
Improving Loop Execution using Precise

B/F-Ratio Calculation

A thesis submitted

in Partial Fulfillment of the Requirements

for the Degree of

Master of Technology

by

Nitin Sharma

to the

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

May, 2015

v

ABSTRACT

Name of student: Nitin Sharma Roll no: 13111039

Degree for which submitted: Master of Technology

Department: Computer Science & Engineering

Thesis title: Improving Loop Execution using Precise B/F-Ratio

Calculation

Name of Thesis Supervisor: Prof Amey Karkare

Month and year of thesis submission: May, 2015

High performance computing requires efficient use of memory. Vast number of ap-

plication uses array with loops which makes them ideal to study for optimization.

We present improvements to an existing cache cost based model to perform precise

calculation of distinct cache lines. The count of distinct cache lines help us in guid-

ing loop transformation such as loop interchange. Through this method we get the

loop ordering in which the total cache usage is optimal.

We use the parameter B/F-Ratio (Byte – Flop Ratio) in a modified way to

set limit on actual system performance. Our approach is different from existing

methods in the sense that we consider system parameters like cache size, block

size and processor speed. This makes our approach more flexible in adjusting to

different systems. We calculate B/F-Ratio of machine, and on the basis of that, we

classify our program to be compute or memory bound for that particular machine.

Finally, we demonstrate the effectiveness of our approach on programs of Polybench

benchmark by comparing our results with the ones obtained through simulation of

the original programs.

To my parents

Acknowledgements

My thesis advisers Dr Amey Karkare and Dr Dipankar Das’s help and guidance

ensured that we start this wonderful journey of working with each other. Amey sir

has always been ready to give their best effort even in the times when the path on

which we were working was not clear. I consider myself blessed to work with him

and express my sincere thanks and respect to both of my guides.

I’d like to thank my parents, friends and the others in my life for being patient

with me, especially towards the final stretch of thesis completion, when I wasn’t at

my best socially.

Special thanks to Tejas Gandhi and Shahbaz Khan, IIT Kanpur for taking time

to work with me and guide me in a fixed direction. You guys will always be remem-

bered.

Contents

List of Tables xiii

1 Introduction 1

1.1 Objective . 1

1.2 Motivation for our work . 2

1.3 Contribution of Thesis . 2

1.4 Thesis Organisation . 3

2 Related Work 5

2.1 Program and System Model . 5

2.1.1 Compilation Model . 5

2.2 Related Work . 6

3 Background 9

3.1 Introduction . 9

3.1.1 linear Diophantine equation 9

3.1.2 Results about Frobenius problem 10

3.2 Frobenius Problem with Bounds . 11

3.3 Algorithm . 13

3.3.1 Analysis of the Algorithm . 13

3.4 Bounding the number of cache blocks 14

3.5 Exact Block Count . 15

3.6 Bounding Multiple Array References 18

xii

3.7 Exact DA in Multiple Array Reference 19

3.8 Bound on the Number of Distinct Blocks 24

4 BF Ratio 27

4.1 Existing performance metric . 27

4.2 New Performance Metric . 29

4.3 BF ratio and Time Complexity of kernel 29

5 Results and Conclusion 33

5.1 Design and Implementation . 33

5.2 Testing setup . 33

5.3 Standard Benchmarks . 34

5.4 Performance Results . 34

5.4.1 Matrix Multiplication . 35

5.4.2 3DConvolution . 37

5.4.3 MVT . 39

5.4.4 SYRK . 40

5.5 Conclusion and Future Work . 44

References 47

List of Tables

1.1 Cache line count for different Innermost loops 2

3.1 Table showing result of step one . 16

3.2 Table showing result of step two . 16

3.3 Table showing result of step three . 17

3.4 Table showing result of step one . 20

3.5 Table showing result of step two . 21

3.6 Table showing result of step three . 21

3.7 Table showing result of step four . 22

4.1 Table BF ratio of modern microprocessors[26]. 29

4.2 Cache size of 212 elements i.e total 256 cache lines 30

4.3 Cache size of 214 elements i.e total 1024 cache lines 31

5.1 Matrix multiplication code running with cache size of 512 lines and

block size of 128 elements . 35

5.2 Matrix multiplication with increased cache size of 2048 cache lines . . 36

5.3 Table showing results of code listing 5.2 37

5.4 Table showing result of code listing 5.3 38

5.5 Table showing result of code listing 5.4 39

5.6 Table showing result of code listing 5.5 40

5.7 Table showing result of modified runMvt 40

5.8 Table showing result of code listing 5.7 41

5.9 Table showing results of code listing 5.8 42

xiv

5.10 Table showing result of code listing 5.8 43

5.11 Comparison of distinct lines(DL) count by our and previous approach 43

5.12 table showing B/F-Ratio of different kernels 44

Chapter 1

Introduction

High performance computers requires efficient use of memory. The best memory

management may be done with the help of careful hand/manual optimization but

this does not solve the problem. A lot of work in automatic transformation has been

done. They all have some parameters either some cost based based model or some

threshold based on which they guide some loop transformations.

Loop Interchange has been widely studied. It is simply interchanging of loop

execution order such that the meaning of the program is not changed, this is checked

with the help of dependence vector. We assume our programs to be properly nested.

We took an existing cost based DL Model which calculates distinct cache lines used

by the program. We propose extension to this DL method.

1.1 Objective

The objective of this thesis is to propose a new parameter called B/F Ratio which

can be calculated based on the static/compile time analysis of the program and it

can then guide loop interchange. This parameter basically sets an upper bound on

system performance. All the programs requiring more performance are classified

as compute bound(explained later). For the calculation of B/F Ratio, we have

improved the existing DL Model to now exactly calculate the Distinct Access (DA)

count along with improvement to the DL count, which is the number of cache lines

2

used by the program on a particular architecture.

1.2 Motivation for our work

There are significant number of application that contains regular and irregular ker-

nels. Most of them contains loops and array index. If we have perfect loop nesting

such that loop interchange is possible then we have to decide which loop ordering

would be maximally cache effective. Consider a simple example of matrix multipli-

cation shown in code listing 1.1.

Listing 1.1: matrix multiplication code

for(I=0;I<500;I++)

for(J=0;J<500;J++)

for(K=0;K<500;K++)

C[I][J] + = A[I][K] * B[K][J];

The following table 1.1 shows the result of keeping each of I,J and K loop as

the innermost loop. It can be easily seen from the table 1.1 that for a cache with

512 lines only the choice of I as the innermost loop will fit, since all other loops will

cause the cacheto overflow.

Innermost c a b c+a+b
I 32 32 1 65
J 500 1 500 1001
K 1 500 32 533

Table 1.1: Cache line count for different Innermost loops

1.3 Contribution of Thesis

In this thesis, we proposed and implemented a precise cache cost model which cal-

culates the total cache lines being used by the program. We consider only array

accesses since generally they form bottleneck while transferring data to memory.

We propose a new parameter called B/F Ratio which can be used to set a machine

performance limit. We classify the program into memory bound or compute bound.

3

If the program is memory bound then loop interchange is performed such that it

can reach to minimal B/F Ratio. We then show results on standard benchmark

program and compare our cache cost model with simulation results.

1.4 Thesis Organisation

Rest of the thesis is organised as follows:

Chapter 2 discusses the related work with our assumptions for the input program

and system model. It basically compares the existing approaches. It gives us an

idea of how different models might suit in different situation and what to choose

based on your goal.

Chapter 3 presents the background information required for the improvement

of existing cache cost model(DL model). We briefly touch Frobenius Problem and

use its results to calculate exact distinct access(DA) count. We then present an

algorithm for DA count along with algorithm for DL count.

Chapter 4 discusses our new parameter B/F Ratio which sets an upper limit

on the system performance. We discuss similar parameters and how B/F Ratio

represents a more practical view of existing memory model.

Chapter 5 presents results on standard programs of polybench benchmarks. We

discuss our limitation along with our future goals and conclusion of the thesis.

Chapter 2

Related Work

2.1 Program and System Model

Our approach applies to programs in which loop index is affine combination of loop

variables, For non affine combination, we take pessimistic approach and assume

cache miss for each access. All the array index coefficients are compile time known

since we form linear diophantine equation from the array access index. We also

have cache line size, cache capacity and other system parameters. For simplicity, we

assume only L1 cache to be present and guide transformation according to it. Al-

though this method could be easily extended to handle more than once cache. We

define cache overflow as the situation where the program is using more than cache

lines than the total capacity of the cache. We assume no reuse of elements in the

cache after it has overflown. We assume perfectly nested loops without conditional

statements. We do plan to extend this work to handle conditional expression. Ex-

ecution profiling[1] can be used to determine the probability of execution of each

reference, and our estimates can be weighted by such probabilities[2].

2.1.1 Compilation Model

We assume perfectly normalised loop since Loop normalization[3] guarantees unit

step size of loops. We are concerned with memory reference by array access only. For

6

simplicity, we assume arrays are stored in column major format. As for architecture,

we assume uniprocessor model with memory hierarchy. We assume least recently

used(LRU) policy to be used by cache.

