammar L (Gσ
π) 
an be de
omposed as σ′ σ for some language

σ′
. Substituting {ǫ} for σ, we get G

{ǫ}
π = σ′

. Thus L (Gσ
π) = L (G

{ǫ}
π ) σ. �

Given a string s over (0̄+ 1̄)∗, we use the notation s to stand for the reverse of s in whi
h

all o

urren
es of 0̄ are repla
ed by 0 and 1̄ repla
ed by 1. Clearly, S({ss}) = {ǫ}.

We next prove the 
ompleteness and minimality of Aπ.

Lemma 5.5 {s | S(L (M
{s}
π )) 6= ∅} = L (Aπ) (0+ 1)∗

Proof. We �rst prove LHS ⊆ RHS. Let the string s ∈ S(L (M
{s}
π )). Then by

Lemma 5.4, s ∈ S(L (M
{ǫ}
π ) {s}). By Property 2, this also means that s ∈ S(C(L (M

{ǫ}
π )) {s}).

Sin
e strings in C(L (M
{ǫ}
π )) are of the form (0 + 1 + ∅ǫ)

∗(0̄ + 1̄))∗ (Property 1), this

means that there is a string p1 p2 su
h that p1 ∈ (0 + 1 + ∅ǫ)
∗
and p2 ∈ (0̄ + 1̄)∗,

and S({p2}{s}) ⊆ (0 + 1)∗. Thus s 
an be split into two strings s1 and s2, su
h that

S({p2} {s1}) = {ǫ}. Therefore s1 = p2. From the 
onstru
tion of Aπ we have p2 ∈ L (Aπ)

and s2 ∈ (0+ 1)∗. Thus, s ∈ L (Aπ) (0+ 1)∗.

Conversely, for the proof of RHS ⊆ LHS, we assume that a string s ∈ L (Aπ) (0+ 1)∗.

From the 
onstru
tion of Aπ we have strings p1, p2, s
′
su
h that p1p2 ∈ C(L (M ǫ

π)),

p1 ∈ (0 + 1 + ∅ǫ)
∗
, p2 ∈ (0̄ + 1̄)∗, s is p2s

′
and s′ ∈ (0 + 1)∗. Thus, S(L (M

{s}
π )) =

S(L (M
{ǫ}
π {s})) = S(C(L (M

{ǫ}
π )){s} ) = S({p1 p2 p2 s

′}) = {p1s
′}. Thus, S(L (M

{s}
π ))

is non-empty and s ∈ LHS. �

We now prove our main result: Our sli
ing algorithm represented by inSli
e (Algo-

rithm 9) returns true if and only if S(L (Aǫ
π) σ) is non-empty.

Theorem 5.6 The in
remental sli
ing algorithm is sound i.e.

S(L (Mσ
π )) 6= ∅ ↔ inSli
e(e, σ)

Proof. We �rst prove the forward impli
ation. Let s ∈ S(L (Mσ
π )). From Lemma 5.4,

s ∈ S(L (M ǫ
π) σ). From Property 2, s ∈ S(C(L (M ǫ

π)) σ). Thus, there are strings p1, p2

su
h that p1 ∈ C(L (M ǫ
π)), p2 ∈ σ, s = S({p1p2}). Further p1 in turn 
an be de
omposed

as p3p4 su
h that p3 ∈ (0+1+∅ǫ)
∗
and p4 ∈ (0̄+ 1̄)∗. We also have S({p4p2}) ⊆ (0+1)∗.

Thus p4 is a pre�x of p2.
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From the 
onstru
tion of Aπ, we know p4 ∈ L (Aπ). Further, p4 is a pre�x of p2 and

p2 ∈ σ, from the pre�x 
losed property of σ we have p4 ∈ σ. This implies Aπ ∩ σ 6= ∅ and

thus inSli
e(e, σ) returns true.

Conversely, if inSli
e(e, σ) is true, then ∃s : s ∈ L (Aπ) ∩ σ. In parti
ular, s ∈

L (Aπ). Thus, from Lemma 5.5 we have S(L (M
{s}
π )) 6= ∅. Further, sin
e s ∈ σ we have

S(L (Mσ
π )) 6= ∅. �
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5.4 Experiments and results

In this se
tion, we present the results obtained from our implementation of the sli
ing

algorithm des
ribed. Sin
e sli
ing time and a

ura
y (number of expressions sli
ed) are

not reported for other sli
ing methods, we implemented both an in
remental sli
er and

a non-in
remental sli
er and 
ompared the two. The non-in
remental sli
ing part was

implemented as part of a BTP [86℄. The non-in
remental version does not 
onstru
t


ompleting automatons and hen
e needs to simplify automatons at ea
h program point

for every sli
ing 
riteria. Our experiments show that the in
remental sli
ing algorithm

is e�
ient when the overhead of 
reating the 
ompleting automata is amortized over the


omputation of a number of sli
es with di�erent 
riteria.

