
Scaling a Web-Based Tutoring System
From Classrooms to MOOCs

A thesis submitted in fulfillment of the requirements

for the degree of Master of Technology

by

Akshay Jindal

(16111029)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

July 2018

https://cse.iitk.ac.in/users/akshayaj/
http://www.cse.iitk.ac.in/
http://www.iitk.ac.in

Abstract

Massive Open Online Courses (MOOCs) have had an immense role to play in the arena of

digital learning. Out of the various courses offered through the popular MOOC platforms,

the introductory programming courses have been found to be heavily favored. In such

courses, the enrollment reaches 5000-10000 students. Prutor is a tool developed at the

Indian Institute of Technology Kanpur for introductory programming courses. It enables

the instructors to conduct proctored lab exams and sessions at a classroom level, with

real-time feedback. Currently, it runs at a course level, supporting around 400 students

at a time. To work seamlessly in a MOOC environment, it should be able to handle an

incoming load of at least 5000 active users, which is what we have tried to achieve in this

thesis.

To achieve the scalability, we have analyzed each component in the technology stack of

Prutor, which from a developer’s perspective, is a cloud-based web application running

on Docker containers, with the help of standard benchmarking and profiling tools. The

analysis of logs generated by these components led us to tune some of the critical con-

figuration parameters from their default values to more appropriate ones. We have also

analyzed the database component of Prutor. Using standard tools, we have examined the

most frequently run queries for join computations, index usage, full table scans, on-the-fly

sorting, and creation of temporary tables. Following this analysis, we have experimented

with altered indexes and various optimization techniques such as index hints in the query

and materialized views. Prutor has two server components, namely Engine and WebApp.

We have removed the additional database abstraction layer without compromising with

the security in the engine component. This, in turn, has led to a drastic reduction in the

number of queries executed on the database server per operation. We have also reduced

the number of database hits in several APIs such as login, compile, execute and evaluate,

which consequently gave better average response times. Using all these, we have success-

fully reached a scale of 3000 users on WebApp and 1000 users on Engine and 1000 users

combined on an 8-core machine with Core i7 3.40 GHz processor.

Acknowledgements

I would like to extend my sincerest gratitude to my thesis supervisor Dr. Arnab Bhat-

tacharya for his unparalleled guidance and support. I am deeply grateful to Dr. Amey

Karkare for always being open to discussions. I am genuinely thankful to them for allowing

me to work at my own pace. I was new to this area, but still, they gave me full owner-

ship of such an important project, which is and will keep on being used by generations of

students of IIT Kanpur and other premier institutes in India. Their trust and patience

inspired me to pull things off. This project has given me a rock-solid foundation in the

area of Scalable Web Applications, which will surely help me in my career.

I would like to specially thank Mr. Adarsh Jagannatha for midnight CCD discussions,

Mr. Ravi Shankar Mula for numerous google hangouts and Mr. Saurabh Verma for his

code-walkthrough sessions on Prutor. Without their guidance, I would not have been able

to even start this project. I would also like to thank my Friends Abhishek and Manish for

reviewing my report. Thank you all for everything.

Last but not the least, without the unconditional support of my Family, I would not have

been able to enter this institute, so a big cheers to my folks. I would also like to thank my

Friends for standing by my side throughout my 2 years journey.

iv

Contents

Abstract iii

Acknowledgements iv

Contents v

List of Figures ix

List of Tables xii

1 Introduction 1

1.1 Problem Statement . 2

1.2 Motivation . 2

1.3 Contributions of the thesis . 2

1.4 Organization of the thesis . 3

2 Background, Tools and Related Work 5

2.1 Prutor . 5

2.1.1 HTTP Reverse Proxy . 6

2.1.2 Relational Database . 7

2.1.3 NoSQL Database . 7

2.1.4 In-Memory cache . 7

2.1.5 WebApp . 7

2.1.6 Engine . 7

2.2 Tools used . 8

2.2.1 Apache JMeter . 8

2.2.2 New Relic APM . 9

2.2.3 MySQL Workbench . 10

2.2.4 ps mem.py . 10

2.3 Related Work . 11

3 WebApp: Analysis and Benchmarking 12

3.1 Perspectives . 12

v

Contents vi

3.1.1 Student Activities in an Event . 13

3.2 Baselining Scalability of WebApp . 15

3.2.1 Distributed Setup . 15

3.2.2 Workload Specification . 17

3.2.3 Performance Metrics . 17

3.2.4 Results . 18

3.3 Performance Profiling . 19

3.3.1 Setup . 19

3.3.2 Profiling of each feature . 19

3.3.3 Analysis of the common bottlenecks 23

3.3.3.1 Memcached . 23

3.3.3.2 readFile . 28

3.3.4 Error Analytics . 28

3.3.4.1 HAProxy logs analysis . 31

3.4 Incremental Modifications . 32

3.4.1 Reaching 500 on 2 . 32

3.4.2 Reaching 1000 on 4 . 36

3.4.3 Reaching 2000 on 8 . 38

3.4.4 Reaching 3000 on 16 . 41

3.4.5 Comparative Results . 42

4 Database Analysis 43

4.1 Query Analysis . 43

4.1.1 Index Usage . 44

4.1.2 Queries doing Sorting . 48

4.1.3 Queries doing full table scans . 49

4.1.4 Queries Using Temporary Tables . 49

4.2 Usage of Materialized Views . 50

4.2.1 ongoingAssignments mv . 50

4.2.2 codebook mv . 51

4.3 Comparative Results . 52

4.4 Parameter Tuning . 52

4.4.1 innodb buffer pool size . 53

4.4.2 innodb buffer pool instances . 53

4.4.3 Escape from Swap . 54

4.4.4 Query Cache . 54

4.4.5 skip name resolve . 54

5 Engine: Analysis and Benchmarking 55

5.1 Event Workload . 55

5.2 Baselining Scalability of Engine . 56

5.2.1 Setup . 56

5.2.2 Workload Specification . 56

5.2.3 Performance Metrics . 56

Contents vii

5.2.4 Results . 57

5.3 Parameter Tuning . 57

5.3.1 Reaching 500 users . 58

5.3.2 Reaching 1000 users . 60

5.4 Other modifications . 61

5.4.1 ORM Removal . 61

5.4.1.1 Extra Queries . 62

5.4.1.2 Usage of PDO . 63

5.4.2 Removal of unncessary DB hits . 64

5.4.3 Removal of NoSQL hits . 65

5.5 Results . 66

5.5.1 Reduction in Queries . 66

5.5.2 Comparative Results . 67

6 End Result Peformance Comparison 69

6.1 Comparative Results of WebApp on 48 core machine 69

6.2 Comparative Results of Engine on 48 core machine 70

6.3 8 core i7 V/s 48 core xeon Comparison of WebApp 71

6.4 8 core i7 V/s 48 core xeon Comparison of Engine 73

6.5 Variation of WebApp Performance based on cores 75

6.6 Parameter Summary . 75

6.6.1 Engine on 8 core . 76

6.6.2 WebApp on 8 core . 76

6.6.3 Engine on 48 core . 77

6.6.4 WebApp on 48 core . 77

6.6.5 Combined on 8 core . 78

6.6.6 Combined on 48 core . 78

7 Conclusion and Future Work 79

7.1 Conclusion . 79

7.2 Future Work . 80

Bibliography . 84

Appendices 85

A Apache JMeter: Setup Instructions 86

A.1 Apache JMeter: Setup Guide . 86

A.1.1 Java Installation . 86

A.1.2 JMeter Installation . 86

A.1.2.1 Jargons of JMeter . 88

A.1.3 Step-By-Step Construction of a test plan 90

A.2 Distributed Load Testing using JMeter . 96

Contents viii

A.2.1 Distributed Test Setup:Step-by-Step 96

B MySQL-WorkBench: Setup Instructions 99

B.1 Build an Image of MySQL 5.7 . 99

B.2 Setting up MySQL-Workbench . 100

B.2.1 Enabling SSH on rdbupdated container 100

B.2.2 Installing mysql-workbench . 101

C New-Relic: Setup Instructions 102

C.1 New-Relic Servers for Linux . 102

C.2 Enable Monitoring for Docker . 103

C.3 Installing New-Relic Node.js agent . 103

D Instructions for Parameter Tuning 104

D.1 Tuning Engine Parameters . 104

D.2 Tuning WebApp Parameters . 105

D.3 Tuning HAProxy . 105

E Repository links 106

E.1 Prutor . 106

E.2 WebApp . 106

E.2.1 Steps to update Nodejs . 106

E.3 Engine . 106

E.3.1 Related to Sec. 5.4.3 . 107

E.4 Steps to Setup . 107

E.5 Link of all the important docs related to Thesis 107

E.6 All the JMeter Test Plans . 108

List of Figures

2.1 Prutor: Physical view . 6

2.2 Role of L7 Reverse Proxy(HAProxy) . 6

3.1 JMeter:Distributed Master-Slave Setup . 16

3.2 VUs v/s Error% for 2 webapps . 18

3.3 VUs v/s Error% for 4 webapps . 18

3.4 VUs v/s Error% for 8 webapps . 18

3.5 VUs v/s Error% for 16 webapps . 18

3.6 Comparison of Baseline Error% on different number of webapps 19

3.7 View Assignments:Slowest Components . 20

3.8 View Assignments:Breakdown Table . 20

3.9 View Assignments:Custom Tracer . 21

3.10 View Home Page:Breakdown Table . 21

3.11 View Home Page:Slowest Components . 22

3.12 User Login:Breakdown Table . 22

3.13 Save Code:Slowest Components . 23

3.14 Save Code:Breakdown Table . 23

3.15 Memcached:Storage & Retrieval of Sessions . 24

3.16 Memcache: Slowest Components . 25

3.17 Memcache:Detailed Trace . 26

3.18 Memcache: netstat . 27

3.19 Slow component: readFile . 28

3.20 Error Analytics:Classification . 29

3.21 Error Analytics: part 1 . 30

3.22 Error Analytics: part 2 . 30

3.23 HAproxy:503 . 31

3.24 HAproxy:sQ . 31

3.25 HAproxy:sD . 31

3.26 Average Response Times before Login Optimization 35

3.27 Average Response Times after Login Optimization 35

3.28 Time taken by Bcrypt . 36

3.29 MySQL:500 connections exhausted . 40

3.30 Comparison of before and after for 2 webapps 42

3.31 Comparison of before and after for 4 webapps 42

3.32 Comparison of before and after for 8 webapps 42

ix

List of Figures x

3.33 Comparison of before and after for 16 webapps 42

4.1 Explain:getOngoingEvents . 44

4.2 Explain:Get Questions in the Ongoing Event . 45

4.3 Explain:getCourseStatistics . 45

4.4 Explain:getScoreCard . 46

4.5 Explain:getCodebook . 46

4.6 Explain:getLastSavedCode . 47

4.7 Explain:getAssignmentProblem . 47

4.8 Explain:getAssignmentDetails . 48

4.9 Explain:isAllowed . 48

4.10 Queries doing Sorting . 48

4.11 Queries doing full table scan . 49

4.12 Queries using temporary tables . 49

4.13 MV:ongoingAssignments . 50

4.14 MV:Trigger for updating ongoingAssignment MV 51

4.15 MV:codebook . 51

5.1 Queries executed during single compilation request 62

5.2 Queries executed during single execution request 63

5.3 Queries executed during single evaluation request 63

5.4 Extra MySQL Query: Fetch assignment . 65

5.5 Extra MySQL Query: Fetch visible test cases 65

5.6 Extra MySQL Query: Fetch invisible testcases 65

5.7 Queries executed during compilation after our changes 66

5.8 Queries executed during execution after our changes 66

5.9 Queries executed during evaluation after our changes 66

5.10 Comparison of before and after for 10 Apache Workers 67

5.11 Comparison of before and after for 20 Apache Workers 67

5.12 Comparison of before and after for 4 engines . 67

5.13 Comparison of before and after for 8 engines . 67

5.14 Comparison of before and after for 16 engines 67

5.15 Comparison of engine before and after our code changes 68

6.1 Comparison of before and after for 1 Node Worker on 48 core machine 69

6.2 Comparison of before and after for 2 Node Workers on 48 core machine 69

6.3 Comparison of before and after for 4 Node Workers on 48 core machine 70

6.4 Comparison of before and after for 8 Node Workers on 48 core machine 70

6.5 Comparison of before and after for 16 Node Workers on 48 core machine 70

6.6 Comparison of before and after for 24 Node Workers on 48 core machine 70

6.7 Comparison of before and after for 10 Apache Worker on 48 core machine 70

6.8 Comparison of before and after for 20 Apache Workers on 48 core machine 70

6.9 Comparison of before and after for 40 Apache Workers on 48 core machine 71

6.10 Comparison of before and after for 80 Apache Workers on 48 core machine 71

6.11 Comparison of before and after for 160 Apache workers on 48 core machine 71

List of Figures xi

6.12 Comparison of Node workers on 8 core i7 and 48 core xeon 72

6.13 Comparison of WebApp Response Times on 8 core i7 and 48 core xeon 73

6.14 Comparison of Apache Workers on 8 core i7 and 48 core xeon 74

6.15 Comparison of Engine Response Times on 8 core i7 and 48 core xeon 74

6.16 Comparison of Engine Response Times on 8 core i7 and 48 core xeon 75

A.1 JMeter:Home Screen . 88

A.2 JMeter:Thread Group added . 89

A.3 JMeter:Final Test Plan . 90

A.4 JMeter:Thread Group properties . 92

A.5 JMeter:Login Request Added . 93

A.6 JMeter:Home Request Element . 94

A.7 JMeter:Save Code Request . 95

List of Tables

3.1 User Login . 13

3.2 View Home . 13

3.3 View Codebook . 14

3.4 Open assignment . 14

3.5 Manually save code . 14

3.6 Submit Code . 14

3.7 100 requests on 1 Node worker with no tuning 32

3.8 100 requests on 1 Node Worker with server maxconn tuned 33

3.9 100 users 1 Node Worker with Cache removed 34

3.10 200 users 2 workers on WebApp . 35

3.11 750 users 2 webapps server maxconn 500 . 37

3.12 750 users 2 workers server maxconn 1000 37

3.13 1000 users 4 Node workers . 38

3.14 1500 users on 4 workers . 38

3.15 1500 users on 4 workers server maxconn 1500 39

3.16 2000 users on 8 workers . 39

3.17 2000 users on 8 workers server maxconn 2000 40

3.18 2000 users on 8 Node workers . 41

3.19 3000 users on 16 Node workers . 41

4.1 1000 users results before DB changes . 52

4.2 1000 users results after DB changes . 52

5.1 HTTP Post Request for Compilation . 55

5.2 HTTP Post Request for Execution . 56

5.3 HTTP Post Request for Evaluation . 56

5.4 100 users on 10 Apache workers . 58

5.5 400 users on Engine with server maxconn 400 58

5.6 engine:400 users on Engine with contimeout 50000 59

5.7 engine:400 users on Engine with server maxconn 100 59

5.8 engine:500 users on 50 MaxRequestWorkers 60

5.9 500 users on 100 MaxRequestWorkers . 60

5.10 750 users on 200 MaxRequestWorkers . 60

5.11 1000 users on 250 MaxRequestWorkers . 61

6.1 Parameter values for Engine on 8 core machine 76

xii

List of Tables xiii

6.2 Parameter values for WebApp on 8 core machine 76

6.3 Parameter values for Engine on 48 core machine 77

6.4 Parameter values for WebApp on 48 core machine 77

6.5 Parameter values for Handling Combined Workload on 8 core machine . . . 78

6.6 Parameter values for Combined Workload on 48 core machine 78

Dedicated to my Family.

xiv

Chapter 1

Introduction

Programming courses on MOOCs have been found to be heavily favored. A decent course

on a popular MOOC can easily have an enrollment of 5000-10000 users. However promising

the content may be, the student participation decreases towards the end. It is because

there are no time-bounded lab sessions in these courses, where all the students have a sit

for a fixed time slot and solve some assignments. Prutor is one such software that was built

to conduct programming lab sessions for introductory programming course conducted at

IITK. If we aim to integrate it with existing MOOCs, it should be able to handle a load

of atleast 5000 active users.

This thesis is all about the scaling Prutor. Now in [1] it is mentioned that by horizontally

scaling more servers, they can serve approximately 400 users. We ran the test and found

that 8 servers were required to successfully handle the load. Now, the question arises, why

cannot we reach such a scale with fewer number of servers? What are the factors, that

are being the bottlenecks? Since, Prutor is an in-house developed tool at IIT Kanpur, we

assure no such study has been done which answers these questions.

So, in this thesis we first try to hunt the bottlenecks down by profiling [Sec. 3.3] the

application. Then we gradually explore the tools used in the technology stack of Prutor

and experiment with different values of their configuration parameters. In the process,

via benchmarking using standard tools [Sec. 2.2], we have tried to come up with appro-

priate values for those configuration parameters for different values of user load. We have

also experimented with various database optimization techniques. We also removed the

database abstraction layer which led to the reduction in the number of queries executed per

compilation request. In the end, we present some benchmarking results which compares

the performance of Prutor before our changes with the performance after our changes.

1

Chapter 1. Introduction 2

We have successfully reached 3000 users on webapp, 1000 users on engine and 1000 users

combined.

The next section formalizes our problem.

1.1 Problem Statement

To take Prutor from a university scale of 400 active users to a commercial scale of 5000

active users.

1.2 Motivation

[1] mentions that the main motivation behind Prutor’s development was to abstract out

the factors such as programming environments, language-specific build commands, from

the process of problem-solving. It addresses those issues head-on and solves them in a

very profound manner. It provides a web-based editor interface where a user can compile,

execute and evaluate his/her code. Apart from this, the system provides valuable feedback

to students based on their submissions, in real-time, but as of now all these facilities are

limited to students of a particular university in which it is deployed.

If we integrate a tool like this with the currently popular MOOCs such as coursera [2],

Edx [3] and Udacity [4], this will immensely increase the participation among students.

It will enable an instructor offering a programming course on these websites to conduct

time-bounded exams and labs. From a student’s perspective, proctored exams and labs

with real-time feedback will keep him/her more engaged.

So handling the load of a course on a MOOC means handling atleast 5000 active users.

The capability to just handle 400 active users leaves us very far behind our end goal. Thus

a lot needs to be done on the scalability aspect of Prutor. This thesis is the first of the

many forthcoming steps in that direction.

