
Translating Natural Language Propositions to First
Order Logic

A thesis submitted

in Partial Fulfillment of the Requirements

for the Degree of

Master of Technology

by

Naman Bansal

to the

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

May, 2015

iii

ABSTRACT

Name of student: Naman Bansal Roll no: 13111035

Degree for which submitted: Master of Technology

Department: Computer Science & Engineering

Thesis title: Translating Natural Language Propositions to First Order Logic

Name of Thesis Supervisor: Dr. Amey Karkare

Month and year of thesis submission: May, 2015

Translating Natural Language Propositions into First Order Logic (FOL) is a key compo-

nent of Logic course taught in first year of graduate programme. Students face a lot of

difficulty in understanding this translation process. Major reason for this has been charac-

teristics of Natural Language and the ambiguity in natural language sentences. Building a

tutoring system for this problem requires us to have a system which could automatically

translate Natural Language sentences to First Order Logic.

In this thesis we make two contributions. First, we have built a benchmark suite for the

problem of translating natural language sentences to FOL. We collected more than 350

natural language sentences and annotated them with correct First Order Logic formula and

list of predicates. Secondly, we propose an algorithm to solve the problem of translation

for our domain and build a system which, given a natural language sentence and list of

predicates that satisfy the sentence, outputs first order logic translation for it. A clustering

of the benchmarks based on the First Order Logic structure shows that we require 248

different structures to cover our benchmark suite.

Dedicated to my

Grand-Mother: Kaushal Bansal

Grand-Father: Shyam Sunder Lal Bansal

Mother: Pawan Rekha Bansal

Father: Neeraj Bansal

Brother: Nayan Bansal

family, teachers and friends

Acknowledgements

This project would have never been possible without the guidance and support of my

advisors Dr. Amey Karkare and Dr. Sumit Gulwani. I am extremely thankful and

express my gratitude to them for accepting me as their student. They always encouraged

my ideas and helped me in my thought process while brainstorming for this project. I

also did a summer project on ESC-101 under them and was TA under Amey sir for two

semesters. It has been a great journey. I am truly indebted to them for all the opportunities

that were given to me.

I would also like to thank Umair Z Ahmed. Implementing this project would not have

been possible without his expertise. We had numerous meetings during the course of this

project and I will definitely miss our discussions.

I would also like to thank Ayush Sekhari and Sanil Jain who worked on the project during

summers. I would also thank my friends Rajdeep Das, Puneet Gupta and Saurabh

Srivastava who supported me during my stay at IIT Kanpur. I also thanks all the teachers

at IIT Kanpur and the Department of Computer Science for providing me world class

environment to learn and grow as a student.

I would also like to thank my parents and family who have always supported me. I would

express my gratitude to my Mother and Grand-Mother who always showed interest in my

project and encouraged me to do my best.

Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Problem Statement . 3

1.2 Motivation . 4

1.3 Our Contribution . 5

2 Related Work 6

3 Background 9

3.1 First Order Logic . 9

3.2 Natural Language Processing Concepts 13

3.3 Tools . 14

3.4 Implementation Backbone . 15

4 Technical Details 23

4.1 Benchmark . 23

4.2 Top Down Approach . 23

4.2.1 Overall Idea . 24

4.2.2 Algorithms and Implementation 27

4.2.3 Match Predicates . 32

4.2.4 Match Recursive Rules . 35

vii

4.2.5 Main . 38

4.2.6 First Order Logic To Natural Language 39

5 Results and Observations 40

5.1 Experimental Setup . 40

5.2 Results . 40

5.3 Observations . 50

6 Conclusions and Future Works 52

A POS Tag Description 53

References 55

List of Tables

3.1 Truth Table for AND . 11

3.2 Truth Table for OR . 11

3.3 Truth Table for NOT . 11

3.4 Truth Table for IMPLIES . 12

3.5 Truth Table for BI-IMPLIES . 12

3.6 Grammar for Representing First Order Logic 16

5.1 Results . 40

5.2 Lemma Dilemma . 51

A.1 POS Tags . 53

List of Figures

1 Caption . ii

1.1 High Level Description of our Problem 4

4.1 Overall Idea . 25

Chapter 1

Introduction

Education is the single most important aspect of ones life that shapes his future. In fact, it

is our education system that keeps accumulating human knowledge and makes sure that

next generation learns on the building blocks of the previous ones and we, "humans", keep

progressing as a race. We have realized that and currently have a lot of focus on education.

Success of Massive Open Online Courses
(
MOOCs

)
[1, 2] is a very big example for that.

MOOCs have helped us to increase the reach of our education system, with MOOC now

we can aim to provide education in remote places. Technology has also helped a lot in this

aspect, in near future we could expect to have MOOC free for all, infrastructure investment

is not much when compared to the reach. MOOCs offer quality education but they still

have one problem that it is not possible to clear the doubts of all the student or help them in

the learning process. Let us look at the traditional education model, we have an instructor

who provides us with the knowledge about the subject and the most important aspect of

this setting is that we get personalized feedback. In a MOOC setting it is not feasible for

the instructor to provide the personalized feedback, so they mostly resort to the discussion

forums, which are effective to a certain measure. To tackle this problem we have seen a lot

of research in Intelligent Tutoring Systems.

Intelligent Tutoring System
(
ITS

)
targets a particular domain and act as a virtual tutor

which could learn where the student has problem and help him accordingly, based on

the weak areas that it has identified for the student, just like an instructor in traditional

education model. ITS aim to provide personalized feedback in a sense that helps student

2

learn the concept better and teaching them basic concepts underlying a problem. ITS have

three main features - solution generation, feedback generation and problem generation.

Each one targets a different aspect of teaching. We describe these features in detail.

1. Solution Generation: It aims at generating solution to a given problem. It is the

first step at building a Intelligent Tutoring System, it gives us the intuition about the

features of the problem that we are solving. Once we understand how the problem

is being is solved and how our system understands the problem, it is easy to aim

for the feedback generation. Solution generation for the problems in Propositional

Logic [3] has been done.

2. Feedback Generation: It aims at generating feedback for a particular problem if a

student is not able to solve it. One way to look at it is, say, we have a path containing

multiple steps which leads to the solution. We already know all these paths and steps

using the solution generation algorithm. Now, if a student takes a different path

which doesn’t leads to the solution, then we can give feedback to the student based

on the path which is uncommon between the correct path and the path taken by the

student to approach the problem. AutoProf [4] generates feedback for Introductory

programming course in Python.

3. Problem Generation: It aims at generating multiple problems of same difficulty for

a given problem. Difficulty is a major aspect as it helps us classify and differentiate

among the problems. One way of problem generation is to have templates for the

problems. Problem generation is particularly significant since we can have unique

problems for each student and the instructor would have to care less about the

cheating and plagiarism. Automatic problem generation for algebra problems [5]

has been done.

Intelligent Tutoring System have been developed for various problems. A lot of

research has been going on in this field, ITS for Geometry [6], Algebra [5], Automata-

DFA and NFA construction [7], Propositional Logic [3] and Introductory Programming in

Python [4] have been developed.

3

1.1 Problem Statement

In this thesis we solve the problem of translating a given Natural Language sentence in

English to its corresponding First Order Logic Translation.This enables us to do Solution

Generation. We have designed the rules such that they motivate all the components of ITS.

We also give an algorithm for the problem of translating given First Order Logic into its

corresponding translation in English. Sample space for us is the problems in the text book

of the graduate level course, where introductory translation of NL to FOL and vice versa is

taught.

Some example sentences that we have collected from the graduate level book The Essence

of Logic [8]:

1. NL: If Barbara practices she will win

Predicates: Practices(x):x practices; Win(x):x will win

FOL: Practices(Barbara)→Win(Barbara)

2. NL: All grass is green

Predicates: Grass(x):x is grass;Green(x):x is green

FOL: ∀(y)(Grass(y)→Green(y))

3. NL: There is a winning combination

Predicates: Combination(x):x is a combination;Winning(x):x wins

FOL: ∃(x) (Combination(x) ∧Winning(x))

Solving this problem enables us to target the ultimate goal which would be to build a ITS

for graduate level course in Logic where students are taught to translate Natural language

sentence to corresponding First Order Logic formula.

We give an approach to solve this problem and build a system for the same. We also build

a framework for testing out various algorithms. Our approach is rule based, as in, we use

rules based on the structure of the sentence to solve the current problem of translation.

4

Figure 1.1: High Level Description of our Problem

1.2 Motivation

Translating Natural Language sentence into First Order Logic is a key component of Logic

course taught in first year of graduate programme. Students face a lot of difficulty in un-

derstanding this translation process [9]. Major reason for this has been the characteristics

of the Natural Language and the ambiguity in it.

