
Automated Repair of Programs in Introductory

Programming Courses

A thesis submitted

in Partial Fulfillment of the Requirements

for the Degree of

Master of Technology

by

Praveen Kumar Singh

Roll Number: 14111023

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

May, 2016

i

ii

ABSTRACT

Advancement in computer technology has made basic programming skills a necessity

for everyone. This has led to almost all educational institutes to have introductory

programming courses for all engineering students. Teaching hundreds of students

and providing relevant feedback to them has become a very difficult task. This

has motivated researchers to develop automated grading and feedback tools to help

instructors to conduct programming courses effectively. Automated grading tools

work well when the programs submitted for evaluation are compiling successfully,

but fail badly with submissions containing compilation errors.

In this thesis, we will attempt to tackle the task of correcting non-compiling

programs to syntactically correct programs. We will present an automated repair

system which can be used to correct errors made by students in their submissions.

The system will provide a web interface for integration with existing tools. The

system can be used with automated grading tools to improve their performance

and provide students with better and relevant feedback in a timely manner. The

system also identifies students’ learning patterns and topics with which students

are constantly struggling. Such patterns can be used by instructors and students

to identify areas which need more effort. This system thus serves as an automated

repair tool which can be used with existing automated grading and feedback tools.

Dedicated to my family

Acknowledgements

I would like to thank my thesis supervisor Dr. Amey Karkare for his continuous

support and guidance during my thesis. I would also like to extend my gratitude

to my co-supervisor Dr. Arnab Bhattacharya for his guidance over the past

semester. Without their help and guidance, it would not be possible to complete

this thesis.

I would also like to thank Rajdeep Das who helped us throughout our thesis with

any problems related to PRUTOR. I am also grateful to Sagar Parihar for his work

in the domain of Automated grading for PRUTOR.

I would like to thank a few people for their constant support throughout my stay

here at IIT Kanpur. I like to start with Ziyaan Dadachanji without whom this thesis

would not be complete. I also like to thank Milan, Sawan, Vivek, Rishabh and many

others for their valuable inputs.

Contents

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Idea . 3

1.2 Thesis Outline . 3

2 Background and Related Work 5

2.1 Background . 5

2.1.1 Prutor : Online Programming Environment 5

2.1.2 Grading . 6

2.2 Related Work . 6

2.2.1 Automated Grading Tool for Introductory Programming . . . 7

2.2.2 Automated Feedback Generation for Introductory Program-

ming Assignments . 8

2.2.3 Automated Correction for Syntax Errors in Programming As-

signments using Recurrent Neural Networks 8

2.2.4 Feedback Generation for Performance Problems in Introductory

Programming Assignments . 9

2.2.5 Automated Error Localization and Correction for Imperative

Programs . 9

2.2.6 Program Repair as a Game 10

vi

3 Error Pattern Discovery 11

3.1 Motivation . 11

3.2 Dataset . 12

3.3 Results . 14

4 Tackling Patterns 16

4.1 Input and Output Statements Errors 17

4.2 Variables and Arrays Errors . 19

4.3 Function Declaration and Definition Errors 23

4.4 Loop Errors . 25

4.5 Pointer Errors . 27

4.6 Common Errors . 28

5 Repair System Architecture 32

5.1 Input Receiver . 33

5.2 Compiler Engine . 35

5.3 Repair Engine . 36

5.4 Evaluation Engine . 37

6 Experiments and Results 40

6.1 Performance of Repair System . 40

6.2 Analysis of Repair System . 43

6.2.1 Successful and Unsuccessful Submissions 44

6.2.2 Improvement in Marks . 46

6.2.3 Repaired Errors and Frequency 47

7 Conclusions and Future Scope 51

7.1 Conclusions . 51

7.2 Future Scope . 53

References 55

List of Tables

3.1 List of Most Common Errors . 13

4.1 Input and Output Statements Errors 19

4.2 Variables and Arrays Errors . 23

4.3 Function Declaration and Definition Errors 25

4.4 Common Errors . 31

6.1 Performance of Automated Repair System 41

6.2 Automated Repair System Statistics 46

6.3 Students performance for each lab event 49

List of Figures

5.1 Repair System Architecture . 32

5.2 Input Receiver . 34

5.3 Compiler Engine . 36

5.4 Repair Engine . 37

5.5 Evaluation Engine . 39

6.1 Performance of Auto grader with Automated Repair System 42

6.2 Average SLOC per Submission for each Lab 42

6.3 Frequency of submissions with improvement in marks 47

6.4 Error Statistics . 48

6.5 Error Frequency for some frequent errors for all lab events 49

Chapter 1

Introduction

Since its advent, computers have come a long way. Computer technology has

become an integral part of our day-to-day life. Computers are being used by

everyone and playing an important role in leading us to live a better life. Automated

processes and systems controlled by computers have made industries and organizations

efficient. Use of computers has led to better and efficient systems, faster results and

revolutionized communication systems.

This development and progress in computer science technology has made computer

education a necessity for everyone. Students of any field are more and more using

computers to help them with their fields to solve harder problems efficiently and

faster. This has led to almost every educational institute to have introductory

programming courses as course work requirements. These courses are taught in

computer labs to provide practical approaches to computer education.

Introductory programming courses are taught by assigning programming problems

to students. Students are required to code the solutions to these problems and

submit the solution for grading. The submissions are graded by institute appointed

teaching assistants. As many students are learning to program for the first time, it

is expected that many students will make errors and will face difficulties in solving

assigned problems. TAs are expected to help students to understand programming

2

concepts and topics in which they are facing problems. As in any institute, hundreds

of students are enrolled in the introductory programming course, providing relevant

feedback in a timely manner in the form of grades has become a very difficult task.

As grading policies and test cases based evaluation can be defined objectively. This

has led to the design and development of an automated grading system [Par15].

Automated grading system can be used by students for real-time estimate of grades.

This system can be used by instructor and TAs to reduce their task of grading

students’ submissions significantly.

Automated grading system is a great idea but it suffers from some fundamental

problems. It works perfectly for those submissions which compile successfully and

passes almost all test cases. Test cases are set of inputs and outputs on which

a submission can be evaluated for correctness. The test cases are provided by

instructor or problem setter. We have to remember that many students are learning

programming for the first time and so it is expected that they will be making a lot

of mistakes and thus, their submissions will be awarded low marks by automated

grading system. Automated grading systems make some assumption while grading

students submissions. Some assumptions are:

• Student’s submission is compiling successfully. Automated grading system

award zero or minimal marks for unsuccessful compiled submissions.

• All test cases results are matched without considering that minor changes in

output format may lead to test cases passing.

In this thesis, we are trying to solve the problems mentioned above. We will

explain automated repair system based grading framework which can be used to

grade students’ submission even when the programs are not compiling.

3

1.1 Idea

Our idea is to design and develop an automated grading system which will also

grade submissions which do not compile and those submissions whose outputs deviate

from expected outputs. This design requirement motivated us to design and develop

an automated repair system which can correct compilation errors and make students

submissions compilable.