2.2 Related Work

For uniprocessor machine, this problem of counting the total number of cache line

was considered by Porterfield in [4]. But the technique assumed cache line size of

one element has the total number of distinct element access was the total number

of cache line size. No such assumption is made by us. we can solve this special case

with exact number of Access. Also they assumed data dependence with constant

direction vectors, which is not the usual case in practice [5]. They [4] compute

”cache dependence” similar to data dependence. Instead our method use multiple

application of the GCD test and properties of linear diophantine equation to better

estimate the cache lines.

DL model has been widely used in [6][7][8] for finding the ordering of the loops,

loop fusion profitability analysis and determining optimal tile size according to sys-

tem specific parameters. It can be applied to any level of cache or TLB by selecting

its cache line size as page size. In general, to determine the total amount of bytes

transferred between main memory and cache we first get a upper bound on the num-

ber of cache lines being used by the given program. A lot of work has been done in

traditional AST based transformation frameworks for locality and parallelism that

builds a memory cost model to calculate cache effectiveness.

AST based transformation are individual loop transformation applied to Ab-

stract Syntax Tree(AST) of the program. In their paper[7] on integrating polyhedral

model with AST based transformation. The author make use of DL based analysis

model to be used in polyhedral framework and bring advantage of polyhedral model

to the world of AST based transformation. A per-iteration memory cost of every

statement is calculated which assumes that all distinct lines of a tile are kept on a

specific cache. The change in the memory cost with respect to tile size becomes a

7

driving factor for the selection of loop ordering. The loop interchange is likely to be

beneficial when the new cost is smaller than the original per-iteration memory cost.

Also for loop fusion the author compares[7] the memory cost before and after loop

fusion[6, sarkar].

Another widely known cost based model[9, kennedy] calculates LoopCost Func-

tion by partitioning array access into Refgroups. Each of the Refgroup has a repre-

sentative member array access which is used for all calculation for that particular

equivalence class. It classifies access to the same memory location as temporal reuse

while access done to consecutive memory location is counted as spatial reuse. But

this cost model conservatively assumes that reuse happen only across the innermost

loop which greatly decrease its precision. Also their loopcost algorithm appears to

be exponential in terms of number of array references in the worst case, in that time

our method can give fairly tight upper bound over the number of cache lines that

too considering reuse across all present loops. Their work considers overlap of only

uniformly generated references, whereas ours is more generally applicable.

The IBM ASTI[6] optimizer was the first of early compilers that performed wide

range of transformation using a cost based framework. Before this optimizer High

Order(or high level) Transformation used to operate on intermediate representation

of the program which was related to the Machine level while this operates on source

program level. This was because high order transformation could drastically degrade

the performance. It provided foundation for transformation like loop skewing, in-

crease in opportunity for loop-invariant scalar replacement, loop unrolling and loop

fusion using a memory cost model.

To guide tile size selection, the paper by P.Sadayappan and Vivek Sarkar [8]

presents a new memory cost model since in the existing DL model any tiles with

data footprint larger than cache size are discarded, as we conservatively assume

that when cache is filled or overflow no reuse will take place which is actually a

pessimistic assumption to make in many application. The author[8] introduces the

concept of ML(minimum working set lines) that assumes an ideal intra-tile cache

8

block replacement. Since DL and ML provide lower and upper bound for tile size,

it greatly reduces the tile size search space.

Another quantitative analysis has been done by [10, ghosh] where they form

cold miss equation(CME’s) that give a detailed representation of cache behaviour,

focusing more on the cache misses. It actually generates linear diophantine equa-

tion similar to our approach but they calculate those reuse which are not found in

the cache(hence they calculate all the cache miss) while we on the other hand are

interested in finding the total amount of memory traffic that has been brought to

the cache from the main memory.

The rest of thesis is organised as follows: In chapter 3, we provide all the back-

ground details and terminologies related to DL method along with some new pro-

posed approaches to improve the existing DL method. Chapter 4 then introduces a

new concept of byte/flop ratio which is a new approach to control the loop trans-

formation customised to a particular machine. Chapter 5 then extends results of

the techniques of previous chapters where we present simulation results for some

standard codes. Lastly, we present our conclusion and comment on our future work.

Chapter 3

Background

3.1 Introduction

In this chapter, we provide a basic overview about the linear Diophantine equation

and the related concepts to describe their behavior.

3.1.1 linear Diophantine equation

In mathematics, a Diophantine equation is a polynomial equation in two or more

unknowns such that only the integer solutions are searched or studied (an integer

solution is a solution such that all the unknowns take integer values). A linear

Diophantine equation is an equation between two sums of monomials of degree zero

or one. For example

a1 ∗ x1 + a2 ∗ x2 + a3 ∗ x3, . . .+ ak ∗ xk = N (3.1)

where N, a1, a2, a3, . . . ak are integer constants and x1, x2, x3, . . . xk are unknowns

that takes integer values.

It is well known that equation 3.1 has integral solution if gcd(a1, a2, a3, . . . ak)

divides N completely(this is simply extension of Euclid gcd theorem in more than

two variables). If we denote by g(a1, a2, a3, . . . ak) the largest integer N such that

equation 3.1 has no solution in non negative integers, then it is a well-known result

10

of Sylvester that g(a1, a2) = a1 ∗ a2 − a1 − a2. The related functions n(a1, a2, ..., ak)

denote the number of positive integers N for which equation 3.1 has no solution[11].

It is also known that n(a1, a2) =
(a1−1)∗(a2−1)

2
. There exist no closed form formula

for either g or n [11][12]. More information on this problem may be found in the

recently published monograph[13].

3.1.2 Results about Frobenius problem

We will now use two well known Results whose prove is given by respective authors

and are helpful in calculating g(a1, a2, a3....ak) and n(a1, a2, a3....ak) in general case:

Calculating Frobenius Number

The formula for the calculation of frobenius number has been discussed in [14][11][12].

Let gcd(a1, a2, a3....ak) = 1, and for 1 ≤ j ≤ k− 1 , let mj denote the least positive

integer N congruent to j mod a1 such that (1) has a solution in non negative integers

and all N, a1, a2, a3....ak are positive integers, then

g(a1, a2, a3....ak) = max
1≤j≤a1−1

mj − a1 (3.2)

n(a1, a2, a3....ak) =
1

a1

a1−1∑

j=1

(mj − j) =
1

a1

a1−1∑

j=1

(mj)−
a1 − 1

2
(3.3)

Frobenius Number in general

In the previous sub-section we discussed how we can calculate the frobenius number

when the gcd(a1, a2 . . . ak) = 1 but this might not always be the case, hence in this

section we discuss a more general case as given in [15][11][12][16]. the variables

a′1, a
′
2 . . . a

′
k denotes the number obtained by taking d common out of the number

a1, a2 . . . ak. Also note that a1 is minimum of the coefficients if it is not the case

then we can rearrange the terms such that a1 is minimum.

Let a1, a2, . . . ak be positive integers. If gcd(a1, a2 . . . ak) = d and aj = d ∗ a′j for

11

each j ≤ 1 , then

g(a1, a2 . . . ak) = d ∗ g(a′1, a′2 . . . a′k) + a1(d− 1) (3.4)

n(a1, a2 . . . ak) = dn(a′1, a
′
2 . . . a

′
k) +

1

2
∗ (a1 − 1) ∗ (d− 1) (3.5)

The Problem of Frobenius consist in determining the largest positive integer N

that does not have a solution in non negative integers. This is also referred to as

”coin change problem of Frobenius”. but for our thesis we will be mostly focusing on

determining closed form formula for the function n(a1, a2..., ak) which denotes the

total number of positive numbers N that does not have a nonnegative solution of

equation 3.1. As we can see from equation 3.3 we do not have a closed form formula

since equation 3.3 depends on mj’s. If we can find these mj’s then we can put it in

equation 3.3 to get the desired results.

3.2 Frobenius Problem with Bounds

It is interesting to see how values are produced by the linear Diophantine polynomial

when the input values are bounded i.e they have a lower and upper bound. Consider

a very simple code below. The expression in the array index in a linear Diophantine

polynomial with a1 = 5 and a2 = 7.
for(int i=0;i<=10;i++){

for(int j=0;j<=10;j++){

A[5*i+7*j] = A[5*i+7*j]+10;

}

}

Both loop will run 11 times each hence we can expect 11*11 = 121 different

values to be produced. But this is not the case,actually only 97 different values are

produced and some values are produced twice. If we take all the 97 different values

and sort them in ascending order we can notice something interesting that within a

certain range every consecutive numbers will be formed. For example in the above

12

the values produced are

0 5 7 10 12 14 15 17 19 20 21 22 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

93 94 95 96 98 99 100 101 103 105 106 108 110 113 115 120

It can be seen that between 24 and 96 every consecutive value is produced at

least once. We know that since a1 = 5 and a2 = 7 are co-prime then according to

Euclid theorem every number should be formed but here some numbers are not being

formed since i and j can take only limited values. For example here i and j cannot

take negative values. Hence the number of numbers that will be not formed before

24 can be represented by the function n(a1, a2 . . . , ak) defined in the beginning of

this chapter. Also by symmetry it can be easily seen that same number of numbers

cannot be formed in the last. In fact 24 and 96 are at the same distance from the

minimum and maximum values respectively. The maximum number that cannot be

formed before 24 is 23 which is the Frobenius number in this case and is represented

by function g(a1, a2 . . . , ak).