1.3 Contributions of the thesis

The foremost contribution of this thesis is a scaled up version of Prutor, which can now

handle 3000 users on WebApp (Chap. 3) and 1000 users on Engine (Chap. 5) and 1000

Chapter 1. Introduction 3

users combined. In addition to this, we have demonstrated how we can use standard tools

to benchmark Prutor, which had never been done before. The documentation for setup of

each tool has been included in the appendix.

We have uncovered what all goes under the hood, when the most frequently accessed APIs

of Prutor are hit. We examined these APIs at the query level and experimented with

various optimization techniques. We also provide the test plans which were instrumental

in the simulation of user behaviour.

We compare the results on 2 machines and show which one performs better. In the end we

provide a tabulated summary of the appropriate parameter values of various components

in Prutor’s technology stack. This summary can act as a guide to Prutor admins for tuning

these components before an event.

1.4 Organization of the thesis

This chapter gives a brief introduction to the scalability aspect of Prutor and describes

our motivation behind picking up this project. It concludes with listing our contributions.

In Chap. 2, we have talked about Prutor from a developer’s perspective and briefly

explained the tools that we have used for it’s benchmarking and analysis. It then concludes

with the description of the works that were in some sense related to our work.

In Chap. 3 we have described our complete analysis of the WebApp component of Prutor.

This chapter tells a story of how we reached 3000 users on WebApp. It also describes some

suitable minor code modifications that we did along the way.

Chap. 4 has been dedicated to the Database Analysis. In this chapter we have described

our API analysis on the query level. We have also covered tuning of some critical param-

eters of MySQL server.

Chap. 5 unfolds the story of how we reached 1000 users on Engine. It consists of 2 main

subsections. First is about the tuning of various Apache and Proxy parameters. The next

subsection describes how we removed the Database Abstraction layer from most heavily

used APIs.

In Chap. 6 we have graphically compared the performance of our modifications on 2

machines. It concludes after giving a tabulated summary of appropriate values of some

critical parameters of various components of Prutor’s technology stack.

Chapter 1. Introduction 4

Chap. 7 concludes our work and describes how our work can be taken forward. In the

end we have appendix, which contains the step-by-step installation instructions for various

tools that we used. It also contains the links to our version of the Prutor repository along

with the test plans that we built for benchmarking.

Chapter 2

Background, Tools and Related

Work

This chapter briefly describes all the components of Prutor. It then describes the tools

that have been used for benchmarking and analysis. It concludes with a related work

section which highlights some of the previous works where the same tools were used for

benchmarking different applications.

2.1 Prutor

Prutor, from the architectural point of view, is completely a dockerized [5] system, i.e.

each component of the system is being run inside docker-containers [6]. The further

subsections of this chapter will talk about the different components of Prutor. The system

primarily consists of 6 components. Each component has been briefly described in further

subsections.

5

Chapter 2. Background 6

Figure 2.1: Prutor: Physical view

2.1.1 HTTP Reverse Proxy

HAProxy [7] has been used as an L7 Load Balancer [8]. L7 Load Balancer can also be

called Reverse Proxy server. It is the first component which the user’s HTTP Requests

hit. As it works on layer 7, it filters these requests on the basis of the filtration logic

written in one of the configuration files of HAProxy.

In Prutor, filtering of HTTP Requests is done on the basis of URL, such that if URL of

an HTTP Request is of type /compile, /execute, /evaluate then it is passed to the Engine

(Sec. 2.1.6). HTTP Requests related to the remaining functionality are handled by the

WebApp (Sec. 2.1.5).

Figure 2.2: Role of L7 Reverse Proxy(HAProxy)

Chapter 2. Background 7

2.1.2 Relational Database

This component holds all the user data. The user data comprises of their account details,

assignments, code submissions, event records and feedbacks to their submitted codes.

MySQL [9] has been used for this purpose.

2.1.3 NoSQL Database

This component holds all the system data and environment settings for the plugins. Mon-

goDB [10] has been used for this purpose.

2.1.4 In-Memory cache

The in-memory cache component comprises of a server which holds all the data in-memory

in the form of key-value pairs. In Prutor, it mainly stores the user-sessions. It has also

been used to store the results to some of the database queries. Memcached [11] has been

used to fulfill this role.

2.1.5 WebApp

This is one of the major components of the whole system. It is the back-end server which

handles the major portion of HTTP Requests pertaining to the API services provided by

Prutor. All the major feature APIs are written on this server. Node.js with Express

[12] has been used for this role.

2.1.6 Engine

This component handles the compilation, execution and evaluation requests of the user.

It uses Apache to serve the requests. All the code on this component is written in php

[13]. For each compilation and execution request, it fetches the appropriate(programming

environment specific) parameters from MongoDB [10] component, compiles/executes/e-

valuates the code in a sandboxed [14] environment and saves the code and the response in

the appropriate tables in MySQL. The response is processed in a readable format and is

sent as HTTP response to the user.

Chapter 2. Background 8

2.2 Tools used

2.2.1 Apache JMeter

Apache JMeter is an open source software which is used for load testing of web applications,

databases and servers. It is used to simulate heavy traffic on application servers. For a

detailed tutorial on JMeter installation, please refer to the [appendix]. Here we will discuss

some of the key jargons that are used in a test plan.

• Test Plan - A Test Plan typically describes the steps that JMeter will execute

when run. It comprises of a huge number of elements. For a detailed view of

the configurations related to a test plan, please visit the Apache JMeter section in

Appendix.

• Thread Group - The thread group element controls the number of threads, JMeter

will generate during a run. The controls for a thread group allow you to:

– Set the number of users.

– Set the ramp-up period.

– Set the number of times to execute the test.

• Controllers - JMeter has 2 types of controllers:

– Samplers - Samplers tell JMeter to send requests to a server and wait for a

response. They are processed in the order they appear in the tree. Some of the

key JMeter samplers include:-

∗ HTTP Request

∗ JDBC Request

∗ FTP Request

Each Sampler has its own options and can be configured to suit user’s Require-

ments.

– Logic Controllers - Through Logic Controllers, Jmeter decide, the order and

number of times to send the request. The only Logic controller that I have used

is Only-Once controller.

∗ Only-Once controller: All the samplers under this controller are only

executed once by each thread. It is generally used with HTTP request for

login.

Chapter 2. Background 9

• Listeners - Listeners provide a tabular or graphical representation of the post-run

metrics calculated/collected by JMeter.

The step-by-step instructions have been documented in Chap. A.

2.2.2 New Relic APM

New Relic APM is a cloud-based performance monitoring software. It collects real-time

performance metrics from your server and presents them in a human readable format in the

user’s online dashboard. The task of collecting the performance metrics is done by a new

relic agent, which is installed on the server or application component, whose performance

is to be measured. There are various options in New Relic which really makes the task of

finding bottlenecks, little less painful. Some of those key features are:-

• It graphically shows the trend of application’s average response time, broken down

in intervals of half an hour.

• Color coding of application components in graphs of various performance metrics.

• End to End Profiling of a transaction.

• Ordered representation of transactions on the basis of response time and throughput.

• Database analytics.

• End to End tracing of an transactions.

• Provides APIs for recording custom metrics.

• Error analytics

– Classification of errors on the basis of error codes.

– Count of each classification.

– Mining in the error data and reports some common behaviours among certain

types requests.

The setup instructions have been documented in Chap. C.

Chapter 2. Background 10

2.2.3 MySQL Workbench

MySQL Workbench is a GUI tool which enables the developers to design, manage and

analyse their data in MySQL database. All the key features are available on the press of

one mouse click. Following is the list of some important features of MySQL workbench,

which make it a delight to use.

• Retrieval of metrics from the performance schema without the need to go into details.

– Divides the output of performance schema in various classes such as Memory

usage, I/O analysis, query analysis and schema analysis.

– Enables one-click retrieval of important metrics like unused indexes, queries

doing full table scans, queries doing on-the-fly sorting and expensive queries,

thereby eliminating the need to worry about the underlying schema and query

formulation.

– Eliminates the need of exploring other analysis tools.

• Makes Server administration very easy.

– Enables viewing Status variables.

– Enables tuning of System variables.

• Gives a real-time graphical view of the no. of client connections.

Steps to setup are given in Appendix.

The setup instructions can be found in Chap. B.

2.2.4 ps mem.py

A python based command line tool to measure RAM used by a process. It calculates

private RAM as well as the shared RAM used by a process. It also measures the swap

memory that is being used by a process. It has several hooks, which are listed when h is

given as a hook. Code of this tool can be found at [15].

Chapter 2. Background 11

2.3 Related Work

As Prutor is developed in-house, we assure that this kind of work has not been done before

for Prutor. However, there are some works which use the approach of benchmarking

and performance metrics evaluation in similar context but for other web applications.

Vinkal in his MTech Thesis [16] has shown the importance of tuning the appropriate

parameters of each component in the software technology stack of the application. His

work demonstrates how proper tuning of Apache server can make it handle 180% more

users with reasonable response time. Dhananjay in his work [17] has benchmarked and

compared the performance of an MMS application built on LAMP and MEAN stacks.

Vipin’s work [18] is about analysing the impact of various virtualisation platforms and

deployment architectures on the performance of a web application. In this work, the

performance assesment has been done via benchmarking with respect to the response time

at the client.

Banothu in his work [19] has benchmarked a RESTful web application written in Er-

lang and Node.js and compared the performance metrics in each case to figure out which

performs better. Amit [20] in his work has benchmarked 3 OMG DDS compliant middle-

wares and compared them on the basis of the performance metrics collected. There has

also been a study [21] about the effectiveness of APM tools like New Relic and Dynatrace

in detecting performance regressions for web applications.

Chapter 3

WebApp: Analysis and

Benchmarking

In Prutor, WebApp is the back-end server responsible for majority of the features like user

authentication, management of users, problems and events. It is the component which

provides the editor interface for programming. All the APIs on this server are written

using Express framework in Node.js runtime.

WebApp provides a plethora of features to a user. The accessibility of these features

depends on the role of a user. If a user is an admin, he/she can perform administrative

tasks like management of users, problems and events. On the contrary, if the user is a

student, he/she can only view their assignments and solve them. For benchmarking, we

have focussed only on those features which are heavily used in an event. To know about

events in Prutor, one should know about perspectives.

3.1 Perspectives

Prutor offers 3 perspectives to a student. They are:-

• Scratchpad - This perspective offers an arena, where you can try out your own idea.

There is no problem statement. There is no time bound. It just offers you an editor

to write code on and interfaces to compile, execute and save your code.

• Practice - This perspective offers an arena, where students can practice old problems.

It is same as scratchpad with the difference that here you will write corresponding

12

Chapter 3: WebApp 13

to previously asked problems. It offers same functionality as scratchpad with the

additional functionality of evaluation of code.

• Event - Event is the only perspective in Prutor, which has a time bound. An event

can be classified into 3 categories: lab, quiz and exam. The motivation behind

creating an event perspective is to simulate an environment which is similar to a

proctored examination. Each student in an event has to solve some assignments

within the time limit of the respective event. There submissions are then graded by

Teaching Assistants and the process carries on.

The key thing to note here is, Event is the only perspective where the system can get

overwhelmed with the amount of incoming user workload. So, if we benchmark our system

on the most frequently used features in an event, our job is done. User workload is nothing

but HTTP GET/POST requests. The next subsection has been dedicated to these HTTP

requests.

3.1.1 Student Activities in an Event

In this subsection, I have described the various activities that a student can do in an

event. The description highlights the type of HTTP requests involved in carrying out

these activities their URL and the parameters they take as input.

Use Case Login

HTTP Request URL /accounts/login

Request Type POST

Parameters
- username

- password

Table 3.1: User Login

Use Case View Home Page

HTTP Request Url /home

Type GET

Parameters None

Table 3.2: View Home

Chapter 3: WebApp 14

Use Case View Codebook

HTTP Request Url /codebook

Type GET

Parameters None

Table 3.3: View Codebook

Use Case Open assignment

HTTP Request Url /editor/<assignmentId>

Type GET

Parameters None

Table 3.4: Open assignment

Use Case Manually Save Code

HTTP Request URL /editor/save

Request Type POST

Parameters

- assignment id

- branch id

- trigger=manual

- code

Table 3.5: Manually save code

Use Case Submit Code

HTTP Request URL /editor/save

Request Type POST

Parameters

- assignment id

- branch id

- trigger=submit

- code

Table 3.6: Submit Code

Chapter 3: WebApp 15

3.2 Baselining Scalability of WebApp

Before we go any deeper with the analysis, it is important to know the baseline, i.e. the

current capacity of the system. For that we need to perform some performance testing.

This section has been dedicated to that.

Performance testing comprises of tests that check a system’s/application’s behaviour

on quality attributes such as responsiveness, stability, scalability, reliability, speed and

resource usage of your software and infrastructure. Following are some of the performance

testing techniques which are relevant to our case.

• Stress Testing - Stress testing [22] is adopted to find out the breaking point of

SUT(System Under Test) [23]. The testing checks the behaviour of the system

under intense loads, and how it recovers when going back to normal usage.

• Load Testing - Load testing [22] checks the system’s capability to handle heavy

concurrent workloads. This type of workload is simulated best by tools [24] like

LoadRunner [25], WebLoad [26], Apache JMeter [27].

• Scalability Testing - Scalability testing examines the SUT’s capability to scale-out.

The main goal is to find out the limit beyond which it will resist scaling out.

One can say that the essence of our thesis is Load Testing, but our aim lies in the inter-

section of load and scalability testing. We have also tried to find out the breaking point

of the system, so we have also touched upon stress testing.

3.2.1 Distributed Setup

Generation of heavy workloads should not be done on a single machine. For this purpose,

we have used Apache JMeter in a Distributed Master-Slave setup. The setup comprises

of the following components.

• Master client This component acts as a controller for the whole setup. It is the

master client which sends the test plan to its slave servers at the time of execution.

Here Master machine is a physical machine on which Prutor is installed. It has

following specifications:-

– Cores: 8

Chapter 3: WebApp 16

– RAM: 16GB

– Model: Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz

• Slave servers The slave servers receive the test plan from the master and run it

independently of each other. After the job is done, they send the collected metrics to

the master, which is then displayed in a tabulated/graphical way to the user. Here

the slave server machines are the physical machines, provided by CSE Department

of IIT Kanpur. The specifications are as follows.

– Cores - 4

– RAM - 8GB

– Intel(R) Core(TM) i3-6100 CPU @ 3.70GHz

Figure 3.1: JMeter:Distributed Master-Slave Setup

The detailed step-by-step instructions to set it up have been documented in Chap. A.

The next subsection provides information about the Workload that was generated by this

distributed setup.

Chapter 3: WebApp 17

3.2.2 Workload Specification

The load is generated with the help of Apache JMeter (explained in Sec. 2.2.1). The test

plan (explained in Sec. 2.2.1) comprises of some selected HTTP Requests(as mentioned in

Sec. 3.1.1) having event perspective. The sequence of the requests in the plan simulates

the actual load that a user generates in an event. Some key components in this test plan

are:-

• Virtual Users(VUs) This setting is controlled by the configuration element Thread

Groups.

• Ramp-up Period This setting controls the time in which JMeter will reach full

workload as in equal to the VUs specified. For eg:- if VUs=1000 and Ramp-up

period is 10seconds, then it will take 10 seconds to reach the load of 1000 users, or

we can say that in each second load of 100(1000/10) VUs will be generated.

• Iterations This controls the number of iterations, load of each thread (VU) will be

executed.

Apache JMeter has Constant Timer which allows you to control the timing between

each request of a particular VU. This timing has been chosen to be 2 seconds, keeping in

mind that the workload does not go too far from the real world scenario. Before moving

any further with this value, we first show a comparison of performance between the baseline

results without constant timer and with a constant timer of 2 seconds in Sec. 3.2.4.

3.2.3 Performance Metrics

We started with finding out the current capacity of the system. In [1], it is mentioned that

the system is horizontally scalable and can reach 400 users. So we selected 5 scenarios as

1 web application server (webapp), 2 webapps, 4 webapps, 8 webapps, 16 webapps. For

each scenario, we started from 100 VUs and went on till 1000 VUs to find out the load

handling capacity of each scenario. For measuring the load handling capacity we are using

Error% metric of the Login request collected by JMeter. The reason behind choosing the

Error% of only login request is that if a VU fails to login, its subsequent requests give a

302 instead of error, thereby resulting in a very less Average Response Time and almost

negligible Error% which is completely wrong. Hence we can only trust the Error% of Login

requests.

Chapter 3: WebApp 18

3.2.4 Results

 0

 20

 40

 60

 80

 100

 120

100 200 400 500 750 1000

E
rr

o
r(

%
)

of VUs

2 webapps: #VUs v/s Error(%)

Think Time:0secs

Think Time:2secs

Figure 3.2: VUs v/s Error% for 2 we-
bapps

 0

 20

 40

 60

 80

 100

 120

100 200 400 500 750 1000

E
rr

o
r(

%
)

of VUs

4 webapps: #VUs v/s Error(%)

Think Time:0secs

Think Time:2secs

Figure 3.3: VUs v/s Error% for 4 we-
bapps

 0

 20

 40

 60

 80

 100

 120

100 200 400 500 750 1000

E
rr

o
r(

%
)

of VUs

8 webapps: #VUs v/s Error(%)

Think Time:0secs

Think Time:2secs

Figure 3.4: VUs v/s Error% for 8 we-
bapps

 0

 20

 40

 60

 80

 100

 120

100 200 400 500 750 1000 2000

E
rr

o
r(

%
)

of VUs

16 webapps: #VUs v/s Error(%)

Think Time:0secs

Think Time:2secs

Figure 3.5: VUs v/s Error% for 16 we-
bapps

One common observation from the above graphs is that the difference between the green

and purple line is very little. This means that even with think time of 2 secs, our system

is under a significant amount of stress. Hence we can treat the green line as our baseline

and our goal will be to minimize this green line as much as possible. Fig 3.6 shows that

for handling the load of 200 users, we need to run 4 webapps, for handling 500 users, 8

webapps are required and with 16 webapps we cannot even reach 750 users. So this section

gave us the scalability baseline of Prutor.