We have worked with PRUTOR (PRogramming Tutor) [Das15] system which

is a web-based programming environment designed, developed and hosted at Indian

Institute of Technology, Kanpur by the department of Computer Science & Tech-

nology, to conduct ESc101: Introduction to Computing course for all branches

of engineering. The purpose of conducting introductory programming course for all

branches of engineering is to introduce students to basics of computer programming

and help them to develop critical and logical approaches to solve problems with

the help of computers. Because of these reasons, we have focused on correcting

only syntactic errors. We have avoided correcting logical errors as correcting logical

errors in students submissions is indirectly helping them with solving problems thus

defeating the purpose of this course. Also, as automated repair system generates

repairs based on limited information like compilation error messages and the line

containing the error, repaired program may not be the one intended by the student.

1.2 Thesis Outline

Thesis outline is as follows :

• Chapter 2, Background and Related Work

This chapter discusses previous work and development done in automated

grading and automated repairs of programs.

4

• Chapter 3, Error Pattern Discovery

This chapter explains the process and motivation behind choosing which errors

to repair.

• Chapter 4, Tackling Errors

This chapter explains the framework on which Automated Repair System

works.

• Chapter 5, Repair System Architecture

This chapter explains how different components of Automated Repair System

interact with each other.

• Chapter 6, Experiments and Results

This chapter explains all the experiments and testing done to evaluate the

performance of Automated Repair System.

• Chapter 7, Conclusions and Future Scope

This chapter concludes our thesis and presents improvements to the performance

of automated grading system. We have briefly discussed future scope to improve

Automated Repair System for better automated grading.

Chapter 2

Background and Related Work

This chapter discusses related work done in the field of automated grading and

automated repairing of programs. We will briefly explain the programming environ-

ment used by students and previous related research and studies done to improve

learning experience of students.

2.1 Background

2.1.1 Prutor : Online Programming Environment

Prutor [Das15] is a web based programming tutoring platform focused for both

students and instructors. It wass designed, developed and hosted at IIT Kanpur

under the supervision of Dr. Amey Karkare by the Department of Computer Science

& Engineering. Students are provided with an online editor with advanced code

editing features including tools for compilation, execution, and evaluation. Students

can view their progress in the course like the number of assignments solved by them,

grade awarded etc. As the tutoring system is a login based application, it tracks all

the activities of students and how a student is solving a problem.

Instructors and teaching assistants are provided with tools to monitor students

progress. They can see any student progress and his approach to solve any problem.

6

Also, instructors have access to tools to schedule different course events like lab

assignments, quizzes and lab exams. They can schedule grading events for labs

and exams, can decide grading policies and can monitor students grades. Teaching

assistants can view students submissions, how they are approaching lab problems

and provide relevant feedback.

2.1.2 Grading

In any course, grading provides the relevant feedback to students to help them

track their progress. Grading can be defined as the task of assigning a score to

student submission based on the correctness. For any course, this score is relative

and based on the grading policy decided by the course instructor. From a student’s

perspective, grading is a very important aspect of any course. Grades help a student

to track his progress and performance in the course. Also, it tells him about his

relative performance with his peer students. Thus, grading plays a significant role in

any course. Thus, maintaining unbiased grading and providing relevant feedback are

of utmost importance from both student and instructor perspective.

ESc101: Introduction to Computing course employs a number of teaching assistants

to help instructor with the grading task. TAs grade each submission based on grading

policies and give a score to each submission. As this task is manually done, it is

time-consuming and suffers from unintentional bias. Thus the task of maintaining

the quality of relevant feedbacks becomes very difficult.

2.2 Related Work

In today’s world of massive open online courses [MOO] and online learning plat-

forms, automated feedback and grading has become of even more importance. Provid-

ing thousands of students with relevant feedback in the form of grades and suggestion

has become very time-consuming. So the problem of providing automated feedback

has caught the attention of education researchers. Many have designed and developed

7

different approaches to solve the scalability problem of automating feedback and

grading system.

2.2.1 Automated Grading Tool for Introductory Program-

ming

An automated grading system was designed and developed by Sagar Parihar

[Par15] at IIT Kanpur. The motivation behind automated grading system was that

as grading policy is objectively defined and thus a rule based automated grading

system can be designed. Automated grading tool [Par15] uses linear regression

approach to grade students submissions. Automated grading tool uses following

features to generate a grading model:

• Number of test cases passed by student submission

• Time taken by student to solve the problem

• Fraction of successful compilations of all compilations made by student

Using linear regression model on existing TAs score, different values for above

parameters were learned. These parameters define an automated grading policy

which returns a grade score between zero and one for each submission . Final score

can be deduced by multiplying grade score with maximum marks for that problem.

Linear regression-based automated grading system works very well for those

submissions which are nearly perfect or failing small fraction of test cases. But if

the program fails to compile due to some minor compilation error or some small

logical error, automated grading system fails terribly. As marks awarded depends on

number of test cases passed, a submission with minor compilation error is awarded

zero or very low marks. This is a major problem as most of the students are learning

to program for the first time and awarding zero or very low marks for minor mistakes

do not make much sense.

8

2.2.2 Automated Feedback Generation for Introductory Pro-

gramming Assignments

[SGSL13] paper presents an automated feedback technique based on determining

a minimum number of fixes required to be made in student submission that will

make it behave like the reference solution provided by the instructor. This feedback

system provides accurate feedback to students about what they did wrong and how

to correct their mistakes. This paper is different from our approach of automated

repair system in following two respects:

• Complete Specification is unknown with Automated Repair System:

Automated feedback technique is based on providing feedback by comparing

student submission with instructor provided the solution. This only works

if complete problem specification is known or if students are using the same

approach as instructor’s approach to solving the problem.

• Predictability of students errors: Automated feedback technique is based

on the assumption that students are solving problems after attending same lec-

tures and learning from same notes. Our system does not make any assumption

about students learning approaches or environment .

2.2.3 Automated Correction for Syntax Errors in Program-

ming Assignments using Recurrent Neural Networks

[BS16] presented a Recurrent Neural Network based technique for providing

feedback on syntax errors. Their approach is inspired from the developments done

in field of learning language models from Big Code. The approach is to learn an

RNN to model all valid token sequences using all the correct students submissions.

Then for a incorrect submissions, learned RNN is used with prefix token sequences to

predict token sequences that can fix the error by inserting or replacing the predicted

token sequence at the error location.

9

2.2.4 Feedback Generation for Performance Problems in In-

troductory Programming Assignments

[GRZ14] presented a dynamic analysis based feedback approach to test whether

a student’s submission matches the specification provided by the instructor. Their

approach is based on two important observations

• The same problem can be solved using different algorithm approach having

different levels of efficiency and performance characteristics.

• The same algorithmic solution can be implemented in different ways.

[GRZ14] approach is to identify what algorithmic strategy is implemented by the

student. As algorithmic strategy can be identified by values computed during program

execution, the strategy can be converted into a program specification. They present a

dynamic analysis approach that decides whether a student’s implementation matches

any of the algorithmic specification provided by the instructor. The instructor

maintains a set of efficient and inefficient specifications. Student’s submission is

checked against all specifications. If student submission matches any specification,

associated feedback is generated. If no match is found and student submission is

correct against all test cases, a new specification based on student submission is

added to the set of specification for future matchings.