Hence we can see that after the point g(a1, a2 . . . , ak) every number will be formed

till the point max − g(a1, a2 . . . , ak) and total 2*n(a1, a2 . . . , ak) numbers will be

missing from (max−value−min−value). Since these missing numbers do not follow

any pattern or series there is yet no closed formula for the function g(a1, a2 . . . , ak)

and n(a1, a2 . . . , ak). Also if just one of the coefficient out of (a1, a2 . . . , ak is 1 then

g(a1, a2 . . . , ak) = 0 and there are no missing numbers. So in that case the total

distinct numbers formed by this linear Diophantine polynomial can be given by

difference between maximum and minimum value formed.

In the next subsection we will present an algorithm that helps us to evaluate

n(a1, a2 . . . , ak) and g(a1, a2 . . . , ak). As we already know that till date we have no

closed form formula for these functions [11]. In fact the general problem is proven

to be NP-hard[12].

13

3.3 Algorithm

The basis of this algorithm is the fact that if we are able to get any number p with the

help of left hand side of equation 3.1 then we will be able to get p+a1, p+a2 . . . p+ak

and all other multiples of these constant terms. Without any loss of generality

we assume a1 to be the smallest among a1, a2 . . . ak, otherwise we can rearrange

equation 3.1 such that a1 becomes smallest.

1. create a graph with vertices’s 0, 1, 2, . . . a1 − 1.

2. For all k - 1 constants a2, a3, . . . ak excluding a1 put an edge from x to (x +

an) mod a1 and give them weight x+an
a1

where for each value of n, x varies from

0 to a1 − 1 and n varies from 2 to k.

3. Use Dijkstra’s Algorithm using 0 as initial node. The distance found out by

the algorithm are the numbers that we are searching for.

4. let for any node i the distance found from 0 node is di then di ∗ a1 + i is the

first number that will be formed with given constants which leaves remainder i

when divided by ai. These numbers have also been defined as m′
js in equation

3.3. We have to find all such m′
js and put their summation in equation 3.3.

5. Thus we have an algorithm which gives us the n(a1, a2..., ak) which is exactly

the count of the values that cannot be produced with non negative values of

variables. An important thing to note is that these values cannot be produced

due to the constraints of non-negative values of variables otherwise since the

gcd(a1, a2..., ak) = 1 then every value could have been produced (which is

simply Euclid gcd algorithm in two and more than two variables).

3.3.1 Analysis of the Algorithm

In this subsection we will analyse the time complexity of the presented algorithm.

Since we apply Dijkstra’s Algorithm we will first have to find the maximum possible

edges and vertices of our graph.

14

1. We are taking a1 to be minimum of all the given coefficients a1, a2, . . . ak oth-

erwise we can simply rearrange the equation such that the first coefficient

become minimum. Thus we can have at most a1 vertices.

2. We put an edge from x to (x+ an) mod a1 where for each value of n, x varies

from 0 to a1−1 and n varies from 2 to k. hence we can have at most O(a1∗k)

edges.

3. The implementation of Dijkstra based on a Min-priority queue implemented

by a Fibonacci heap takes running time of O(|E| + |V | log |V |) (where|E| is

the number of edges and |V | is the number vertexes)

4. Hence the time complexity of the algorithm is O(|a1 ∗ k|+ |a1| log |a1|) which

is theoretically exponential but if the value of a1 and k is small then for our

practical purposes, we will be able to find the exact values of n(a1, a2..., ak).

3.4 Bounding the number of cache blocks

In the previous section we proposed and analysed algorithm related to counting

distinct access of a particular array access while in reality we deal in terms of blocks

when talking about cache. Hence now we are going to see how to calculate the

number of different cache block accessed by a particular array access. Let DA be the

number of distinct accesses being made by the array as calculated in the previously

presented algorithm. Also Distinct Access(DA) can never be more than product of

upper bounds of the loops,hence always take minimum of number of times loop will

run and Distinct access obtained. Let MAX be the maximum value of the expression

presented as the left hand side of equation 1 if x1, x2, x3 . . . xk are the loop variable

of k different perfectly nested loops. Also let B be the block size of cache. Since we

are dealing with loops that have upper bound and lower bound so there are some

numbers which could not be formed due to the constraints of the bounds. Since we

have shown in 1.1 that if gcd(a1, a2, a3....ak) = 1 then every number can be formed

but these missing numbers are there due to the constraint of the bounds. We denote

15

the set of these missing numbers by M. It is interesting to see the pattern of these

missing numbers which actually helped us to suggest the distinct access algorithm.

Calculating the exact number of cache blocks is more generic problem than cal-

culating the distinct access since the later can be seen as the same problem with

unit block size(B=1). Let g be the gcd(a1, a2 . . . ak) and R(range) = MAX-MIN,

then we give a close upper bound over the block count(BC) as

BC = min[DA− 2 ∗ (g(a1, a2 . . . ak)−M)

B
+ 2 ∗ (g(a1, a2 . . . ak)−M), DA,

R

B
,
R

g
]

(3.6)

To extend this equation to multidimensional case we assume as in [17] that

accesses can be densely distributed only in the first(least significant) dimension,

and are sparsely distributed in higher dimensions. Then number of cache lines can

be bounded by the following equation

BC(f1 . . . fm) ≤ BC(f1)X
m∏

i=2

BC(fi) (3.7)

If there is possibility of cache line sharing in higher dimension or there is coupling

in between two or more dimension then this bound may become an over-estimate

which can then solved by applying linearization[18] and using the found expression

to get a better bound.

3.5 Exact Block Count

In the previous section we gave an upper bound over the number of distinct cache

blocks which is fairly good for small coefficients but the difference becomes significant

with large coefficients. In this section we present an algorithm that can give us exact

count of the blocks. For simplification let us define a single dimensional access and

calculate its Block Count(BC). Consider the following code snippet which will run

along with the algorithm for better understanding.

16

Listing 3.1: code example

for(int i=1;i<=10;i++){

for(int j=1;j<=10;j++){

A[8*i+11*j] = A[8*i+11*j]+10;

}

}

Let B be the block size and a1 be the smallest of the coefficient of the linear

Diophantine polynomial from array index. Let lcm = L.C.M(B,a1). For our example

let us take B = 3 and a1 = 8 (from the above code) then lcm = 24. The algorithm

is as follows :

1. The first step of the algorithm is to use the previous algorithm 3.3 to calculate

the mj’s as defined in section 3.3.

Mod 8 0 1 2 3 4 5 6 7
mj’s 0 33 66 11 44 77 22 55

Table 3.1: Table showing result of step one

2. Form lcm
B

groups of size B such that each group contain three rows. First row

containing continuous numbers starting from the minimum number formed(banerjee

inequality). second row contains numbers equal to first row % a1. The third

row contains number from table 3.1 using second row as key values to get the

mj’s. The final result of this step is shown in table 3.2.

Number(N) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
N%8 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6
mj’s 0 33 66 11 44 77 22 55 0 33 66 11 44 77 22

table continued
Number(N) 15 16 17 18 19 20 21 22 23

N%8 7 0 1 2 3 4 5 6 7
mj’s 55 0 33 66 11 44 77 22 55

Table 3.2: Table showing result of step two

3. From each group of size B find the minimum of the mj’s i.e in the third row of

table 3.2. Also find the corresponding number(N) from the first row of same

17

table. For each group if chosen mj ≤ corresponding(N) then contribution

by this group will be zero. Otherwise the contribution by this group will be
mj−N

lcm
+ test where test is zero if (mj − N)%lcm == 0 otherwise test = 1.

This value calculated are actually missing blocks and hence summation of this

value over all groups will give missing blocks, i.e the number of blocks which

will not be referenced at all. So from table 3.3 we get total contribution(Ci)

to be 2(if we start from block 0 then block 1 and block 4 will not be accessed).

Min mj 0 11 0 11 22 0 11 22
Number(N) 0 3 8 11 14 16 19 22

Contribution(Ci) 0 1 0 0 1 0 0 0

Table 3.3: Table showing result of step three

4. Similar number of blocks will be absent from the end. Since as shown in section

3.2 that linear Diophantine polynomial behaves exactly same from both the

end. Hence if fhi and f lo are the highest and lowest value of the polynomial

then block count is given by

BC =
fhi − f lo

B
− 2 ∗

lcm
B∑

j=1

Cj

where lcm
B

is the number of groups formed of size B(block size) and Cj is con-

tribution of each block towards the missing blocks. There might be difference

of 1 or 2 between the actual block count and the one obtained from the above

formula since the total elements might not be proper multiple of blocks. But

this small difference is easily acceptable in analysis like this. To extend this

method to multidimensional array access we can either perform linearization

[18] or We can calculate upper bound from section 3.4. The Analysis of the

algorithm is fairly easy and gives time complexity of O(a1*B) which is quite

acceptable for all practical purposes.