For ea
h sli
ing 
riteria, we 
ompare the times for in
remental step and 
omputed

non-in
remental sli
ing. The results in Table 5.1 show that for all ben
hmarks the time

required to 
ompute the 
ompleting automatons is less than twi
e the time for sli
ing

non-in
rementally. The results 
on�rm our hypothesis that in
remental sli
ing is orders

of magnitude faster than non-in
remental sli
ing.

5.5 Stati
 sli
ing of higher-order programs

We now des
ribe a method using whi
h our dependen
e analysis 
an be extended to

handle higher-order programs. We a
hieve this by �rst 
onverting the input higher-order

program to its equivalent �rst-order program by a pro
ess 
alled �rsti�
ation [60℄. During

the �rsti�
ation pro
ess we maintain a mapping between the original program and the

�rsti�ed program. We perform dependen
e analysis on the �rsti�ed program and obtain

the results. Using the mapping generated during the �rsti�
ation pro
ess, we transfer the

demands generated on the �rsti�ed program to the original program. We des
ribe this

method with an example for extending our stati
 sli
ing algorithm to handle higher-order

programs.

We now des
ribe, using an example, how our method 
an be extended to handle

sli
ing of higher order programs. While this is work in progress, our des
ription will make

it 
lear that the extension is implementable. Our example for this se
tion will be the

program in Figure 5.6a. It 
ontains a higher order fun
tion hof whi
h takes a fun
tion f

and a se
ond argument lst and applies f to lst. The fun
tion main 
reates a list lst1
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(define (hof f lst) (return π:(f lst)))

(define (foldr f id lst)

(if(null? lst)) (return id)

(return (f (car lst) (foldr f id (cdr lst)))))

(define (fun x y) (return (+ y 1)))

(define (main)

(let lst1 ← (cons a (cons b nil)) in

(let g ← (foldr fun 0) in

(return (cons (hof car lst1) (hof g lst1)))))

(main)

(a) A program with higher order fun
tions.

(define (hof_g l) (return πf :(foldr_fun 0 l)))

(define (hof_car lst) (return πc:(car lst)))

(define (foldr_fun id lst)

(if(null? lst)) (return id)

(return (fun (car lst) (foldr_fun id (cdr lst)))))

(define (fun x y) (return (+ y 1)))

(define (main)

(let lst1 ← (cons a (cons b nil)) in

(let g ← (foldr_fun 0) in

(return (cons (hof_car lst1) (hof_g lst1))))))

(main)

(b) Program after spe
ialization.

(define (hof f lst) (return π:(f lst)))

(define (main)

(let lst1 ← (cons a �) in

(let g ← �) in

(return (cons (hof car lst1) �))))

(main)

(
) Sli
e of program in (a) with sli
ing 
riterion {ǫ,0}.

Figure 5.6: An example higher order program
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and a fun
tion value through a partial appli
ation and binds it to g. It makes two 
alls

to hof . The �rst 
all to hof uses car and lst1 as arguments and the se
ond 
all uses

the built-in fun
tion even and (g lst1) as arguments. Finally, main returns a cons 
ell


reated from the result of these 
alls.

We �rst dis
uss how demands are propagated from a 
all to its arguments in the


ase of a higher-order fun
tion. Observe that in Figure 5.6a the demands on the se
ond

argument to hof depends not only on the demand on hof but also on the fun
tion being

passed as an argument to hof . To handle this, we spe
ialize hof using the fun
tion

argument in a manner similar to [60℄. We 
reate two spe
ialized versions hof_car and

hof_g 
orresponding to the two 
alls. The spe
ialized program for our example is shown

in Figure 5.6b.

We 
an now �nd out the demands on ea
h expression of the spe
ialized program

using our dependen
e analysis. Moreover, the separation of the two 
alls to hof through

spe
ialization adds pre
ision to the analysis. In the spe
ialized program, the demands on

the arguments lst1 and (g lst1) now 
ome separately from hof_car and hof_g and

are not merged.