Chapter 3: WebApp 19

 0

 20

 40

 60

 80

 100

 120

 140

100 200 400 500 750 1000

E
rr

o
r(

%
)

of VUs

Comparative analysis of Horizontal Scaling

2webapps

4webapps

8webapps

16webapps

Figure 3.6: Comparison of Baseline Error% on different number of webapps

In the next section, we have discussed about performance profiling of Prutor.

3.3 Performance Profiling

Performance Profiling [28] is done to record and analyze the performance of each compo-

nent of an application. The major objective behind performance profiling is identification

of the bottlenecks. This section has been divided into subsections containing profiling

snapshots of the most frequently accessed features of an event(Sec. 3.1.1).

3.3.1 Setup

Refer to the documentation in Chap. C.

3.3.2 Profiling of each feature

• View Assignment - Fig 3.7 shows the list of slowest components hit, when an

HTTP GET Request for viewing an assignment is received. Fig 3.7 & 3.8 lists down

memcached and readFile as bottleneck. Here editor:after db is a custom tracer

provided by New Relic, which we used to localize the readFile component.

Chapter 3: WebApp 20

Figure 3.7: View Assignments:Slowest Components

Figure 3.8: View Assignments:Breakdown Table

Chapter 3: WebApp 21

Figure 3.9: View Assignments:Custom Tracer

• View Home Page - Fig 3.10 & Fig 3.11 both represents readFile and memcached

get to be the slowest components, in the control flow when an HTTP GET Request

for viewing home page is received.

Figure 3.10: View Home Page:Breakdown Table

Chapter 3: WebApp 22

Figure 3.11: View Home Page:Slowest Components

• Login - Fig 3.12 shows that Express middleware, memcached get/set are the top 3

slowest components in the control flow, when a user logs in.

Figure 3.12: User Login:Breakdown Table

• Save code: Manual and Submission - Fig 3.13 and 3.14 shows MySQL code

insert to be expensive.

Chapter 3: WebApp 23

Figure 3.13: Save Code:Slowest Components

Figure 3.14: Save Code:Breakdown Table

3.3.3 Analysis of the common bottlenecks

In this subsection, we have dug further into the common bottlenecks that we found in the

previous section.

3.3.3.1 Memcached

In Prutor, Memcached is used for the following use cases.

• Express session-storage.

Chapter 3: WebApp 24

Figure 3.15: Memcached:Storage & Retrieval of Sessions

Fig 3.15 describes the use of memcached in user-session storage and retrieval with

the help of 3 requests u1 1,u1 2,u1 3. Here u1 i represents ith request by user1 and

u1 i j represents jth component of the flow of the ith request.

– u1 1 - User sends u1 1 1 or login POST request to HAProxy. The HAProxy

then forwards it to WebApp as u1 1 2. After the authentication is done, a

session variable is sent as u1 1 3 to be stored at the memcached server. This

session variable stores user’s cookies, id and his/her role.

– u1 2 - User sends u1 2 1 or view assignment GET request to HAProxy. HAProxy

then forwards it to WebApp. At WebApp, it is received by the view assignment

module, which then sends it to Session Authentication module. The session au-

thentication module requests the cache server to send session of a particular user

Chapter 3: WebApp 25

via u1 2 4. It then matches the user id in the session received(u1 2 5) and the

one received in the parameters. If the session verification is successful(u1 2 7),

then only a user can view his/her assignments.

– u1 3 - Similar to above 2 requests, compilation request also sends a get re-

quest (u1 3 4) to the cache server. If available, it then sends that user session

variable(u1 3 5). If authentication is successful, then the compilation is carried

out.

• Cache Layer before Database - Cache stores data in key-value pairs. An md5

hash of a database query is calculated and is stored as a key. The result to this query

is stored as a value in the memcached. So, a query before hitting database, will first

hit cache with a get request for the value. If available, it is returned to the user. If

not, it fetches the correct value from the database and again hits cache with a set

request.

Browsing through the code, revealed that home (Sec. 3.1.1) query heavily used

memcached layer before hitting database. So, instead of 5 iterations of the test plan,

I executed it for 10 iterations and got the results as follows:-

Figure 3.16: Memcache: Slowest Components

Chapter 3: WebApp 26

Figure 3.17: Memcache:Detailed Trace

Fig. 3.16 and 3.17 show a lot of time being consumed at connection creation. After

browsing through some blogs, I found that by default applications open new con-

nection to memcached server for every get/set request. So while running the test

plan for home query for twice the iterations, I kept on doing a netstat on the cache

server and the results for 100 users are shown in Fig. 3.18. Here netstat -avtnp lists

all the TCP connections in which the cache server is involved with. Each entry in

this output contains a column for Local Address and Foreign Address. The Local

Address is the IP address of the cache server. The Foreign Address is the IP address

of the foreign entity that is connected to the cache server. So the output of netstat

-avtnp has been piped to grep 172.17.0.9. The IP 172.17.0.9 was the IP of the we-

bapp container at that time. So now we are filtering only those output entries which

involve the webapp container as the foreign entity that is connected to our cache

server. Lastly, we are counting those entries by using wc -l.

Chapter 3: WebApp 27

Figure 3.18: Memcache: netstat

• Possible Fixes

– Cache Pooling

– Skip the Cache Layer

We will see the effects of these fixes in Sec. 3.4.

Chapter 3: WebApp 28

3.3.3.2 readFile

Figure 3.19: Slow component: readFile

The readFile [29] is a function in Node.js which is used to asynchronously read

a file. The reason to it’s popping up is that,in order to serve the UI, the Node

server renders view template files. For pages consisting of many UI elements, often

a large template file is broken down to smaller child template files with the parent

file containing placeholders for values to be returned by child template files. At the

time of rendering, each of the child template files are read, populated with values

and are included in the parent template files. This is the reason for heavy usage of

readFile.

3.3.4 Error Analytics

New Relic provides an error analytics interface, which classifies the errors and extracts

some meaningful information from these errors. Fig 3.20 shows the classification of errors

and count of each class. As we can see the class with the highest frequency is Service-

UnavailableError. This error is received either when the server is not able to respond

within the timeout period(the time within which a client should receive response) or it

Chapter 3: WebApp 29

gets too overwhelmed with the incoming HTTP requests, that it starts rejecting them.

The error code for this type of error is 503.

Figure 3.20: Error Analytics:Classification

Fig 3.21 and 3.22 show some interesting insights such as 59% errors have http response

message Service Unavailable, 57% errors are due to Response Timeout, 59% errors have

response code 503, 60% errors have port 3000, 40% errors do not even have database call

count.

Chapter 3: WebApp 30

Figure 3.21: Error Analytics: part 1

Figure 3.22: Error Analytics: part 2

As 40% errors do not even have database call count, so the point of failure is either

HAProxy, WebApp or memcached. The Node process in WebApp listens on 3000 port of

Chapter 3: WebApp 31

the WebApp container. Since 60% of the errors have port as 3000, so we can narrow-down

our attention towards HAProxy and WebApp. So we chose HAProxy, since it is the first

component in the chain. The next subsection contains the analysis of HAProxy logs and

interpretation of its error codes.

3.3.4.1 HAProxy logs analysis

Fig 3.23, 3.24 and 3.25 are small segments taken from the logs collected at HAProxy.

Figure 3.23: HAproxy:503

Figure 3.24: HAproxy:sQ

Figure 3.25: HAproxy:sD

As we can see that all these logs have 1 thing in common and that is the error code. They

all have error code 503, but the reason of 503 is different. All these error codes have special

meanings and indications as follows.

• sQ - It occurs when the client session has spent a lot of time waiting for a connection

slot with the back-end server and timeout period of queue has expired. It also

happens when the timeout period for a connection attempt to succeed has also

expired.

• sD - It occurs when the connection with the back-end server has been established,

but before server could respond back to proxy, server timeout struck.

Chapter 3: WebApp 32

3.4 Incremental Modifications

This section tells a story of how we reached 3000 users on a single machine. We started

with the direction provided by the analysis results of Sec. 3.3.4. We then tried to follow the

analysis results of profiling. This was then followed by some minor code flow optimizations.

This section has been divided into 3 subsections : reaching 500 users, reaching 1000

users and finally 2000 users. Each subsection describes how we decided when to tune

a parameter, which parameter to tune, when to increase the number of servers. Those

parameters have been briefly described below.

• Node Workers - It is the number of Node.js server instances.

• server maxconn - It is a parameter of HAProxy. Each front-end and back-end servers

have their own server maxconn. It limits the number of concurrent client connections

that Proxy will pass to the appropriate server.

• listen maxconn - It limits the number of connections per HAProxy listener.

3.4.1 Reaching 500 on 2

• 100 users

On firing a load of 100 VUs on 1 webapp we got the following results. From now

on instead of webapp, we will use the term Node Workers. Here Node Workers refers

to the Node.js server process.

Label # Samples Average 90% Line 99% Line Error % Throughput

HTTP Request 100 3970 6007 6402 11.000% 2.06992

home 1500 1033 2119 6093 0.533% 17.62073

codebook 500 937 1490 6238 1.600% 6.14394

open assignment 1000 734 1397 4330 0.300% 12.81657

save code 2000 751 1469 2399 0.000% 27.37439

TOTAL 5100 912 1546 5571 0.588% 59.30853

Table 3.7: 100 requests on 1 Node worker with no tuning

We see an Error of 11%. We then moved our focus to the images in Sec. 3.3.4,

specially 3.24 and 3.23. The cause of these error codes and there possible fixes have

Chapter 3: WebApp 33

been well explained in Sec. 3.3.4.1. So we preferred increasing the server maxconn

parameter from 20 to 50 and also increased the listen maxconn parameter to 100

as listen maxconn should always be greater than server maxconn. The results are as

follows.

Label # Samples Average 90% Line 99% Line Error % Throughput

HTTP Request 100 4286 7220 7720 0.000% 1.99732

home 1500 393 166 8900 0.000% 9.90655

codebook 500 199 140 4856 0.000% 3.96175

open assignment 1000 60 115 203 0.000% 7.74425

save code 2000 112 175 322 0.000% 15.22789

TOTAL 5100 275 173 6959 0.000% 33.07715

Table 3.8: 100 requests on 1 Node Worker with server maxconn tuned

• Following Profiling analysis We tried to follow the analysis result in Sec. 3.3.3,

but the results were not what we expected.

– Pooling of connections

We tried with cache pooling, but got no significant results. To implement cache

pooling, we just added the parameter poolSize in memcached options [11]. This

worsened the result because the requests kept on waiting for connections. We

tried tuning the parameter, but it did not workout, so ultimately we ended up

dropping the idea of pooling of connections.

– Skipping the Cache layer There are 3 modes to get a connection to query

MySQL.

∗ sqlquery A new connection is created before each request.

∗ sqlpool A connection is borrowed from a pool of already established per-

sistent connections.

∗ sqlcache This is the mode where cache layer kicks in. A hash of the query

is prepared and then that hash value is queried within memcached. If a

result is available, it is returned as a response, otherwise it uses a pool

connection to fetch the required value from the database.

So we tested the same load without the cache layer to see whether there is any

performance drop and here are the results. We achieved this by finding out

the queries which were being done in the sqlcache mode, and replaced their

mode with sqlpool. Table. 3.9 shows the results. As we can see that, there

Chapter 3: WebApp 34

is no performance drop, we ended up converting all the sqlcache mode queries

to sqlpool. When we say we removed the cache layer, we do not include the

session retrieval from memcached. That cannot be touched.

Label # Samples Average 90% Line 99% Line Error % Throughput

HTTP Request 100 4876 7248 7938 0.000% 1.98697

home 1500 381 171 8853 0.000% 9.92786

codebook 500 162 154 4178 0.000% 4.02963

open assignment 1000 65 147 190 0.000% 7.78416

save code 2000 106 141 368 0.000% 15.33119

TOTAL 5100 278 169 6965 0.000% 33.13280

Table 3.9: 100 users 1 Node Worker with Cache removed

• 200 users Till now we have tuned server maxconn to 50 and listen connection

limit of HAProxy to 100. On increasing the users to 200, we received 47% failure

rate. To fix this we increased the listen maxconn limit to 500 which brought down

the error rate to 43%. The HAProxy logs showed 2 kinds of logs. Majority of the

login queries were having sQ error code and other queries had simple 503. To remove

sQ, we increased the server maxconn to 200 which brought down the error% to 1.5%.

Now the logs did not contain any error code. So it was time we increased the

number of webapps.

• Node.js Cluster

Node.js runs on a single process single thread of execution. Thus with a single node

process we cannot utilize different cores of the machine. This leads to inefficient usage

of the resources. Cluster module [30] enables the creation of several node processes,

which can share a server port. The parent process is responsible for the creation

of worker processes. These worker processes will handle the application logic which

we want to parallelize. Apart from offering concurrency, the cluster module offers

following advantages.

– Internal load balancing of incoming requests among worker processes.

– In our application, if we want to increase the number of webapps, we can do it

either by running more containers or by spawning more worker processes. The

latter one comparatively consumes less memory and is hence lightweight.

We referred the code at [31].

Chapter 3: WebApp 35

So considering the logs and the error% of 1.15% in the case of 200 VUs, we decided

to increase the number of webapps to 2. This time we did it by increasing the

number of worker processes to 2. This perfectly solved our problem. Here are the

results.

Label # Samples Average 90% Line 99% Line Error % Throughput

HTTP Request 200 3905 6846 7559 0.000% 3.94571

home 3000 333 199 6911 0.000% 19.79231

codebook 1000 362 68 7168 0.000% 7.73335

open assignment 2000 32 53 219 0.000% 15.26834

save code 4000 119 206 677 0.000% 30.25101

TOTAL 10200 263 202 6386 0.000% 66.19036

Table 3.10: 200 users 2 workers on WebApp

So at this point, the # node workers were 2, server maxconn was 200 and listen

maxconn was 500.

• 400 users On executing the test plan for 400 VUs under the above mentioned

conditions, we got 20% error%. The logs had sQ error code, so increased server

maxconn to 400 and listen maxconn to 1000, which worked.

• Login Optimization The Login method needed 2 database queries. First request

was to fetch the user type i.e. student or admin. Based on the result of the first

query, a function specific to the user type was being called, which used to perform the

authentication. Both the queries involved same table, so we merged the attributes

of both the queries and formed a single query to perform the login task.

Figure 3.26: Average Response Times
before Login Optimization

Figure 3.27: Average Response Times
after Login Optimization

Chapter 3: WebApp 36

Although the get/home query is highlighted, but compare the Average Response

Time of post/accounts/login in Fig 3.26 and 3.27.

Apart from these changes, there were few redirects after successful login which were

removed.

The login request takes the longest to respond, because it involves authentication.

The authentication involves usage of compareSync function of the bcrypt module

of npm. The name suggests that this is a synchronous function. This was replaced

with it’s asynchronous counterpart compare.

Figure 3.28: Time taken by Bcrypt

In Fig 3.28, the time is calculated by subtracting the time calculated before and the

usage of bcrypt module. It takes no less than 170ms for each login request.

• 500 users After the above mentioned modifications, we simply tested it on 500 users

and got 0.16% error%. The logs had sQ error codes. Therefore we again increased

the server maxconn to 500 and everything worked.

3.4.2 Reaching 1000 on 4

In the previous section, we saw that for 500 users, we need 2 node workers, server maxconn

of 500 and listen maxconn of 1000. In this section we have described how we reached 1000

users on 4 node workers.

• 750 users Without changing any parameter we executed the load of 750 users on

the system and here are the results.

Chapter 3: WebApp 37

Label # Samples Average 90% Line 99% Line Error % Throughput

HTTP Request 750 18176 37156 40626 20.533% 9.07595

home 11250 1084 288 32835 15.404% 60.57408

codebook 3750 820 267 26049 22.160% 23.94132

open assignment 7500 247 151 5003 20.307% 47.08512

save code 15000 215 355 5002 16.220% 95.85461

TOTAL 38250 889 365 28690 17.448% 203.26607

Table 3.11: 750 users 2 webapps server maxconn 500

On increasing server maxconn to 1000 and listen maxconn to 5000, the error rate

came down to 4.67%. Here is the table.

Label # Samples Average 90% Line 99% Line Error % Throughput

HTTP Request 750 26243 47193 50004 4.667% 7.99821

home 11250 1889 248 45029 0.347% 56.88800

codebook 3750 585 45 26986 0.000% 22.86892

open assignment 7500 60 121 260 0.000% 58.05223

save code 15000 100 174 322 0.000% 114.08406

TOTAL 38250 1179 184 39848 0.193% 191.04749

Table 3.12: 750 users 2 workers server maxconn 1000

This time, error logs contained the codes sH and SC. Here are the descriptions of

these error codes.

– sH - It is similar to sD in Sec. 3.3.4.1.

– SC - It occurs when the server explicitly refuses to accept the connection request

from HAProxy. One fix is to increase the number of servers. The other fix is

to tune the network stack of the server.

We picked SC error code first. To tune the network stack we followed [32], [33] and

[34]. All of them suggested tuning of 3 parameters majorly. They are as follows.

– net.core.somaxconn - Controls the number of sockets that kernel can open

simultaneously.

– net.ipv4.tcp max syn backlog - Controls the number of half open connec-

tions(for which ACK has not been received) can be kept in the queue.

Chapter 3: WebApp 38

– net.ipv4.tcp fin timeout - The fin timeout defines the minimum time these

sockets will stay in TIME WAIT state (unusable after being used once).

Unfortunately tuning these values did not work out for us. So we kept them at their

default values.

A possible solution to fix sH error code was to increase the srvtimeout parameter,

but in the table. 3.12 if we look at the 99% line we see 50004 as the maximum value,

but the srvtimeout was originally set to 50000 seconds. So increasing the timeout

further did not seem an appropriate thing to do.

So we increased the node workers from 2 to 4 and it worked.

• 1000 users Executing the test for 1000 users on the same conditions gave the

following result.

Label # Samples Average 90% Line 99% Line Error % Throughput

HTTP Request 1000 16388 29310 32249 0.000% 13.10170

home 15000 1212 248 28135 0.000% 83.76940

codebook 5000 540 67 20828 0.000% 33.05261

open assignment 10000 60 146 269 0.000% 76.51344

save code 20000 144 272 735 0.000% 150.54686

TOTAL 51000 799 249 25022 0.000% 281.13889

Table 3.13: 1000 users 4 Node workers

3.4.3 Reaching 2000 on 8

• 1500 users On executing the test for 1500 users in the same conditions, we got the

following result.