2.2.5 Automated Error Localization and Correction for Im-

perative Programs

[KB11] presented a debugging technique based on automatic error correction and

localization. Their error localization method uses a model-based diagnosis and

SMT solving. To correct errors, they use a template-based approach to ensure that

computer repairs are readable. Their method expects an input in the form of incorrect

program and a corresponding specification which can be a reference implementation

or assertions statements. This input is preprocessed to express faulty components

10

and then symbolic execution is applied to transform the problem into the domain

of logic. This technique applies repairs in iterative refinements and supports only

simple corrections.

2.2.6 Program Repair as a Game

[JGB05] presents a method to automatically fix errors in programs by considering

the repairing system as a game. The program is represented in linear time logic

(LTL) specification. The program repair problem is a LTL game which captures the

possible repairs in the program. A repair is represented as a move in which system

can provide a correct value for unknown expressions. If repair makes the program

satisfy the problem specification, that move represents a winning move. A winning

strategy can lead to change in program logic so converted the problem of repairing

into a memoryless strategy. This strategy is shown to be NP-Complete and thus

they presented a heuristic approach to find an efficient repair for a given memoryless

strategy.

Chapter 3

Error Pattern Discovery

3.1 Motivation

In any introductory programming course, it is expected that students are going

to make a lot of errors and will be facing difficulties in correcting those errors. To

help students with the corrections of their code, ESc101 course employs a number of

teaching assistants (TAs). Students can ask assigned TAs to help them with their

lab assignments. These problems are set by the instructor. Students are supposed to

provide solutions in C programming language for these lab assignments. TAs are

specifically instructed not to help students with the program logic but only with

syntactic errors. However helping around two hundred students with the help of

15 − 20 TAs is not feasible and many students feel there is a lack of a consistent

feedback system. Moreover, every student requires a different level of feedback which

is very difficult to provide with a limited number of TAs. TAs feedback may be very

generic or maybe he is not able to address the underlying problem without actually

solving the problem for the student. Also, instructor has no way to know in which

areas students are struggling. If instructor knew these areas, he can focus more on

these areas specifically or give problems and assignments for practice.

To design an automated program repairing system, it is necessary to identify which

errors are made most by students. We analyzed the data collected by PRUTOR

12

[Das15] and identified those areas in which students are struggling. We also analyzed

incomplete solutions to lab assignments and identified recurring errors with which

students are struggling continuously. This analysis combined with manual feedback

from students, TAs and instructors helped us to identify most recurring problem

areas which can be repaired in an automated manner.

3.2 Dataset

The following dataset is collected from ESc101: Fundamentals of Computing,

an introductory programming course taught in the even semester of the academic

year 2015− 2016 at IIT Kanpur. The course was taught in C programming language.

ESc101 course conducted weekly labs of three hours each with two or three problems

in each lab. Students were to submit the solutions for lab assignments and those

assignments were graded by TAs. All student activities including typing patterns,

all assignments solutions, program compilation results, intermediate code, etc. were

recorded. These recorded activities were analyzed to identify those areas in which

most of the students are struggling or need better feedback.

Sr.No. Error Type Count

1 use of undeclared identifier ‘var’ 122375

2 control may reach end of non-void function 49016

3
Missing ‘&’ before variable name in scanf state-

ments
48327

4
Use of wrong format specifier in scanf and printf

statements

5 Extra ‘&’ before variables in printf statements

6 initialize the variable ‘var’ to silence this warning 43767

7 expected ‘;’ after expression 20578

8 expected ‘)’ ,‘]’,‘}’ 18558

13

Sr.No. Error Type Count

9
use ‘==’ to turn this assignment into an equality

comparison
9823

10 type specifier missing, defaults to ‘int’ 9427

11
subscripted value is not an array, pointer, or

vector
6633

12 previous definition is here 5642

13 extraneous closing brace (‘}’) 5589

14
use of undeclared identifier ‘varr’; did you mean

‘var’?
5264

15
please include the header < header.h > or ex-

plicitly provide a declaration for ’func’
4454

16 multi-character character constant 3804

17
for , while loop or if or switch statement has

empty body
3598

18 expected ‘;’ in ‘for’ statement specifier 2928

19
member reference type ‘ptr’ is a pointer; maybe

you meant to use ‘→’?
1917

20 invalid conversion specifier ‘.’ 1519

21
member reference type ‘var’ is not a pointer;

maybe you meant to use ‘.’?
1304

22
definition of variable with array type needs an

explicit size or an initializer
1094

23 missing terminating ‘”’ character 1041

24 void function ‘func’ should not return a value 656

Table 3.1: List of Most Common Errors

14

3.3 Results

Analyzing above data, we can divide the above errors into six categories. These

categories are:

• Input/Output Statements

1. Missing ‘&’ before variable name in scanf statements

2. Extra ‘&’ before variables in printf statements

3. Use of wrong format specifier in scanf and printf statements

4. Invalid format specifier in scanf

• Variables and Array Related Errors

1. Redefinition of variable

2. Incorrect spelling of variable

3. Undeclared variable

4. Unused variable

5. Char type variable with multi-character value

6. Uninitialized variable OR use of scanf statement after using the variable

7. Size missing in declaring array

8. Variable not array/pointer

• Function declaration and definition Related Errors

1. Return statement missing

2. Return data type missing from function definition

3. Void function should not return a value

4. Non-void function should return a value

15

• Loops related Errors

1. Empty Body of for or while loops

2. Expected semicolon ‘;’ in a for statement

• Pointers

1. Use of ‘.’ operator in place of ‘→’ operator in reference type pointer

variables

2. Use of ‘→’ operator in place of‘.’ operator in non-pointer variables

• Common Errors

1. Semicolon missing

2. Missing Header file

3. Extra braces or parenthesis, missing braces or parenthesis

4. Missing terminating ‘”’ character

5. Interchange of comparison and assignment operator

We group the errors into different categories such that errors in each category are

similar in concepts. Grouping of errors is necessary because most of the concepts are

interconnected and linked. The grouping helps us to abstract common programming

concepts which are used to repair errors.

Chapter 4

Tackling Patterns

In this chapter, we will present a framework which is used to design a model to

repair students’ submissions and provide consistent and systematic feedback to the

students. As shown in Chapter 3, students struggled with different areas which can

be divided into six major categories. Each of these categories has a core concept

which the students are not able to grasp completely. As most errors and concepts in

each category are interrelated, we have repaired these errors in a modular manner.

We have selected most common errors done by students. Most of these errors are

easy to understand and correct. Also, a detailed feedback can be given to the student

explaining the cause of these errors. To correct these errors, we design a framework

which is based on the information returned to us by the compiler. The repairs are

rule based and worked in a deterministic manner. Repairing wrong code statements

requires that we know the exact position of the error and determine deterministically

what the category of error. Different categories of errors and repairing approaches are

explained below. All the repairs are based on limited information like compilation

errors and code containing the error. Thus, resultant repaired code may not be the

one intended by the student.