The body of hof , on the other hand, gets its demand from both the spe
ialized


alls. Hen
e, we maintain a mapping from ea
h higher order fun
tion to all its �rst order

variants. On
e the demands for all the �rst order fun
tions are 
omputed, this mapping is

used to 
ompute the demands for the body of the higher order fun
tion. In the example,

we maintain the mapping π 7→ {πc, πf}. The demand on π is given by the union of the

demands on πc and πf .

Even after spe
ialization, partial appli
ations, su
h as (foldr_fun 0), may remain

in the residual program. Whenever a fun
tional value is 
reated via partial appli
a-

tion it needs to maintain information about the �rst order base fun
tion using whi
h

the fun
tional value gets 
reated. As an example, to 
ompute the demand on lst1 in

the spe
ialized program, it is ne
essary to know that foldr_fun is the base for g and

lst1 is the se
ond argument to foldr_fun. The demand on the e�e
tive �rst order 
all

(foldr_fun 0 lst1) is obtained from the demand on (g lst1).

The a
tual pro
ess of sli
ing remains same. At ea
h program point in the higher order

fun
tion we store the 
ompleting automaton and whenever a sli
ing 
riterion is applied we

just 
he
k for the interse
tion. For our example, given a sli
ing 
riterion {ǫ, 0}, the sli
ed
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program is shown in Figure 5.6
. The spe
ialization enables 
omputation of 
ontext-

independent-summaries, even in the presen
e of higher order fun
tions. As a result, the

cdr part of lst1 gets sli
ed away.

5.5.1 Limitations

Note that our simple �rsti�er requires us to stati
ally �nd all bindings of a fun
tional

parameter. This is not possible if we allow fun
tions to be returned as results or store

fun
tions in data-stru
tures. As an example we 
an 
onsider a fun
tion f , that, depending

on a 
al
ulated value n, returns a fun
tion g iterated n times (i.e. g ◦ g ◦ n times. . . ◦ g). A

higher-order fun
tion re
eiving this value as a parameter 
annot be spe
ialized using

the te
hniques des
ribed, for example, in [60℄. A similar situation 
an show if we allow

fun
tions in lists.

5.6 Related work

Most of the e�orts in sli
ing have been for imperative programs. The surveys [16, 92, 97℄

give good overviews of the variants of the sli
ing problem and their solution te
hniques.

In the 
ontext of imperative programs, a sli
ing 
riterion is a pair 
onsisting of a program

point, and a set of variables. The sli
ing problem is to determine those parts of the

program that de
ide the values of the variables at the program point [103℄. A natural

solution to the sli
ing problem is through the use of data and 
ontrol dependen
es between

statements. Thus the program to be sli
ed is transformed into a graph 
alled the program

dependen
e graph (PDG) [39, 72℄, in whi
h nodes represent individual statements and

edges represent dependen
es between them. The sli
e 
onsists of the nodes in the PDG

that are rea
hable through a ba
kward traversal starting from the node representing the

sli
ing 
riterion. Horwitz, Reps and Binkley [39℄ extend PDGs to handle interpro
edural

sli
ing. They show that a naive extension 
ould lead to impre
ision in the 
omputed

sli
e due to the in
orre
t tra
king of the 
alling 
ontext. Their solution is to 
onstru
t a


ontext-independent summary of ea
h fun
tion through a linkage grammar, and then use

this summary to pro
ess fun
tion 
alls. The resulting graph is 
alled a system dependen
e

graph (SDG). Our method generalizes SDGs to additionally keep tra
k of the 
onstru
tion

of algebrai
 data types (cons), sele
tion of 
omponents of data types (car and cdr) and
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their intera
tions (the cons-car and cons-cdr 
an
ellations), whi
h may span a
ross

fun
tion boundaries.

Silva, Tamarit and Tomás [93℄ adapt SDGs for fun
tional languages, in parti
ular

Erlang. The adaptation is straightforward ex
ept that they handle dependen
es that

arise out of pattern mat
hing. Be
ause of the use of SDGs, they 
an manage 
alling


ontexts pre
isely. However, as pointed out by the authors themselves, when given the

Erlang program: {main() -> x = {1,2}, {y,z} = x, y}, their method produ
es the im-

pre
ise sli
e {main() -> x = {1,2}, {y,�} = x, y} when sli
ed on the variable y.