18

3.6 Bounding Multiple Array References

In the section we will take a look at the effect of one array access on the other

accesses. The work in this section is closely related to [2]. Since in reality the blocks

brought by one array access will help the other array access if they have to use the

same element while they are within our cache and hence haven’t been flushed out.

We will hence be closely on the array access of the same array since they can only

reuse the elements.

consider a very simple code snippet that contains nested loop with a statement

with three different array access.

Listing 3.2: code to understand multiple array reference

for(int i=1;i<50;i++){

for(int j=1;j<50;j++){

A[i+j] = A[2*i+j]+A[i+2*j]+10;

}

}

Adding the number of blocks by each array access is the worst case since in that

case we are considering no overlap will take place between any of the array accesses.

Another way of looking at the problem is that each of the array index expression

is a linear Diophantine expression hence we have to find the total number of blocks

that are being used by all these linear expressions over the range of loops. Firstly

we consider two one dimensional array references,f1 and f2. We obtain lower and

upper bounds, f1lo ≤ f1 ≤ f1hi and f2lo ≤ f2 ≤ f2hi (using banerjee inequality)

and the gcds g1 and g2 of their respective coefficients.

The number of distinct array elements accessed by functions f1 and f2 is given

by DA(f1, f2) ≤ (f1
hi−f1lo

g1
+1)+(f2

hi−f2lo

g2
+1)−OV ERLAP (f1, f2), where OVER-

LAP(f1,f2) is the common elements which can be given by OV ERLAP (f1, f2) ≤

(HI(f1,f2)−LO(f1,f2)
l

) + 1, where l is LCM(g1, g2), HI(f1, f2) ≤ min[f1hi, f2hi] and

LO(f1, f2) ≤ max[f1lo, f2lo].

OVERLAP(f1, f2) may be empty, for example in f1(i) = 2i and f2(i) = 2i+ 1

19

for 1 ≤ i ≤ 8 the OVERLAP(f1, f2) is zero. We can use the gcd test of data depen-

dence[2] to see whether the equation f1 = f2 has any integer solution, otherwise we

set TEST (f1, f2) = 0. Putting it all together we get distinct access as in [2]

DA(f1, f2) = DA(f1) +DA(f2)−OV ERLAP (f1, f2)

≤ (
f1hi − f1lo

g1
+ 1) + (

f2hi − f2lo

g2
+ 1)

− TEST (f1, f2)×OV ERLAP (f1, f2)

(3.8)

We can generalize above equation to more than two references, consider three func-

tions f1, f2, f3. Here DA(f1, f2, f3) is given by [2]

DA(f1, f2) = DA(f1) +DA(f2) +DA(f3)

−OV ERLAP (f1, f2)−OV ERLAP (f2, f3)−OV ERLAP (f1, f3)

+OV ERLAP (f1, f2, f3)

(3.9)

3.7 Exact DA in Multiple Array Reference

Consider the following simple code snippet that contains nested loop with a state-

ment with two different one dimensional array access.

Listing 3.3: code to understand exact DA

for(int i=1;i<20;i++){

for(int j=1;j<20;j++){

B[5*i+7*j] = B[8*i+11*j]+10;

}

}

In the previous section we showed how we can give a tight upper bound on

the number of distinct access with constant time. But if we are ready to give

some relaxation in time complexity then we can get the exact Distinct Access. For

20

simplification let us define our algorithm with two array access in one dimension

and then extend it to handle multiple access. Let f1 and f2 be two array references

be a1 ∗ i1 + a2 ∗ i2 . . . + aK ∗ iK and b1 ∗ i1 + b2 ∗ i2 . . . + bK ∗ iK such that a1 =

min(a1, a2 . . . aK) and b1 = min(b1, b2 . . . bK) w.l.g let us assume that a1 ≤ b1. For

example let us take f1(i, j) = 5 ∗ i + 7 ∗ j and f2(i, j) = 8 ∗ i + 11 ∗ j as the two

array access where 0 ≤ i ≤ 20 and 0 ≤ j ≤ 20(just like the code in the start of this

section). Following is the step by step algorithm with the running example

1. We need to calculate first numbers(actually formed) whose module with a1

gives 0, 1 . . . a1−1. these have also been defined as mj’s in section 3.3 and can

be easily calculated by Algorithm[3.3]. Table 3.4 shows the value obtained by

the algorithm[3.3].

mod 5 Number
0 0
1 21
2 7
3 28
4 14

Table 3.4: Table showing result of step one

2. Similarly for the second polynomial(using same algorithm) we will find the

first numbers that are actually formed and give remainder 0, 1 . . . b1− 1 when

divided by b1, denoted by column name Number (Number(N) in table 3.5).

We will form a table of b1 rows and a1 columns such that the first column will

contains numbers obtained after doing Modulus by a1 from the column Mod

5. We will also calculate ’step’ as b1 mod a1 i.e step = b1%a1 and then fill nth

column by adding step(which is 8%5 = 3 in this case) to the (n− 1)th column

and taking modulo a1.The resulting table is table 3.5

3. As we have seen in section 3.2 after the frobenius number every number can

be formed and the similar pattern is repeated in the end. Here we are trying

to find those numbers that are uniquely formed by the second polynomial

21

(N + k × step)%5
Mod 8 Number(N) k = 0 k = 1 k = 2 k = 3 k = 4

0 0 0 3 1 4 2
1 33 3 1 4 2 0
2 66 1 4 2 0 3
3 11 1 4 2 0 3
4 44 4 2 0 3 1
5 77 2 0 3 1 4
6 22 2 0 3 1 4
7 55 0 3 1 4 2

Table 3.5: Table showing result of step two

N (N+b1) (N+2*b1) (N+3*b1) (N+4*b1)
0 8 16 24 32
33 41 49 57 65
66 74 82 90 98
11 19 27 35 43
44 52 60 68 76
77 85 93 111 119
22 30 38 46 54
55 63 71 79 87

Table 3.6: Table showing result of step three

but are before the frobenius number of first polynomial. For this, consider

N%a1(which is N%5 in this case) as our first column and take the entire row

to its right i.e the numbers 0, 3, 1, 4, 2 also take the corresponding Number(N)

from the column and b1 repetitively to form a1 numbers including Number(N).

In our case the Number(N) is 0 in first row and adding 8(b1) repetitively will

give 0,8,16,24,32. Similarly fill the complete table of b1*a1 will give values.

The final values are shown in table 3.6.

4. Taking the first rows of Table 3.5 and Table 3.6 we get 0,3,1,4,2 which denotes

remainder of N % a1(5) and 0,8,16,24,32 which denotes number obtained by

adding b1 to N repetitively. ’8’ in this example has corresponding entry ’3’

in table 3.5 and the corresponding entry of ’3’ as key in table 3.4 will give

’28’ as the number. This actually tells 28 is the first number formed by the

first polynomial which gives 3 remainder when divided by 5 while 8 is the

22

first number formed by the second polynomial which gives 3 remainder when

divided by 5. Hence when both polynomial are merged 8 will be added uniquely

by second polynomial. The total number of such number added will given by

(28−8)/a1∗b1+Test where Test = 0 if (28−8)%a1∗b1 == 0 otherwise it is 1.

Since a1∗b1 = 8∗5 = 40 in this case and (28%40 = 28)! = (8%40 = 8) so Test

= 1. So the total contribution by this particular entry is (28−8)/40+Test = 1.

Similarly Contribution of each entry will be calculated, of course if entry from

table 3 is larger i.e if 8 had been larger than 28 that denotes zero contribution

by the second polynomial. Table 3.7 shows the completely filled entries.

N (N+b1) (N+2*b1) (N+3*b1) (N+4*b1)
0 1 1 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Table 3.7: Table showing result of step four

Adding all the entries of table 3.7 above gives 3. Hence 3 numbers(which

are 8,11,16) are added uniquely by the second polynomial(8*i+11*j) before

the frobenius point/number of the first polynomial which is 23(since 23 is

frobenius number for 5*i+7*j) in this case. Let us call this contribution as

C1.(hence C1 = 3 in this example)

5. Similarly numbers will be added in the end. Since we have upper bound also

that we cannot cross. The interesting property of section 3.2 comes handy

here. Since the numbers behave the same way in the last except that they

are shifted due to the absolute values of upper bound. Hence we find the

difference(diff) between their absolute maximum values which is diff = |(a1∗

ub1 + a2 ∗ ub2) − (b1 ∗ ub1 + b2 ∗ ub2)| where | | denotes taking absolute

value and ub1 and ub2 are upper bounds of i and j respectively. diff here is

23

8 ∗ 20 + 11 ∗ 20 − 5 ∗ 20 + 7 ∗ 20 = 380 − 240 = 140 we add this diff to the

polynomial having lower maximum value such that they can be aligned. So in

this case the newly obtained polynomial are 5 ∗ i+7 ∗ j+140 and 8 ∗ i+11 ∗ j

6. We have to repeat this entire algorithm to obtain contribution of the other

polynomial to the primary polynomial (which is always the one having lowest

first coefficient of all). But running first step i.e calculating mj’s can be tricky

since there is a added constant (diff) which was not handled in section 3.3.