17

4.1 Input and Output Statements Errors

When solving programming assignments and problems using C programming

language, most students prefer to use scanf and printf statements for data input

and output respectively. It is expected that a student will have a good grasp on

scanf and printf statements syntax and will understand their working. However, our

analysis shows that scanf and printf statements are one of the most common source

of error with which most of the students struggle. Even in advanced lab assignment

problems, it has been observed that many students were not completely comfortable

with data input and output. Some of the common errors made by students are :

• Missing ‘&’ before variable name in scanf statements

• Extra ‘&’ in front of variables in printf statements

• Use of wrong format specifier in scanf and printf statements

• Invalid format specifier in scanf

As most of these errors are very similar in structure and principle, so repairing

them can be grouped.

18

Error
• Missing ‘&’ before variable name in scanf statements

• Extra ‘&’ in front of variables in printf statements

Repairing

Approach

Both are similar in sense that either address operator ‘&’ is

missing from scanf statement which expects a pointer to the

variable in which the value is to be read or extra address operator

‘&’ is placed in front of variable in printf statement which expects

a variable name instead of pointer to that variable. Repairing

these two errors can be grouped based on in which type of

statements the error has occurred and address operator can be

added or removed from the statement correcting the error.

Example

Incorrect Code snippet :

int num;

scanf("%d",num);

printf("%d",&num);

...

Correct Code snippet after repair:

int num;

scanf("%d",&num);

printf("%d",num);

...

19

Error
• Use of wrong format specifier in scanf and printf statements

• Invalid format specifier in scanf

Repairing

Approach

Both these errors refer to errors which are caused due to using

wrong format specifiers. To correct these types of errors, we

have to determine the correct data type of the variable which is

being used in the statement. This information can be extracted

from compiler error messages referring to these statements. From

learned data type, incorrect format specifiers can be replaced

with correct format specifiers.

Example

Incorrect Code snippet :

int num,var;

scanf("%f",&num);

scanf("%3.f",&var);

printf("%f",num);

...

Correct Code snippet after repair:

int num,var;

scanf("%d",&num);

scanf("%d",&var);

printf("%d",num);

...

Table 4.1: Input and Output Statements Errors

4.2 Variables and Arrays Errors

Almost all statements and expressions in a program use some variables which can

be simple variables, array type variable or pointer variables. Variable declaration and

usage are basic concepts but after analyzing students’ submissions for four semesters,

it has been observed that many students struggle with variable declaration and usage.

20

Error Redefinition of variable

Repairing

Approach

This error occurs when a student has already defined a variable

with some data type, let say ‘datatype1’ and now he has again

defined that same variable with the same data type or another

data type. This error can be corrected by removing second

declaration statement or expression.

Example

Incorrect Code snippet :

int num;

...

float num;

...

Correct Code snippet after repair:

int num;

...

...

Error Char type variable with multi-character value

Repairing

Approach

Many students make the error to initialize a char variable with

multi character constant. This error can be corrected by removing

all extra characters from the constant.

Example

Incorrect Code snippet :

char var = ‘ab’;

...

Correct Code snippet after repair:

char var = ‘a’;

...

21

Error
• Incorrect spelling of variable

• Undeclared variable

Repairing

Approach

These errors are similar in the sense that if a variable spelling is

incorrect, or it is undefined, the compiler throws similar errors.

To check if a variable is spelled wrong, we use an edit distance

algorithm which is an in-built feature of LLVM based clang

compiler [Cla]. If a variable is found which is suspected to be

spelled wrong, the spelling can be corrected. If no such declared

variable is found, we deduce the type of the variable from the

expression it is being used in. Using the deduced type, we can

declare and initialize the variable.

Example

Incorrect Code snippet :

int num;

numm = 10;

var =5;

...

Correct Code snippet after repair:

int num;

int var=0;

num= 10;

var =5;

...

22

Error
Uninitialized variable / Use of scanf statement after using the

variable

Repairing

Approach

This error is an interesting error. Students are using variables

in expressions without initializing them. It has been observed

that they use those variable to take input but after using them

in expressions. This type of errors can be corrected by swapping

the two statements.

Example

Incorrect Code snippet :

int len,bre,area=0;

area = len*bre;

scanf("%d%d",&len,&bre);

...

Correct Code snippet after repair:

int len,bre,area=0;

scanf("%d%d",&len,&bre);

area = len*bre;

...

Error Size missing in declaring array

Repairing

Approach

If an array type variable is declared and array size is not given,

a compile time error is thrown. This error can be handled by

setting a default size to the array type variables. Based on the

problems and assignments, the array size has been set to 100.

Example

Incorrect Code snippet :

int num[];

...

Correct Code snippet after repair:

int num[100];

...

23

Error Variable not array/pointer

Repairing

Approach

If a variable which is not of array type but used with a subscript,

the subscripted values can be removed to correct this error.

The assumption behind this repair is that student intended to

declare a simple variable not array type variable. As we can not

unambiguously decide which array subscript to use, we safely

remove subscripted values.

Example

Incorrect Code snippet :

int num,var=20;

num[1] = 5;

...

num = var[1] -10;

...

Correct Code snippet after repair:

int num,var=20;

num = 5;

...

num = var -10;

...

Table 4.2: Variables and Arrays Errors

4.3 Function Declaration and Definition Errors

Writing custom functions and using them are an important part of any basic pro-

gramming course. But they have proved to be quite puzzling for students. Some

common mistakes made by students are:

1. Return statement missing

2. Return data type missing from function definition

3. Void function should not return a value

24

Error Return statement missing

Repairing

Approach

If a function definition has a return data type and does not

include a return statement, a default return statement can be

added in the function. This addition may result into breaking

the functionality of the function

Example

Incorrect Code snippet :

int calArea(int len,int bre){

...

// No return statement

}

Correct Code snippet after repair:

int calArea(int len,int bre){

...

// return statement added

return 0;

}

Error
Void function should not return a value

Repairing

Approach

If a function is defined as a void function, it should not return any

value. This can be corrected by removing the return statement.

Example

Incorrect Code snippet :

void printFactor(int num){

return 0;

}

...

Correct Code snippet after repair:

void printFactor(int num){

// no return statement

}

...

25

Error Return data type missing from function definition

Repairing

Approach

If a student forgets to provide a return type in the function

definition, default data type such as ‘void’ or ‘int’ can be added

to the definition after analyzing the function usage in rest of

program.

Example

Incorrect Code snippet :

printFactor(int num){

// no return statement

}

calArea(int len,int bre){

return area;

}

...

Correct Code snippet after repair:

void printFactor(int num){

// no return statement

}

int calArea(int len,int bre){

return area;

}

...

Table 4.3: Function Declaration and Definition Errors

4.4 Loop Errors

Loops are an integral part of any programming language and C programming language

support three types of loops: for loop, while loop and do-while loop. Loops are easy

to understand and code but many students make errors related to their syntax. They

tend to forget the following:

26

• Empty Body of for or while loops :This error is not a compilation error

but a logical error. Many students put a semicolon at the end of ‘for’ or ‘while’

statements causing the body of loop effectless. This introduces many logical

bugs which have been proved quite difficult for students to debug. As loops

can have single or multi statement body, we have two different cases

– Multi Statement Body: We solved this bug by checking if a loop

statement ending with semicolon has a block starting on next line. If this

is the case,we can safely remove the semicolon from the loop statement.