Noti
e that the sli
e retains the 
onstant 2, and this is be
ause of inadequate han-

dling of the intera
tion between cons and cdr. For the equivalent program (let x←

(cons 1 2) in (let y ← (car x) in y)) with the sli
ing 
riterion ǫ, our method would


orre
tly 
ompute the demand on the 
onstant 2 as 1̄(ǫ∪0). This simpli�es to the demand

∅, and 2 would thus not be in the sli
e. Another issue is that while the paper mentions

the need to handle higher order fun
tions, it does not provide details regarding how this

is a
tually done. This would have been interesting, given that the language 
onsidered

allows lambda expressions.

The sli
ing te
hnique that is 
losest to ours is due to Reps and Turnidge [79℄. They

use proje
tion fun
tions, represented as tree grammars, as sli
ing 
riteria. Given a pro-

gram P and a proje
tion fun
tion ψ, their goal is to produ
e a program whi
h behaves

like ψ ◦ P. Their analysis 
onsists of propagating the proje
tion fun
tion ba
kwards to

all subexpressions of the program. After propagation, any expression with the proje
-

tion fun
tion ⊥ (
orresponding to our ∅ demand), is sli
ed out of the program. Liu and

Stoller [57℄ use a similar method for dead 
ode analysis and elimination. As shown earlier,

our sli
ing algorithm subsumes dead 
ode elimination.

These te
hniques di�er from ours in two respe
ts. These methods, unlike ours, do

not derive 
ontext-independent summaries of fun
tions. This results in a loss of infor-

mation due to merging of 
ontexts and a�e
ts the pre
ision of the sli
e. As mentioned

earlier, the 
omputation of fun
tion summaries using symboli
 demands enables the in-


remental version of our sli
ing method. Consider, as an example, the program fragment

π: (cons π1: x π2: y) representing the body of a fun
tion. Dependen
e analysis with the

symboli
 demand σ gives the demand environment {π 7→ σ, π1 7→ 0̄σ, π2 7→ 1̄σ}. Noti
e

that the demands π1 and π2 are in terms of the symbols 0̄ and 1̄. This is a result of
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our de
ision to work with symboli
 demands. If we now sli
e with the default 
riterion

ǫ and then 
anoni
alize (instead of simplify), we are left with the demand environment

{π 7→ ǫ, π1 7→ 0̄, π2 7→ 1̄}. There is enough information in the demand environment to

dedu
e that π1 (π2) will be in the sli
e only if the sli
ing 
riterion in
ludes 0(1). Sin
e

the methods in [79℄ and [57℄ deal with demands in their 
on
rete forms, it is di�
ult to

see the in
remental version being replayed with their methods.

There are other less related approa
hes to sli
ing. A graph based approa
h has

also been used by Rodrigues and Barbosa [80℄ for 
omponent identi�
ation in Haskell

programs. Given the intended use, the nodes of the graph represents 
oarser stru
tures

su
h as modules, fun
tions and data type de�nitions, and the edges represents relations

su
h as 
ontainment (e.g. a module 
ontaining a fun
tion de�nition). On a 
ompletely

di�erent note, Rodrigues and Barbosa [81℄ use program 
al
ulation in the Bird-Meerteens

formalism for obtaining a sli
e. Given a program P and a proje
tion fun
tion ψ, they


al
ulate a program whi
h is equivalent to ψ ◦P. However the method is not automated.

Finally, dynami
 sli
ing te
hniques have been explored for fun
tional programs by Perera

et al. [73℄, O
hoa et al. [67℄ and Biswas [17℄.

121



122



Chapter 6

Con
lusions and future work

In this thesis we have de�ned a dependen
e analysis that is 
ontext-sensitive and takes into

a

ount stru
ture transmitted data dependen
es, i.e. dependen
es arising from sele
tor-


onstru
tor 
an
ellation rules. We provide a formal de�nition of dependen
e analysis

using an operational semanti
s 
alled Demand Guided Semanti
s (DGS). In addition

to the normal exe
ution state transitions, DGS also spe
i�es how demand on (main)

propagates to 
onstituent sub-expressions of the program. While this has been proved

by Reps [78℄ in a di�erent setting, we independently prove that 
omputing fully pre
ise

dependen
e information as formulated in this thesis is unde
idable. Reps shows that


ontext-sensitivity and stru
ture transmitted dependen
e 
an be modelled as 
ontext-free

grammars individually. Modelling both at the same time is equivalent to �nding out

whether the interse
tion of two CFGs is empty, whi
h is known to be unde
idable.