Building a tutoring system for the graduate level First Order Logic course taught in the

first year to the students requires us to have a system which could automatically translate

Natural Language sentences to First Order Logic.

Given an English sentence and a set of Predicates which satisfy the sentences, students are

required to translate it into First Order Logic formula. This translation is often not that

intuitive and often students give translations which are incorrect. Interesting point to note

here is that often it is the case that the students think that their translation is correct but it is

not.

If we can show students what their translation actually means we would be helping them

understand that their First Order Logic translation is incorrect and actually means some-

thing else.

5

This is main motivation of the project is to help the student understand the First Order

Logic translation more effectively and help them clear their intuition about the subject [9].

In MOOCs it is impractical for the teacher to give feedback to all the students about what

their translation actually mean. Giving students feedback about their mistake helps them

to understand better. There are a lot of problems in the course and a lot of students as well.

Both the reason demand for an intelligent system to tutor the students.

First Order Logic translation captures the semantics of the given English sentence. Captur-

ing semantics is a topic of current research in Natural Language Processing Community.

If we are able to get effective translation then we will also be able to help the Natural

Language Processing community by pushing the envelope, but that is a very ambitious

goal. Our main focus in this thesis would be to build a system which could effectively

translate Natural Language sentences to First Order Logic. If we are able to build a system

which is effective enough in the Intelligent Tutoring Domain, for Solution Generation, then

we will be able to target a system which could aim at Problem Generation and Feedback

Generation, which would be the ultimate goal for building a complete Tutoring System

for teaching students translation between Natural Language to First Order Logic and vice

versa.

1.3 Our Contribution

We make following contributions in this Thesis:

• Build a benchmark for the current problem statement

• Design an algorithm to solve the current problem of translation from NL to FOL and

vice versa.

• Build a system to implement the algorithm.

• Build a test suite to test the algorithm developed against the benchmark that we have

created.

• Build a framework where different algorithm can be implemented for this problem.

Chapter 2

Related Work

Intelligent Tutoring System has been a hot topic of research recently. One example for

that is Automata Tutor [7], this tool [10] does automatic grading of the DFA and NFA

submitted by the students, it also provides feedback in case the solution submitted by the

student is incorrect. It has been used by a lot of professor across the world [11] in their

course, to teach the students DFA and NFA construction.

AutoProf (Automated Program Feedback) [4] provides automatic feedback to the students

for assignments in Introductory Programming, tool has been integrated with EdX course

“Introduction to Computer Science and Programming (6.00x)”.

There has been an extensive study done by a research group, as to why students find

translating Natural Language sentence into First Order Logic hard [9]. This research group

has collected over 4.5 million translations provided by around 55,000 students from 50

countries worldwide over a period of 10 years [12]. They have named this corpus as Grade

Grinder. In their paper [9] they have classified the problems that students face in converting

Natural Language sentences to First Order Logic into four categories, first, Hard to Get

Wrong, Easy to Resolve, second, Easy to Get Wrong, Easy to Resolve, third, Hard to Get

Wrong, Hard to Resolve, fourth, Easy to Get Wrong, Hard to Resolve.

Solution generation for Natural Deduction has been done by Umair et al. [3]. Authors in

this paper construct a Universal Proof Graph over all possible formulations generated by

applying inference rules. Then they do a forward search in this graph to reach the solution.

Interestingly, they can also do problem generation using this technique itself. First, they

7

obtain an abstract proof of the given problem by doing a forward search and then using

this abstract proof they perform a backward search to find similar instances of the abstract

proof obtained from the original problem. This enables them to do problem generation.

Successful attempts have been made to translate Natural Language to some query logic

where the domain of the Natural Language is fixed [13]. These method mostly leverage

the fixed Domain by designing a Domain Specific Language (DSL) which is expressive

enough to capture the operation required for the domain. NLyze: Interactive Programming

by Natural Language for Spreadsheet Data Analysis and Manipulation [13] shows how

Domain Specific Language can enable us to do seemingly complex task of converting

“Users intent”, in context of the spreadsheets’ temporal and spatial specification, into an

underlying program representing users intent. Main ideas mentioned by the authors are

keyword programming and semantic parsing, helping them to achieve high precision and

high recall.

Attempts have been made to show how restricted Natural Language can replace First Order

Logic [14]. In this paper the authors show that Attempto Controlled English (ACE) can

replace First Order Logic for certain tasks. Attempto Controlled English (ACE) is a subset

of English Language which can be translated to First Order Logic unambiguously.

Machine Learning has also been applied to understand the semantics of the Natural

Language. In [15] authors show that natural language can be mapped to lambda calculus

to capture its meaning. They do this for task of learning natural language interfaces to

databases. Authors do this by, first, annotating the natural language benchmarks with

the corresponding lambda calculus translation and then, learn a combinatory categorial

grammar (CCG) using the benchmarks. CCG learns all the different interpretations of

the words in the benchmarks. Interpretations are then combined to get the translation.

Techniques using CCG work well when the domain is restricted, this is so because the CCG

is learnt over the benchmarks and is restricted by it. When we use CCG for specialized task

like mapping instructions to actions [16] the possibility of capturing interpretations which

satisfy the domain are increased by using a lexicon or benchmark. This work could not be

applied to our problem as, though our domain is restricted to graduate level problems but

8

the sentences that we target are general and not limited by some specialized underlying

task.

Chapter 3

Background

3.1 First Order Logic

We Describe First Order Logic
(
FOL

)
used to describe the logical form of the Natural

Language Sentence. First Order Logic is very similar to Object Oriented Programming(
OOP

)
concept in terms that it also relates to Objects like people, sun, earth, color, etc.

Main concept of FOL are:

• Objects: people, sun, earth, color, etc.

They are the constants in FOL.

• Relation: brotherOf, sonOf, smallerThan, etc.

They are predicates in FOL and return True or False.

• Functions: fatherOf, motherOf, grandfatherOf, etc.

Functions are predefined and return a object.

In this section we describe the syntax of First Order Logic:

1. Term:

• Constants: These are the fixed properties/individuals like Sun, John, Mary,

etc.

10

• Functions: It is a mapping that maps N terms to a single term.

f
(
t1, t2, . . . , tn

)
= tx

e.g. colorOf(Sky)= Blue

2. Predicates: It is a mapping that maps N terms to True or False.

f
(
t1, t2, . . . , tn

)
= True

or

f
(
t1, t2, . . . , tn

)
= False

In other words, Predicate is a function that returns True or False.

e.g. smaller(5,3)

Here, smaller is a predicate, defined as,

smaller(x,y): x is smaller than y

smaller(x, y) = True if x < y

smaller(x, y) = False if x ≥ y

3. Logical Connectives: There are five types of connectives that we have in First Order

Logic. These connectives define the value of expression when applied on Predicates

combined with quantifiers.

• And: Represented by symbol ∧. And is true only if all the predicates are true.

Truth table for AND is shown in the following table.

11

A B A∧B

0 0 0

0 1 0

1 0 0

1 1 1

Table 3.1: Truth Table for AND

• Or: Represented by symbol ∨. OR is true if one or more input is true. Truth

Table for OR is shown in the following table.

A B A∨B

0 0 0

0 1 1

1 0 1

1 1 1

Table 3.2: Truth Table for OR

• Not: Represented by symbol ¬. NOT is a Unary operator and inverts the value

of the input. Truth Table for NOT is shown in the following table.

A ¬A

0 1

1 0

Table 3.3: Truth Table for NOT

• Implies: Represented by symbol→. IMPLIES produces false as output only

when first input is true and second input is false, for all the other combinations

it gives true as output. Truth Table for IMPLIES is shown in the following

table.

12

A B A→B

0 0 1

0 1 1

1 0 0

1 1 1

Table 3.4: Truth Table for IMPLIES

• Equivalent or Bi-implication: Represented by symbol↔. BI-IMPLIES gives

output as true when both the inputs are same and gives output as false for rest

of the cases. Truth Table for BI-IMPLIES is shown in the following table.

A B A↔B

0 0 1

0 1 0

1 0 0

1 1 1

Table 3.5: Truth Table for BI-IMPLIES

4. Quantifiers: There are two types of Quantifiers, Existential, represented by symbol

∃ and Universal, represented by symbol→.

• Existential: ∃ quantifier says that there is at least one instance in the domain

for the variable such that the predicate or FOL logic is true.

e.g. Sentence “Some coins are round” would be translated in FOL as:

∃
(
x
)

Coin
(
x
)
∧Round

(
x
)

It means that there is at least one coin that is round.

• Universal: ∀ quantifier says that for all the instance of the variable in the

domain the predicate or FOL is true.

e.g. Sentence “All men are mortal”, would be translated in FOL as:

∀
(
x
)

Man
(
x
)
→Mortal

(
x
)

It means that that all men are mortal.