Label # Samples Average 90% Line 99% Line Error % Throughput

HTTP Request 1500 18185 36104 36867 31.467% 19.31098

home 22500 908 335 27863 15.591% 123.40939

codebook 7500 607 333 19015 22.253% 49.19678

open assignment 15000 228 221 5002 20.200% 96.38802

save code 30000 196 361 1876 15.527% 195.21972

TOTAL 76500 805 374 26302 17.434% 414.30181

Table 3.14: 1500 users on 4 workers

Chapter 3: WebApp 39

As we can see in the table 3.14 that all the requests have error%. This shows

that the load of 1500 users is suffocating the 4 node workers, but before increasing

the workers, we increased the server maxconn parameter to 1500 which gave the

following results.

Label # Samples Average 90% Line 99% Line Error % Throughput

HTTP Request 1500 26227 44888 45658 14.733% 17.02302

home 22500 1510 503 37963 12.693% 113.89637

codebook 7500 454 455 16152 20.000% 46.33434

open assignment 15000 187 376 493 19.947% 109.19494

save code 30000 207 469 1027 13.427% 214.50175

TOTAL 76500 1121 480 36262 15.159% 382.30502

Table 3.15: 1500 users on 4 workers server maxconn 1500

So still there is some service outage. Now was the time to increase the number of

node workers. So from now the number of node workers will be 8. Now instead of

running the test for 1500 users, we executed the test for 2000 users.

• 2000 Uptil now, we have server maxconn at 1500, listen maxconn at 5000 and there

are 8 node workers running. For 2000 users here are the results.

Label # Samples Average 90% Line 99% Line Error % Throughput

HTTP Request 2000 17442 32850 35989 8.250% 25.05010

home 30000 1775 1251 31774 0.983% 136.72347

codebook 10000 1323 1152 23972 1.990% 53.15389

open assignment 20000 853 1299 2850 0.610% 103.95875

save code 40000 672 1174 2143 0.250% 211.20216

TOTAL 102000 1425 1301 27389 0.864% 459.94427

Table 3.16: 2000 users on 8 workers

Increased the server maxconn to 2000 and got the following results.

Chapter 3: WebApp 40

Label # Samples Average 90% Line 99% Line Error % Throughput

HTTP Request 2000 19686 35321 38799 0.000% 24.10016

home 30000 1977 1166 33934 10.150% 134.98252

codebook 10000 1061 978 23871 19.020% 52.08360

open assignment 20000 632 1068 1273 20.000% 119.81716

save code 40000 512 1023 1452 15.745% 236.66118

TOTAL 102000 1396 1114 30067 14.946% 454.14676

Table 3.17: 2000 users on 8 workers server maxconn 2000

Now, these results were quite strange. In all the above results, it never happened

that all the requests had error% except for login. Since, the login request is a part

of Once-only controller and is sent towards the beginning, we speculated that other

requests due to their quantity have exhausted a component towards the end. Now

proxy did not seem to be an appropriate option, because if it was the reason, we

should have seen similar results atleast once before. Memcached was removed earlier

in section 3.4.1 from other requests. Now the only heavily used component left was

MySQL database.

In section 3.2.4 we saw that after 4 webapps we had to increase the max connections

parameter to 500. When we looked for the active processes on MySQL, we found

it to be 501. The connection limit of MySQL is max connection+1. Here is the

snapshot taken at that time.

Figure 3.29: MySQL:500 connections exhausted

Chapter 3: WebApp 41

After this we increased the max connection limit from 500 to 1000 and got these

results.

Label # Samples Average 90% Line 99% Line Error % Throughput

HTTP Request 2000 20082 35746 39235 0.000% 23.95841

home 30000 1843 885 34301 0.000% 130.33958

codebook 10000 977 759 22866 0.010% 49.83380

open assignment 20000 813 1333 3529 0.370% 114.69534

save code 40000 534 866 2489 0.278% 227.75541

TOTAL 102000 1401 971 30465 0.182% 438.86635

Table 3.18: 2000 users on 8 Node workers

3.4.4 Reaching 3000 on 16

On 16 node worker processes, for load of 3000 users we had the following results.

Label # Samples Average 90% Line 99% Line Error % Throughput

HTTP Request 3000 704 1215 8743 0.033% 21.30107

home 45000 957 1399 15332 0.036% 147.58889

codebook 15000 1083 1552 15343 0.020% 52.29506

open assignment 30000 1005 1477 15310 0.047% 101.79015

save code 60000 957 1407 15307 0.048% 202.80273

TOTAL 153000 974 1422 15320 0.041% 498.49799

Table 3.19: 3000 users on 16 Node workers

Chapter 3: WebApp 42

3.4.5 Comparative Results

 0

 20

 40

 60

 80

 100

 120

100 200 400 500 750 1000

E
rr

o
r(

%
)

of VUs

Comparison of before and after for 2 webapps:
 #VUs v/s Error(%)

Before

After

Figure 3.30: Comparison of before
and after for 2 webapps

 0

 20

 40

 60

 80

 100

 120

400 500 750 1000 1500

E
rr

o
r(

%
)

of VUs

Comparison of before and after for 4 webapps:
 #VUs V/s Error(%)

Before

After

Figure 3.31: Comparison of before
and after for 4 webapps

 0

 20

 40

 60

 80

 100

 120

500 750 1000 1500 2000

E
rr

o
r(

%
)

of VUs

Comparison of before and after for 8 webapps:
#VUs v/s Error(%)

Before

After

Figure 3.32: Comparison of before
and after for 8 webapps

 0

 20

 40

 60

 80

 100

500 750 1000 1500 2000 3000

E
rr

o
r(

%
)

of VUs

Comparison of before and after for 16 webapps:
#VUs v/s Error(%)

Before

After

Figure 3.33: Comparison of before
and after for 16 webapps

Here each graph shows a comparison of WebApp performance for the same number of Node

workers. The comparison is between the baseline results and results after our changes on

increasing user load. The violet line indicates baseline, whereas the green line indicates our

results. In each case we can see huge difference between these 2 lines. After our changes

the error% almost went down to 0.

Chapter 4

Database Analysis

As Prutor is a database intensive application, a seperate chapter has been dedicated to

the database analysis. All the user data is stored in MySQL and all the non-user data i.e.

environment settings for compilation and other metadata has been stored in MongoDB.

Both of these databases have their seperate containers by the name of rdb and nosql

respectively. Since, the user data forms the major component, we have analysed that in

this chapter. There are 2 sections in this chapter. In the first section we have described

Query level analysis and our modifications. The second section has been dedicated to

Parameter Tuning.

4.1 Query Analysis

In this section, we have gone a level down from the above talked features and their respec-

tive HTTP requests (Sec. 3.1.1). Here we talk about their APIs and SQL queries. All the

analysis has been done with the help of MySQL-workbench (Sec. 2.2). For detailed

step-by-step instructions for setting up, refer Chap. B.

We have analyzed each query from different perspectives.These perspectives are Index

Usage, Queries doing sorting, Queries doing full table scans and Queries using Temporary

tables. Each of these perspective has been dedicated a subsection.

43

Chapter 4. Database Analysis 44

4.1.1 Index Usage

For checking index usage on a MySQL server, the most common tool is explain [35].

MySQL-Workbench provides explain tool in both tabular and visual format. We have

used tabular format. The noteworthy fields in the explain tabular output are have been

briefly described below.

• possible keys - These are the columns which MySQL plans to use for row filtering.

• key - These are the columns which MySQL actually decided to use for filtering.

• rows - It is an estimate of the number of rows that might be extracted

• filtered - It is estimated percentage of the rows that will be filtered out of the total

number of rows of the table.

• Extra - It contains information about the features which MySQL used to resolve the

query. Exhaustive list of values that can come in this column can be found at [35].

• GET /home

– events.getOngoingEvents

This API fetches the ongoing events of a user. It hits the mysql server with the

following query.

SELECT event.id AS event id , TYPE , NAME ,time start, time stop FROM

event INNER JOIN schedule ON event.id=schedule.event id WHERE event.is deleted

= 0 AND schedule.is deleted = 0 AND ’2018-03-06 22:53:00’ BETWEEN time start

AND time stop AND schedule.id IN

(SELECT schedule id FROM slot WHERE slot.is deleted=0 AND section =

(SELECT section FROM account WHERE account.is deleted = 0 AND ‘id‘ =

’d30f7f9d-bf62-4934-b09a-0d9b10651460’));

Figure 4.1: Explain:getOngoingEvents

As we can see in Fig. 4.1 that only schedule table does not use index. It is

because the data with which peformance evaluation has been done is the dummy

Chapter 4. Database Analysis 45

data and only contains 10 rows in the schedule column, so query optimizer might

have chosen to ignore the index and do a row by row scan.

The next query that this API uses is to fetch the questions of the event fetched

from the above query.

SELECT id,question,is submitted,max marks FROM assignment WHERE as-

signment.is deleted=0 AND user id=’d30f7f9d-bf62-4934-b09a-0d9b10651460’ AND

event id=2 ORDER BY question

Figure 4.2: Explain:Get Questions in the Ongoing Event

Figure 4.2 we can see that the query uses sorting.

– statistics.getCourseStatistics

This API calculates the course statistics such as assignments submitted, as-

signments remaining and number of events attended. It executes the following

query.

SELECT event id, assignment.id, is submitted, TYPE FROM its.assignment

INNER JOIN its.event ON assignment.event id=event.id WHERE event.is deleted

= 0 AND assignment.is deleted = 0 AND event id IN

(SELECT event id FROM its.schedule WHERE schedule.is deleted = 0 AND

id IN

(SELECT schedule id FROM its.slot WHERE slot.is deleted = 0 AND section

=

(SELECT section FROM its.account WHERE account.is deleted = 0 AND id

= ’d30f7f9d-bf62-4934-b09a-0d9b10651460’)

)

AND time start <’2018-06-06 22:53:00’)

AND user id =’d30f7f9d-bf62-4934-b09a-0d9b10651460’;

Figure 4.3: Explain:getCourseStatistics

Fig. 4.3 shows that all the tables involved are using indexes. One interesting

thing to note here is the values Start Temporary and End Temporary.

This indicates the usage of temporary tables which should be dealt with.

Chapter 4. Database Analysis 46

– grading.getScoreCard

This API retrieves the grade history of a user with the help of the following

query.

SELECT id ,event id,event name , question , score , max marks , is submitted

FROM assignment WHERE is deleted = 0 AND user id = ‘d30f7f9d-bf62-4934-

b09a-0d9b10651460’ AND event id IS NOT NULL

Figure 4.4: Explain:getScoreCard

Fig 4.4 shows the usage of user id column as index.

• GET /codebook

– assignments.getCodebook

Codebook is an arena in Prutor, where a user can see his/her previously sub-

mitted codes for practice as well as assignment questions. This API enables a

user to view his/her codebook with the help of the following query.

SELECT env , assignment.id , problem id , title , category , is practice ,

event id , event name , question , is submitted FROM assignment INNER JOIN

problem ON assignment . problem id = problem . id WHERE assignment .

is deleted = 0 AND problem . is deleted = 0 AND user id = ’d30f7f9d-bf62-

4934-b09a-0d9b10651460’ AND event id IN

(SELECT id FROM event WHERE event . is deleted = 0 AND NOT EXISTS

(SELECT id FROM schedule WHERE schedule . is deleted = 0 AND sched-

ule . event id = event . id GROUP BY id HAVING ’2018-03-06 22:53:00’

<max(time stop)

)

) OR event id IS NULL;

Figure 4.5: Explain:getCodebook

Chapter 4. Database Analysis 47

As we can see in Figure 4.5, all the tables are using indexes. Apart from this,

the Extra field is also worth noticing. It says that this query uses sorting and

temporary tables.

• GET /editor/id

– assignments.getLastSavedCode

Prutor saves multiple versions of a code for an assignment. Each version can

be retrieved on the basis of a code id or timestamp. This API fetches the latest

saved code from the history of codes for that assignment. The following is the

query that it uses.

SELECT id , user id , contents , save time FROM CODE WHERE code .

is deleted = 0 AND assignment id = 123563 ORDER BY save time DESC

LIMIT 1

Figure 4.6: Explain:getLastSavedCode

Figure 4.6 shows the usage of sorting by the query.

– assignments.getAssignmentProblem

As the name suggests, this API fetches the problem associated with a particular

assignment. Following is the query which does this.

SELECT statement,env FROM problem WHERE problem.is deleted=0 AND

id=(SELECT problem id FROM assignment WHERE assignment.is deleted=0

AND id=123563)

Figure 4.7: Explain:getAssignmentProblem

– assignments.getAssignmentDetails

This API fetches the details like question number, maximum marks, event to

which that particular assignment belongs. Following is the query which does

this job.

SELECT event name,question,max marks FROM assignment WHERE is deleted=0

AND id=123563

Chapter 4. Database Analysis 48

Figure 4.8: Explain:getAssignmentDetails

– events.isAllowed

This API checks that whether the problem that is being shown in this event,

is not a practice problem. If it is a practice problem, then a student cannot

access it as an assignment. If it is not a practice problem, then it checks the

current time with the stop time of the event. If the current time exceeds the

stop time, then again the user cannot open that assignment.

SELECT is practice FROM problem WHERE problem . is deleted = ? AND id

= (SELECT problem id FROM assignment WHERE assignment . is deleted

= ? AND id = ?)

Figure 4.9: Explain:isAllowed

Figure 4.7, 4.8 and 4.9 shows the usage of primary key as indexes.

4.1.2 Queries doing Sorting

Figure 4.10: Queries doing Sorting

Only the top 3 queries highlighted in Fig. 4.10 are relevant to our schema. These 3

queries are mentioned above in Sec. 4.1.1 in the APIs events.getOngoingEvents in

Sec. 4.1.1(2nd query), assignments.getCodebook in Sec. 4.1.1 and the API assign-

ments.getLastSavedCode in Sec. 4.1.1. Here references to sections might be showing

the same number, but when clicked, they will lead to different sections.

Chapter 4. Database Analysis 49

The fix for the usage of sorting by 2 APIs events.getOngoingEvents and assign-

ments.getCodebook has been discussed in Sec. 4.2. In order to fix for API assign-

ments.getLastSavedCode we changed the indexes of the code table. Earlier there

were 2 single indexes.

• user id

• assignment id

Now, here filtering is happening on the column assignment id,but sorting is happening

on column save time. So if we include save time in our index, we would not need to

explicitly sort the rows, as they would already be sorted in the order of the indexed

attribute. So now the new indexes are as follows.

• user id

• assign savedtime(assignment id,save time)

4.1.3 Queries doing full table scans

Figure 4.11: Queries doing full table scan

The queries that are shown in Fig. 4.11 are described in Sec. 4.1.1 and 4.1.1. The fix for

these queries has been discussed in Sec. 4.2.

4.1.4 Queries Using Temporary Tables

Figure 4.12: Queries using temporary tables

The queries that are shown in Fig. 4.12 have been described in Sec. 4.1.1 and 4.1.1. The

fix for these have been discussed in Sec. 4.2.

Chapter 4. Database Analysis 50

4.2 Usage of Materialized Views

We have seen queries in section 4.1.1, 4.1.1 and 4.1.1 use temporary tables, do on-the-fly

sorting or do a full table scan. These queries are written in such a way that requires lot

of processing at the time of their execution. So we needed a solution through which we

can pre-process our required data(pertaining to these queries) before their execution. The

answer that came to our mind was Materialized Views[36].

In the version that we are using i.e. MySQL 5.7, there is no concept of Materialized Views.

However, one can imitate the behaviour of Materialized Views with the help of Stored

Procedures[37] and Triggers[38].

4.2.1 ongoingAssignments mv

We have made use of 2 MVs. First, was to materialise the data for queries in API

events.getOngoingEvents and statistics.courseStatistics. Since most of the at-

tributes in both of the queries were common, so we took a union of these attributes and

formed a single MV.

Figure 4.13: MV:ongoingAssignments

Every time a student submits a code, his/her number of submissions should be reflected

in the home page view. This all depends on the is submitted attribute of the assignment

Chapter 4. Database Analysis 51

table. But we are fetching from our view. So we needed a mechanism to update the rows

of our view as and when the is submitted attribute is getting updated. That is when

triggers came into picture.

Figure 4.14: MV:Trigger for updating ongoingAssignment MV

In the figure 4.14, we have written an After update trigger on the assignment table.

This is because, when code is submitted, the row corresponding to the assignment id is

updated with the is submitted value of 1. So now after each update in the assignment

table, our MV shown in figure 4.13 will be updated.

4.2.2 codebook mv

This MV has been used to fix the issues with query in the API assignments.getCodebook

in section 4.1.1.

Figure 4.15: MV:codebook

Chapter 4. Database Analysis 52

Here the attributes in this MV are based on the attributes in the query in section 4.1.1.

4.3 Comparative Results

Label # Samples Average 90% Line 99% Line Error % Throughput

HTTP Request 1000 16521 29570 32539 0.000% 12.61209

home 15000 2461 1685 28386 0.000% 100.16761

codebook 5000 2236 1721 26893 0.000% 36.40520

open assignment 10000 1588 1716 2045 0.000% 75.57208

save code 20000 1344 1669 2015 0.000% 187.65071

TOTAL 51000 2106 1719 25842 0.000% 339.94561

Table 4.1: 1000 users results before DB changes

Label # Samples Average 90% Line 99% Line Error % Throughput

HTTP Request 1000 16183 29181 31960 0.000% 12.70793

home 15000 2424 1634 27859 0.000% 100.62117

codebook 5000 2184 1725 26160 0.000% 37.20515

open assignment 10000 1561 1627 2230 0.000% 70.65041

save code 20000 1383 1630 2264 0.000% 144.47318

TOTAL 51000 2093 1660 25523 0.000% 339.45687

Table 4.2: 1000 users results after DB changes

4.4 Parameter Tuning

In this section, we have described the parameters of mysql server that we found were

necessary to be tuned for better performance. InnoDB buffer pool was the main feature

around which our parameter tuning revolved.

InnoDB buffer pool is the memory space that holds many in-memory data structures

of InnoDB, buffers, caches, indexes and even row-data. MySQL offers a wide range of

parameters, that can be tuned for high-performance. Some of them are related to innodb,

some of them are general. The ones we touched upon are listed below.