Based on our formulation of dependen
e analysis, we 
ome up with an algorithm

that 
omputes an over-approximation of dependen
es. We believe our analysis to be

more pre
ise than [79℄, whi
h is not 
ontext-sensitive, and [93℄ whi
h is 
ontext-sensitive

but does not pre
isely model 
onstru
tor-sele
tor 
an
ellation. The analysis de�ned in

this thesis is more pre
ise be
ause instead of sa
ri�
ing either 
ontext-sensitivity or pre
ise

modelling of stru
ture transmitted data dependen
e, we over approximate the 
ontext-

sensitivity by a regular grammar instead of a CFG. Sin
e the emptiness question for an

interse
tion of regular grammar and a CFG is known to be de
idable [64℄ our analysis


aptures 
ontext-sensitivity pre
isely when the grammar is already regular and only over

approximates if it is a CFG. We show that the approximate dependen
e analysis is sound

with respe
t to DGS.
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We show the usefulness of dependen
e analysis in two appli
ations, namely, liveness-

based garbage 
olle
tion in lazy languages and stati
 program sli
ing. While liveness-

based garbage 
olle
tion has been shown to be e�e
tive in eager languages [12℄, this is

the �rst attempt to handle lazy languages. Sin
e it is di�
ult to determine exa
tly when

an expression will be evaluated in a lazy language, de
iding when to de
lare a variable

dead be
omes di�
ult. This is further aggravated by the fa
t that lazy 
onstru
tors 
arry

referen
es to free variables in 
losures (whi
h we 
all 
losure variables) outside the s
ope in

whi
h the variables were de
lared. This for
es the following design de
isions with respe
t

to liveness analysis, 1) We introdu
e the notion of 
losure variables and treat them as

�rst-
lass 
itizens from the perspe
tive of garbage 
olle
tion by extending the root set

(variables on the program sta
k) to in
lude 
losure variables and 2) We 
arry liveness of


losure variables as part of the 
losure. The design of the garbage 
olle
tor also be
omes

more 
omplex as the 
olle
tor has to deal with unevaluated expressions (
losures) along

with data values. We have proved the 
orre
tness of the liveness-based garbage 
olle
tion

s
heme for a lazy language.

We model sli
ing as a dependen
e analysis problem by viewing the sli
ing 
riterion

(a set of strings over (0 + 1)∗) as a demand on the main expression (main) and use it

to 
ompute the demand on ea
h expression in the program. Any expression whi
h gets

a ∅ demand 
an then be sli
ed away. Sin
e appli
ations su
h as program spe
ialization

and parallelization require the same program to be sli
ed with more than one sli
ing


riteria. We propose an e�
ient way of sli
ing 
alled in
remental sli
ing. The in
remental

algorithm avoids repeated 
omputations of dependen
es by a one time pre
omputation

that 
omputes for every expression all sli
ing 
riteria that keep the expression in the

sli
e. The interesting fa
t is that su
h a set 
an be e�
iently 
omputed and is related to

our de
ision of 
omputing fun
tion summaries in terms of symboli
 demands. Sin
e the

same program is sli
ed multiple times, the 
ost of the pre
omputation step gets amortized

whenever the program is sli
ed with a di�erent 
riterion.

6.1 Future work

The work presented in this thesis 
an be extended in multiple ways. In the formulation of

dependen
e analysis problem proposed in Chapter 2, the designated expression on whi
h
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∅

ǫ

1 0

1∗

(0+ 1)∗

Figure 6.1: Latti
e of demands

the user pla
es the external demand is always (main). However, one may relax this

restri
tion and an arbitrary expression ê 
an be 
hosen as the designated expression on

whi
h the user pla
es the demand σ̂. This is very similar to the way the problem is posed

for imperative languages. To handle this situation, we introdu
e the following rules that

determine the demand on the body of ea
h fun
tion in the program.

1. The demand on the main expression (main) is ∅.

2. The demand on a fun
tion body ef is the union of demand over all 
alls to f . As a


onsequen
e, the demand on emain is also ∅.

3. The demand propagation on the designated expression is 
arried out using D̂ instead of

D. These fun
tions "inje
t" a demand of σ̂ over the demand that rea
hes the designated

expression. Formally:

D̂(ŝ, σ,DS) = D(ŝ, σ ∪ σ̂,DS)

Noti
e that our earlier formulation is a spe
ial 
ase of the rules above when the

designated expression is (main).