13

5. First Order Logic Expression: They are formed by combination of the fundamen-

tal building blocks that we defined above.

e.g. let Gardener
(
x
)
: x is a gardener and Likes

(
x, y

)
: x likes y

Every gardener likes the sun.

∀
(
x
)

Gardener
(
x
)
→ Likes

(
x,sun

)
e.g. let Grass

(
x
)
: x is grass and Green

(
x
)
: x is green

All grass is green.

∀
(
x
)

Grass
(
x
)
→ Green

(
x
)

3.2 Natural Language Processing Concepts

In this section we describe some terms related to Natural Language Processing. These

terms have been used in this Thesis to describe the work done.

1. Part of Speech Tagging: This process tags a given sentence with Part of Speech,

namely, Noun, Adjective, Verb, Preposition, etc. The tags given by a POS Tagger

are standard, which are given by Penn Tree Bank.

Some of the tags are:

• NN: Noun, singular

• NNS: Noun, plural

• NNP: Proper Noun, singular

• VB: Verb, base form

• VBZ: Verb, 3rd person singular present

• JJ: Adjective

• IN: Preposition

• PRP: Personal Pronoun

An example, when we give a sentence to Stanford parser for Part of Speech Tagging.

Input: Man is Mortal

14

Output: Man/NNP is/VBZ mortal/JJ

2. Lemmatization: This process groups the different inflected forms of a word. Ac-

cording to Wikipedia, “In grammar, inflection or inflexion is the modification of a

word to express different grammatical categories such as tense, mood, voice, aspect,

person, number, gender and case.”

e.g. move, moved, moving will have “move” as their lemma form.

3. Tokenization: It is a process of breaking up a stream of character or text into

meaningful words called “tokens”.

4. Co-referencing: It tells you which “object” are certain words, generally pronouns,

in the sentence are pointing to.

e.g. In sentence “If Dogers win against Pennant then they win the series”, co-

referencing will tell us that they refers to “Dogers”.

3.3 Tools

In this section we describe the various tools that we have used in our technique.

1. MSR SPLAT: MSR SPLAT [17] is a language analysis toolkit. It is a web ser-

vice that MSR has provided. It provides a lot of Natural Language Processing

functionalities like:

• Part of Speech Tagging

• Dependency tree

• Constituency tree

• Lemmatization

• Tokenization

15

• Chunking

• Parse tree

• Sentiment Analysis, etc.

We use MSR Splat to obtain the Part of Speech Tag of the words.

2. StanfordCoreNLP: It is a NLP engine developed at Stanford [18] which provides

state of the art tools. Lemmatization, Deterministic Co-referencing, POS Tagging,

etc. are some of the features provided by this NLP suite. We use StanfordCoreNLP

for Lemmatization of words and Co-referencing. Lemmatization helps us get the

base forms of the words so that the matching is easy and co-referencing helps us

resolve the prepositions.

3. Humanizer: Humanizer is a Natural Processing Tool which gives singular and

plural forms of a word. You can specify whether you want singular form or a plural

form of a word and the tool returns the same. It has a decent accuracy but we found

some cases during our usage where the tool gave wrong results.

3.4 Implementation Backbone

In this section we describe some fundamental details about our system, before we delve in

the main algorithm. Functionalities in this section work as a backbone for our system and

support the main algorithm.

1. Representing a First Order Logic Term: We used Context Free Grammar
(
CFG

)
to formalise for computer to understand FOL terms. This was the first challenge that

we faced, we needed to design a representation for the First Order Logic that could

be understood by our system.

For this we designed a simple Context Free Grammar
(
CFG

)
which could represent

the First Order Logic formulas in our system.

16

CFG used for representation: We use the following grammar within our imple-

mentation to represent the First Order Logic Term. It is powerful and expressive

enough to capture the semantics that we need currently in our system.

BinaryOp→ OR

→ AND

→ IMPLIES

→ BIMPLIES

UnaryOp→ NEG

Quantifier→ ALL

→ EXISTS

Predicate→ Name Args

Term→ Predicate

→ BinaryOp Term Term

→ UnaryOp Term

→ Quantifier Term

Table 3.6: Grammar for Representing First Order Logic

Now we define the terms used in the CFG,

Definition 3.4.1. Predicate It is the basic unit in FOL, representing True or False.

e.g. son(x, y) : x is son of y

color(x) : color is x

bright(x) : x is bright

Definition 3.4.2. BinaryOp It stands for the Binary Operator in the FOL system.

These operators require two Terms to operate on. Binary Operators are OR, AND,

IMPLIES, BI-IMPLIES.

17

e.g. color(Red) ∨ color(BLUE) : color is Red or color is Blue

e.g. color(Red) ∧ bright(RED) : color is Red and Red is bright

Definition 3.4.3. UnaryOp It stands for Unary Operator in the FOL system. These

operators require only one Terms to operate on. Unary Operator in our system is

only NEG, representation for Negation.

e.g. ¬color(Red) : color is not Red

Definition 3.4.4. Term It has a recursive definition.

Term can either be

(a) a Predicate

e.g. color(Red) : Red is a color

(b) a Quantifier applied to Term

e.g. ∃
(
x
)
color(x) : there exists a color

(c) a combination of Terms using the Binary or Unary Operators.

e.g. ∃
(
x
)
color(x) ∧ bright(x) : there is a color which is bright

2. Data Structures: We define the data structures defined in our system here. These

data structures represent a class in our system and have data members and functions

that operate on them. We describe them in detail below.

(a) Problem: It is read from the benchmark and it has following data member in

our system.

• Problem.Id: Every problem has an Id. This field represents the identifica-

tion number given to it.

• Problem.English: This field has the Natural Language sentence of the

problem.

• Problem.Predicates: This field contains the predicates for the given prob-

lem.

• Problem.Logic: This field has the annotated First Order Logic translation

for the corresponding Problem.English.

18

(b) Rule: Rules is our system have four components:

• Rule.English: This field has the Natural Language template that should

match with the given problem.English. It is combination of word fragments

and POS Tag fragments.

• Rule.Predicates: This field contains the predicates for the given Rule. I

• Rule.Logic: This field has the template for the First Order Logic translation

for the corresponding Rule.English.

• Rule.Constraint: This field has the constraint which should hold for the

rule to be applied on the given problem.

(c) Predicate:

• Predicate.symbol: This field has the name of the predicate and the argu-

ment for it.

• Predicate.Definition: This field has the definition for the predicate.

3. Utility Functions:

• Regex.Match: This function is used to match the two given strings using the

Regular Expressions. We have used Regular Expression in our system as it

gives us quite a few advantages for expressibility in the Rules. Some of the

features that we use in the rules are:

– OR
(

|
)

:This gives us the ability to match multiple choices for a single

options in a rule. In order to give more perspective, we show an example,

Rule.English: (a | an | the) (NN) is (JJ)

The first word fragment in this rule has three options which could lead to

a possible match i.e. the sentence could start with a or an or the and still

would match with our rule. This is the power that regular expression gives

us in writing rules.

– Optional
(

?
)

:This feature lets us keep some of the word fragments in

the rule as optional. We could say in a rule that a particular word in the

rule could be present or not. To give more perspective on that, we show an

19

example,

Rule.English: (a|an|the) (NN) is (the)? (JJ)

The fourth fragment in this rule is marked as optional. Regular Expression

give us this feature that we can mark fragments as optional using “?”.

• Regex.Matches: It is a standard function defined in the Regular Expression

library of F#. It searches an input string for all occurrences of a regular

expression and returns all the matches.

• searchPredicates: We have built this function to match the given predicates in

the sentence. This matching problem is not simple because we could have sin-

gular, plural variations. We could also have some words in predicate.Definition

which are not in the problem.English. We built following algorithm to search

for predicates in the sentence.

20

Data: problem

Result: List Predout

1 sentence←problem.English

2 for pred in problem.Predicates do

3 defn←pred.Definition

4 if Regex.Match
(
sentence, defn

)
then

5 Predout←pred

6 end

7 else

8 lemmaSentence←getLemma
(
sentence

)
9 lemmaDefn←getLemma

(
defn

)
10 if Regex.Match

(
lemmaSentence, lemmaDefn

)
then

11 Predout←pred

12 end

13 else

14 singularSentence←getSingular
(
sentence

)
15 singularDefn←getSingular

(
defn

)
16 if Regex.Match

(
singularSentence, singularDefn

)
then

17 Predout←pred

18 end

19 else

20 pluralSentence←getPlural
(
sentence

)
21 pluralDefn←getPlural

(
defn

)
22 if Regex.Match

(
pluralSentence, pluralDefn

)
then

23 Predout←pred

24 end

25 end

26 end

27 end

28 end

Algorithm 1: Search Predicates in Sentence

21

4. isConstraintSatisfied: This function checks for the validity of the constraint of

the given predicate. Input to the function is the list of words captured from the

sentence
(
captureW

)
and the captured list of word from the predicate

(
captureD

)
.