Chapter 4. Database Analysis 53

4.4.1 innodb buffer pool size

The default value of innodb buffer pool size is 128M. As per [39] and [40] if we have a

dedicated server for database, we can give it 70-80% of our RAM, but in Prutor, every

container runs on the same machine. So we need to follow a more calculated approach.

• Calculating the size of the database

The following query suggested by [40] reads the size of data and indexes of the

innodb tables from the information schema and takes in account a 60% overhead in

maintaining in-memory buffers.

SELECT CEILING

(Total InnoDB Bytes*1.6/POWER(1024,3)) RIBPS FROM

(SELECT SUM(data length+index length) Total InnoDB Bytes

FROM information schema.tables WHERE engine=’InnoDB’) A;

For our dummy data, it gave us 1GB.

• Calculating the memory requirement overall

Now if we imagine extreme scenario for our machine (8cores,16GB RAM), we will

have 8 node workers and ˜300 apache workers (discussed in chapter 4). So

in order to see the memory consumption, we executed these many processes and

executed ps mem.py, which gave us 5.5GB(including mysqld).

So this leaves us with 10.5GB of RAM. Now ideally for our data, pool size of 2GB

should be enough, but we will be using buffer pool instances and the recommended

setting suggested by [41] is that each buffer pool should get atleast 1GB and for

greater concurrency buffer pool instances should be atleast 4. So we found 6GB as

an appropriate value in our case.

4.4.2 innodb buffer pool instances

This parameter divides the buffer pool into small regions. For this to be enabled, the buffer

pool size should be atleast 1GB. Its usage replaces a single large buffer pool with multiple

small buffer pools, which improves the concurrency. Another factor which contributes to

increase in concurrency is that each buffer pool instance has its own buffer pool mutex.

We have set it to 4.

Chapter 4. Database Analysis 54

4.4.3 Escape from Swap

A Server running database should never use swap memory. We found that due to less

memory allocated to buffer pool, mysqld was using swap memory. This was rectified by

doing 2 things. First was increasing buffer pool. Second was tuning a kernel parameter

vm.swappiness. It’s value ranges from 0 to 100, 0 being the least aggressive and 100

being the most aggressive. By default it is set to 60. Sites like [34] suggested 30 to be an

appropriate value.

4.4.4 Query Cache

Query cache stores the select statements along with their results. If the server receives

the same query later, rather than executing the query, it serves the result from the query

cache. There are 2 essential parameters that cover its tuning.

• query cache type- should be set to ON.

• query cache size- [41] recommends it to be in tens of MBs, so we went with 10M.

4.4.5 skip name resolve

To skip the DNS lookup. By default it is set to OFF, i.e. DNS lookup is enabled. In order

to disable it, it should be set to ON.

Chapter 5

Engine: Analysis and

Benchmarking

Engine component is the back-end server, responsible for handling compilation, execution

and evaluation HTTP requests. It runs on apache server and is written in PHP.

5.1 Event Workload

The compilation, execution and evaluation workload can be sent from all 3 perspectives

(Sec. 3.1), but we will only consider the ones sent from event perspective, just like in

Chap. 3. The tables below show the anatomy of all 3 requests.

Use Case Compilation

HTTP Request URL /compile

Request Type POST

Parameters

- assignment id

- code

- env

Table 5.1: HTTP Post Request for Compilation

55

Chapter 5. Engine 56

Use Case Execution

HTTP Request URL /execute

Request Type POST

Parameters

- assignment id

- code

- env

- testcase

Table 5.2: HTTP Post Request for Execution

Use Case Evaluation

HTTP Request URL /evaluate

Request Type POST

Parameters
- admin

- assignment id

Table 5.3: HTTP Post Request for Evaluation

5.2 Baselining Scalability of Engine

5.2.1 Setup

Refer Sec. 3.2.1

5.2.2 Workload Specification

Here we have Login, compilation, execution and evaluation HTTP Requests as part of our

test plan. The anatomy of these requests has been covered in Sec. 5.1. Rest all is same

as mentioned in Sec. 3.2.2.

5.2.3 Performance Metrics

Like WebApp, the performance metrics is Error% here, with a difference that in WebApp

we were taking the Error% of Login Request only, here we have considered the average

Error% i.e. average of all the HTTP Request elements in the JMeter Test Plan. The

Chapter 5. Engine 57

reason behind this is that in the WebApp, if a particular VU was not able to login, its

other HTTP requests were getting redirected. The redirect response is not counted as

error, but in the case of engine, if a VU is not able to login, it will not be allowed access

to compilation and other APIs, thereby resulting in 403 Forbidden HTTP Response.

5.2.4 Results

Results have been shown in comparison with the results after modifications in Sec. 5.5.2.

5.3 Parameter Tuning

This section describes how we identified the correct parameters, that led us hit a scale of

1000 users with single engine container. Like Chap. 3, here also server maxconn played

a key role. Also, another proxy parameter contimeout came into the picture. Now, as we

were scaling an apache server, the key parameters of Apache server like MaxRequest-

Workers also came into play. These parameters have been briefly described below.

• MaxRequestWorkers - It is the number of Apache workers that will run simul-

taneously inside Engine. This parameter directly controls the number of client con-

nections that will be served simultaneously.

• MaxConnectionsPerChild - It is the maximum number of connections that an

Apache worker can handle. It’s default value is 1000. This means that after handling

1000 connections, the child will terminate. To prevent this, it is preferred that it

should be set 0. This removes any upper limit on this parameter.

• ServerLimit - It sets the upper bound on the configurable value of MaxRequest-

Workers.

• contimeout - It defines the maximum time, the proxy will wait for a connection

attempt to back-end server.

• server maxconn - explained in Sec. 3.4

Chapter 5. Engine 58

5.3.1 Reaching 500 users

• 100 users

Without any tuning, on executing the test plan for 100 users, we got an error% of

12.75% Increasing server maxconn to 100 solved the problem.

Label # Samples Average 90% Line 99% Line Error % Throughput

HTTP Request 100 189 234 247 0.000% 2.10402

compile 500 4072 6586 8041 0.000% 3.73703

execute 500 3786 5868 7660 0.000% 3.68878

evaluate 500 5113 7589 9276 0.000% 3.63446

TOTAL 1600 4065 6829 8629 0.000% 11.08955

Table 5.4: 100 users on 10 Apache workers

• 200 users

At this time, we had server maxconn at 100 and MaxRequestWorkers at 10. On

this configuration, we got the error rate of 4%. We then increased the MaxRequest-

Workers to 20, which solved the problem.

• 400 users

We now had server maxconn at 200 and MaxRequestWorkers at 20. On Ex-

ecuting the test plan for 400 users on these conditions we got 52% error%. So we

raised MaxRequestWorkers to 50 and the error% got reduced to 3%.

In WebApp we saw that the appropriate value of server maxconn was approximately

equal to the number of users in the workload. So we tried that ideology here and

got even worse results. The error% went up to 40%. Here are the results.

Label # Samples Average 90% Line 99% Line Max Error % Throughput

HTTP Request 400 4623 8447 9534 9732 0.000% 6.96512

compile 2000 4066 9198 30172 56024 38.200% 13.67549

execute 2000 3464 8145 30178 53033 43.050% 13.68420

evaluate 2000 4981 11810 33651 56014 49.100% 13.63447

TOTAL 6400 4198 9516 30181 56024 40.734% 41.67643

Table 5.5: 400 users on Engine with server maxconn 400

Compared to WebApp, Engine is handling more write-intensive queries. After ac-

cepting the connection request from proxy, it compiles the code, writes it into the

Chapter 5. Engine 59

database and then sends the processed feedback as response. So, when we raise

server maxconn to 400, the back-end server is flocked by the HTTP Requests, more

than it can handle and hence a greater chunk of requests fail.

Due to the nature of the requests being handled by the Engine, we considered in-

creasing the contimeout value to 50000. To test it’s contribution, we re-ran the

same test and got error% reduced to 20%. Here are the results.

Label # Samples Average 90% Line 99% Line Max Error % Throughput

HTTP Request 400 4522 8394 9156 9234 0.000% 7.02284

compile 2000 5426 10426 21831 53046 19.800% 11.11519

execute 2000 5635 10914 31319 58025 21.700% 11.12712

evaluate 2000 7336 13474 42387 58025 27.300% 11.14703

TOTAL 6400 6032 11664 31959 58025 21.500% 34.32666

Table 5.6: engine:400 users on Engine with contimeout 50000

So even though server maxconn is set higher than it should be, the tuning of con-

timeout parameter yields better results. Hence we kept it tuned for future testing.

Finally, we reset the server maxconn to 100 and got the following results at 50 apache

workers.

Label # Samples Average 90% Line 99% Line Max Error % Throughput

HTTP Request 400 5187 9718 10547 10692 0.000% 6.78196

compile 2000 6476 10408 13460 14537 0.000% 10.86195

execute 2000 6210 9003 12991 14216 0.000% 10.70761

evaluate 2000 8392 11718 16583 17059 0.000% 10.64192

TOTAL 6400 6911 10644 15207 17059 0.000% 32.84713

Table 5.7: engine:400 users on Engine with server maxconn 100

Now, if you notice the Maximum Response Time has drastically gone down. This is

because the response time calculation starts after a session [42] has been established.

A session comprises of 2 connections, one from the client to HAProxy, and the other

from HAProxy to the appropriate backend server. So in the case of 400 server

maxconn, session was formed, but the client had to wait as the server was not able

to finish up with the requests. In the case of 100 server maxconn, the proxy is

restricting the client from forming a session, which gives our back-end server enough

time to finish up the requests that it already has.

Chapter 5. Engine 60

• 500 users So till now we had server maxconn at 100 and MaxRequestWorkers at

50. On running the test plan for 500 users on these parameter settings, we got no

errors, but ART was too damn high to be of practical use.

Label # Samples Average 90% Line 99% Line Error % Throughput

HTTP Request 500 6757 12327 13536 0.000% 8.03303

compile 2500 9057 13468 15853 0.000% 11.50822

execute 2500 8270 11900 15406 0.000% 11.22254

evaluate 2500 10982 15456 17723 0.000% 11.00468

TOTAL 8000 9269 13625 17201 0.000% 33.98225

Table 5.8: engine:500 users on 50 MaxRequestWorkers

So we raised MaxRequestWorkers to 100 and got the following results.

Label # Samples Average 90% Line 99% Line Error % Throughput

HTTP Request 500 7277 13658 15095 0.000% 7.86819

compile 2500 6169 8754 10855 0.000% 13.44701

execute 2500 5669 7976 10060 0.000% 13.41662

evaluate 2500 8696 12092 14138 0.000% 13.33860

TOTAL 8000 6872 10440 13727 0.000% 40.90900

Table 5.9: 500 users on 100 MaxRequestWorkers

5.3.2 Reaching 1000 users

• 750 users For 750 users, we tried with 200 MaxRequestWorkers and server maxconn

100. Though the error% was 0 but here also ART was too high, 9secs for compilation

request and 12 secs for evaluation request. So we tried with server maxconn 200 and

MaxRequestWorkers 200, which gave the following results.

Label # Samples Average 90% Line 99% Line Error % Throughput

HTTP Request 750 14027 26275 28962 0.000% 9.62168

compile 3750 8030 10320 11913 0.000% 16.21383

execute 3750 7791 9978 11565 0.000% 16.06340

evaluate 3750 12223 16497 19060 0.000% 15.99529

TOTAL 12000 9640 15259 24478 0.000% 49.48637

Table 5.10: 750 users on 200 MaxRequestWorkers

Chapter 5. Engine 61

We had to settle with this value of ART. This is the lowest ART that we were able

to achieve for 750 users.

• 1000 users With 250 MaxRequestWorkers and 200 server maxconn we got the

following results.

Label # Samples Average 90% Line 99% Line Error % Throughput

HTTP Request 1000 21544 39184 43110 0.000% 10.86213

compile 5000 11493 14671 16051 0.000% 17.02319

execute 5000 11035 14020 15285 0.000% 16.88419

evaluate 5000 15173 20231 23232 0.000% 16.83717

TOTAL 16000 13128 19154 36584 0.000% 52.52584

Table 5.11: 1000 users on 250 MaxRequestWorkers

As we can see there is no error% but the ART of each request is above 10 seconds. So we

tried with 300 MaxRequestWorkers, but got the same result.

5.4 Other modifications

5.4.1 ORM Removal

Prutor uses RedBean [43] in the engine component for Database access. RedBean is an

ORM [44]. So first we should know what is ORM and why it is used.

The purpose of Object Relational Mapper (ORM) is to provide an intermediate layer

between 2 incompatible type-systems in an object-oriented environment. In the context

of database intensive application, these incompatible type-systems are data store and

programming objects. So, concisely we can say that ORMs maps a relational database

into an object which can be understood by the application’s programming environment.

Some of the most common features that ORM provides are.

• Handling Database Access ORM provides APIs for everything from connect-

ing to executing CRUD queries. So a developer does not need to write SQL code

himself/herself.

• Abstraction of the Database This point is a consequence of the previous point.

It is because of ORM APIs that developer does not need to bother about which

database has been used. ORM handles everything.

Chapter 5. Engine 62

• Security Provides security against SQL injection.

These features might sound fancy, but are of very little use in Prutor, especially in the

engine component. It is because of the following reasons.

• Engine mostly handles insertion queries. For a developer, writing SQL insert queries,

should not be a hairy task. There is not much to optimize here. Hence using an

ORM for database access in our case is clearly an overkill.

• There are many lightweight database connectors which provide security against SQL

injection. For instance, php’s native mysql connectors also provides a method in

which we can send prepared [45] statements to a MySQL server.

In general also, ORM’s advantages are it’s biggest disadvantages. Due to the abstraction

of task of query writing, we cannot optimize our queries. In addition to this the biggest

disadvantage of ORM is execution of extra queries, which has been discussed in the next

subsection.

5.4.1.1 Extra Queries

The main drawback of ORM that bugged us was the execution of unnecessary queries

before execution of relevant queries. We enabled general log system variable on our

mysql server and gathered the following logs for compilation, execution and evaluation

queries.

Figure 5.1: Queries executed during single compilation request

Chapter 5. Engine 63

Figure 5.2: Queries executed during single execution request

Figure 5.3: Queries executed during single evaluation request

The extra queries here have been highlighted in red. The reason behind their execution is

object creation of RedBean, which is exactly what ORMs do.

5.4.1.2 Usage of PDO

The PHP Data Objects (PDO) [46] is a lightweight interface for accessing databases in

PHP. PDO provides a data-access abstraction layer, rather than database abstraction.

This means that there is no mapping of relational tables to objects, no query building, no

emulation of missing features. It simply provides a unified API to issue queries and fetch

data into objects. Compared to an ORM like RedBean, it has the following advantages.

Chapter 5. Engine 64

• No Extra Queries As mentioned above that PDO does not involve in object map-

ping and query building, the queries that are executed on server are only the once

that we send.

• More control over the queries As PDO only abstracts the data-access layer, it

offers more control to developers. A developer can write his/her own queries with

their preferred optimization.

• Better Performance ORMs are full blown tools for database abstraction. They are

built over Database Access Layer (DALs) like PDO. Due to less abstraction involved

in PDO, PDOs are much better when it comes to speed and performance.

• No need to install PDOs come bundled along with PHP.

In addition to the above benefits, PDOs cover almost all the key functionalities which

ORMs provide.

• Security PDO has a concept of Prepared Statements [45], where a statement

is first prepared by putting placeholders for the parameters. PDO supports both

positional and named placeholders. These placeholders are then filled with parameter

values and the completed query string is sent to server. This process of preparing

and executing ensures security against SQL injection.

• Consistency across databases This is however not relevant in our case, but the

API that PDO provides is consistent across databases. The only that changes is the

PDO driver. So as a developer we need not worry about the change in code, if our

database is changed.

In the next section, we have discussed about the unnecessary MySQL queries that we

removed from the code flow.

5.4.2 Removal of unncessary DB hits

We have called some sql queries as unnecessary because they fall into either of the following

categories. We have listed down the queries that we removed under each category.

• Queries that fetched results that could have been provided as POST parameters.

Chapter 5. Engine 65

– Fetching assignment Before compiling each code of an assignment, the com-

pile API retrieves the respective assignment tuple from the database. It uses

the event id field in this tuple and concatenates with the assignment id to

name the executable that is built after compilation.

Figure 5.4: Extra MySQL Query: Fetch assignment

– Fetching Programming Environment Evaluation API fetches the program-

ming environment for each request.

We found that the results of these queries could have been easily passed in

POST parameters and hence there was no explicit need for their execution.

• Queries that were redundant or single query might have done the job of multiple

queries.

– Fetching Test cases We found that in the evaluation API there were 2 seperate

calls for fetching visible and invisible test cases. This could have been easily

done by a single query.

Figure 5.5: Extra MySQL Query: Fetch visible test cases

Figure 5.6: Extra MySQL Query: Fetch invisible testcases

5.4.3 Removal of NoSQL hits

As mentioned in sec 2.1.3, the NoSQL component in Prutor is the container running

MongoDB. It stores several collections, only 2 of which are accessed by the engine. One is

env which stores information like output extension, compile command, source extension

and binary extension. The other one is configs, which stores information related to the

various config parameters such as telemetry, delays and hooks. The data that we just

talked about is static data, because it would never be the case that, within a session,

a source extension or a compile command for a particular programming language has

changed.

Chapter 5. Engine 66

So we noticed that since the data is static and very small, we do not need a database for it.

We can easily store that data in a file and read for every compilation request. So we have

written a class named StaticConfig in systems which would decode the strings read

from the json files and return it to the compile method from where it was called. Now,

the problem in our approach is that if someone updates these collections, those changes

will not be reflected in our file. To do this job we have added a script which would need

to be run by the administrator. The job of the script is as follows.

• Dump data of environments and configs collection in the nosql container.

• Bring the dump files onto the base machine.

• Parse the data as required by our class. Wrote a PHP script for this too by the name

createStatic.php.

• The script will create 2 files which will be read by the methods of our class.