6.1.1 Liveness-based garbage 
olle
tion

Although liveness-based garbage 
olle
tion is e�
ient in 
olle
ting more garbage per 
ol-

le
tion than rea
hability-based 
olle
tors, the total time spent in doing garbage 
olle
tion

for liveness-based 
olle
tors does not 
ompare favourably with rea
hability-based 
olle
-

tors. As mentioned in Se
tion 4.4.3 and [12℄, this is mainly due to liveness-based 
olle
tors
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(define (append x y)

(if (eq? x nil)

(return y)

(let a ← (cdr x) in

(let b ← (append a y) in

(let u ← (car x) in

(let w ← (cons u b) in

(return w))))))

(append x y) x y

∅ ∅ ∅

ǫ ǫ ǫ

0 0 0

1 1∗ 1

1∗ 1∗ 1∗

(0+ 1)∗ (0+ 1)∗ (0+ 1)∗

Figure 6.2: Fun
tion append and its fun
tion-summary table.

traversing the same memory lo
ations multiple times where a rea
hability-based 
olle
tor

would do a single traversal. For liveness-based garbage 
olle
tion s
heme to be
ome main-

stream, the e�
ien
y of the analysis and the garbage 
olle
tor itself have to be improved.

Another drawba
k of liveness-based 
olle
tors is the extra memory required for storing

liveness automata. We dis
uss some ideas to mitigate these drawba
ks.

Improve performan
e of liveness-based garbage 
olle
tor

Our experiments with liveness-based garbage 
olle
tion suggest that most programs do

not require the kind of pre
ise liveness generated by our analysis. Su�
ient gains 
an

be made over a rea
hability-based 
olle
tor even when we restri
t our liveness values to

a small set of liveness values. We borrow ideas from stri
tness analysis and restri
t the

possible liveness values to a �nite set of patterns. By sa
ri�
ing some pre
ision, both the

analysis and the pro
ess of garbage 
olle
tion itself 
an be made faster. Figure 6.1 shows

the latti
e of allowed liveness values in our analysis. The input and output values 
an

only be one among the values represented in the latti
e. While we des
ribe our method

for a lazy �rst-order language, the same is appli
able to eager languages.

Consider the example shown in Figure 6.2, we show how to 
ompute the demand

transformer for the fun
tion append with the restri
ted set of demands. Sin
e we are

dealing with a �nite set of demands only, 
omputing 
ontext-independent summaries

be
omes simpler. We take ea
h demand in the �nite set and use it as a 
on
rete demand

on the fun
tion body and do a �xed-point 
omputation to obtain the demand transformer.

The �xed-point 
omputation 
an be done as shown by the example in Figure 6.3. Assume

that we need to 
ompute the demand transformer DS
1
append, we �rst assume that the
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Iteration # Assumed value for DS
1
append ∅ǫσ ∪ 1DS

1
append(1̄σ) ∪ 00̄σ

0

∅ 7→ ∅

ǫ 7→ ∅

0 7→ ∅

1 7→ ∅

1∗ 7→ ∅

(0+ 1)∗ 7→ ∅

∅ 7→ ∅

ǫ 7→ ǫ

0 7→ (0+ 1)∗

1 7→ ǫ

1∗ 7→ ǫ

(0+ 1)∗ 7→ (0+ 1)∗

1

∅ 7→ ∅

ǫ 7→ ǫ

0 7→ (0+ 1)∗

1 7→ ǫ

1∗ 7→ ǫ

(0+ 1)∗ 7→ (0+ 1)∗

∅ 7→ ∅

ǫ 7→ ǫ

0 7→ (0+ 1)∗

1 7→ 1∗

1∗ 7→ 1∗

(0+ 1)∗ 7→ (0+ 1)∗

2

∅ 7→ ∅

ǫ 7→ ǫ

0 7→ (0+ 1)∗

1 7→ 1∗

1∗ 7→ 1∗

(0+ 1)∗ 7→ (0+ 1)∗

∅ 7→ ∅

ǫ 7→ ǫ

0 7→ (0+ 1)∗

1 7→ 1∗

1∗ 7→ 1∗

(0+ 1)∗ 7→ (0+ 1)∗

Figure 6.3: Table showing the �xed-point 
omputation for 
omputing the demand trans-

former for x, the �rst argument of append. In ea
h iteration, the assumed value is

substituted in the equation in the third 
olumn to get the a
tual demand on x.