Constraint in our system is defined as Constraint(1, EXACT, 1,1, PLURAL)

First argument in this tells the index of the word in captureW.

Second argument tells the form in which the word has to be matched.

Third argument is the index of the predicate that we would be matching.

Fourth argument is the index of the word in the predicate specified in third argument.

Fifth argument tells the form in which the word has to be matched.

e.g. captureW=men ; captureD=man

Then we match EXACT(men) with PLURAL(man).

5. Splat Integration: Splat is available as a web service. We integrated it with our

system to get the Part of Speech Tags for the words.

Data: String SINP for which POS Tags are required

Result: List Pout, each entry has POS Tag corresponding to the word in SINP

1 msrSplat← new SplatServiceClient() ;

/* call the Analyze function of Splat Service Client */

2 Pout ← msrSplat.Analzye
(
SINP ,"POS_Tags"

)
Algorithm 2: Getting POS Tags for a sentence from MSR Splat

6. Regression/Test Suite: We have built a regression functionality in our framework.

Regression is necessary for such a system as when the count of the rules goes up it

becomes very difficult to keep track of:

• How many problems have been solved by the new rule?

• Was there any problem that gets unsolved due to current changes?

We maintain the details in an excel sheet. Excel sheet has following columns:

• Natural Language Sentence: This is the Id for the Regression suite. We

either generate the FOL for this sentence or we take the FOL of this sentence

from the benchmark and generate the English for it.

22

• First Order Logic Translation: This column holds the result that we got by

applying our algorithm for Natural Language to First Order Logic.

• Solved Ever E2L: If the natural language sentence was ever translated to

correct logic then this column is set as 1.

• Current Run Solved E2L: If the natural language sentence was correctly

translated to first order logic in the current run of the algorithm then this

column is 1.

• Natural Language Translation: This column holds the result we get by our

algorithm for First Order Logic to Natural Language.

• Solved Ever L2E: If the logical form was ever translated to correct natural

language sentence then this column is set as 1.

• Current Run Solved L2E: If the logical form was correctly translated to

natural language sentence in the current run of the algorithm then this column

is 1.

Chapter 4

Technical Details

4.1 Benchmark

One of the contribution of this Thesis has been the development of benchmarks for this

problem. We have collected around 350 sentences which we have annotated with correct

First Order Logic (to the best of our knowledge). We have also listed the predicates used

in the sentences.

There are around 350 sentences in the benchmarks and for each sentence we have following

information:

1. Source for where it was obtained

2. Natural Language Sentence

3. Predicates used in the FOL translation

4. Translation in First Order Logic

4.2 Top Down Approach

In this section we describe the technique that we implemented to solve the given problem

of translating Natural Language sentence to its corresponding First Order Logic and

translating given First Order Logic formula to its corresponding Natural Language sentence.

24

In our technique we targeted the full structure of the sentence. We tried to achieve English

to Logic translation and Logic to English translation with the same set of rules.

In order to help the student in learning FOL Translation, it is very essential to help them if

their translation is wrong. To solve this problem we had an idea that if we are able to show

students what their “wrong translation” actually means, then it would be very helpful for

them to understand where they are going wrong. This was one of the “aha”! moment for

us. Though this didn’t worked out as we would have wanted. Initially we thought that it

would be easier to get back the Natural Language meanings of the FOL formulas, if we

tied the NL sentence and the FOL in the rule itself. We had a hypothesis that since we have

bound our domain to the graduate level problems, we might have multiple problems of the

same structure. So we based our rules on the entire structure of the sentence. Rules had a

template of the Natural Language sentence that would match the structure of the sentence

and map it to its corresponding FOL formula. So there were two things that we focused on:

1. Build a framework where we can easily Add/Edit Rules in a specification file and

the algorithm implementation remains unchanged.

2. Having same set of Rules which helps us in translating NL to FOL and vice versa.

4.2.1 Overall Idea

Our main idea was to have a set of Rules, which help us in translating both ways. We had

a Matcher and a Applier for each case. Utility functions used have been defined in the

Utility section.

25

Figure 4.1: Overall Idea

We use the same set of Rule for both way translation. In figure 4.1 we can have input

to matcher as NL sentence and we will get output as FOL Translation. If we give input as

FOL then we have output as NL using the same set of Rules. Point to note, Matcher and

Applier are different in both cases.

Now let us define the role of each component: We will talk about the roles of each

component in context of Natural Language to FOL Translation.

1. Rules: We have a set of rules in our system. These rules have a bi-directional

mapping between the template of Natural Language, template of Predicates and the

corresponding template FOL. Rules are used by the matcher and applier to generate

the FOL for a given NL or to generate the NL sentence for a given FOL.

Rules have four components, an example of such a rule would be:

• Rule.English: all (NN) are (NN|JJ)

• Rule.Predicates: p(x):(NN) ; q(x):(NN|JJ)

• Rule.Logic: ∀(x)P1(x)→ P2(x)

• Rule.Constraint: Constraint(1, EXACT, 1,1, PLURAL); Constraint(2, EX-

ACT,2,1, EXACT)

26

2. Matcher: Role of Matcher is to match the template English of the Rule with the

given Natural Language sentence. If the template from the rule matches then we

extract certain information using utility function Capture which captures the required

information and passes it to the Applier.

3. Applier: Role of Applier is to use the information received from the Matcher

and place it accordingly in the FOL Term as defined in the FOL template for the

corresponding Rule. The template of FOL defined in the Rule have placeholders in

them. Applier has to walk-through the entire template and replace the placeholders

with the values returned by the Matcher.

Let us see few examples to demonstrate, we use the rule defined above:

Input.English: All monkey are mammals

Input.Predicates: monkey(x): x is a monkey; mammal(x): x is a mammal

Matcher:

1. Convert the input and rule to internal representation using 1

Input.English: all/DT monkey/NN are/VB mammals/NN

Rule.English: all/DT \w+/NN are/VB \w+/NN|JJ

2. If Input.English and Rule.English match then we proceed to convert the predicates,

Input.Predicates: monkey(x):monkey/NN; mammal(x):mammal/NN

Rule.Predicates: p(x):\w+/NN ; q(x):\w+/(NN|JJ)

3. Match the predicates,

To match the predicates we match for two things in Predicates:

(a) Arguments: Number of arguments in the Rule.Predicate and Input.Predicate

should be same.

(b) Definition: Regex Match of the Definitions should be the same.

p(x) matches with monkey and q(x) matches with mammal(x)

Applier: If Matcher returns true for a combination of Input sentence and Rule, then

Applier:

27

(a) Applies the Rule i.e. it outputs the FOL for the corresponding Rule. FOL in

the Rules have placeholders for the holes in the Term. Applier fills these holes

corresponding to the match we get from the Matcher.

(b) Compares the generated FOL with the gold standard FOL in the Benchmarks.

Since the internal representation of FOL is in a form of a Tree, we expand both

the Terms and compare the nodes.

Output: ∀
(
x
)
monkey

(
x
)
→mammal

(
x
)

Steps mentioned above illustrate with the help of an example how we do NL to FOL

translation. Example above gives us a high level picture about our technique. We would

now go in detail and explain each component. We would be as comprehensive as we can be

in our attempt and explain in details about each algorithm that we have in our framework.

4.2.2 Algorithms and Implementation

In this section we describe the algorithms that we use to implement the overall idea in

our system. We have taken great care to implement a system which acts as a framework,

where we can implement different algorithms for the given problem of translation. The

implemented system also has a Regression framework, where we can test the effectiveness

of our translation algorithm against the Benchmark that we have created.

Now we describe in detail about each component in our system:

(a) Rules: Rules in our system help us to tie together the Natural Template to the First

Order Logic Template.

Rules have four components:

• Rule.English: It contains the Natural Language Template.

e.g. some
(
NN

)
are

(
NN|JJ

)
• Rule.Predicate: It has the description about the Predicates that are defined over

the Rule.English.

P (x) : (NN);Q(x) : (NN)

28

• Rule.Constraint: It ties the sentence fragments of the Rule.English with the

Rule.Predicate. It also introduces the concept of Capture. Word fragments that

have brackets around them are meant to be captured by the system. It has four

component in total.

– First component tells about the index of the captured word from the Prob-

lem.English.

– Second component tells in what form we need to compare the captured word.

It can be either the EXACT form in which the word was captured or it can

be PLURAL form in which case we convert the captured word to its plural

form.