5.5 Results

5.5.1 Reduction in Queries

Figure 5.7: Queries executed during compilation after our changes

Figure 5.8: Queries executed during execution after our changes

Figure 5.9: Queries executed during evaluation after our changes

Chapter 5. Engine 67

5.5.2 Comparative Results

 0

 20

 40

 60

 80

 100

 120

100 200 400 500 750 1000

E
rr

o
r(

%
)

of VUs

Comparison of before and after on
 10 Apache Workers

Before

After

Figure 5.10: Comparison of before
and after for 10 Apache Workers

 0

 20

 40

 60

 80

 100

 120

100 200 400 500 750 1000

E
rr

o
r(

%
)

of VUs

Comparison of before and after on
 20 Apache Workers

Before

After

Figure 5.11: Comparison of before
and after for 20 Apache Workers

 0

 20

 40

 60

 80

 100

 120

100 200 400 500 750 1000

E
rr

o
r(

%
)

of VUs

Comparison of before and after on
 40 Apache Workers

Before

After

Figure 5.12: Comparison of before
and after for 4 engines

 0

 20

 40

 60

 80

 100

 120

100 200 400 500 750 1000

E
rr

o
r(

%
)

of VUs

Comparison of before and after on
 80 Apache Workers

Before

After

Figure 5.13: Comparison of before
and after for 8 engines

 0

 20

 40

 60

 80

 100

 120

100 200 400 500 750 1000

E
rr

o
r(

%
)

of VUs

Comparison of before and after on
 160 Apache Workers

Before

After

Figure 5.14: Comparison of before and after for 16 engines

The figures above show a comparison of performance of Engine before and after our

changes. The violet line denotes the baseline and the green line denotes results after

our changes. Our changes led the Engine to serve 1000 users with no error% and the

average response time of nearly 13 seconds (as mentioned in table 5.11).

Chapter 5. Engine 68

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

100 200 400 500 750 1000

A
v
e
ra

g
e
 R

e
sp

o
n
se

 T
im

e

of VUs

Comparative analysis of engine performance
 before and after code changes

Before

After

Figure 5.15: Comparison of engine before and after our code changes

Here we have shown the comparison between the response times achieved in 2 scenarios.

The violet line denotes the scenario just after parameter tuning of Engine. The green

line denotes the scenario after all the code changes along with parameter tuning. For a

particular number of user, these response times were achieved using the same number of

workers and same parameter values. We can see that the green line is consistently below

the violet line thereby making the operations faster by nearly 1 second on an average per

query.

Chapter 6

End Result Peformance

Comparison

At IITKanpur, Prutor has been deployed on a machine with 32GB RAM and 48 core Xeon

1.87 GHz processor. Whatever results we have gathered, were on a machine with 16GB

RAM and 8 core i7 3.40 GHz processor. Therefore our work would be incomplete, if we

do not test the performance on the production server. In this chapter we have shown via

several plots that the 8 core machine far outperforms the 48 core machine. Just like Sec.

3.4.5 and Sec. 5.5.2, we have shown comparative results for 48 core machine also. This is

then followed by the combined results on both machines. It then finally concludes with a

tabulated summary of the parameter tuning done throughout the thesis.

6.1 Comparative Results of WebApp on 48 core machine

 0

 20

 40

 60

 80

 100

 120

 140

100 200 400 500 750 1000

E
rr

o
r(

%
)

of VUs

Comparison of before and after
 for 1 Node Worker on

 48 core xeon: #VUs v/s Error(%)

Before

After

Figure 6.1: Comparison of before and
after for 1 Node Worker on 48 core ma-

chine

 0

 20

 40

 60

 80

 100

 120

 140

100 200 400 500 750 1000

E
rr

o
r(

%
)

of VUs

Comparison of before and after
 for 2 Node Workers

 on 48 core xeon: #VUs v/s Error(%)

Before

After

Figure 6.2: Comparison of before and
after for 2 Node Workers on 48 core ma-

chine

69

Chapter 6. Peformance Comparison on 8 core i7 and 48 core xeon 70

 0

 20

 40

 60

 80

 100

 120

 140

100 200 400 500 750 1000

E
rr

o
r(

%
)

of VUs

Comparison of before and after for
 4 Node Workers on

 48 core xeon: #VUs v/s Error(%)

Before

After

Figure 6.3: Comparison of before and
after for 4 Node Workers on 48 core ma-

chine

 0

 20

 40

 60

 80

 100

 120

 140

200 400 500 750 1000 1500 2000 3000

E
rr

o
r(

%
)

of VUs

Comparison of before and after for
 8 Node Workers on

 48 core xeon: #VUs v/s Error(%)

Before

After

Figure 6.4: Comparison of before and
after for 8 Node Workers on 48 core ma-

chine

 0

 20

 40

 60

 80

 100

 120

 140

400 500 750 1000 1500 2000 3000

E
rr

o
r(

%
)

of VUs

Comparison of before and after for
 16 Node Workers on

 48 core xeon: #VUs v/s Error(%)

Before

After

Figure 6.5: Comparison of before and
after for 16 Node Workers on 48 core

machine

 0

 20

 40

 60

 80

 100

 120

 140

750 1000 1500 2000 3000

E
rr

o
r(

%
)

of VUs

Comparison of before and after for
 24 Node Workers on

 48 core xeon: #VUs v/s Error(%)

Before

After

Figure 6.6: Comparison of before and
after for 24 Node Workers on 48 core

machine

6.2 Comparative Results of Engine on 48 core machine

 0

 20

 40

 60

 80

 100

 120

 140

100 200 400 500 750 1000

E
rr

o
r(

%
)

of VUs

Comparison of before and after
 Engine performance on

 10 Workers for 48 core machine

Before

After

Figure 6.7: Comparison of before and
after for 10 Apache Worker on 48 core

machine

 0

 20

 40

 60

 80

 100

 120

 140

100 200 400 500 750 1000

E
rr

o
r(

%
)

of VUs

Comparison of before and after
 Engine performance on

 20 Workers for 48 core machine

Before

After

Figure 6.8: Comparison of before and
after for 20 Apache Workers on 48 core

machine

Chapter 6. Peformance Comparison on 8 core i7 and 48 core xeon 71

 0

 20

 40

 60

 80

 100

 120

 140

100 200 400 500 750 1000

E
rr

o
r(

%
)

of VUs

Comparison of before and after
 Engine performance on

 40 Workers for 48 core machine

Before

After

Figure 6.9: Comparison of before and
after for 40 Apache Workers on 48 core

machine

 0

 20

 40

 60

 80

 100

 120

 140

100 200 400 500 750 1000

E
rr

o
r(

%
)

of VUs

Comparison of before and after
 Engine performance on

 80 Workers for 48 core machine

Before

After

Figure 6.10: Comparison of before
and after for 80 Apache Workers on 48

core machine

 0

 20

 40

 60

 80

 100

 120

 140

100 200 400 500 750 1000

E
rr

o
r(

%
)

of VUs

Comparison of before and after
 Engine performance on

 160 Workers for 48 core machine

Before

After

Figure 6.11: Comparison of before and after for 160 Apache workers on 48 core machine

6.3 8 core i7 V/s 48 core xeon Comparison of WebApp

The plots here show a comparison of the performance of WebApp on both the machines.

In the Fig. 6.12, our metric on x axis is number of users and on y axis is number of

node workers required. For a particular value of x, we have captured the number of Node

workers that were needed to handle x users without any error% and a satisfactory response

time.

Chapter 6. Peformance Comparison on 8 core i7 and 48 core xeon 72

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

100 200 400 500 750 1000 1500 2000 3000

#
N

o
d
e
 W

o
rk

e
rs

 r
e
q
u
ir

e
d

of VUs

Comparison of #Node Workers required:
8 core i7 V/s 48 core xeon

8 core i7

48 core xeon

Figure 6.12: Comparison of Node workers on 8 core i7 and 48 core xeon

The plot indeed shows that to support the same number of users, the 8 core machine

requires far less amount of node workers than the 48 core machine.

In the Fig. 6.13, we have plotted the response times for each x value, achieved with the

respective number of node workers shown in the above plot. Now in the case of WebApp

as 90% queries are read-only, we got a very satisfactory and reasonable response time in

each case. We could have achieved a better response time for each value, but for that we

had to increase the number of node workers. This in turn would have meant giving more

computing resources to WebApp, even when it is not required.

Chapter 6. Peformance Comparison on 8 core i7 and 48 core xeon 73

 0

 500

 1000

 1500

 2000

 2500

 3000

100 200 400 500 750 1000 1500 2000 3000

B
e
st

 A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e

of VUs

Comparison of Best Response Times
 achieved on WebApp:

8 core i7 V/s 48 core xeon

8 core i7

48 core xeon

Figure 6.13: Comparison of WebApp Response Times on 8 core i7 and 48 core xeon

We can see that the response time of the 8 core machine (violet line) is always lower than

the response time of 48 core machine, except for 2 points. We executed the test for 500

users on double the node workers as shown and found the response time nearly halved,

which was not even required, so we stayed with this value. In addition to this, if we notice

the lines after 2000, we will see that the 48 core line keeps on rising, but the 8 core line

drops. The reason for this drop is that we increased the number of node workers for 3000.

This shows that in case of 8 core machine, our system has not got saturated yet and it is

indeed responding to the horizontal scaling.

6.4 8 core i7 V/s 48 core xeon Comparison of Engine

Here for each value of number of users, we have compared the number of Apache workers

required to handle their workload with 0 error%. In the case of 48 core machine, for 750

and 1000 users we were not able to get full 100% success. In case of 750 users we got

0.87% and for 1000 we got 6% error%, whereas 8 core machine reported full 100% success

with lesser response time and fewer apache workers.

Chapter 6. Peformance Comparison on 8 core i7 and 48 core xeon 74

 0

 50

 100

 150

 200

 250

 300

 350

 400

100 200 400 500 750 1000

#
A

p
a
ch

e
 W

o
rk

e
rs

 r
e
q
u
ir

e
d

of VUs

Comparison of #Apache Workers required:
8 core i7 V/s 48 core xeon

8 core i7

48 core xeon

Figure 6.14: Comparison of Apache Workers on 8 core i7 and 48 core xeon

The above figure shows that the number of apache workers required by the 8 core machine

are always less than or equal to the number reported by the 48 core machine.

 0

 10000

 20000

 30000

 40000

 50000

 60000

100 200 400 500 750 1000

B
e
st

 A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e

of VUs

Comparison of Best Response Times achieved on Engine:
8 core i7V/s 48 core xeon

8 core i7

48 core xeon

Figure 6.15: Comparison of Engine Response Times on 8 core i7 and 48 core xeon

Here the difference is drastic. Where in the most extreme scenario also, the 8 core line

barely crosses 10 seconds mark, the 48 core line reaches 20 seconds for half the load and

skyrockets to nearly 50 seconds for 1000 users.

Chapter 6. Peformance Comparison on 8 core i7 and 48 core xeon 75

We also conclude that the performance of the 8 core i7 is far more superior than the 48

core xeon, in every aspect. Although with 48 core machine we have been able to reach

equal number of users as the 8 core i7, but the response times and number of servers

required are far more than we need with the 8 core machine.

6.5 Variation of WebApp Performance based on cores

Here we study the weightage of cores in webapp performance. To do that we have picked

up the scenario of 1000 users. For parameter tuning for 1000 users, we refer to the table

6.4. Now here though the experimentation has been done on the 48 core machine, we

have simulated less cores by restricting the core usage of the docker containers of Prutor.

For restricting core usage, we have used the hook –cpustat-cpus along with docker run

command.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2 4 8 10 12 16

E
rr

o
r(

%
)

Number of Cores alloted to Webapp

Comparison of Error(%) for
 1000 users on varying cores

1000 users

Figure 6.16: Comparison of Engine Response Times on 8 core i7 and 48 core xeon

6.6 Parameter Summary

Due to lack of column space, some acronyms have been used. They are as follows.

• ESM - Engine Server Maxconn

• LM - Listen Maxconn

Chapter 6. Peformance Comparison on 8 core i7 and 48 core xeon 76

• MRW - MaxRequestWorkers

• NW - Node Workers

Here NW Best and MRW Best indicates that if if we increase the respective parameter

to the value in these columns, then the response time will be better than satisfactory.

Increasing beyond these vaues will be an overkill. If you need to increase beyond these

values, then that means, it has nothing to do with the scalability and something else is

wrong.

6.6.1 Engine on 8 core

Users ESM LM MRW MRW Best Node workers

100 100 5000 10 10 1

200 100 5000 20 20 2

400 100 5000 50 50 4

500 100 5000 100 100 4

750 200 5000 200 200 6

1000 200 5000 250 250 6

Table 6.1: Parameter values for Engine on 8 core machine

6.6.2 WebApp on 8 core

Users WSM LM NW NW Best

100 100 500 1 1

200 200 1000 2 2

400 400 2000 2 2

500 500 2000 2 2

750 800 3000 4 4

1000 1000 4000 4 4

1500 1500 5000 6 6

2000 2000 5000 8 8

3000 3000 6000 16 16

Table 6.2: Parameter values for WebApp on 8 core machine

Chapter 6. Peformance Comparison on 8 core i7 and 48 core xeon 77

Although the listen maxconn should be set to a higher value like atleast 5000 for all the

cases, but we have anyway given the values that we found to be just as sufficient for the

respective case.

6.6.3 Engine on 48 core

Users ESM LM MRW MRW Best Node workers

100 100 5000 10 10 2

200 100 5000 20 40 4

400 100 5000 50 100 6

500 100 5000 100 100 6

750 200 5000 200 200 8

1000 200 5000 300 300 10

Table 6.3: Parameter values for Engine on 48 core machine

6.6.4 WebApp on 48 core

Users WSM LM NW NW Best

100 100 500 1 2

200 200 1000 2 4

400 400 2000 4 6

500 500 2000 4 6

750 800 3000 8 8

1000 1000 4000 8 10

1500 1500 5000 16 16

2000 2000 5000 16 18

3000 3000 6000 24 26

Table 6.4: Parameter values for WebApp on 48 core machine

Chapter 6. Peformance Comparison on 8 core i7 and 48 core xeon 78

6.6.5 Combined on 8 core

Users WSM ESM NW NW Best MRW MRW Best

100 100 100 1 1 10 10

200 100 100 1 1 10 20

400 100 100 2 2 20 50

500 200 100 2 2 50 50

750 400 200 4 4 100 150

1000 400 200 4 4 200 250

Table 6.5: Parameter values for Handling Combined Workload on 8 core machine

6.6.6 Combined on 48 core

Users WSM ESM NW NW Best MRW MRW Best

100 100 100 1 1 10 10

200 200 100 2 2 20 40

400 400 100 4 4 50 100

500 500 100 4 6 100 150

750 500 200 8 8 150 250

1000 500 200 8 10 250 300

Table 6.6: Parameter values for Combined Workload on 48 core machine

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The main conclusion of our thesis is, if we want our system to be horizontally scalable,

we should pay special attention in tuning the components in its technology stack. Simple

spawning of more servers will, at some point make the system saturated and resistant to

scaling out, which was exactly the case with prutor.

We saw how monitoring tools can give us really meaningful log insights. The Error Ana-

lytics feature of NewRelic has been quite instrumental in leading us to the reverse proxy.

We witnessed how Database Abstraction can prove to be an overkill in an application.

ORM removal reduced the number of queries from 12 to 3 per compilation. We also learnt

that API should use database in a judicious manner. By judicious, we mean that if some

parameters can be passed as HTTP Request Parameters, we should use that, instead of

repeatedly fetching them from the database.

We also ran benchmark tests on 8 core i7 machine and 48 core xeon machine. We finally

arrived at a conjecture that 8 core i7 machine due to its superior clock speed (3.40 GHz)

far outperforms the 48 core xeon machine (1.87 GHz). We conclude by giving a tabular

summary of parameters for each component, which can be used by Prutor admins to

prepare servers according to the expected number of users.

79

Bibliography 80

7.2 Future Work

• Although NewRelic Error analytics and Transaction traces gave a lot of useful in-

formation, we still feel that a more in-depth profiling will be of more use in future.

For that one can refer linux profiling tools like gperf.

• ORM removal gave us some substantial gain in the performance, but we feel that

the whole request and response flow of compilation needs to be re-architected.

• In a complete request cycle of compilation, the engine has to accept the connection,

run the code in sandbox, insert compilation results in database, process these results

for better readability and then send them to the client as response. Currently, after

sending a compilation request, a user is blocked till he/she receives the response. In

case of heavy workload, it may lead to wastage of lot of time. This whole model of

a transaction is categorized as synchronous or blocking. This can be done in a non-

blocking manner with the help of Distributed Job Severs like Gearman.Specifically

the job of compilation and inserting the logs into the database can be outsourced to

Gearman workers and the job of fetching the results should be left to the client.

• In the current system, every component is running on a single system in docker

containers. Some experimentations can be done with a distributed setup, where we

can give seperate machines to Engine and WebApp.

Bibliography

[1] Rajdeep Das, Umair Z. Ahmed, Amey Karkare, and Sumit Gulwani, “Prutor: A

system for tutoring CS1 and collecting student programs for analysis,” CoRR,

vol. abs/1608.03828, 2016.

[2] “Coursera — online courses & credentials from top educators. join for free.” https:

//www.coursera.org/.

[3] “edx — online courses from the world’s best universities.” https://www.edx.org/.

[4] “Free online courses and nanodegree programs — udacity.” https://in.udacity.

com/.

[5] “Get started, part 1: Orientation and setup — docker documentation.” https://

docs.docker.com/get-started/.

[6] “What are containers (i.e. docker linux containers / software

cont.” https://www.sdxcentral.com/cloud/containers/definitions/

what-are-containers-like-docker-linux-containers/.

[7] “Haproxy version 1.7.10 - configuration manual.” https://cbonte.github.io/

haproxy-dconv/1.7/configuration.html.

[8] “Benefits of layer 7 load balancing — nginx load balancer.” https://www.nginx.

com/resources/glossary/layer-7-load-balancing/.

[9] “Mysql :: Mysql 5.7 reference manual.” https://dev.mysql.com/doc/refman/5.7/

en/.

[10] “Mongodb documentation.” https://docs.mongodb.com/.

[11] “Github - memcached/memcached: memcached development tree.” https://

github.com/memcached/memcached.