Original Code:

1 #include<stdio.h>

2 int main()

3 {

4 int i=0;

5 for(i=0;i<10;i++);

6 {

7 ...

8 }

9 return 0;

10 }

Repaired Code:

1 #include<stdio.h>

2 int main()

3 {

4 int i=0;

5 for(i=0;i<10;i++)

6 {

7 ...

8 }

9 return 0;

10 }

– Single Statement Body: If there is no block after the loop body. This

case can be handled by checking if the loop statement is performing any

operations on any variable except loop variable. If not, next statement is

part of loop body else we cannot unambiguously detect loop body.

27

Original Code:

1 #include<stdio.h>

2 int main()

3 {

4 int i=0,num=1;

5 for(i=0;i<10;i++);

6 num = num + i ;

7 return 0;

8 }

Repaired Code:

1 #include<stdio.h>

2 int main()

3 {

4 int i=0;

5 for(i=0;i<10;i++)

6 num = num + i ;

7 return 0;

8 }

• Expected semicolon ‘;’ in a for statement: A for statement expects three

expressions: initialization of loop variable, loop condition and variable modifier

expression. All three expressions can be empty but need to be separated by ‘;’.

Many students forget to add a semicolon after initialization or loop condition

expression or add a comma instead of semicolon. This error can be corrected

by detecting the initialization and condition expression and placing a semicolon

after them. If comma is found, it can be replaced with a semicolon.

4.5 Pointer Errors

Pointers are one of the basic concepts to learn programming with C language. When

students are introduced to pointers in the introductory programming course, many

of them are confused regarding the apt usage of following operators:

• Indirection operator ‘*’

• Address-of operator ‘&’

28

• structure indirection operator ‘→’

• structure direction operator ‘.’

We found that many students were using wrong operators. Some common cases

were

1. Use of ‘.’ operator in place of ‘→’ operator in reference type pointer variables

2. Use of ‘→’ operator in place of ‘.’ operator in non-pointer variables

To correct these errors, we detect wrong placement of operator and replace those

with the correct operator by deducing variable type.

4.6 Common Errors

There are many errors which do not fit in any specific category but are very common

to make. These errors are simple enough to miss and if a student is not paying

attention, very difficult to debug.

29

Error
Extra braces or parenthesis, missing braces or parenthesis

Repairing
Approach

When a student is writing a nested block of code, it is very easy
to lose track of all the braces and parenthesis. This may lead
to extra or missing braces and parenthesis error. These error
can be repaired by added or removing those extra braces and
parenthesis.

Example

Incorrect Code snippet :
int main(){

int num=5;

if(num > 10){

printf("Number greater than 10");

}

return 0;

}

}

Correct Code snippet after repair:

int main(){

int num=5;

if(num > 10){

printf("Number greater than 10");

}

return 0;

}

30

Error Semicolon missing

Repairing
Approach

This error is one of the most common mistake made by students
who has no experience in programming in C. Every statement
in C expects a semicolon to denote its completeness. But many
students struggle with this requirement. They forget to add the
semicolon at the end of statements. This can be corrected by
inserting a semicolon at the end of the statements which were
expecting semicolon.

Example

Incorrect Code snippet :

int num;

scanf("%d",&num)

...

Correct Code snippet after repair:

int num;

scanf("%d",&num);

...

Error Missing terminating double quote ” character

Repairing
Approach

String and characters array are very similar but have proved
to be quite challenging for students who have started working
with them. Many students forget to enclose the string in double
quotes or may use single quotes instead of double quotes. These
errors can be repaired by enclosing the strings in double quotes.

Example

Incorrect Code snippet :

...

char s[10] = "hello ;

printf("%s",s);

...

Correct Code snippet after repair:

...

char s[10] = "hello" ;

printf("%s",s);

...

31

Error Missing Header file

Repairing
Approach

Students may have used some library functions but forget to
include the respective header file. This causes the compiler to
throw undefined or undeclared function use. This error can be
removed by including the header file in which the used function
is defined.

Example

Incorrect Code snippet :

#include<stdio.h>

int main(){

char s[10] = "hello";

int len = strlen(s);

...

}

Correct Code snippet after repair:

#include<stdio.h>

#include<string.h>

int main(){

char s[10] = "hello";

int len = strlen(s);

...

}

Error Interchange of comparison ‘==’ and assignment operator ‘=’

Repairing
Approach

When a student is introduced to programming, they seem to
struggle with comparison and assignment operator. They place
comparison operator in place of assignment operator in binary
expressions or assignment statements. This error can be repaired
by identifying those expressions in which students might have
used wrong operator and replace them with correct operator.

Example

Incorrect Code snippet :

int num = 5;

if (num =5){

...

}

Correct Code snippet after repair:

int num = 5;

if (num == 5){

...

}

Table 4.4: Common Errors

Chapter 5

Repair System Architecture

The repairing system comprised of four main components. These components are

Input Receiver, Compiler Engine, Evaluation Engine and Repair Engine.

These components work with each other with help of message passing in JSON [JSO]

format.

Figure 5.1: Repair System Architecture

33

5.1 Input Receiver

Input receiver is the first component which receives all the request from external

systems or from repairing system users. This component acts as a proxy which

handles all incoming requests. Current system is designed to work with only HTTP

POST [POS] requests which must contains all the data in JSON [JSO] form encoded

in base64 format [bas]. This encoding at user end ensures data security and avoids

data corruption. This component expects following data all encoded in base64 format

[bas]:

1. Source code (required)

2. Test Cases input list on which repaired code can be tested (not required)

3. Expected output list to compare with actual outputs generated with the

repaired program (not required)

4. Maximum marks for the problem - this data is not necessary for repairing

engine but required by Auto grader System which is the complementary system

based on Repairing System. Marks are not encoded and expected as plain text

as a integer

34

Figure 5.2: Input Receiver

All received data is validated for data corruption. After data validation, initial

code is passed to Compiler Engine which tries to compile the code. This may result

into following cases

• Successful Compilation: If code successfully compiles without any errors

or warning, then generated executable file is passed to Evaluation Engine.

• Unsuccessful Compilation: If code compilation produce any errors or warn-

ing, it is considered as unsuccessful compilation. In this case, the code is passed

to Repair Engine which tries to repair compilation errors and warnings.

35

5.2 Compiler Engine

Compiler Engine is responsible for compilation of given code. This component can

be called by Input receiver or Repair Engine. Compiler Engine provides a secure

sandbox environment based on Linux containers [Lin] and Linux AppArmor [App]

security model which provides security by confining programs to a limited set of

resources. This secure sandbox is shared by Compiler Engine and Evaluation Engine.

This modules receives the code in plain text format which is compiled with

LLVM based clang compiler [Cla]. The compiler output can result into a successful

compilation or unsuccessful compilation. If compilation is successful, executable

file is passed to Evaluation Engine for grading purposes. In case of unsuccessful

compilation, code is send to Repair engine which sends back the repaired code to

this module for recompilation. System administrator can set a global variable which

control the maximum number of recompilations of code. Along with code, this engine

sends a list of all the errors which includes following information

• Type: which can be either ‘error’ or ‘warning’

• Line no: line no in the source code which has some syntax error

• Column no: position of the error in the statement

• Error message: error message generated by the compiler

36

Figure 5.3: Compiler Engine

5.3 Repair Engine

This component is the heart of our repairing system. It is responsible for sorting and

analyzing different types of errors and how to repair them. Repair engine receives

code and a list which includes all the information about the errors and warnings.