– Third component tells about the index of the captured word from the Pred-

icate. It has two sub components, first one tells the index of the Predicate

and second one tell the index of the word fragment in the Predicate itself.

e.g."1,EXACT,1,1,PLURAL ; 2,EXACT,2,1,EXACT"

This example has two constraints, first one is to compare the exact form of

the first captured word from the sentence with the plural form of the first

captured word fragment from the first predicate.

Second constraint is to compare the exact form of the second captured word

from the sentence with the exact form of the first captured word fragment

from the second predicate.

• Rule.Logic: It has the rule template which has holes in it, to be filled by the

applier before generating the FOL.

e.g. ∀(x)P (x)→ Q(x)

We have two types of rules in our system:

• Recursive: These rules have sentence fragments as holes and replace the FOL

Term of the sentence fragment in the FOL output. An example of such rule in

our system would be, rule for “if then” structure,

29

– Rule.English: if S1 then S2

– Rule.Logic: FOL(S1)→ FOL(S2), this is the representational form of the

Logic.

In the system it is defined as,

BinaryOp([], IMPLIES, predicateTerm([], "/s1", []), predicateTerm([], "/s2",

[]))

S1 and S2 are the sentence fragments. We pass these sentence fragments

to the algorithm again to get it solved and get the FOL represented by

placeholders "/s1" and "/s2", hence the recursion. FOL(S1) and FOL(S2)

represent the First Order Logic Terms corresponding to the S1 and S2.

• Non Recursive: These do not call the Rule engine again and directly output the

FOL Term based on the Rule. An example of such a Rule would be,

– Rule.English: (NN) VB (NN)

– Rule.Predicates: p(x):(NN); q(x,y):VB

– Rule.Constraint: "1, EXACT, 1,1, PLURAL"

– Rule.Logic: ∀(x)P1(x)→ P2(x, y) Representation in the system is done

as: BinaryOp(All("x"), IMPLIES, predicateTerm([], "/p1", ["x"]), predi-

cateTerm([], "/p2", ["x";"/w2"])),

here, "/p1" and "/p2" are placeholders for the predicates in the order defined

by the constraints and "/w2" refers to the capture of second word in the

sentence fragment. "/w2" will refer to the second Noun is the sentence as

there are two captures in the sentence.

(b) Matcher: In this section we would go through the details of how the Matcher works.

There are two major functionalities that Matcher has to perform:

• Match the correct Rule with the given statement.

• Capture the details mentioned in the Rule and pass them to Applier.

30

Data: rule, problem

Result: CaptureP , CaptureW , CaptureD, CaptureS

1 probRegex←getMatchRegex
(
problem.English

)
2 ruleRegex←getMatchRegex

(
rule.English

)
3 if Regex.Match

(
probRegex, ruleRegex

)
then

4 if rule.recFlag then

5 matchRecRule
(
rule, problem, probRegex, ruleRegex

)
6 end

7 else

8 matches←Regex.Matches
(

probRegex, ruleRegex
)

9 captureW←getCaptureW
(
matches

)
10 capturePOS←getCapturePOS

(
matches

)
11 captureP, captureD←matchPredicates

(
problem, rule, captureW,

capturePOS
)

12 return captureW captureP captureD

13 end

14 end

Algorithm 3: Matcher Algorithm

Now we define in detail and see how each line manipulates the input in our system.

We take the example of a sentence to show the working of our Algorithm. Let that

example be,

• Problem.English: If men love apples then women play cricket.

• Problem.Predicate: man(x):x is a man; love(x,y):x love y; woman(x):x is a

woman; play(x,y):x plays y

We will go line by line for the Algorithm defined above:

1. getMatchRegex
(
problem.English

)
Here we pass the English statement for which we need the translation and get the

POS tags in the in-house representation(inspired from Stanford parser representa-

31

tion) that lets us do Regex matching. e.g.,

If/IN men/NNS love/VBP apples/NNS then/RB women/NNS play/VBP cards/NNS

all/\w+ \w+/NN are/\w+ \w+/NN

2. getMatchRegex
(
rule.English

)
Here we pass the rule.english which we are trying to match and get the POS tags in

the in-house representation.e.g.,

îf/\w+ (.+?) then/\w+ (.+?)$

3. Regex.Match
(
probRegex, ruleRegex

)
We use it to match the natural language statement with the english part of the rule.

This function has been defined in the utility function section 3.

4. rule.recFlag

It is a data member of Rule class. It is set to true if the rule is recursive. Here we

check if the rule is recursive or not.

5. call matchRecRule()

6. end of if

7. else, the rule is non recursive

8. matchRecRule
(

rule, problem, probRegex, ruleRegex
)

Call the function which handles the recursive sentences.

9. matches←Regex.Matches
(

probRegex, ruleRegex
)

This function has been defined in the utility function section 3.If input is men love

apples then matches would be men/NN love/VB apples/NN.

10. captureW←getCaptureW
(
matches

)
Here we get the words that are captured from the sentence. For our example

captureW would be men, love and apples.

11. capturePOS←getCapturePOS
(
matches

)
Here we get the POS tags of the words that are being captured. For our example

capturePOS would be NN, VB and NN.

32

12. captureP, captureD←matchPredicates
(
problem, rule, captureW, capturePOS

)
Now we pass the information captured till now to matchPredicates, defined in

algorithm 4, which would now match the predicates.

13. end of else

4.2.3 Match Predicates

Another major aspect of Matcher is to match the predicates of the given problem with

the predicates of the rule in our system. We call this algorithm “matchPredicates”. In

this algorithm we first check if the predicates in the sentence and rule match and then

33

verify the constraint specified.

Data: problem, rule, captureW, capturePOS

Result: CaptureP , CaptureD

1 for predProb in problem.Predicates do

2 while predRule in rule.Predicates do

3 if comparePredicate
(
predProb, predRule

)
then

4 probRegex←getMatchRegex
(
predProb.Definition

)
5 ruleRegex←getMatchRegex

(
predRule.Definition

)
6 matches←Regex.Matches

(
probRegex, ruleRegex

)
7 captureDef←getCaptureW

(
matches

)
8 capturePOS←getCapturePOS

(
matches

)
9 if isConstraintSatisfied

(
rule.Constraint

)
then

10 CaptureD ←captureDef

11 CaptureP ←predProb

12 rule.Predicates.remove
(
predRule

)
13 break

14 end

15 end

16 end

17 end

18 return CaptureP CaptureD

Algorithm 4: Match Predicates

We will now run this algorithm on our example.

Input:

problem = Men love apples

rule = (NN) VB (NN)

captureW = men, apples

capturePOS = NN, VB

1. for predProb in problem.Predicates

34

We try to find the match for all the predicates in the given problem.

problem.Predicates: man(x):x is a man; love(x,y):x loves y

2. while predRule in rule.Predicates

We try to match any possible match of the rule predicates with the problem predi-

cates.

rule.Predicates: p(x):(NN); q(x,y):VB

3. if comparePredicate
(
predProb, predRule

)
This function checks if both the predicates have same structure. Structure in the

case of predicates is the number of arguments.

e.g. man(x) will match with p(x), since they have same number of arguments.

Similarly q(x,y) will match with love(x,y).

4. probRegex←getMatchRegex
(
predProb.Definition

)
Here we pass the definition of the problem predicate which we are trying to match

and get the POS tags in the in-house representation.e.g.,

man/NN , love/VB

5. ruleRegex←getMatchRegex
(
predRule.Definition

)
Here we pass the definition of the rule predicate which we are trying to match and

get the POS tags in the in-house representation.e.g.,

\w+/NN , \w+/VB

6. matches←Regex.Matches
(

probRegex, ruleRegex
)

This function has been defined in the utility function section 3.Matches for above

defined probRegex and ruleRegex would be man/NN , loves/VB

7. captureDef←getCaptureW
(
matches

)
Here we capture the words from the matches which represent the definition of the

rule.

In example that would be man and loves

8. capturePOS←getCapturePOS
(
matches

)
Here we capture the POS tags of the word matched in the matches.

35

9. if isConstraintSatisfied
(
rule.Constraint, captureW, captureDef

)
This utility function is defined in section 3. If the constraint is satisfied then we

have matched the predicate.

10. CaptureD ←captureDef

We add the captured definition to the final list of capture definition.

11. CaptureP ←predProb

We add the predicate to the list of captured predicates.

12. rule.Predicates.remove
(
predRule

)
Here we remove the matched predicate from the list of rule predicates since we

would not want it to match with some other predicate.

13. break

Here we break as we have matched the predicate and would not like to match the

predProb with any other predRule.

4.2.4 Match Recursive Rules

We need to handle the matching of recursive rules differently. First we need to

match the sentence fragments in place of the word fragments. Then we need to

call Matcher Algorithm on the sentence fragments captured and combine the Terms

returned according to the recursive rule and pass it to the applier. Now we define the

36

exact algorithm.