7. The slight change in the algorithm of 3.3 is that one more node with label

diff will be created which will have an outgoing edge to diff%a1 vertex and

weight of diff/a1. Now this diff node is considered as source node which was ’0’

previously. After this all the step remains same and we can get all the mj’s. If

initially lower bound of the polynomials was not same then we would have to

shift the smaller one so as to align the lower bound in exactly the same way as

we did for the upper bounds. We can then run all the steps of this algorithm

to obtain the Contribution at the end. Let us call this contribution as C2.

8. Hence the total number of Distinct Access is Distinct Access by primary poly-

nomial which can be easily calculated by algorithm 3.3 + C1 + C2. If there

had been more than two access similar C1, C2 would have been calculated for

them. The Time Complexity of this algorithm is clearly O(a1*b1) which is

exponential but can work for practical purposes.

To handle the multidimensional case we perform linearization [19] of the array

into a single subscript expression, then treating the reference as one-dimensional.

The above algorithm will perform good in the cases where the upper bound(UB)

are much larger than the coefficients i.e ai’s and bi’s. If that is not the case or the

smallest coefficient in the primary polynomial is 1(or very less such as < 5) then the

difference between exact and upper bound(presented in the section before this) may

not be much. Hence in that case it is advisable to use upper bound since it takes

O(1) time and is fairly easy to understand.

24

3.8 Bound on the Number of Distinct Blocks

The work in this section is closely related to [2]. As one might guess calculating the

number of Distinct Blocks using Distinct Access is trickier than for single reference

since multiple reference may yield elements which are not same but that fall within

the same cache line,even if the functions have no elements in common. An impor-

tant issue in computing BCtotal is that of considering cross-reference locality[17] for

multiple reference of the same array. For example, consider the functions f1(i) = 2i

and f2(i) = 2i+ 1 for 1 ≤ i ≤ 100.

The range of functions values will can be split into three subranges: the first

containing only the function with the smaller minimum value; the second containing

both functions; and the third containing only the function with the larger maximum

value. The three subranges of interest are as follows :

S1 : min[f1lo, f2lo] ≤ f1, f2 < max[f1lo, f2lo]

All accesses in this subrange must either come from function f1 or from function

f2, depending on which of f1lo or f2lo is smaller. Therefore, the number of lines

accessed in this subrange can be bounded by the formula for the single reference

case(3.4 or 3.5).

S2 : max[f1lo, f2lo] ≤ f1, f2 ≤ min[f1hi, f2hi]

Let f lo = max[f1lo, f2lo] and fhi = min[f1hi, f2hi]. Since both functions have

accesses in this subrange hence

BC(f1, f2) ≤ min[DA(f1, f2), ⌈+⌉1]

where DA(f1, f2) is bounded as in 3.7 or in 3.6, B is the number of maximum

elements that the block can contain.

S3 : min[f1hi, f2hi] < f1, f2 ≤ max[f1lo, f2lo]

Like S1, all accesses must come from single access. hence blocks in this case

should be easily counted by formula for single reference case(3.5 or 3.4).

An upper bound on the number of blocks can be obtained by summing up the

25

values obtained in different subranges BC ≤ BC(S1)+BC(S2)+BC(S3).As shown

in [2] this technique can be generalized with three or more references. However, the

worst case the execution time of this estimation can be exponential in the number of

references to the same array variable. If we require less time taking method then we

can assume 100% overlapping array references that are uniformly generated[20] and

zero overlap otherwise. Basically we are partitioning array references and computing

BCtotal by adding block count by only representative array reference from each

equivalence class[6].

Chapter 4

BF Ratio

Computer architecture sees an unstoppable increase in parallelism computation

power while bandwidth grows much more slowly[21]. This has led to the trend

where algorithm designers are adjusting their approach by reducing data movement

and synchronization points. This approach by designers is locally optimised and

hence might not help in all cases. Also, some cases following this approach might

require complete reformation of the existing solution. The pressure from evolving

processing speed is so huge that soon algorithms with large communication and

synchronization requirement may become obsolete[22].

The slow growth of latency and bandwidth of a particular architecture have

forced manual optimization. Let us understand the difference between the band-

width and latency as explained by [23]. As an analogy if water comes out of end of

fire hose 2 seconds after hydrate is turned on at the rate of 1 gallon/sec then the

latency of system is 2 seconds while bandwidth is 1 gallon/sec. To put off large fire

high bandwidth is required while small fire fighting might require less latency.

4.1 Existing performance metric

Most of the optimization in the past has been focused on general architecture. Op-

timization customised to a particular platform has been studied in [24] but it still

needs attention, since previous approaches did not cover all the transformations. The

28

goal of such studies is develop technique that automatically restructure programs

loops. It statistically estimate the performance of the program and then looks at

the objective function to determine whether it is profitable to apply a particular

loop transformation.

A method to statically estimate the performance of a given loop on a particular

architecture has been presented by [24, Carr]. We analyse a simple transformation

of loop interchange and how this method can be used to guide this simple trans-

formation. Although loop interchange has been studied extensively in the past, it

has not been shown how to tailor loop interchange to specific loops runs on specific

architecture. The paper by Carr[24] present a parameter to measure maximum per-

formance limit of a architecture. They call it ’Machine Balance’ while to maintain

uniformity with our remaining section, we will refer this as Machine B/F ratio or

’MBF’ ratio. This is defined as the steady state in which both memory access and

floating point operations are being performed at peak speed[24]. Similarly it defines

balance of loops as ’loop balance’ measured in bytes/flops, defined as

loop balance =
Number of memory references

Number of flops (4.1)

From now, we call this as Loop B/F ratio or ’LBF’ ratio. Based on these per-

formance metric any program can be divided into two categories. If a program on

a particular architecture has MBF < LBF then it is referred as Memory Bound,

since the loop needs data at higher rate than the machine can provide and idle

computational cycle will exist. The performance of such program is to be increased

by decreasing the LBF which may be done by decreasing the memory references

and/or increasing floating point operations. While if LBF ≤ MBF then it is referred

as Compute Bound, since data cannot be processed as fast as it is supplied to the

processor. Hence performance gain on the same architecture is not possible unless

the computing power in increased.

29

Vendor Microarchitecture Model Byte/s Flop/s Byte/flop
Intel Sandy Bridge Xeon E5-2690 51.2 243.2 0.211
AMD Bulldozer Opteron 6284 SE 51.2 217.6 0.235
AMD Southern Islands Radeon HD7970(GHz Ed.) 288 1010 0.285

NVIDIA Fermi GF110 Tesla M2090 177 665 0.266
IBM PowerPC PowerPCA2(BG/Q) 42.6 204.8 0.208

Fujitsu SPARC64 SPARC64 IXfx (FX10) 85 236.5 0.359

Table 4.1: Table BF ratio of modern microprocessors[26].

4.2 New Performance Metric

Previous Methods[24] use methods like Scalar replacement which can be automat-

ically taken into account by our memory cost model. It uses Total Array access

as the measure of memory transfer which actually does not represent the memory

view since the data is transferred in terms of cache lines. For example, if the access

funtion is F (i) = 100 ∗ i then for 1 ≤ i ≤ 100 there are 101 distinct memory access

while actually data transferred will be 101*B bytes, where B is the cache line size in

bytes. Even the model used for counting distinct array access is not exact while we

present better estimation methods along with methods to calculate the total blocks

accessed by the kernel. We thus slightly modify their definition of LBF(to take

account for cache line transferred) which is somewhat similar to the one defined in

Roofline model [25] which is a new performance model that sets an upper bound on

performance of kernel depending on the kernels ’operational intensity’. Hence the

modified definition is shown in equation 4.2

LBF =
(Distinct Cache Linestotal) ∗ (Cache line size)

Floating point operationstotal
(4.2)

4.3 BF ratio and Time Complexity of kernel

Computer architecture is shifting towards less and less Byte/flop(BF) ratio. A sum-

mary of BF ratio of various architecture from each vendor is shown in Table 4.1 [26].

30

As pointed out in [26], It is quite common that algorithms with low BF ratio

(dense linear algebra) have high complexity O(N3), and algorithms with low com-

plexity (FFT, sparse linear algebra) have high BF ratio. The FMM [27]has an

exceptional combination of O(N) complexity and a BF ratio that is even lower than

matrix-matrix multiplication. We took simple code of matrix multiplication over

gpu from ’Polybench kernels implementation on CUDA’ and try to analyse with BF

ratio while changing its loop ordering. The DLtotal of each of the loop ordering is

shown in 4.2.