This list is sorted based on position of errors in code.

Repairing code is a rule based deterministic task. This ensures that for same

type of errors on similar code always produce similar repairs. Every error invokes

a repairing function which is designed to repair that specific error. The framework

supporting repairing modules is designed to support extensibility and portability.

New repairing modules can be developed and added to existing system with minimal

changes. This also allows the instructor to decide which type of repairs to support.

The instructor can choose which repairs to be allowed for students submissions and

he can choose different penalties for each error which is repaired.

37

Figure 5.4: Repair Engine

5.4 Evaluation Engine

Evaluation engine is the final step in repairing system. It is a validation module

which checks whether the repairs done in repair engine has caused any improvement

in student’s code. It is called only if code is successfully compiled. Both evaluation

engine and compiler engine work in secure sandbox environment to run and compile

user code. This protects underlying operating system from running malicious code.

We will be using following terms in relation to the functioning of evaluation engine

1. Visible test case: A visible test case is the input which is visible to the

students. Students can see the input and corresponding expected output.

2. Hidden test case: A hidden test case is hidden from students. The input

and corresponding output is not shown to student. A correct submission has

to pass all the hidden and visible test cases. The students are informed about

the status whether the submission has passed the hidden test case or not.

38

3. Actual Output: Output generated by executing student’s submission on a

test case.

4. Expected Output: Output provided by the problem setter or the instructor

for test case.

5. Output matching: If actual output and expected output are same according

to matching criteria set by problem setter then it is considered a successful

matching else it is an unsuccessful matching. Successful matching means a test

case has passed.

Evaluation engine’s task is to execute the students code on given test cases

and keep track of the respective outputs. It matches actual outputs with

corresponding expected outputs. Also, it keeps track of how many hidden and

visible test cases have passed. This data is used by auto grader module for

grading lab assignments and problems.

39

Figure 5.5: Evaluation Engine

Chapter 6

Experiments and Results

For our experiments, we have used the dataset collected from PRUTOR [Das15] as

part of ESc101: Fundamentals of Computing course conducted in the even semester

of the academic year of 2015-2016 at IIT Kanpur. All lab assignments and exams

are solved using C programming language.

We have two datasets, lab dataset and exam dataset. There are twelve labs and

two exams: mid-sem exam and end-sem. Lab dataset refers to all the data related

to students submissions and grades collected during labs. Exam dataset refers to

the data collected during exams. PRUTOR [Das15] logs every student’s activity in

lab and exam including problems, submissions, number of compilations, compilation

errors, etc. and grades awarded by TAs for each assignment problem.

6.1 Performance of Repair System

Performance and efficiency of any computer system can be measured by multiple

parameters [Per] like :

• Response time for any computing task: the total amount of time it takes

to respond to a request for service.

• The throughput of the system: the rate at which some computing task

can be processed. It is calculated as inverse of response time.

41

• Utilization of computing resource: Amount of computing resources used

by the system. It includes CPU cycles, RAM and disk usage, network through-

put, I/O operations, etc. [Res]

To measure the performance and efficiency of automated grading tool with

automated repair system, we measure the above parameters for different tasks like:

• Particular lab or exam submission

• All submissions for each lab type.

• All submissions of mid-sem and end-sem exam.

Event Response Time (ms) Throughput(per sec) Avg. SLOC

Lab 1 118.90 8.41 7

Lab 2 123.00 8.13 9

Lab 3 153.76 6.50 34

Lab 4 215.69 4.64 23

Lab 5 368.68 2.71 31

Exam 1 1,029.79 0.97 29

Lab 6 278.90 3.59 43

Lab 7 515.11 1.94 49

Lab 8 575.97 1.74 36

Lab 9 292.57 3.42 46

Lab 10 394.75 2.53 46

Lab 11 529.37 1.89 78

Lab 12 441.18 2.27 122

Exam 2 2,032.89 0.49 53

SLOC: Source lines of code.

Throughput: Submissions repaired per second.

Table 6.1: Performance of Automated Repair System

42

L
a
b

1
L
a
b

2
L
a
b

3
L
a
b

4
L
a
b

5
E

x
a
m

1
L
a
b

6
L
a
b

7
L
a
b

8
L
a
b

9
L
a
b

1
0

L
a
b

1
1

L
a
b

1
2

E
x
a
m

2

0

600

1,200

1,800

2,400

Event

R
e
sp

o
n
se

T
im

e
(m

s)

Figure 6.1: Performance of Auto grader with Automated Repair System

L
a
b

1
L
a
b

2
L
a
b

3
L
a
b

4
L
a
b

5
E

x
a
m

1
L
a
b

6
L
a
b

7
L
a
b

8
L
a
b

9
L
a
b

1
0

L
a
b

1
1

L
a
b

1
2

E
x
a
m

2

0

30

60

90

130

Event

A
v
g
.

S
L

O
C

p
e
r

su
b
m

is
si

o
n

SLOC: Source lines of code.

Figure 6.2: Average SLOC per Submission for each Lab

43

Program runtime depends on multiple parameters like CPU usage, memory usage,

lines of code, execution time, etc. As we are performing experiments on thousands of

submissions, calculating CPU and memory usage for each submission is a very difficult

task. As we are considering the submissions submitted for introductory programming

course, we can safely ignore the CPU and memory usage. Each submission is only

accepted if it executes within the time limit decided by the instructor. So, we have

used lines of code in source code as the metric to calculate the runtime of student’s

submissions.

We can observe a direct correlation between response time of the system and

the number of lines in the given source code. As the size of source code increase,

the response time of the automated repair system also increases. A deviation from

this trend can be observed for the lab exam submissions. The reason behind this

deviation is the increase in the difficulty level of exam problems. Also, in lab 11 and

12 topics like pointers, linked list, structures etc. are taught. Our repair system does

repair some basic errors related to pointers and structures but ignores rest of the

errors. But in exams, problems are asked from all topics and so, frequency of those

errors which are corrected by automated repair system increases. Thus a significant

increase in response time can be observed for exams. In labs students take help from

teaching assistants and their friends, thus make less errors. In exams lack of any

help from teaching assistants causes increase in number of errors thus requires more

time for repairing the submissions.

6.2 Analysis of Repair System

The motivation behind the development of automated repair system was to enable

auto-grader to grade those programs which were compiled unsuccessfully. Auto grader

without automated repair system awards zero or very low marks to unsuccessfully

compiled submissions. We have analyzed the performance of auto-grader with

automated repair system.

44

6.2.1 Successful and Unsuccessful Submissions

Unsuccessful compiled submissions refer to those submissions which when compiled

generate warning and errors. Successful compilation means the program gets compiled

without any compile time error or warning. Submissions which contains only warning

are also considered as unsuccessfully compiled as in many cases it is observed

that repairing the warning may lead to the correct program which may make the

submissions passing more test cases than earlier.