Data: rule, problem, probRegex, ruleRegex

Result: CaptureP , CaptureW , CaptureD, CaptureS

1 matches←Regex.Matches
(

probRegex, ruleRegex
)

2 captureW←getCaptureW
(
matches

)
3 for capture in captureW do

4 wordL, posL←extractEngPOS capture

5 phrase←String.concat " " wordL

6 newProblem←problem.copy(phrase)

7 for rule in rules do

8 CaptureP , CaptureW , CaptureD ←matcher
(
rule, newProblem

)
9 if CaptureP then

10 term←apply
(
rule.FOL, CaptureP , CaptureW , CaptureD

)
11 CaptureS ←term

12 break

13 end

14 end

15 end

16 return CaptureP CaptureW CaptureD CaptureS

Algorithm 5: Match Recursive Rules

We will now run this algorithm on our example.

Input:

Problem = if men love apples then women play cards

Rule = if S1 then S2

probRegex = If/IN men/NNS love/VBP apples/NNS then/RB women/NNS play/VBP

cards/NNS

ruleRegex = îf/\w+ (.+?) then/\w+ (.+?)$

1. matches←Regex.Matches
(

probRegex, ruleRegex
)

This function has been defined in the utility function section 3.Matches for above

37

defined probRegex and ruleRegex would be men/NNS love/VBP apples/NNS ,

women/NNS play/VBP cards/NNS

2. captureW←getCaptureW
(
matches

)
Here we extract the matches into captureW

3. for capture in captureW

We iterate over the captured sentence fragments

4. wordL, posL←extractEngPOS capture

Here we extract the words and POS into two different lists.

wordL = {men, love, apples}

posL = {NNS, VBP, NNS}

5. phrase←String.concat " " wordL

We construct the new statement by concatenating all the words from the wordL.

phrase = men love apples

6. newProblem←problem.copy(phrase)

Once we have the new statement we replace it in the given problem. So, the

predicate list remains the same and we make a copy of the given problem by

replacing the problem.English with phrase.

7. for rule in rules

Now we try to solve the new problem by matching all the rules with it.

8. CaptureP , CaptureW , CaptureD ←matcher
(
rule, newProblem

)
Here we call the matcher algorithm, defined in algorithm 3 with the required

arguments.

9. if CaptureP

If the rule matching was successful then we will have some predicates captured.

10. term←apply
(
rule.FOL, CaptureP , CaptureW , CaptureD

)
Call the apply function to get the First Order Logic of the new problem that we

extracted from the original problem.

38

11. CaptureS ←term

Add the term to the list of captured FOL of the sentences.

12. break

Once we have got the FOL of the new term we do not apply more rules and go out

of the loop.

(c) Applier: Role of applier is to fill in the holes in the given FOL term in the rule. Holes

in the rules can be of following form:

• /p: It is placeholder for a predicate from the problem.

• /w: It is a placeholder for word from the problem.English.

• /s: It is a placeholder for FOL of a partial sentence in case of recursive rules.

The FOL Term in our rule is written as follows:

BinaryOp(All("x"), IMPLIES, predicateTerm(NONE, "/p1", ["x"]), predicateTerm(NONE,

"/p2", ["x";"/w2"]))

/p1 and /p2 are the placeholder for the predicates in captureP.

/w2 is the placeholder for the word in captureW

BinaryOp(NONE, IMPLIES, predicateTerm(NONE, "/s1", []), predicateTerm(NONE,

"/s2", []))

/s1 and /s2 are the placeholder for the FOL Term in captureS.

Applier recursively opens the FOL Term defined in the rule and then replaces the

placeholders with the captured froagments obtained from Matcher.

4.2.5 Main

This is the main function for Natural Language to First Order Logic Translation. It

calls the Matcher function and passes the data received from it to Applier. Applier

returns the First Order Logic for the respective problem that we attempted to solve.

39

Data: Problems

Result: FOL

1 for problem in Problems do

2 for rule in Rules do

3 FOL←Applier
(
Matcher

(
rule, problem

))
4 if FOL.IsSome then

5 print FOL

6 end

7 end

8 end

Algorithm 6: Matcher Algorithm

4.2.6 First Order Logic To Natural Language

In order to go from First Order Logic to Natural Language the idea was to compare the

skeleton First Order Logic that we have in our Rules with the FOL that we have to convert

to Natural Language. Match is only considered when the structure of the predicates also

match. Once we have the match we fill in the holes that are there in the natural language

skeleton of the rule.

This was the main idea for going from First Order Logic to Natural Language. We could

not invest much in this technique due to lack of time.

Chapter 5

Results and Observations

5.1 Experimental Setup

Implementation of the algorithm defined in the previous chapter is done in F#. We used

Visual Studio 2013 as the Integrated Development Environment (IDE). We used MSR

Splat web service and Stanford Online parser. Benchmarks are stored in an Excel sheet

and we use Csv Reader for reading the file. Results are also stored in an Excel Sheet.

5.2 Results

In this section we will describe the results that we are getting from our system. We will

also talk about the observations that we have made in the course of solving this problem.

We currently have around 195 rules in our system and we get translation of around 215

sentences using those rules. Translation achieved by our system are given below.

Table 5.1: Results

Natural Language First Order Logic Translation
All men are smart mortals ∀(x) ((man(x))→ (mortal(x)))
Every gardener likes the sun ∀(x) ((gardener(x))→ (likes(x, sun)))
No purple mushroom is poisonous (¬ ∃(x) ((mushroom(x)) ∧ ((purple(x)) ∧

(poisonous(x)))))
Pluto loves its master ∃(x) ((master(Pluto, x)) ∧ (loves(x, Pluto)))

Continued on next page

41

Table 5.1 – continued from previous page
Natural Language First Order Logic Translation

All humans eat some food ∀(x) ((human(x)) → ∃(y) ((eat(y)) ∧
(food(x, y))))

Pen is mightier than sword (mightier(Pen, sword))
Julie feeds all her dogs ∀(x) ((feeds(x, Julie))→ (dog(Julie, x)))
All men are smart mortals ∀(x) ((manu(x))→ (mortalu(x)))
Every gardener likes the sun ∀(x) ((gardener(x))→ (likes(x, sun)))
Pluto loves its master ∃(x) ((master(Pluto, x)) ∧ (loves(x, Pluto)))
All humans eat some food ∀(x) ((human(x)) → ∃(y) ((eat(y)) ∧

(food(x, y))))
Pen is mightier than sword (mightier(Pen, sword))
Julie feeds all her dogs ∀(x) ((feeds(x, Julie))→ (dog(Julie, x)))
John looks for a unicorn ∃(x) ((unicorn(x)) ∧ (looks(John, x)))
There is a barber who shaves every man ∃(x) ((barber(x)) ∧ ∀(y) ((man(y)) →

(shaves(x, y))))
Not every person who plays football knows
cricket

(¬ ∀(x) (((person(x)) ∧ (plays(x, foot-
ball)))→ (knows(x, cricket))))

Some students are both intelligent and hard
workers

∃(x) ((student(x)) ∧ ((intelligent(x)) ∧
(hardWorker(x))))

Not every famous actor is talented (¬ ∀(x) (((actor(x)) ∧ (famous(x))) →
(talented(x))))

Every executive has a secretary ∀(x) ((executive(x))→ (secretary(x)))
A dead man tells no tales ∃(x) (((dead(x)) ∧ (man(x))) ∧ (¬ ∃(y)

((tale(y)) ∧ (tell(x, y)))))
Every flower has a fragrance ∀(x) ((flower(x))→ (has(x, fragrance)))
The head which wears the crown lies un-
easy

∀(x) (((head(x)) ∧ ∃(y) ((crown(y)) ∧
(wears(x, y))))→ (uneasy(x)))

Monkeys are mammals ∀(x) ((monkey(x))→ (mammal(x)))
No person donates to every charity (¬ ∃(x) ((person(x)) ∧ ∀(y) ((char-

ity(y))→ (donates(x, y)))))
All flowers are not fragrant (¬ ∀(x) ((flower(x))→ (fragrant(x))))
If something is damaged then the curator
will be blamed

(∃(x) (damaged(x))→ (blamed(curator)))

Nelson can drive every car in the lot ∀(x) (((car(x)) ∧ (inLot(x))) → (can-
Drive(Nelson, x)))

James is a friend of Ellen or Connie ((friend(James, Ellen)) ∨ (friend(James,
Connie)))

Every person can sell some apples ∀(x) ((person(x))→ ∃(y) ((apple(y)) ∧
(sell(x, y))))