Listing 4.1: Modified matrix multiplication code

for(int I=0;I<=32;I++)

for(J=0;J<=64;J++)

for(K=0;K<=128;K++)

C[I*64 +J] = C[I*64+J] + A[I*128 +K]*B[K*64 +J];

For Table 4.2 cache line size is 16 elements along with cache of size 256 elements.

Hence when the count DLtotal[section 3.8] count reaches above 212(4096) elements,

we consider cache to be flushed and hence reuse after that loop will not take place.

This has been denoted by ’Over’ which shows that loop has overflown and hence

DLtotal is now simply multiplied by the number of run(upper bound - lower bound)

of that loop and all the outer loops.

Array I J K IJ IK JI KI KJ KJ
C 32 4 1 132 32 132 4 32 4
A 32 1 8 32 264 32 8 264 8
B 1 64 8 64 8 64 264 8 264

C+A+B 65 69 17 228 304 228 276 304 276

Table continued
Array IJK IKJ JIK JKI KIJ KJI

C 132 Over 132 Over Over Over
A 264 Over 264 Over Over Over
B 264 Over 264 Over Over Over

C+A+B 29184 19456 29184 8832 19456 8832

Table 4.2: Cache size of 212 elements i.e total 256 cache lines

From the table 4.2 based on just DLtotal we see that ’KJI’ loop ordering will

31

be maximally cache effective on a system with cache line size and cache size of 16

and 256 elements respectively. While If we take the same system with increased

cache size of 214(16384) elements then it turns out that any loop ordering will result

into same DLtotal. This result is shown in table 4.3 this happens since the cache

size is big enough to accommodate all the elements hence every element will be

brought once only to cache. Interestingly, the BF ratio of the kernel will then be

660∗16/(32∗64∗128) = 0.003 which if compared from table 4.1 is smaller than any

available modern microprocessors. Hence this kernel would be compute bound in

all of them which means that with 214 elements cache size no further improvement

can be done in kernel of 4.1, since data cannot be processed as fast as it is supplied

to the processor.

Array I J K IJ IK JI KI KJ KJ
C 32 4 1 132 32 132 4 32 4
A 32 1 8 32 264 32 8 264 8
B 1 64 8 64 8 64 264 8 264

C+A+B 65 69 17 228 304 228 276 304 276

Table continued
Array IJK IKJ JIK JKI KIJ KJI

C 132 132 132 132 132 132
A 264 264 264 264 264 264
B 264 264 264 264 264 264

C+A+B 660 660 660 660 660 660

Table 4.3: Cache size of 214 elements i.e total 1024 cache lines

Chapter 5

Results and Conclusion

This chapter discusses details about our results and the conclusion that we achieve.

First section discusses the design and implementation of the system. We have used

Cetus compiler to achieve results on standard benchmarks. We will use same bench-

mark program over different cache sizes. We provide insight into what could possibly

be future work in this direction and how we can evaluate other transformations based

on this model.

5.1 Design and Implementation

We have modified cetus compiler[28] to include one more pass. It now first checks

the syntax of the code and then calculates bf ratio of the code and then decides

which loop permutation will be good for a particular system parameters. To better

understand our results we are using cache of three different sizes and then compare

our results with the results obtained on the simulation of these programs with the

same set of parameters.

5.2 Testing setup

We have assumed the loops to be properly nested with no conditional statements.

For this, we have taken portion of code from standard benchmarks5.3 that are

34

following our input constraints and we output the best possible permutation of loop

such that the program is better in cache effectiveness. To show effectiveness of our

algorithm 3.3 we have modified the default values of some variables. We refer to

these modified programs with ”_mod” as the suffix to the name of the program. We

also assume code fragment to be completely nested hence we have removed all the

loop invariant transformation, since this does not change meaning of the code. All

the experiment has been done on Cetus compiler [28]. This is a source to source

compiler which is written in JAVA. The simplicity of the language without pointers

and user defined types makes the compiler source code fairly easy to understand.

The design of the compiler is extensible to support multiple languages which make

it really flexible along with being easily operable.

5.3 Standard Benchmarks

For initial results, we took codes from polybench benchmark [29] which contains

collection of polybench codes as well as convolutional codes implemented for cuda

and other programing languages. Code from the following function of polybench

benchmark were used to get the final results:

1. code from mm3_cpu() function in filename 3mm.cu

2. code from init() function in filename 3DConvolution.cu

3. code from runMvt() function in filename mvt.cu

4. code from syrk() function in filename syrk.cu

5.4 Performance Results

In this section, we have taken one program from four different sections of benchmarks.

Each of them is then modified to double the available programs. The results of all

these codes is merged in the last table. Finally, we show how our method helps

35

in counting precise Distinct Lines count and how it used to calculate B/F-Ratio

through which we can classify program as memory bound or compute bound.

5.4.1 Matrix Multiplication

Listing 5.1: Matrix Multiplication

for(int I=0; I<NI; I++){

for(int J=0; j<NJ; J++){

for(int K=0; K<NK; K++){

E[I*NJ+J] = E[I*NJ+J] + A[I*NK+K] * B[K*NJ+J];

}

}

}

Table 5.1 shows the results obtained for code listing 5.2. The column cache size

denotes the total cache lines present in the cache, while column block size signifies

the total element in a single cache line. In this chapter we will use block size and

line size interchangeably, both denoting to the cache line size. From Table 5.1 we

can infer that keeping any loop permutation will not affect cache performance.

Cache
Size

Block
Size

Array I J K IJ IK JI JK KI KJ

E 512 2 1 Over Over Over Over Over Over
A 512 1 2 Over Over Over Over Over Over

512 28 B 1 2 512 Over Over Over Over Over Over
E+A
+ B

515 515 515 515 *
512

515 *
512

515 *
512

515 *
512

515 *
512

515 *
512

Table continued
Cache
Size

Block
Size

Array IJK IKJ JIK JKI KIJ KJI

E Over Over Over Over Over Over
A Over Over Over Over Over Over

512 28 B Over Over Over Over Over Over
E+A
+ B

515 *
5122

515 *
5122

515 *
5122

515 *
5122

515 *
5122

515 *
5122

Table 5.1: Matrix multiplication code running with cache size of 512 lines and block size
of 128 elements

36

Consider another system with larger cache size and less block size which means

it can accumulate more lines in the cache. Table 5.2 shows the result when cache

size of 2048 cache lines with each cache line of 256 elements is used. The overall DL

count (distinct lines count) of the program has decreased, but still any permutation

of the loop is favourable.

Cache
Size

Block
Size

Array I J K IJ IK JI JK KI KJ

E 512 2 1 1024 512 1024 2 512 2
2048 A 512 1 2 512 1024 512 2 1024 2
211 28 B 1 2 512 2 512 2 1024 512 1024

E+A
+ B

515 515 515 1538 2048 1538 1028 2048 1028

Table continued
Cache
Size

Block
Size

Array IJK IKJ JIK JKI KIJ KJI

C 1024 1024 1024 1024 1024 1024
2048 A 1024 1024 1024 1024 1024 1024
211 28 B 1024 1024 1024 1024 1024 1024

E+A
+ B

3072 3072 3072 3072 3072 3072

Table 5.2: Matrix multiplication with increased cache size of 2048 cache lines

Consider code listing 5.2 which is slightly modified version of the matrix multipli-

cation. Although the semantic of the program has changed but we have introduced

only constant multiples thus maintaining the structure and syntax. This will help

us display how cache line and block size can affect favourable loop permutation.

Listing 5.2: Modified matrix multiplication

for(int I=0;I<320;I++){

for(int J=0;j<640;J++){

for(int K=0;K<1280;K++){

E[I*64+J*99] = E[I*64+J*99] + A[I*128+K*151]*B[K*64+J*5];

}

}

}

37

From the table 5.3, it can be inferred that with cache size of 8192 lines and block

size of 16 elements, cache overflow first takes place if IK ordering is used. After

Over(overflow) the DL count till then will be simply multiplied by the number of

times that loops execute and the number of times its containing loops execute. If

the minimum value is zero then we have to simply multiply it with upper bound of

loop variable. It can be easily seen from table 5.3 that IJK is the most favourable

combination with I being the innermost loop and K being the outermost loop.

Cache
Size

Block
Size

Array I J K IJ IK JI JK KI KJ

E 320 7 1 132 32 132 4 32 4
8192 A 320 1 1280 320 Over 320 1280 Over 1280
213 24 B 1 40 1280 5316 1280 40 5316 1280 5316

E+A
+ B

641 48 2561 5768 410592 492 6600 410912 6600

Table continued
Cache
Size

Block
Size

Array IJK IKJ JIK JKI KIJ KJI

E 132 Over Over Over Over Over
8192 A Over Over Over Over Over Over
213 24 B 5316 Over Over Over Over Over

E+A
+ B

415048 410592
x 640

629760 2112
x1000

410912
x640

2112000

Table 5.3: Table showing results of code listing 5.2

5.4.2 3DConvolution

Convolution is widely used and hence comes with polybench benchmark. The code

from the init() function of the file 3Dconvolution.cu is presented in code listing 5.3.