81

https://www.coursera.org/
https://www.coursera.org/
https://www.edx.org/
https://in.udacity.com/
https://in.udacity.com/
https://docs.docker.com/get-started/
https://docs.docker.com/get-started/
https://www.sdxcentral.com/cloud/containers/definitions/what-are-containers-like-docker-linux-containers/
https://www.sdxcentral.com/cloud/containers/definitions/what-are-containers-like-docker-linux-containers/
https://cbonte.github.io/haproxy-dconv/1.7/configuration.html
https://cbonte.github.io/haproxy-dconv/1.7/configuration.html
https://www.nginx.com/resources/glossary/layer-7-load-balancing/
https://www.nginx.com/resources/glossary/layer-7-load-balancing/
https://dev.mysql.com/doc/refman/5.7/en/
https://dev.mysql.com/doc/refman/5.7/en/
https://docs.mongodb.com/
https://github.com/memcached/memcached
https://github.com/memcached/memcached

Bibliography 82

[12] “Node.js express framework.” https://www.tutorialspoint.com/nodejs/nodejs_

express_framework.htm.

[13] “Php: Php manual - manual.” http://php.net/manual/en/.

[14] “Sandbox (computer security) - wikipedia.” https://en.wikipedia.org/wiki/

Sandbox_(computer_security).

[15] “https://raw.githubusercontent.com/pixelb/ps mem/master/ps mem.py.” https://

raw.githubusercontent.com/pixelb/ps_mem/master/ps_mem.py.

[16] “Welcome to etd @ iit kanpur: Impact of component selection and configuration

parameters on the performance of a web application.” http://172.28.64.70:8080/

jspui/handle/123456789/14415.

[17] “Welcome to etd @ iit kanpur: Application level benchmarks: Mms on lamp and

mean stacks.” http://172.28.64.70:8080/jspui/handle/123456789/15460.

[18] “Impact of deployment architectures and virtualisation platforms on the performance

of a web application.” http://172.28.64.70:8080/jspui/bitstream/123456789/

14414/2/12111053.pdf. (Accessed on 06/16/2018).

[19] “Welcome to etd @ iit kanpur: Application level benchmarks: Mooc management sys-

tem in erlang and node.js.” http://172.28.64.70:8080/jspui/handle/123456789/

16272. (Accessed on 06/16/2018).

[20] “Y8111020.pdf.” http://172.28.64.70:8080/jspui/bitstream/123456789/

11748/6/Y8111020.pdf. (Accessed on 06/16/2018).

[21] T. M. Ahmed, C.-P. Bezemer, T.-H. Chen, A. E. Hassan, and W. Shang, “Studying

the effectiveness of application performance management (apm) tools for detecting

performance regressions for web applications: An experience report,” in Proceedings

of the 13th International Conference on Mining Software Repositories, MSR ’16, (New

York, NY, USA), pp. 1–12, ACM, 2016.

[22] “Performance testing vs. load testing vs. stress test-

ing — blazemeter.” https://www.blazemeter.com/blog/

performance-testing-vs-load-testing-vs-stress-testing.

[23] “System under test - wikipedia.” https://en.wikipedia.org/wiki/System_under_

test.

https://www.tutorialspoint.com/nodejs/nodejs_express_framework.htm
https://www.tutorialspoint.com/nodejs/nodejs_express_framework.htm
http://php.net/manual/en/
https://en.wikipedia.org/wiki/Sandbox_(computer_security)
https://en.wikipedia.org/wiki/Sandbox_(computer_security)
https://raw.githubusercontent.com/pixelb/ps_mem/master/ps_mem.py
https://raw.githubusercontent.com/pixelb/ps_mem/master/ps_mem.py
http://172.28.64.70:8080/jspui/handle/123456789/14415
http://172.28.64.70:8080/jspui/handle/123456789/14415
http://172.28.64.70:8080/jspui/handle/123456789/15460
http://172.28.64.70:8080/jspui/bitstream/123456789/14414/2/12111053.pdf
http://172.28.64.70:8080/jspui/bitstream/123456789/14414/2/12111053.pdf
http://172.28.64.70:8080/jspui/handle/123456789/16272
http://172.28.64.70:8080/jspui/handle/123456789/16272
http://172.28.64.70:8080/jspui/bitstream/123456789/11748/6/Y8111020.pdf
http://172.28.64.70:8080/jspui/bitstream/123456789/11748/6/Y8111020.pdf
https://www.blazemeter.com/blog/performance-testing-vs-load-testing-vs-stress-testing
https://www.blazemeter.com/blog/performance-testing-vs-load-testing-vs-stress-testing
https://en.wikipedia.org/wiki/System_under_test
https://en.wikipedia.org/wiki/System_under_test

Bibliography 83

[24] “What is performance testing and types of performance testing?.” http://www.

softwaretestingclass.com/what-is-performance-testing/.

[25] “Load testing software: Application testing tools.” https://software.microfocus.

com/en-us/products/loadrunner-load-testing/overview.

[26] “Webload - website and application performance testing.” https://www.radview.

com/webload-download/.

[27] “Apache jmeter - user’s manual: Building a web test plan.” https://jmeter.apache.

org/usermanual/build-web-test-plan.html.

[28] “Fundamentals of performance profiling.” https://smartbear.com/learn/

code-profiling/fundamentals-of-performance-profiling/.

[29] “File system — node.js v10.1.0 documentation.” https://nodejs.org/api/fs.html.

[30] “Node.js cluster and express.” https://rowanmanning.com/posts/

node-cluster-and-express/.

[31] “learning-express-cluster/app.js at master · rowanmanning/learning-express-cluster

· github.” https://github.com/rowanmanning/learning-express-cluster/blob/

master/app.js.

[32] “Increasing the maximum number of tcp/ip connections in linux

- stack overflow.” https://stackoverflow.com/questions/410616/

increasing-the-maximum-number-of-tcp-ip-connections-in-linux.

[33] “https://klaver.it/linux/sysctl.conf.” https://klaver.it/linux/sysctl.conf.

[34] “Tuning your linux kernel and haproxy instance

for high loads.” https://medium.com/@pawilon/

tuning-your-linux-kernel-and-haproxy-instance-for-high-loads-1a2105ea553e.

[35] “Mysql :: Mysql 5.7 reference manual :: 8.8 understanding the query execution plan.”

https://dev.mysql.com/doc/refman/5.7/en/execution-plan-information.

html.

[36] “Materialized views with mysql — mysql, galera cluster and mariadb support and

services.” http://www.fromdual.com/mysql-materialized-views.

[37] “Getting started with mysql stored procedures.” http://www.mysqltutorial.org/

getting-started-with-mysql-stored-procedures.aspx.

http://www.softwaretestingclass.com/what-is-performance-testing/
http://www.softwaretestingclass.com/what-is-performance-testing/
https://software.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://software.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.radview.com/webload-download/
https://www.radview.com/webload-download/
https://jmeter.apache.org/usermanual/build-web-test-plan.html
https://jmeter.apache.org/usermanual/build-web-test-plan.html
https://smartbear.com/learn/code-profiling/fundamentals-of-performance-profiling/
https://smartbear.com/learn/code-profiling/fundamentals-of-performance-profiling/
https://nodejs.org/api/fs.html
https://rowanmanning.com/posts/node-cluster-and-express/
https://rowanmanning.com/posts/node-cluster-and-express/
https://github.com/rowanmanning/learning-express-cluster/blob/master/app.js
https://github.com/rowanmanning/learning-express-cluster/blob/master/app.js
https://stackoverflow.com/questions/410616/increasing-the-maximum-number-of-tcp-ip-connections-in-linux
https://stackoverflow.com/questions/410616/increasing-the-maximum-number-of-tcp-ip-connections-in-linux
https://klaver.it/linux/sysctl.conf
https://medium.com/@pawilon/tuning-your-linux-kernel-and-haproxy-instance-for-high-loads-1a2105ea553e
https://medium.com/@pawilon/tuning-your-linux-kernel-and-haproxy-instance-for-high-loads-1a2105ea553e
https://dev.mysql.com/doc/refman/5.7/en/execution-plan-information.html
https://dev.mysql.com/doc/refman/5.7/en/execution-plan-information.html
http://www.fromdual.com/mysql-materialized-views
http://www.mysqltutorial.org/getting-started-with-mysql-stored-procedures.aspx
http://www.mysqltutorial.org/getting-started-with-mysql-stored-procedures.aspx

Bibliography 84

[38] “Mysql triggers.” http://www.mysqltutorial.org/mysql-triggers.aspx.

[39] “innodb buffer pool size: get the best of your memory - speedemy.”

https://www.speedemy.com/mysql/17-key-mysql-config-file-settings/

innodb_buffer_pool_size/.

[40] “Calculating innodb buffer pool size for your mysql server.” https://scalegrid.io/

blog/calculating-innodb-buffer-pool-size-for-your-mysql-server/.

[41] “Mysql innodb performance improvement: Innodb buffer pool in-

stances - updated! - sysadmins of the north.” https://www.saotn.org/

mysql-innodb-performance-improvement/.

[42] “Monitoring haproxy performance metrics.” https://www.datadoghq.com/blog/

monitoring-haproxy-performance-metrics/.

[43] “Redbeanphp :: Welcome.” https://redbeanphp.com/index.php.

[44] “Object-relational mapping - wikipedia.” https://en.wikipedia.org/wiki/

Object-relational_mapping.

[45] “Php prepared statements.” https://www.w3schools.com/php/php_mysql_

prepared_statements.asp.

[46] “(the only proper) pdo tutorial - treating php delusions.” https://phpdelusions.

net/pdo.

[47] “How to install java on ubuntu 16.04 — rosehosting blog.” https://www.

rosehosting.com/blog/how-to-install-java-on-ubuntu-16-04/. (Accessed on

06/01/2018).

[48] “amazon web services - setting up jmeter for distributed testing in aws with connec-

tivity issues - stack overflow.” https://stackoverflow.com/questions/16618915/

setting-up-jmeter-for-distributed-testing-in-aws-with-connectivity-issues/

32260139#32260139.

[49] “Mysql :: A quick guide to using the mysql apt repository.” https://dev.mysql.

com/doc/mysql-apt-repo-quick-guide/en/.

[50] “Install servers for linux with yum or apt — new relic documentation.”

https://docs.newrelic.com/docs/servers/new-relic-servers-linux/

installation-configuration/install-servers-linux-yum-or-apt.

http://www.mysqltutorial.org/mysql-triggers.aspx
https://www.speedemy.com/mysql/17-key-mysql-config-file-settings/innodb_buffer_pool_size/
https://www.speedemy.com/mysql/17-key-mysql-config-file-settings/innodb_buffer_pool_size/
https://scalegrid.io/blog/calculating-innodb-buffer-pool-size-for-your-mysql-server/
https://scalegrid.io/blog/calculating-innodb-buffer-pool-size-for-your-mysql-server/
https://www.saotn.org/mysql-innodb-performance-improvement/
https://www.saotn.org/mysql-innodb-performance-improvement/
https://www.datadoghq.com/blog/monitoring-haproxy-performance-metrics/
https://www.datadoghq.com/blog/monitoring-haproxy-performance-metrics/
https://redbeanphp.com/index.php
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping
https://www.w3schools.com/php/php_mysql_prepared_statements.asp
https://www.w3schools.com/php/php_mysql_prepared_statements.asp
https://phpdelusions.net/pdo
https://phpdelusions.net/pdo
https://www.rosehosting.com/blog/how-to-install-java-on-ubuntu-16-04/
https://www.rosehosting.com/blog/how-to-install-java-on-ubuntu-16-04/
https://stackoverflow.com/questions/16618915/setting-up-jmeter-for-distributed-testing-in-aws-with-connectivity-issues/32260139#32260139
https://stackoverflow.com/questions/16618915/setting-up-jmeter-for-distributed-testing-in-aws-with-connectivity-issues/32260139#32260139
https://stackoverflow.com/questions/16618915/setting-up-jmeter-for-distributed-testing-in-aws-with-connectivity-issues/32260139#32260139
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://docs.newrelic.com/docs/servers/new-relic-servers-linux/installation-configuration/install-servers-linux-yum-or-apt
https://docs.newrelic.com/docs/servers/new-relic-servers-linux/installation-configuration/install-servers-linux-yum-or-apt

Appendices

85

Appendix A

Apache JMeter: Setup

Instructions

A.1 Apache JMeter: Setup Guide

A.1.1 Java Installation

These steps have been taken from [47].

• sudo apt-get update && sudo apt-get -y upgrade

• sudo apt-get install software-properties-common

• sudo apt-add-repository ppa:webupd8team/java

• sudo apt-get update

• sudo apt install oracle-java8-installer

• java -version

A.1.2 JMeter Installation

• If GUI available Go to the downloads page of Apache JMeter. Look for the latest

release of Apache JMeter. In this thesis we used Apache-JMeter 3.3, which requires

Java 8 or Java 9. Download it.

86

http://jmeter.apache.org/download_jmeter.cgi

Appendix A. Apache JMeter:Setup Instructions 87

• If GUI not available Run the following command:wget www-us. apache. org/

dist/ /jmeter/ binaries/ apache-jmeter-3. 3. tgz

• Place the JMeter archive in your home directory. Any directory will work.

• cd home

• tar -xvzf apache-jmeter-3.3.tgz

• This will create directory apache-jmeter-3.3

• cd apache-jmeter-3.3

• cd bin

• Inorder to launch the GUI run ./jmeter

• Inorder to launch it in GUI mode with a test plan run ./jmeter -t <test plan >.jmx

Test plans in JMeter when viewed in any editor have xml like structure and

have extension as .jmx

Here <test plan >, path relative to bin/jmeter binary or the absolute path

from root will work.

By following the above steps, you will be able to setup JMeter on your machine. When

JMeter is run with a sample test plan, following is the screen that you will see.

www-us.apache.org/dist//jmeter/binaries/apache-jmeter-3.3.tgz
www-us.apache.org/dist//jmeter/binaries/apache-jmeter-3.3.tgz

Appendix A. Apache JMeter:Setup Instructions 88

Figure A.1: JMeter:Home Screen

A.1.2.1 Jargons of JMeter

This screen depicts a typical view of JMeter in GUI mode. Let’s go through the important

functionalities and Jargons that it offer one by one.

• Test Plan - A Test Plan typically describes the steps that Jmeter will execute

when run. It comprises of a huge number of elements. For a detailed view of the

configurations related to a test plan, please visit the link http: // jmeter. apache.

org/ usermanual/ build-test-plan. html .

• Thread Group - The thread group element controls the number of threads, JMeter

will generate during a run. The controls for a thread group allow you to do the

following.

– Set the number of threads

– Set the ramp-up period

– Set the number of times to execute the test

Adding Thread Group to a test plan

http://jmeter.apache.org/usermanual/build-test-plan.html
http://jmeter.apache.org/usermanual/build-test-plan.html

Appendix A. Apache JMeter:Setup Instructions 89

– Right click on Test Plan.

– Select Add → Threads(users)→ ThreadGroup.

After following the above steps you will see the following screen.

Figure A.2: JMeter:Thread Group added

• Number of Threads - Each thread will execute the complete test plan independent

of other test threads. Multiple threads are used to simulate concurrent connections

to your server application.

• Ramp-up period - The ramp-up period tells JMeter how long to take to ”ramp-

up” to the full number of threads chosen. If 10 threads are used, and the ramp-up

period is 100 seconds, then JMeter will take 100 seconds to get all 10 threads up

and running. Each thread will start 10 (100/10) seconds after the previous thread

was begun. If there are 30 threads and a ramp-up period of 120 seconds, then each

successive thread will be delayed by 4 seconds.

Ramp-up needs to be long enough to avoid too large a work-load at the start of a

test, and short enough that the last threads start running before the first ones finish

(unless one wants that to happen).

• Loop count - The loop count tells, how many times each thread will run.

Now whatever elements are needed will be added to the Thread Group.

• Controllers - JMeter has 2 types of controllers.

– Samplers - Samplers tell JMeter to send requests to a server and wait for a

response. They are processed in the order they appear in the tree. Some of the

key JMeter samplers include.

Appendix A. Apache JMeter:Setup Instructions 90

∗ HTTP Request.

∗ JDBC Request.

∗ FTP Request.

Each Sampler has its own options and can be configured to suit user’s Require-

ments. We have only used HTTP Requests, so we here will explain configuration

of HTTP Request sampler.

– Logic Controllers - Through Logic Controllers, Jmeter decide, the order and

number of times to send the request. The only Logic controller that I have used

is Only-Once controller.

Only-Once controller- All the samplers under this controller are only exe-

cuted once by each thread. It is generally used with HTTP request for login.

– Listeners - Listeners provide a tabular or graphical representation of the post-

run metrics calculated/collected by JMeter.

A.1.3 Step-By-Step Construction of a test plan

Now we will demonstrate, how to use these elements in forming a test plan. The name of

the test plan is Prutor webapp.jmx. At the end it should appear like this.

Figure A.3: JMeter:Final Test Plan

Elements used are.

• Samplers

– HTTP Requests

∗ home

Appendix A. Apache JMeter:Setup Instructions 91

∗ codebook

∗ open assignment

∗ save code

• Listeners

– Aggregate Report

– View Results in a tree

• Logic Controllers

– Only-once controller

Appendix A. Apache JMeter:Setup Instructions 92

Steps

• Launch Jmeter in GUI mode.

• Right-click on the Test Plan in left panel

• Navigate as Add → Threads(users) →

• Now, you can change the number of users and ramp-up period in the right panel as

marked.

Figure A.4: JMeter:Thread Group properties

The configuration in the fig. A.4 means, that this test plan will run with 100 threads

simulating 100 users, spawned over a period of 5 secs. In more layman terms, it will

take 5 secs to completely reach the load of 100 concurrent users.

Adding the HTTP Requests The description of these HTTP requests can be found in

sec. 3.1.1 in chap. 3. Here we have described the configuration parameters that were set.

• Login -

– Adding Once-Only controller.

∗ Right-click on the Thread Group.

∗ Navigate as Add→Logic Controllers→Once Only Controller.

– Adding HTTP Request sampler.

∗ Right-click on the Thread Group.

∗ Navigate as: Add→Sampler→HTTP Request.

– Filling up the configurations for Login Request.In the right panel, in the Basic

Tab. No need of Advanced Tab.

∗ Method: POST

Appendix A. Apache JMeter:Setup Instructions 93

∗ Server Name or IP: 172.27.20.29 (The ip of the machine hosting Prutor)

∗ Port Number: 82

Port Number on which container named webproxy is running.This is be-

cause the webproxy(HAProxy inside) is the first container which our request

hits.

– Adding the username and password.

∗ Goto the Parameters(default) tab.

∗ Click on Add.