demand transformer takes any demand and returns ∅. Using this we 
ompute the demand

on x whi
h is given by the equation,

DS
1
append(σ) = ∅ǫσ ∪ 1DS

1
append(1̄σ) ∪ 00̄σ

Using the assumed fun
tion for DS
1
append in the RHS, we get our next approximation. For

example, for the demand 1∗
, we get DS

1
append(1

∗) = {ǫ}. We use the new set of mappings

to get the next approximation where again some values get updated. Considering the

same input demand 1∗
as before, the new mapping is DS

1
append(1

∗) = {ǫ} ∪ {1}. Sin
e,

this value is not part of the �nite liveness values being 
onsidered we repla
e it with a
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value in the latti
e whi
h 
ontains both {ǫ} and {1} i.e. 1∗
. Repeating the pro
ess on
e

more, we �nd that there are no more 
hanges in the mapping. We stop the iteration as

we have rea
hed a �xed-point. The mapping obtained at the end of the iteration is the

required demand transformer DS
1
append.

Working with a �nite set of liveness values avoids the simpli�
ation/erasure pro
ess

and thus improves the e�
ien
y of 
omputing liveness automata. Whenever we en
ounter

a fun
tion 
all with demand σ, we look-up the table 
orresponding to the fun
tion and use

the argument demands 
orresponding to σ. Another fa
tor whi
h makes liveness-based


olle
tion slow is the need for 
onsulting liveness automata at ea
h step during garbage


olle
tion. By using a �nite set of liveness values we 
an hard
ode the pro
essing for ea
h

liveness value in the garbage 
olle
tor. The garbage 
olle
tor 
an then just 
he
k the

liveness value asso
iated with the root variable and 
all the spe
ialized 
ode for handling

that liveness value. This not only saves time but also memory by avoiding the storing of

liveness automata 
ompletely. Liveness values now 
an be embedded inside the heap 
ell

itself as an enum.

Finally, sin
e the �xed set of values form a latti
e, whenever a heap 
ell has been

visited with a value whi
h 
ontains the in
oming value we 
an avoid traversing the heap

again. For example, if it is known that a referen
e has been traversed using the liveness

value (0+1)∗, then if the same root 
ell is being traversed with the value 1∗
the repeated

traversal 
an be avoided.

In 
ase of a lazy language we 
an further take advantage by redu
ing the extra

memory required for storing liveness automata referen
es for 
losure arguments. Ea
h


losure need only store an enumeration 
orresponding to the liveness value of ea
h of its

argument.

Extending demand propagation to higher order programs

Our 
urrent way of handling higher-order programs requires the program to be 
onverted

to a �rst-order program. This 
an be avoided if we have an analysis whi
h 
an handle

higher-order programs. By restri
ting the demands to a �nite set, we 
an extend our

analysis to handle higher-order programs.

In the 
ase of a higher-order fun
tion, the demand on the non-fun
tional argument


an depend on the fun
tional argument. The �rst step in determining the demand on
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(define (foldr f id lst)

(if(null? lst)) (return id)

(return (f (car lst)

(foldr f

id (cdr lst)))))

(a)

∅ → ∅
ǫ→ ∅

∅ → ∅
ǫ→ ǫ

∅ → ǫ
ǫ→ ǫ

(b)

Demand on 
all to foldr Demand on id Demand on lst

∅ ∅ ∅

{ǫ} {ǫ} 1∗

(
)

Figure 6.4: (a) De�nition of foldr (b) Potential demand transformers for the �rst ar-

gument of f when f is restri
ted to fun
tions that take integer arguments and return

an integer. (
) Fun
tion summary table 
orresponding to foldr when foldr is used to


ompute length of lst.

the non-fun
tional argument is to �nd out all potential demand transformers for the

higher-order argument and use them to 
reate a table.