We analyzed the working of automated repair system on unsuccessfully compiled

submissions. The successfully compiled submissions were not considered for analysis

of working of rep air system. This is due to the fact that analysis of repair system

on successfully compiled submissions does not produce any significant results related

to repair system.

Example 6.1 The student has used a scanf statement with wrong format identifier

and forgot to use ‘&’ before the variable name. Compiler will show these as warning

but no compile time error. But this mistake changes the runtime behavior of the

submissions.

Original Code:

1 #include<stdio.h>

2 int main()

3 {

4 float num;

5 scanf("%d",num);

6 ...

7 return 0;

8 }

45

Repaired Code:

1 #include<stdio.h>

2 int main()

3 {

4 float num;

5 scanf("%f",&num);

6 ...

7 return 0;

8 }

In above example, in line no 5, the student has used a wrong format specifier ‘%d’

in place of ‘%f’ and forget to place ‘&’ before the variable. This will cause a compile

time warning and will change the run time behavior of the student’s submission.

This repair will make the program work as expected and if rest of the program is

correct, it may lead to passing more test cases than before.

We have analyzed the dataset from labs and exams separately. We did this due

to the fact that in a lab environment, a student can take help from his notes, friends

or teaching assistants so he is expected to make fewer errors. This is not available in

an exam environment which leads to students making more errors.

For labs, 12, 872 programs were submitted as the requirement for course completion.

Around 40 teaching assistants graded these submissions and provided feedback to

students. Out of these 12, 872 submissions, 2, 359 submissions had compilation

warnings and 881 submissions were unsuccessfully compiled with compilation errors.

For these 3, 240 (2, 359 and 881) , teaching assistants tried to correct these errors

and warnings and check the correctness of the logic of the submissions. For exams,

2, 741 submissions were submitted. Out of these submissions, 724 submissions had

compilation warnings and 536 submissions failed to compile successfully.

After running our tool on these 3, 240 lab submissions and 1, 260 exam submissions,

323 lab submissions and 185 exam submissions got corrected and compiled successfully

(no warnings and errors) . In some cases after every correction, new errors and

warnings can be detected by the compiler. As our repairing tool only tries a limited

46

times to repair any submissions and repairing tool does not correct every type of

warning and errors, some error and warning remains. 199 lab submissions and

144 exam submissions were repaired with compilation warnings remaining. These

submissions can be evaluated for validation of logic.

Lab

Submissions

Exam

Submissions

Total Submissions 12872 2741

Before Repairs

Unsuccessful

Compilations
warnings only 2359 724

errors 881 536

After Repairs

Successful

Compilations

warnings & errors

→ no warnings &

no errors

323 185

warnings → no

warnings
241 136

errors → no errors

& no warnings
82 49

errors → successful

compilation (may

contain warnings)

199 144

Total submissions containing repairs 1265 713

Table 6.2: Automated Repair System Statistics

6.2.2 Improvement in Marks

From Table 6.2 we can see that 323 lab submissions and 185 exam submissions were

corrected with no compilation time errors or warnings. 199 lab submissions and 144

exam submissions were corrected with some compilation time warnings remaining.

Out of these submissions, 91 (58 lab and 33 exam) submissions have improved

grades compared to auto-grader used without repairing system. The improvement

47

in grades ranges up to 24 marks. 32 submissions were awarded more than 50% of

total marks. Out of 91 submissions which have improved grades, 38 submissions had

compilation errors which were awarded zero marks by the auto-grader system before

using repairing system.

Figure 6.3: Frequency of submissions with improvement in marks

In Figure ??, we can see the improvement in marks before and after using

automated repair system with auto grader. Blue curve shows the marks before and

red curve shows the marks after auto repair of submissions.We can observe that

many submissions have improvement of 1 to 5 after using auto repair system. This

is because our repair system only tries to fix compile time errors, it does not repair

logical errors. A compiled program does not necessarily result into a valid submission

for a given problem. Table ?? shows the frequency of submissions having improved

marks. We observe an average improvement of 4.81 (' 5) marks per submission.

6.2.3 Repaired Errors and Frequency

An interesting pattern in error frequency and their types emerge after analyzing

the repairs done on students submissions. Many errors which were very common in

48

beginning labs were rarely occurred in later labs. Also, as new concepts were taught

during the course, new errors were made.
L
a
b

1
L
a
b

2
L
a
b

3
L
a
b

4
L
a
b

5
E

x
a
m

1
L
a
b

6
L
a
b

7
L
a
b

8
L
a
b

9
L
a
b

1
0

L
a
b

1
1

L
a
b

1
2

E
x
a
m

2

Multi-Char Constant

Headerfile Missing

Semicolon Missing

Incorrect Format IO

Uninitialized Variable

Misplaced scanf

Extraneous Brace

Invalid Specifier

Empty Body

Expected Parenthesis

Undeclared Variable

Expected Array Size

Variable Not Array

Comparison Correction

Redeclared Variable

Incorrect Variable Spelling

Non-void Function

Void Function

Expected Dereference Op.

Expected Reference Op.

Event

Figure 6.4: Error Statistics

Lab Type Concepts Taught Avg. Time(s) Avg. Marks

Lab 1 Practice 18.21 20

Lab 2 Practice 30.6 12.41

Lab 3 Conditional Statements 80.09 9.11

Lab 4 Loops 73.14 14.64

Lab 5 Array 92.2 11.71

49

Exam 1 All Concepts till date 87.41 11.88*

Lab 6 Array & Strings 82.47 11.36

Lab 7 Advanced Array & Strings 105.13 7.03

Lab 8 Recursion 101.74 11.58

Lab 9 Pointers 87.89 13.08

Lab 10 Data Structure and Algorithm 97.8 10.81

Lab 11 Linked List 90.51 5.97

Lab 12 Structures & Advanced Linked List 87.98 6.55

Exam 2 All Concepts 118.41 8.67*

*Normalized Marks

Table 6.3: Students performance for each lab event

Figure 6.5: Error Frequency for some frequent errors for all lab events

50

We can notice that many errors were introduced in earlier labs and students

continued to be struggling with them. The graph 6.4 represents a time line showing

the prevalence of an error in all the labs and exams. A continuous line represents

that students are making that error repeatedly. The graph 6.5 shows the frequency

of selected errors made by the students in the labs and exams. The increase in

frequency of errors in exam 1, exam 2, lab 7 and 8 is due to increase in difficulty level

of problems. This also results into the increase in average time taken by students to

submit solutions for lab assignments and low average marks for the respective lab

events.

This data can be used by instructors and teaching assistants to help students

learn better. Instructors can focus on above errors related topics in lectures and

lab assignments. Lab assignment problems can be designed to focus more on these

areas. Furthermore, the students who are struggling in labs and are continuously

making these errors can be identified. Special lectures and more detailed notes can

be arranged for those students.

Chapter 7

Conclusions and Future Scope

In this chapter, we will conclude this thesis and discuss about the implications

and future scope in Automated repairing of programs.

7.1 Conclusions

Automated Repair System has opened many new avenues to new teaching methods

and provided insight into students learning curve at new level. Current system is

designed to work in different modes and can be modified easily according to new

requirements. With the integration of automated repair system and newly designed

architecture, performance and efficiency of automated grading system has improved

many times.