It basically initialises Array A with appropriate values which are further used in 3D

convolution. The default values of NI ,NJ ,NK , P are 256 , 256 , 256 , 1.

38

Listing 5.3: init() function of 3Dconvolution.cu

for (I = 0; I < NI; ++I){

for (J = 0; J < NJ; ++J){

for (K = 0; K < NK; ++K){

A[I*(NK * NJ) + J*NK + P*K] = I \% 12 + 2 * (J \% 7) + 3 * (K \% 13);

}

}

}

The result of code listing 5.3 is shown in the following table 5.4. It can be seen

that KIJ (K being the innermost and then I or J can be in any order) is the most

favourable loop ordering. Although the cache is big enough to contain all the code

still it is favourable to keep K as innermost since it uses minimum number of cache

lines.

Cache
Size

Block
Size

Array I J K IJ IK JI JK KI KJ

218 25 A 256 256 8 65536 2048 65536 2048 2048 2048

Table continued
Cache
Size

Block
Size

Array IJK IKJ JIK JKI KIJ KJI

218 25 A 65536 65536 65536 65536 65536 65536

Table 5.4: Table showing result of code listing 5.3

We slightly modify the init() function as shown in code listing 5.4. The result of

this modified code can be seen in the following table 5.5.

Listing 5.4: init_mod of 3DConvolution

for (I = 0; I < 101; ++I){

for (J = 0; J < 201; ++J){

for (K = 0; K < 301; ++K){

A[I*47 + J*51 + K*28] = I \% 12 + 2 * (J \% 7) + 3 * (K \% 13);

}

}

}

39

It can easily seen from the table 5.5 below, IKJ(I being the innermost) is the

most favourable permutation of loops. All the values are in unit cache lines except

the cache size and block size which are in unit lines and unit elements. Over in

every table denotes that cache has overflown and hence DL count will be simply

multiplied by upper bound of that and all its containing loops(since lower bound of

loop variable is 0).

Cache
Size

Block
Size

Array I J K IJ IK JI JK KI KJ

212 22 A 100 200 300 3599 3144 3599 4566 3144 4566

Table continued
Cache
Size

Block
Size

Array IJK IKJ JIK JKI KIJ KJI

212 22 A Over Over Over Over Over Over

Table 5.5: Table showing result of code listing 5.4

5.4.3 MVT

MVT stands for Matrix Vector Product and Transpose which has been part of

polybench benchmark from version 1.0. It can be found under kernels in linear

algebra section. Following code listing 5.5 is code fragment from runMvt() function.

Listing 5.5: runMvt() from MVT

for (I = 0; I < 4096; ++I){

for (J = 0; J < 4096; J++){

X[I] = X[1] + A[I*4096 + J] * Y[J];

}

}

From the table 5.6 it can be seen that with cache size of 213 lines and block size

of 22 elements, JI is cache effective permutation, with J being the innermost loop.

Since it takes only 2049 lines while I as the innermost loop takes 5151 lines.

We then modify this code from runMvt() function is shown in listing 5.6. The

upper bounds of both the loop and constant multiplied with I and J in array index

of array A is changed.

40

Cache
Size

Block
Size

Array I J IJ JI

A 212 210 Over Over
213 22 X 210 1 210 210

Y 1 210 210 210

A+X
+ Y

5121 2049 222 +
211

222 +
211

Table 5.6: Table showing result of code listing 5.5

Listing 5.6: Modified code of runMvt

for (I = 0; I < 201; ++I){

for (J = 0; J < 501; J++){

X[I] = X[1] + A[I*51 + J*90] * Y[J];

}

}

From the following Table 5.7 it is evident that IJ loop ordering is more cache

effective in this case. While this is complete opposite for what we obtained for

original code listing 5.5.

Cache
Size

Block
Size

Array I J IJ JI

A 200 500 Over Over
29 22 X 50 1 50 50

Y 1 50 50 50
A+X
+ Y

251 551 13598 13598

Table 5.7: Table showing result of modified runMvt

5.4.4 SYRK

SYRK stand from Symmetric rank-k operations. It also a kernel in linear algebra sec-

tion of polybench benchmark. Following code listing 5.7 is from the syrk() function.

The default values of N, M and P are 1024 , 1024 and 1.

41

Listing 5.7: syrk() from SYRK

for (I = 0; I < N; I++){

for (J = 0; J < N; J++){

for (K = 0; K < M; K++){

C[I*N + J] += alpha * A[I*M + P*K] * A[J*M + P*K];

}

}

}

The following table 5.8 shows that K should be innermost loop with cache size

of 212 and block size of 22. The cache will first overflow at IJ and JI indicating that

none of them can be innermost loop.

Cache
Size

Block
Size

Array I J K IJ IK JI JK KI KJ

212 22 C 1024 256 1 Over 1024 Over 256 1024 256
A 1025 1025 256 1024 Over 1024 Over Over Over
C+A 2049 1281 257 210 +

218
210 +
218

210 +
212

28 +
218

210 +
218

28 +
218

Table continued
Cache
Size

Block
Size

Array IJK IKJ JIK JKI KIJ KJI

C Over Over Over Over Over Over
212 22 A Over Over Over Over Over Over

C+A 218 +
220

218 +
220

218 +
220

218 +
220

218 +
220

218 +
220

Table 5.8: Table showing result of code listing 5.7

We slightly modify the code of syrk() as shown in 5.8. the upper bound of all

the loop variable and the constant multiplied with loop variable in the Array index

of Array A is changed. The default values of N, M and P are 1024 , 1024 and 1 and

alpha is a constant.

42

Listing 5.8: Modified syrk() from SYRK

for (I = 0; I < 128; I++){

for (J = 0; J < 256; J++){

for (K = 0; K < 512; K++){

C[I*256 + J] += alpha * A[I*64 + K*97] * A[J*64 + K*97];

}

}

}

The result of code listing 5.8 can be seen in the following table 5.9. The table

shown that I should be innermost loop while K should be outermost loop. hence,

IJK is most cache effective loop ordering.

Cache
Size

Block
Size

Array I J K IJ IK JI JK KI KJ

C 128 64 1 8192 128 8192 64 128 64
104 22 A 128 256 128 128 Over 128 Over Over Over

C+A 256 320 129 8320 27 +
216

8320 26 +
217

27 +
214

26 +
215

Table continued
Cache
Size

Block
Size

Array IJK IKJ JIK JKI KIJ KJI

C 8192 8192 8192 8192 8192 8192
104 22 A Over Over Over Over Over Over

C+A 213 +
214

213 +
214

213 +
214

213 +
214

213 +
214

213 +
214

Table 5.9: Table showing results of code listing 5.8

If in the same code we just decrease the cache size while keeping everything else

constant we will get different result, which is shown in the following table 5.10.

We now show how we are able to count the Distinct Cache lines of code more

precisely than existing approaches. We calculate the B/F ratio of each code each

with different cache size as shown in the result table 5.11. For machine B/F-Ratio,

we consider Intel Sandy Bridge with B/F-Ratio of 0.211. Hence any program having

B/F-Ratio less than 0.211 will be classified as compute bound while programs having

B/F-Ratio higher than 0.211 will be memory bound program on this particular

43

Cache
Size

Block
Size

Array I J K IJ IK JI JK KI KJ

C 128 64 1 8192 128 8192 64 128 64
215 22 A 128 256 128 128 13736 128 13736 13736 13736

C+A 256 320 129 8320 13864 8320 13800 13864 13800

Table continued
Cache
Size

Block
Size

Array IJK IKJ JIK JKI KIJ KJI

C 8192 8192 8192 8192 8192 8192
215 22 A 15784 15784 15784 15784 15784 15784

C+A 23976 23976 23976 23976 23976 23976

Table 5.10: Table showing result of code listing 5.8

system. Consider the following table 5.11, block Size is the total number of elements

in one cache line while DL Count is the number of distinct cache lines being used

by that particular array. The Cache Size is considered to be large enough such that

it does not overflow in any case.

Name Block
Size

Array DL Count
(Actual)

DL Count
(Previous)

DL Count
(Our Method)

mm3_cpu 28 A 1024 1024 1024
mm3_cpu_mod 24 A 20003 20071 20003
init 22 A 65536 65536 65536
init_mod 22 A 5789 5825 5789
runMvt 22 X 4096 4096 4096
runMvt_mod 22 X 13598 13650 13598
syrk 22 A 262144 262144 262144
syrk_mod 22 A 13736 14424 13736

Table 5.11: Comparison of distinct lines(DL) count by our and previous approach

As discussed earlier in chapter 4, if the B/F-Ratio of the program is larger than

machine B/F-Ratio then it is Memory bound otherwise it is compute bound. The

result of all the 4 different programs matrix multiplication, 3DConvolution, MVT,

SYRK along with their modified versions, is shown in table 5.12. Here Block Size is

the total number of elements in one cache line and while DL Count and cache size

is the number of distinct cache lines being used by that particular array and total

number of lines present in cache. FLOPS here denoted total floating point being

done in the entire loop nest. We consider Intel Sandy bridge with bfratio 0.2111 as

44

given in table 5.12, hence any program having bfratio greater than this is memory

bound otherwise compound bound.