Consider the higher-order fun
tion foldr in Figure 6.4(a). Restri
ting the argu-

ment f to fun
tions whi
h take integer values and return an integer we 
an generate the

summaries for fun
tions that 
ould be passed to foldr. Figure 6.4(b) lists the possible

fun
tion summaries for the �rst argument of f . Sin
e f takes two arguments, and the

se
ond argument also has similar potential transformers, 
onsidering all possible 
ombi-

nations we will have 9 potential fun
tion-summaries for f . On
e all the possible fun
tion

summaries have been generated, we generate the fun
tion summary for foldr 
onsidering

ea
h possible fun
tion summary for f . During analysis when a higher-order fun
tion 
all

is en
ountered, we 
an use the summary for the a
tual fun
tion being passed and 
ompute

the demands on the arguments of foldr. As an example, 
onsider the implementation of

length fun
tion using foldr, given as (foldr (a b (+ 1 b) 0 xs). The anonymous fun
tion

passed has demand-transformer whi
h maps both demands ∅ and {ǫ} to ∅ for its �rst

argument and the transformer for the se
ond argument maps ∅ to ∅ and {ǫ} to {ǫ}. The
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fun
tion summary table for foldr for this fun
tion is shown in Figure 6.4(
). Sin
e, the

passed fun
tion never uses its �rst argument, the demand on the elements of xs is always

∅. Thus, the demand transformer 
orresponding to xs transforms an {ǫ} demand on a


all to foldr into a 1∗
demand on xs.

Further, demand on the fun
tional argument has to be added to the demand-

summary of the a
tual fun
tion being passed. Demands on the expressions inside the

body of foldr are 
omputed as usual by 
onsidering the union of demands at all 
all

points. The major 
hallenge in using this method is to handle the huge number of poten-

tial demand transformers that needs to be 
onsidered for ea
h higher-order fun
tion.

Hybrid GC - (rea
hability and liveness)

Another way to improve the e�e
tiveness of garbage 
olle
tion is to have a hybrid garbage


olle
tor whi
h 
an invoke either rea
hability or liveness-based 
olle
tor. The intuition

behind this idea is that running a slow liveness-based 
olle
tion is justi�ed only if there

are su�
iently large number of rea
hable but dead 
ells. Therefore, we invoke a liveness-

based 
olle
tor on
e after every k invo
ations of a fast rea
hability-based 
olle
tor. Over

several runs of a rea
hability-based 
olle
tor su�
ient memory whi
h is rea
hable but

not live gets a

umulated and hen
e running a liveness-based 
olle
tor will give su�
ient

advantage. The 
ost of invoking a liveness-based 
olle
tor is thus amortized over several


alls of a rea
hability-based 
olle
tor. However, 
are has to be taken to ensure that after

a liveness-based 
olle
tion, any referen
es whi
h point to the dead part of the heap are


orre
tly nulli�ed.

k-Liveness GC

This is an extension of the idea due to Agesen [6℄ whi
h just tests for the liveness of root

variables in Java. Instead of 
he
king liveness of just the root variable, we use liveness

upto k levels. Beyond k levels everything that is rea
hable is 
opied. We 
an avoid

repeated traversals by maintaining an extra bit in ea
h heap 
ell whi
h 
an be set if it

was 
opied using rea
hability. During a traversal, if this bit is set the 
olle
tor need not

traverse the substru
ture. The only drawba
k in this approa
h is that even for 
ommon

fun
tions like length whi
h only traverses the spine of its argument, a k-liveness 
olle
tor


ould end up 
opying extra 
ells.
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(define (repeatN lst)

(if (eq? (cdr lst) 0)

()

(cons (car lst)

(repeatN (cons (car lst)

(- (cdr lst) 1))))))

(let x ← (cons 5 6) in

(let y ← (repeatN x) in

(cons (sum y)

(length y))))

Figure 6.5: Motivating example for forward demand propagation. If we take a forward

sli
e with respe
t to car part of x it 
an be seen that the expression (length y) 
an be

sli
ed.

6.1.2 Forward sli
ing using demand propagation

The dependen
e analysis de�ned in this thesis is a ba
kward analysis i.e. it takes a

demand on the result of an expression and 
omputes the demand on the arguments of

the expression. This allowed us to use the result of the analysis to solve problems su
h

as 
omputing liveness and ba
kward sli
ing. There are appli
ations whi
h 
an bene�t

from an analysis whi
h takes demands on the arguments of an expression and 
omputes

demands on the output of the expression i.e. a forward analysis. A forward version of

our dependen
e analysis would be a good extension. The example in Figure 6.5 shows

how forward analysis is useful. In the example, let us assume that we are interested in

knowing what parts of the �nal output might be a�e
ted when we modify the value of the

car part of x(5). We 
an take a forward sli
e of the program with respe
t to the car part

of x. The forward sli
e thus obtained will not 
ontain the cdr part of the �nal output.

This is intuitive, as the length of the list produ
ed by the fun
tion repeatN depends only

on the cdr part of x.
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