∗ Type username in the Name field.

∗ Type user3@gmail.com or any other username.

∗ Click on Add.

∗ Type password in the Name field.

∗ Type escits or the password for your respective username.

The output will be as follows.

Figure A.5: JMeter:Login Request Added

• home-

– Adding the HTTP Request sampler.

– Fill in Server Name, Port,Method as explained above.

– Path: /home

– Name: home For home there are no GET parameters.

Appendix A. Apache JMeter:Setup Instructions 94

The test plan so far will look as.

Figure A.6: JMeter:Home Request Element

• codebook -

– Adding the HTTP Request sampler.

– Fill in Server Name, Port,Method as explained above.

– Path: /codebook

– Name: codebook

• open assignment

– Adding the HTTP Request sampler.

– Fill in Server Name, Port,Method as explained above.

– Path: /editor/<assignment id >.

– Name: open assignment.

• save code

– Adding the HTTP Request sampler.

– Fill in Server Name, Port,Method as explained above.

– Method: POST

– Name: save code

– Parameters

∗ assignment id

∗ branch id

Appendix A. Apache JMeter:Setup Instructions 95

∗ code: url encoded code

∗ Trigger: manual/submit

Trigger value as manual implies the request is for manually saving the code.

Trigger value submit implies the request is for code submission.

Figure A.7: JMeter:Save Code Request

• Duplicate the requests Now, you just copy and paste these request samplers.

– Copy: Right-click on the request sampler in the test tree that you want to be

copied and click copy.

– Paste:- Right-click on the Thread Group in the test tree and click paste.

– Position it, by dragging the pasted element in whichever order you require.

This will give you the required test plan as shown in fig. A.3.

Appendix A. Apache JMeter:Setup Instructions 96

A.2 Distributed Load Testing using JMeter

When we want to generate load for very large number of users (>1k), we cannot do it

with 1 machine, even though our system has enough system and memory. We use multiple

systems in Master-Slave configuration to solve the purpose. This configuration allows a

single system, running JMeter, to control multiple JMeter machines. The single controller

is known as the Master-client and other machines are known as Slave-servers. We do

not need to put the test plan separately on each slave machine, the Master JMeter sends

it to it’s slaves. The test plan is then replicated concurrently for all the slaves, resulting

in a large amount of concurrent load.

Before we move on to the setup let us look into some of the prerequisites for this setup.

• Download and install Apache JMeter on all the machines.

• Make sure all the machines have the same version of Apache JMeter.

• Make sure all the machines are in same subnet.

• Make sure the version of Java is same on all the machines.

• Disable all the firewalls.

A.2.1 Distributed Test Setup:Step-by-Step

After ensuring the above prerequisites, please follow the following steps.

• Set Remote Hosts This step tells your Master JMeter, which machine(s) it has to

control.

– cd apache-jmeter-3.3/bin

– vi jmeter.properties

– Search for remote hosts.By default, you will find remote hosts=127.0.0.1.

– Comment this line out.

– Write the following line instead: remote hosts=<slave ip1 >,<slave ip2 >...<slave ipn

>. If in a private network like IITK, these slave ips should be private IPs. For

eg:- remote hosts=172.27.21.16,172.27.21.17,172.27.21.18

Appendix A. Apache JMeter:Setup Instructions 97

Note: As per most of the blogs and JMeter’s official website, this is the only step

which is required for the setup. As per these sources, the only step that remains

after this is running both the master and slaves by.

– Slaves

∗ Goto all your slave-machines one by one.

∗ cd apache-jmeter-3.3/bin

∗ Run ./jmeter-server

– Master

∗ cd apache-jmeter-3.3/bin

∗ Run ./jmeter

But after following these steps, the test plan will not work.

Follow the top answer in [48] to get the test plan working.

• Additional config to be done on slaves taken from the above link.

– Goto each of your slave machine.

– cd apache-jmeter-3.3/bin

– vi jmeter-server

– You will find a commented line RMI HOST DEF=-Djava.rmi.server.hostname

=xxx.xxx.xxx.xxx

– Change it to RMI HOST DEF=-Djava.rmi.server.hostname=<slaveIP > For

eg: slave IP is 172.27.27.21, it will become.

RMI HOST DEF=-Djava.rmi.server.hostname=172.27.21.21

– vi jmeter.properties

– Search for server.rmi.localport

– Set server.rmi.localport=4001.Any non-reserved port should work.

– Launch jmeter-server using the following command ./jmeter-server

• Additional config to be done on Master taken from the above link.

– cd apache-jmeter-3.3/bin

– vi jmeter.properties

– Search for client.rmi.localport

Appendix A. Apache JMeter:Setup Instructions 98

– Set client.rmi.localport=4000. Again, any non-reserved port should work.

• Launch JMeter Master client by running the command

./jmeter -t <test plan.jmx>-Djava.rmi.server.hostname=<masterIP >

Appendix B

MySQL-WorkBench: Setup

Instructions

B.1 Build an Image of MySQL 5.7

• cd /prutor

• mkdir rdbupdated

• cp rdb rdbupdated

• cd rdbupdated

• vi mysql.list

– deb http://repo.mysql.com/apt/ubuntu/trustymysql-5.7

• vi Dockerfile

– Add this in COPY section.

∗ COPY mysql.list /etc/apt/sources.list.d/mysql.list

– Add this in install required tools (added –force-yes in that line).

∗ RUN apt-get update && apt-get install -y –force-yes mysql-server supervi-

sor apache2 php5 php5-mysql php5-mcrypt vim

– Change the Grant line User with all accesses section.

∗ GRANT ALL ON *.* TO ’prutor’@’%’.Earlier it was granting on its.*, so

it resulted in workbench not able to access performance schema.

99

http://repo.mysql.com/apt/ubuntu/ trusty mysql-5.7

Appendix B. MySQL-WorkBench:Setup Instructions 100

– In the Allow listening outside section change the file name.

∗ Replace as: /etc/mysql/my.cnf → /etc/mysql/mysql.conf.d/mysql.conf.In

5.5 it was /etc/mysql/my.cnf, but in 5.7 it was different.

• Run the /prutor/deploy db script.

After following all these steps, you will have a container running MySQL 5.7.

B.2 Setting up MySQL-Workbench

The setup of MySQL-Workbench consists of 2 parts. Each part has been dedicated a

subsection.

B.2.1 Enabling SSH on rdbupdated container

We need some mode of connection between the MySQL-workbench application and the

database container (rdb for MySQL 5.5 and rdbupdated for MySQL 5.7). We preferred

SSH session between them. In order to be able to do that our database container should

be running ssh service. Following are the steps to do that.

• apt-get update

• apt-get install openssh-server

• mkdir -p /root/.ssh

• chmod 700 /root/.ssh

• touch /root/.ssh/authorized keys

• chmod 600 /root/.ssh/authorized keys

• vi /root/.ssh/authorized keys

– Copy your(on which mysql workbench will be running) /root/.ssh/id rsa.pub

here.

• service ssh restart

Appendix B. MySQL-WorkBench:Setup Instructions 101

B.2.2 Installing mysql-workbench

• Follow 1 of [49].

• apt-get update

• apt-get install mysql-workbench-community

In order to Launch run /usr/bin/mysql-workbench.

Appendix C

New-Relic: Setup Instructions

New-Relic offers a variety of products to visualize the performance metrics of your system.

Some of them are New-Relic Servers, New-Relic Infrastructure, New-Relic APM. We used

New-Relic Servers as it sufficed our requirements. Before beginning the installation, Create

an account on https://newrelic.com/. Now the installation has 2 parts. First part is

the installation of New-Relic servers. It is the New-Relic Servers service which will send

out metrics to the New-Relic. The second part is the installation of New-Relic technology

specific agent. The role of this agent is to collect the performance metrics from our

application server and send it to the New-Relic Servers.

C.1 New-Relic Servers for Linux

The steps have been taken from [50]. The steps could have easily be read from the

mentioned link, but at the time of writing this thesis, New-Relic was in process of removing

support for New-Relic Servers. So clicking on the URL kept re-directing to New-Relic

Infrastructure page.

• echo ’deb http://apt.newrelic.com/debian/ newrelic non-free’ — sudo tee /etc/apt/-

sources.list.d/newrelic.list.

This command adds the repository from which apt will pull newrelic binary.

• wget -O- https://download.newrelic.com/548C16BF.gpg — sudo apt-key add -

This step is not mandatory. It will authenticate the source from apt will pull the

newrelic binary.

102

https://newrelic.com/

Appendix C. New-Relic:Setup Instructions 103

• apt-get update

• apt-get install newrelic-sysmond

• nrsysmond-config --set license key=YOUR LICENSE KEY. You can find your li-

cense key in your account settings on the New-Relic website. You can also set

license key in /etc/newrelic/nrsysmond.cfg.

• /etc/init.d/newrelic-sysmond start

C.2 Enable Monitoring for Docker

As the application server is running inside a docker-container, so we need to enable newrelic

so that it can do performance monitoring inside docker.

• service stop newrelic-sysmond

• service stop docker

• usermod -a -G docker newrelic

• service start docker

• service start newrelic-sysmond

C.3 Installing New-Relic Node.js agent

We need only Node.js agent as we did profiling for only the webapp component. So here

are the steps.

• npm install newrelic –save

• Copy node modules/newrelic.js to the root directory of your webapp, i.e. at the

same level of app.js.

• Edit license key and app name in newrelic.js.

• Add require(’newrelic’) in the beginning of app.js.

• Ensure @newrelic/native-metrics package is installed, if not then do it.

Appendix D

Instructions for Parameter Tuning

D.1 Tuning Engine Parameters

The Engine Parameters that we tuned can be found in mpm prefork.conf file inside the

engine container. Prefork is the multiprocessing module of apache. Those parameters are

as follows.

• MaxRequestWorkers

• MaxConnectionsPerChild

• ServerLimit

Here are the steps to tune them.

• Run docker exec -it engine1 bash

• Open /etc/apache2/mods-enabled/mpm prefork.conf

• Change the values of the parameter you want to change.

• service apache2 restart

104

Appendix D. Instructions for Parameter Tuning 105

D.2 Tuning WebApp Parameters

The only parameter that we tuned inside webapp was the number of node workers. We can

also increase the number of node workers by increasing the number of webapp containers.

For tuning it from inside, follow these steps.

• Run docker exec -it webapp1 bash

• Open /var/www/bin/www

• Increase the number of iterations of the for loop.

D.3 Tuning HAProxy

The Proxy parameters that we tuned were server maxconn, listen maxconn and contime-

out. Here are the steps to tune them

• docker exec -it webproxy bash

• For listen maxconn

– Open /tmp/haproxy.default.

– Change the value after maxconn.

• For server maxconn.

– Open /root/updater.php

– Change the maxconn values of whichever server component you want to change.

• For contimeout

– Open /etc/haproxy/haproxy.tmpl

– Change the value.

• supervisorctl stop all

• supervisorctl reload

• service haproxy restart

• Verify the values have updated in /etc/haproxy/haproxy.cfg

Appendix E

Repository links

Here are the git clone urls of the repositories.

E.1 Prutor

https://jindalakshay@bitbucket.org/jindalakshay/prutor_new.git

E.2 WebApp

https://jindalakshay@bitbucket.org/jindalakshay/its-web-new.git

E.2.1 Steps to update Nodejs

https://docs.google.com/document/d/1shWIbUWm3cr8OWSWNLfmG-Qct04s8YKRSr2mr4_

8T64/edit?usp=sharing

E.3 Engine

https://jindalakshay@bitbucket.org/jindalakshay/its-engine-new.git

106

https://jindalakshay@bitbucket.org/jindalakshay/prutor_new.git
https://jindalakshay@bitbucket.org/jindalakshay/its-web-new.git
https://docs.google.com/document/d/1shWIbUWm3cr8OWSWNLfmG-Qct04s8YKRSr2mr4_8T64/edit?usp=sharing
https://docs.google.com/document/d/1shWIbUWm3cr8OWSWNLfmG-Qct04s8YKRSr2mr4_8T64/edit?usp=sharing
https://jindalakshay@bitbucket.org/jindalakshay/its-engine-new.git

Appendix E. Repository links 107

E.3.1 Related to Sec. 5.4.3

• Added StaticConfig.php in /codebase new/engine/systems

– It is the file which contains the class that reads from JSON files.

• Added createStatic.php in /codebase new/engine/

– It is the script which creates the json files that are used by StaticConfig.php.

E.4 Steps to Setup

• Follow the procedure to deploy prutor as mentioned in the Excel sheet as mentioned

in the Copy of Prutor Work excel sheet in the folder as mentioned in Sec. E.5.

• After deploying everything, follow the below mentioned procedure, as and when

required.

• Setup MVs

– To be done on the base machine.

∗ cd /prutor new/rdbupdated

∗ Make sure there are some entries in the tables from which the Materialized

Views are created.

∗ ./create ongoingmv

• Setup JSON files for data in MongoDB

– cd /codebase new/engine

– ./dump nosql

E.5 Link of all the important docs related to Thesis

https://drive.google.com/drive/u/0/folders/1anHThe5EVSZquaJ3Xa2sJUip6XMx6PsI?

ths=true

https://drive.google.com/drive/u/0/folders/1anHThe5EVSZquaJ3Xa2sJUip6XMx6PsI?ths=true
https://drive.google.com/drive/u/0/folders/1anHThe5EVSZquaJ3Xa2sJUip6XMx6PsI?ths=true

Appendix E. Repository links 108

E.6 All the JMeter Test Plans

Clone url - https://jindalakshay@bitbucket.org/jindalakshay/jmeter_test_plans.

git

https://jindalakshay@bitbucket.org/jindalakshay/jmeter_test_plans.git
https://jindalakshay@bitbucket.org/jindalakshay/jmeter_test_plans.git

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Motivation
	1.3 Contributions of the thesis
	1.4 Organization of the thesis

	2 Background, Tools and Related Work
	2.1 Prutor
	2.1.1 HTTP Reverse Proxy
	2.1.2 Relational Database
	2.1.3 NoSQL Database
	2.1.4 In-Memory cache
	2.1.5 WebApp
	2.1.6 Engine

	2.2 Tools used
	2.2.1 Apache JMeter
	2.2.2 New Relic APM
	2.2.3 MySQL Workbench
	2.2.4 ps_mem.py

	2.3 Related Work

	3 WebApp: Analysis and Benchmarking
	3.1 Perspectives
	3.1.1 Student Activities in an Event

	3.2 Baselining Scalability of WebApp
	3.2.1 Distributed Setup
	3.2.2 Workload Specification
	3.2.3 Performance Metrics
	3.2.4 Results

	3.3 Performance Profiling
	3.3.1 Setup
	3.3.2 Profiling of each feature
	3.3.3 Analysis of the common bottlenecks
	3.3.3.1 Memcached
	3.3.3.2 readFile

	3.3.4 Error Analytics
	3.3.4.1 HAProxy logs analysis

	3.4 Incremental Modifications
	3.4.1 Reaching 500 on 2
	3.4.2 Reaching 1000 on 4
	3.4.3 Reaching 2000 on 8
	3.4.4 Reaching 3000 on 16
	3.4.5 Comparative Results

	4 Database Analysis
	4.1 Query Analysis
	4.1.1 Index Usage
	4.1.2 Queries doing Sorting
	4.1.3 Queries doing full table scans
	4.1.4 Queries Using Temporary Tables

	4.2 Usage of Materialized Views
	4.2.1 ongoingAssignments_mv
	4.2.2 codebook_mv

	4.3 Comparative Results
	4.4 Parameter Tuning
	4.4.1 innodb_buffer_pool_size
	4.4.2 innodb_buffer_pool_instances
	4.4.3 Escape from Swap
	4.4.4 Query Cache
	4.4.5 skip_name_resolve

	5 Engine: Analysis and Benchmarking
	5.1 Event Workload
	5.2 Baselining Scalability of Engine
	5.2.1 Setup
	5.2.2 Workload Specification
	5.2.3 Performance Metrics
	5.2.4 Results

	5.3 Parameter Tuning
	5.3.1 Reaching 500 users
	5.3.2 Reaching 1000 users

	5.4 Other modifications
	5.4.1 ORM Removal
	5.4.1.1 Extra Queries
	5.4.1.2 Usage of PDO

	5.4.2 Removal of unncessary DB hits
	5.4.3 Removal of NoSQL hits

	5.5 Results
	5.5.1 Reduction in Queries
	5.5.2 Comparative Results

	6 End Result Peformance Comparison
	6.1 Comparative Results of WebApp on 48 core machine
	6.2 Comparative Results of Engine on 48 core machine
	6.3 8 core i7 V/s 48 core xeon Comparison of WebApp
	6.4 8 core i7 V/s 48 core xeon Comparison of Engine
	6.5 Variation of WebApp Performance based on cores
	6.6 Parameter Summary
	6.6.1 Engine on 8 core
	6.6.2 WebApp on 8 core
	6.6.3 Engine on 48 core
	6.6.4 WebApp on 48 core
	6.6.5 Combined on 8 core
	6.6.6 Combined on 48 core

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work
	Bibliography

	Appendices
	A Apache JMeter: Setup Instructions
	A.1 Apache JMeter: Setup Guide
	A.1.1 Java Installation
	A.1.2 JMeter Installation
	A.1.2.1 Jargons of JMeter

	A.1.3 Step-By-Step Construction of a test plan

	A.2 Distributed Load Testing using JMeter
	A.2.1 Distributed Test Setup:Step-by-Step

	B MySQL-WorkBench: Setup Instructions
	B.1 Build an Image of MySQL 5.7
	B.2 Setting up MySQL-Workbench
	B.2.1 Enabling SSH on rdbupdated container
	B.2.2 Installing mysql-workbench

	C New-Relic: Setup Instructions
	C.1 New-Relic Servers for Linux
	C.2 Enable Monitoring for Docker
	C.3 Installing New-Relic Node.js agent

	D Instructions for Parameter Tuning
	D.1 Tuning Engine Parameters
	D.2 Tuning WebApp Parameters
	D.3 Tuning HAProxy

	E Repository links
	E.1 Prutor
	E.2 WebApp
	E.2.1 Steps to update Nodejs

	E.3 Engine
	E.3.1 Related to Sec. 5.4.3

	E.4 Steps to Setup
	E.5 Link of all the important docs related to Thesis
	E.6 All the JMeter Test Plans