Automated repair system can also be modified very easily to provide relevant and

real time feedbacks to students. Any submission can be corrected and from those

repairs, very custom feedbacks about the errors can be generated. These repair can

also be used to correct student code on the fly and thus minimizing the need to

teaching assistants.

Our goal at the beginning of this thesis was to design and develop an automated

repair system which will help automated grading system to work with unsuccessfully

compiled submissions also. Our goal was to design a system which will detect and

52

repair errors and warnings in student’s submissions, so that student’s submission

can be graded in an automated manner. After conducting various experiments and

analyzing the performance we can safely say that automated repair system has made

automated grading system performance at par with the grading of teaching assistants.

Also we have noticed that automated repairing of programs has made grading bias

free and more consistent.

We have designed the automated repairing system in a pluggable model so that

existing or new teaching system can be added easily. Automated Repair System can

be easily integrated with PRUTOR [Das15] with help of exposed web services. The

system can also be used independently without auto grading system to repair any

program.

The current system successfully runs with auto grader system and automated

feedback system [Dad16] which is an extension to the automated repair system.

Performance wise, current grading system can grade around two hundred submissions

per minute with automated repairing. The system is designed in pipeline manner

which means all operations are independent and there is no single point of failure or

bottleneck in all sub components.

There are many advantages of automated repair system, some of which are:

• Integration with automated grading system to enable grading system to grade

even unsuccessfully compiled program. This improves the performance of

automated grading system many folds.

• Automated feedback system can be designed on top of automated repair system.

A student can be provided with feedback explaining what errors he has made

with correct code and how to correct them.

• Automated repair system works with correcting those errors which students

are making continuously. Instructor can use this data to focus on those topics

53

with which students are struggling.

7.2 Future Scope

The system offers a wide range of corrections and repairs to programs and is

designed to work very efficiently. Yet there are some areas which can be improved to

make automated system even better. Some of these areas are:

• Adding more types of errors to repair system:

Current system is designed to work with only syntactical errors. Almost all

of these errors are detected at compile time. Current system does not detect

runtime errors or semantic errors. After analyzing students submissions, we

have noticed that many students are making these type of errors. Designing

repair modules for semantic errors will improve the functioning of automated

repair system and these improvements could lead to better automated grading

and automated feedback system.

• Repair system for logical errors based on problem statement analy-

sis:

The goal of current system was to help student with syntactic errors. We

have purposely avoided repairing logical errors because it was felt that helping

students with logic of program will hamper their learning process to solve and

tackle problems. But discussing with many students and teaching assistants,

it is being observed that when student’s submission has logical errors due

to which his submission is not accepted, he starts making guesses with the

program logic and syntax and introduce more errors in program. If the repair

system can correct logical errors and give relevant feedback to student, the

student can avoid making more errors.

• Providing solution blueprint with problem statement:

When the instructor designs a problem, he also provides a sample solution to

54

that problem. We could generate a blueprint in form of flowchart of the solution

and provide students with feedback as flowchart of the solution. This could

help students to understand how to think and design solutions to problems

and think in form of code. This feedback can be controlled based on progress

made by student and different grading policies can be designed to monitor a

student’s progress in the lab.

References

[App] Linux apparmor.

URL: https://en.wikipedia.org/wiki/AppArmor.

[bas] Base64.

URL: https://en.wikipedia.org/wiki/Base64.

[BS16] Sahil Bhatia and Rishabh Singh. Automated correction for syntax errors

in programming assignments using recurrent neural networks. CoRR,

abs/1603.06129, 2016.

[Cla] Clang. A c language family frontend for llvm.

URL: http://clang.llvm.org/.

[Dad16] Ziyaan Dadachanji. Automated feedback and grading for programs in

introductory programming courses. M.tech. thesis, Indian Institute of

Technology Kanpur, India, 2016.

[Das15] Rajdeep Das. A platform for data analysis and tutoring for introductory

programming. M.tech. thesis, Indian Institute of Technology Kanpur,

India, 2015.

[GRZ14] Sumit Gulwani, Ivan Radicek, and Florian Zuleger. Feedback generation for

performance problems in introductory programming assignments. CoRR,

abs/1403.4064, 2014.

[JGB05] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. Program

repair as a game. In Proceedings of the 17th International Conference on

https://en.wikipedia.org/wiki/AppArmor
https://en.wikipedia.org/wiki/Base64
http://clang.llvm.org/

56

Computer Aided Verification, CAV’05, pages 226–238, Berlin, Heidelberg,

2005. Springer-Verlag.

[JSO] Introducing json.

URL: http://www.json.org/.

[KB11] Robert Könighofer and Roderick Bloem. Automated error localization and

correction for imperative programs. In Proceedings of the International

Conference on Formal Methods in Computer-Aided Design, FMCAD ’11,

pages 91–100, Austin, TX, 2011. FMCAD Inc.

[Lin] Linux containers.

URL: https://linuxcontainers.org/.

[MOO] Massive open online course.

URL: https://en.wikipedia.org/wiki/Massive_open_online_

course.

[Par15] Sagar Parihar. Automated grading tool for introductory programming.

M.tech. thesis, Indian Institute of Technology Kanpur, India, 2015.

[Per] Computer performance.

URL: https://en.wikipedia.org/wiki/Computer_performance.

[POS] Post (http).

URL: https://en.wikipedia.org/wiki/POST_(HTTP).

[Res] System resource.

URL: https://en.wikipedia.org/wiki/System_resource.

[SGSL13] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated

feedback generation for introductory programming assignments. SIGPLAN

Not., 48(6):15–26, June 2013.

http://www.json.org/
https://linuxcontainers.org/
https://en.wikipedia.org/wiki/Massive_open_online_course
https://en.wikipedia.org/wiki/Massive_open_online_course
https://en.wikipedia.org/wiki/Computer_performance
https://en.wikipedia.org/wiki/POST_(HTTP)
https://en.wikipedia.org/wiki/System_resource

	List of Tables
	List of Figures
	Introduction
	Idea
	Thesis Outline

	Background and Related Work
	Background
	Prutor : Online Programming Environment
	Grading

	Related Work
	Automated Grading Tool for Introductory Programming
	Automated Feedback Generation for Introductory Programming Assignments
	Automated Correction for Syntax Errors in Programming Assignments using Recurrent Neural Networks
	Feedback Generation for Performance Problems in Introductory Programming Assignments
	Automated Error Localization and Correction for Imperative Programs
	Program Repair as a Game

	Error Pattern Discovery
	Motivation
	Dataset
	Results

	Tackling Patterns
	Input and Output Statements Errors
	Variables and Arrays Errors
	Function Declaration and Definition Errors
	Loop Errors
	Pointer Errors
	Common Errors

	Repair System Architecture
	Input Receiver
	Compiler Engine
	Repair Engine
	Evaluation Engine

	Experiments and Results
	Performance of Repair System
	Analysis of Repair System
	Successful and Unsuccessful Submissions
	Improvement in Marks
	Repaired Errors and Frequency

	Conclusions and Future Scope
	Conclusions
	Future Scope

	References