Nelson teaches a few morons ∃(x) ((moron(x)) ∧ (teaches(Nelson, x)))
No person can sell every product (¬ ∃(x) ((person(x)) ∧ ∀(y) ((prod-

uct(y))→ (sell(x, y)))))
Some people can sell any product ∃(x) ((people(x)) ∧ ∀(y) ((product(y))→

(sell(x, y))))
Bromine is extractable from seawater (ExtractableFrom(Bromine, seawater))

Continued on next page

42

Table 5.1 – continued from previous page
Natural Language First Order Logic Translation

All purple mushrooms are poisonous ∀(x) (((mushroom(x)) ∧ (purple(x))) →
(poisonous(x)))

No liberal candidate will be appointed or
elected

(¬ ∃(x) (((liberal(x)) ∧ (candidate(x))) ∧
((appointed(x)) ∨ (elected(x)))))

The early bird catches the worm ∀(x) (((early(x)) ∧ (bird(x)))→ (catches(x,
worm)))

Steve took the bus or the train ((took(Steve, the)) ∨ (took(Steve, bus)))
Doctors and lawyers are graduates (∀(x) ((doctor(x)) → (graduate(x)))

∧ ∀(y) ((lawyer(y))→ (graduate(y))))
If Argentina joins alliance then Brazil or
Chile boycotts the alliance

((joins(Argentina, alliance)) → ((boy-
cotts(Brazil, alliance)) ∨ (boycotts(Chile,
alliance))))

If Amherst wins the first game then Colgate
or Dartmouth wins the first game

((winsFirstGame(Amherst)) →
((winsFirstGame(Colgate)) ∨ (wins-
FirstGame(Dartmouth))))

If Aristedes is corruptible then everyone is
corruptible

((corruptible(Aristedes)) → ∀(x) (cor-
ruptible(x)))

Either taxes are increased or if expenditure
rises then the debt rises

((increased(taxes)) ∨ ((rises(expenditure))
→ (rises(debt))))

Charlie is neat and Charlie is sweet ((neat(Charlie)) ∧ (sweet(Charlie)))
All fruits and vegetables provide nourish-
ment

∀(x) (((fruit(x)) ∨ (vegetable(x)))→ (prov-
nourishment(x)))

Chicago is smaller than New York (smaller(Chicago, New York))
Saul and Jonathan were lovely and pleasant (((lovely(Saul)) ∧ (pleasant(Saul)))

∧ ((lovely(Jonathan)) ∧ (pleas-
ant(Jonathan))))

If I am president then I am famous ((president(I))→ (famous(I)))
All men who survived were honoured ∀(x) (((man(x)) ∧ (survived(x))) → (hon-

oured(x)))
All men who play cricket know football ∀(x) (((man(x)) ∧ (plays(x, cricket))) →

(knows(x, football)))
All men and boys play cricket and know
football

∀(x) (((man(x)) ∨ (boy(x))) → ((plays(x,
cricket)) ∧ (knows(x, football))))

If I read then I make good grades ((read(I))→ ∀(x) (((good(x)) ∧ (make(I,
x)))→ (grade(x))))

A student who takes geometry also takes
calculus

∀(x) (((student(x)) ∧ (takes(x, geometry)))
→ (takes(x, calculus)))

All friends of Ali are friends of Bill ∀(x) ((friend(x, Ali))→ (friend(x, Bill)))
Any person who supports Ickes will vote
for Jones

∀(x) ((supports(x, Ickes)) → (votes(x,
Jones)))

Every person who draws circles draws fig-
ures

∀(x) (((person(x)) ∧ (draws(x, circles)))→
(draws(x, figures)))

There is a man who has no son ∃(x) ((man(x)) ∧ (¬ ∃(y) (son(x, y))))
Continued on next page

43

Table 5.1 – continued from previous page
Natural Language First Order Logic Translation

If Ed wins the first_prize then if Fred
wins the second_prize then George is disap-
pointed

((wins(Ed, first_prize))→ ((wins(Fred, sec-
ond_prize))→ (disapointed(George))))

No man who is a candidate will be defeated
if he is a campaigner

∀(x) ((((man(x)) ∧ (candidate(x))) ∧ (cam-
paigner(x)))→ (¬ (defeated(x))))

Any positive number has a square root ∀(x) ((positive(x))→ (squareroot(x)))
There is a country that borders Iraq and
Pakistan

∃(x) ((country(x)) ∧ ((borders(x, Iraq)) ∧
(borders(x, Pakistan))))

Every person loves his mother ∀(x) ((person(x))→ ∃(y) ((mother(y, x))
∧ (loves(x, y))))

Joe is an actor but he holds a job ((actor(Joe)) ∧ ∃(x) ((holds(x)) ∧
(job(Joe, x))))

Emily has a dog which loves her ∃(x) (((dog(x)) ∧ (has(Emily, x))) ∧
(loves(x, Emily)))

All car buyers are gullible ∀(x) ((carbuyer(x))→ (gullible(x)))
A number can be negative or positive or
zero

∀(x) ((number(x))→ ((negative(x)) ∨ ((pos-
itive(x)) ∨ (zero(x)))))

If tap dancing is foolish then I want to be a
fool

((foolish(tap dancing))→ ∃(x) ((fool(x))
∧ (wannabe(I, x))))

If you do not love yourself then you can not
love everybody

((¬ (love(you, yourself))) → (¬ ∀(x)
(love(you, x))))

There is a dog which does not love all hu-
mans

∃(x) ((dog(x)) ∧ (¬ ∀(y) ((human(y))→
(loves(x, y)))))

All good events end well ∀(x) (((event(x)) ∧ (good(x))) →
(endwell(x)))

Everyone who loves an animal has a friend ∀(x) (∃(y) ((animal(y)) ∧ (loves(x, y)))→
∃(z) (friend(x, z)))

Every Indian city is overpopulated ∀(x) (((city(x)) ∧ (Indian(x)))→ (overpop-
ulated(x)))

You can fool some men all times ∃(x) ((canfool(x)) ∧ ∀(z) (man(You, x,
z)))

The empty set has no elements adjoined to
it

∀(x) ((emptyset(x)) → (¬ ∃(y) ((ele-
ment(y)) ∧ (adjoin(y, x)))))

John and Robert can fool Harry ((fool(John, Harry)) ∧ (fool(Robert,
Harry)))

The book was signed by every guest ∀(x) ((guest(x))→ (signed(book, x)))
Wolfhounds and terriers are hunting dogs (∀(x) ((wolfhound(x))→ (huntingDog(x)))

∧ ∀(y) ((terrier(y))→ (huntingDog(y))))
The fastest person is a Scandinavian ∃(x) ((fastest(x)) ∧ ((person(x)) ∧ (Scandi-

navian(x))))
Every person who is not a scandinavian can
be outrun by someone

∀(x) (((person(x)) ∧ (¬ (scandinavian(x))))
→ ∃(y) (outrun(y, x)))

Any fish can swim faster than any smaller
fish

∀(x) ((fish(x)) → ∀(y) (((fish(y)) ∧
(smaller(y, x)))→ (swimfaster(x, y))))

Continued on next page

44

Table 5.1 – continued from previous page
Natural Language First Order Logic Translation

Pearson is taller than Jim brother ∃(x) ((brother(x, Jim)) ∧ (taller(Pearson,
x)))

For every integer there is an integer which
is greater than it

∀(x) ((integer(x))→ ∃(y) ((integer(y)) ∧
(greater(y, x))))

Not all real numbers are rational numbers (¬ ∀(x) ((realNumber(x)) → (rational-
Number(x))))

Every natural number is either odd or divis-
ible by two

∀(x) ((natNum(x)) → ((odd(x)) ∨
(div2(x))))

Some fierce creatures do not consume cof-
fee

∃(x) ((fierce(x)) ∧ ((creature(x)) ∧ (¬ (con-
sume(x, coffee)))))

There is a man who has never seen a com-
puter

∃(x) ((man(x)) ∧ (¬ ∃(y) ((computer(y))
∧ (seen(x, y)))))

All watches which are sold by Omega are
made in Switzerland

∀(x) (((watch(x)) ∧ (sold(x, Omega))) →
(made(x, Switzerland)))

Any person who commits a burglary is un-
fortunate

∀(x) (((person(x)) ∧ ∃(y) ((burglary(y)) ∧
(commits(x, y))))→ (unfortunate(x)))

If you enroll in the course and prepare hard
then you will pass the course

(((enroll(you, course)) ∧ (prepare-
hard(you)))→ (pass(you, course)))

If he enters the primary then if he canvasses
vigorously then he wins the nomination

((enters(he, primary)) → ((canvasses(he))
→ (wins(he, nomination))))

If Argentina or Peru joins the alliance then
Chile or Brazil foregoes the alliance

(((join(Argentina, alliance)) ∨ (join(Peru,
alliance))) → ((forego(Chile, alliance)) ∨
(forego(Brazil, alliance))))