Name Cache
Size

Block
Size

Total
FLOPS

DL
Count

B/F-
Ratio

Remark

mm3_cpu 512 28 2*5123 515
*5122

27 Memory
Bound

mm3_cpu_mod1 211 28 2*5123 3072 0.002 Compute
Bound

mm3_cpu_mod2 213 24 2*5123 415048 0.024 Compute
Bound

init 218 25 4*2563 65536 0.31 Compute
Bound

init_mod 212 22 4*100 *200
*300

5789 0.0009 Compute
Bound

runMvt 213 22 2*40962 4196352 0.5002 Memory
Bound

runMvt_mod 29 22 2*500*200 13598 0.271 Memory
Bound

syrk 212 22 3*10243 1310720 0.0016 Compute
Bound

syrk_mod1 104 22 3*128 *256
*512

24576 0.0004 Compute
Bound

syrk_mod2 215 22 3*128 *256
*512

23976 0.0019 Compute
Bound

Table 5.12: table showing B/F-Ratio of different kernels

5.5 Conclusion and Future Work

We calculate B/F Ratio of the programs and then decide whether it is profitable

to do loop interchange or not. We classify the programs into memory bound and

compute bound. If the program is memory bound on a particular specification then

it calculates the best possible loop ordering which is optimal for system cache. This

is done with the help of finding distinct cache lines being used by the program with

the help of DL Model as presented in chapter 3. We have further improved this DL

Model such that now it is more precise than earlier. We finally show our results on

programs of polybench benchmarks and found that majority of them were compute

bound.

45

Various challenges occurred during the implementation of this concept due to

which we still have some limitation in our system like

• We only deal with properly nested loops since performing loop interchange

over other types of loops is generally not feasible.

• We ignore conditional statements (if any) in the program and consider that

conditional statements will execute every time

• All the array index should be linear combination of loop variable while we plan

to extend this work to nonlinear combination but it is still a challenge for us.

• We plan to extend this concept of B/F Ratio so that it can also guide other

loop transformations such as deciding tile size, loop fusion etc.

References

[1] Vivek Sarkar. “Determining average program execution times and their vari-
ance”. In: ACM SIGPLAN Notices. Vol. 24. 7. ACM. 1989, pp. 298–312.

[2] Jeanne Ferrante, Vivek Sarkar, and W. Thrash. “On Estimating and Enhanc-
ing Cache Effectiveness”. In: Proceedings of the Fourth International Work-
shop on Languages and Compilers for Parallel Computing. London, UK, UK:
Springer-Verlag, 1992, pp. 328–343. isbn: 3-540-55422-X. url: http://dl.
acm.org/citation.cfm?id=645669.665222.

[3] Michael Wolfe. “Optimizing supercompilers for supercomputers”. In: (1989).
[4] Allan Kennedy Porterfield. “Software Methods for Improvement of Cache Per-

formance on Supercomputer Applications”. AAI9012855. PhD thesis. Houston,
TX, USA, 1989.

[5] Zhiyu Shen, Zhiyuan Li, and PEN-CH YEW. “An empirical study on array
subscripts and data dependencies”. In: 1989 International Conference on Par-
allel Processing, University Park, PA. 1989.

[6] Vivek Sarkar. “Automatic selection of high-order transformations in the IBM
XL FORTRAN compilers”. In: IBM Journal of Research and Development 41.3
(1997), pp. 233–264.

[7] Jun Shirako and Vivek Sarkar. “Oil and Water can mix! Experiences with
integrating Polyhedral and AST-based Transformations”. In: ().

[8] Jun Shirako, Kamal Sharma, Naznin Fauzia, Louis-Noël Pouchet, J Ramanu-
jam, P Sadayappan, and Vivek Sarkar. “Analytical bounds for optimal tile
size selection”. In: Compiler Construction. Springer. 2012, pp. 101–121.

[9] Ken Kennedy and Kathryn S McKinley. “Optimizing for parallelism and data
locality”. In: 25th Anniversary International Conference on Supercomputing
Anniversary Volume. ACM. 2014, pp. 151–162.

[10] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. “Cache miss equa-
tions: An analytical representation of cache misses”. In: Proceedings of the 11th
international conference on Supercomputing. ACM. 1997, pp. 317–324.

[11] Amitabha Tripathi. “ON A LINEAR DIOPHANTINE PROBLEM OF FROBE-
NIUS”. In: INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL
NUMBER THEORY 6.A14 (2006), A14.

[12] JANET TRIMM. “On Frobenius numbers in three variables”. In: (2006).
[13] Jorge L. Ramírez Alfonsín. The Diophantine Frobenius Problem. Oxford Uni-

versity Press, 2006. isbn: 978-0-19-856820-9.

48

[14] Alfred Brauer and James E Shockley. “On a problem of Frobenius”. In: J. reine
angew. Math 211 (1962), pp. 215–220.

[15] S.M. Johnson. “A Linear Diophantine Problem”. In: Canadian Journal of
Mathematics (1960), pp. 390–398.

[16] Öystein J Rödseth. “On a linear Diophantine problem of Frobenius.” In: Jour-
nal für die reine und angewandte Mathematik 301 (1978), pp. 171–178.

[17] Michael E. Wolf and Monica S. Lam. “A Data Locality Optimizing Algorithm”.
In: Proceedings of the ACM SIGPLAN 1991 Conference on Programming Lan-
guage Design and Implementation. PLDI ’91. Toronto, Ontario, Canada: ACM,
1991, pp. 30–44. isbn: 0-89791-428-7. doi: 10.1145/113445.113449. url:
http://doi.acm.org/10.1145/113445.113449.

[18] David Callahan and Allan Porterfield. “Data Cache Performance of Super-
computer Applications”. In: Proceedings of the 1990 ACM/IEEE Conference
on Supercomputing. Supercomputing ’90. New York, New York, USA: IEEE
Computer Society Press, 1990, pp. 564–572. isbn: 0-89791-412-0. url: http:
//dl.acm.org/citation.cfm?id=110382.110587.

[19] Utpal K. Banerjee. Dependence Analysis for Supercomputing. Norwell, MA,
USA: Kluwer Academic Publishers, 1988. isbn: 0898382890.

[20] K. Gallivan, W. Jalby, and D. Gannon. “On the Problem of Optimizing Data
Transfers for Complex Memory Systems”. In: Proceedings of the 2Nd Interna-
tional Conference on Supercomputing. ICS ’88. St. Malo, France: ACM, 1988,
pp. 238–253. isbn: 0-89791-272-1. doi: 10.1145/55364.55388. url: http:
//doi.acm.org/10.1145/55364.55388.

[21] Naznin Fauzia, Venmugil Elango, Mahesh Ravishankar, J Ramanujam, Fabrice
Rastello, Atanas Rountev, Louis-Noël Pouchet, and P Sadayappan. “Beyond
reuse distance analysis: Dynamic analysis for characterization of data local-
ity potential”. In: ACM Transactions on Architecture and Code Optimization
(TACO) 10.4 (2013), p. 53.

[22] Lorena A Barba and Rio Yokota. “How will the fast multipole method fare in
the exascale era”. In: SIAM News 46.6 (2013), pp. 1–3.

[23] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduc-
tion to parallel computing: design and analysis of algorithms. Benjamin/Cum-
mings Publishing Company Redwood City, CA, 1994.

[24] Steve Carr and Ken Kennedy. “Improving the ratio of memory operations to
floating-point operations in loops”. In: ACM Transactions on Programming
Languages and Systems (TOPLAS) 16.6 (1994), pp. 1768–1810.

[25] Samuel Williams, Andrew Waterman, and David Patterson. “Roofline: an in-
sightful visual performance model for multicore architectures”. In: Communi-
cations of the ACM 52.4 (2009), pp. 65–76.

[26] Rio Yokota. “An FMM based on dual tree traversal for many-core architec-
tures”. In: Journal of Algorithms & Computational Technology 7.3 (2013),
pp. 301–324.

49

[27] Nader Engheta, William D Murphy, Vladimir Rokhlin, and Marius S Vassiliou.
“The fast multipole method (FMM) for electromagnetic scattering problems”.
In: Antennas and Propagation, IEEE Transactions on 40.6 (1992), pp. 634–
641.

[28] Chirag Dave, Hansang Bae, Seung-Jai Min, Seyong Lee, Rudolf Eigenmann,
and Samuel Midkiff. “Cetus: A source-to-source compiler infrastructure for
multicores”. In: Computer 42.12 (2009), pp. 36–42.

[29] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and
John Cavazos. “Auto-tuning a high-level language targeted to GPU codes”. In:
Innovative Parallel Computing (InPar), 2012. IEEE. 2012, pp. 1–10.

[30] Sang-Ik Lee, Troy A Johnson, and Rudolf Eigenmann. “Cetus–an extensible
compiler infrastructure for source-to-source transformation”. In: Languages
and Compilers for Parallel Computing. Springer, 2004, pp. 539–553.