If we go to Europe then we tour Scandinavia ((go(we, Europe)) → (tour(we, Scandi-
navia)))

Not every object that glitters is gold (¬ ∀(x) (((object(x)) ∧ (glitters(x))) →
(gold(x))))

No automobile that is very old will be re-
paired unless it is severely damaged

∀(x) ((((automibile(x)) ∧ (VeryOld(x)))
∧ (WillBeRepaired(x)))→ (SeverelyDam-
aged(x)))

Not every person who talks a great deal has
a great deal to say

(¬ ∀(x) (((person(x)) ∧ (talksGreat-
Deal(x)))→ (GreatDealtoSay(x))))

There are no uniforms that are not washable (¬ ∃(x) ((washable(x)) ∧ (¬ (uni-
form(x)))))

A communist is a fool or a knave ∀(x) ((communist(x)) → ((fool(x)) ∨
(knave(x))))

All butlers and all valets are well behaved ∀(x) (((butler(x)) ∨ (valet(x)))→ (wellBe-
haved(x)))

All houses which are built of brick are warm
and cozy

∀(x) (((house(x)) ∧ (builtOfbrick(x))) →
((warm(x)) ∧ (cozy(x))))

If a bee is angry or frightened then it stings ∀(x) (((bee(x)) ∧ ((angry(x)) ∨ (fright-
ened(x))))→ (stings(x)))

Some authors are successful but not well
read

∃(x) (((author(x)) ∧ (successful(x))) ∧ (¬
(wellread(x))))

Continued on next page

45

Table 5.1 – continued from previous page
Natural Language First Order Logic Translation

All dogs are domesticated animals ∀(x) ((dog(x))→ (domesticatedanimal(x)))
Domestic animals are gentle and useful ∀(x) (((domestic(x)) ∧ (animal(x))) →

((gentle(x)) ∧ (useful(x))))
Any man who runs for office is a candidate ∀(x) (((man(x)) ∧ (runsFor(x, office)))→

(candidate(x)))
Every man who is elected is a good cam-
paigner

∀(x) (((man(x)) ∧ (elected(x))) →
((good(x)) ∧ (campaigner(x))))

If there are some geniuses then every great
composer is a genius

(∃(x) (genius(x)) → ∀(x) ((greatCom-
poser(x))→ (genius(x))))

No honest person would conceal his real
feelings

(¬ ∃(x) ((honest(x)) ∧ ((person(x)) ∧
(feel(x)))))

Every businessman who is a poet must be a
wealthy man

∀(x) (((businessman(x)) ∧ (poet(x))) →
(wealthyMan(x)))

No uranium isotope which is radioactive
has a very short life

(¬ ∃(x) ((uraniumIsotope(x)) ∧ ((radioac-
tive(x)) ∧ (hasShortLife(x)))))

Everybody respects a person who respects
himself

∀(x) ∀(y) (((person(y)) ∧ (respects(y, y)))
→ (respects(x, y)))

The professor of Greek at Stanford is very
learned

∃(x) ((professor(x, Greek)) ∧
((veryLearned(x)) ∧ (atStanford(x))))

All states in New England are primarily
industrial

∀(x) (((state(x)) ∧ (inNewEngland(x)))→
(primarilyIndustrial(x)))

The youngest member in our team has
climbed Mount Blanc

∃(x) ((youngestMember(x)) ∧ ((in-
OurTeam(x)) ∧ (hasClimbedMtBlanc(x))))

Every song which lasts an hour is tedious ∀(x) (((song(x)) ∧ (lastsAnHour(x)))→ (te-
dious(x)))

Some things which are meant to give light
produce very little light

∃(x) ((thing(x)) ∧ ((meantToGiveLight(x))
∧ (producesLittleLight(x))))

Railways has never been ill-managed (¬ (illManaged(Railways)))
No fossil can be crossed in love (¬ ∃(x) ((fossil(x)) ∧ (canBeCrossedIn(x,

love))))
Every logician who eats porkchops for din-
ner will probably lose money

∀(x) (((logician(x)) ∧ (probablyLose(x,
porkchops))) → (eatsForDinner(x,
money)))

Umbrellas are useful on a journey ∀(x) ((umbrella(x)) → (usefulOn(x, jour-
ney)))

Nothing in the house escaped destruction (¬ ∃(x) ((inHouse(x)) ∧ (escapedDestruc-
tion(x))))

No coat is waterproof unless it has been
specially treated

∀(x) ((coat(x)) → ((waterproof(x)) →
(treated(x))))

Policemen and firemen are both indispens-
able and underpaid

∀(x) (((policeman(x)) ∨ (fireman(x))) →
((indispensable(x)) ∧ (underpaid(x))))

Any candidate who is not defeated will be
elected

∀(x) (((candidate(x)) ∧ (¬ (defeated(x))))
→ (elected(x)))

Continued on next page

46

Table 5.1 – continued from previous page
Natural Language First Order Logic Translation

Everyone who would do well in logic ought
to study logic

∀(x) ((oughtToStudyLogic(x)) → (doW-
ellInLogic(x)))

Everyone who can not think logically ought
to study logic

∀(x) ((¬ (thinkLogically(x))) → (ought-
ToStudyLogic(x)))

The temperature and air-pressure remained
constant

((remainedConstant(temperature)) ∧ (re-
mainedConstant(air-pressure)))

If the prices go up then the housing will be
both comfortable and expensive

((goup(prices))→ ((comfortable(housing))
∧ (expensive(housing))))

If the car runs out of gas then the car stops ((runsOutOfGas(car))→ (stops(car)))
If someone suffers then God is not both
benevolent and gracious

(∃(x) (suffers(x))→ (¬ ((benevolent(God))
∧ (gracious(God)))))

If the housing is not expensive then it will
still be plentiful

∀(x) (((housing(x)) ∧ (¬ (expensive(x))))
→ (plentiful(x)))

Jones can drive any car in the lot ∀(x) (((car(x)) ∧ (inlot(x)))→ (drive(Jones,
x)))

The company advertises everything which
it produces

∀(x) ((advertisesCompany(x)) → (pro-
ducesCompany(x)))

There is a man whom everybody does not
love

∃(x) ((man(x)) ∧ (¬ ∀(y) (love(y, x))))

All candidates are wealthy liberals ∀(x) ((candidate(x))→ ((wealthy(x)) ∧ (lib-
eral(x))))

If all bananas are yellow then some bananas
are ripe

(∀(x) ((banana(x)) → (yellow(x))) →
∃(x) ((banana(x)) ∧ (ripe(x))))

Everyone who is convicted will hang ∀(x) ((convicted(x))→ (hang(x)))
If there is some liberal then every philoso-
pher is a liberal

(∃(x) (liberal(x)) → ∀(x) ((philoso-
pher(x))→ (liberal(x))))

If some liberal is humanitarian then all
philosophers are humanitarians

(∃(x) ((liberal(x)) ∧ (humanitarian(x)))
→ ∀(x) ((philosopher(x)) → (humani-
tarian(x))))

Anyone who accomplishes something will
be envied by everyone

∀(x) (∃(y) (accomplish(x, y))→ ∀(z) (en-
vied(x, z)))

If Harrison is a friend of Kelly then Ander-
son will not support the Ickes

((friend(Harrison, Kelly)) → (¬ (sup-
port(Anderson, Ickes))))

Whoever donates to the UN gives his dona-
tions to the UN

∀(x) ((donates(x, UN)) → ∀(y) ((dona-
tion(y, x))→ (gives(y, UN))))

Anything which has a tariff paid on it costs
the purchaser extra

∀(x) (∃(y) ((tariff(y)) ∧ (paidon(x, y)))→
(costsextra(x, purchaser)))

Every thing on the desk is a masterpiece ∀(x) (((thing(x)) ∧ (ondesk(x)))→ (master-
piece(x)))

If the directors wanted Smith at the meeting
then Smith was invited to the meeting

(∀(x) ((director(x))→ (wantedatmeeting(x,
Smith)))→ (invitedmeeting(Smith)))

If the investigation continues then new evi-
dence is brought to light

((continues(investigation)) →
(broughtto(new evidence, light)))

Continued on next page

47

Table 5.1 – continued from previous page
Natural Language First Order Logic Translation

If John has measles then John has a fever ((has(John, measles))→ ∃(x) ((fever(x))
∧ (has(John, x))))

A greedy fish will chase every shiner ∀(x) (((greedy(x)) ∧ (fish(x))) → ∀(y)
((shiner(y))→ (willchase(x, y))))

Every man who landed on Mars did not
return

∀(x) (((man(x)) ∧ (landed(x, Mars)))→ (¬
(return(x))))

The reader who is interested in deducing
some theorems will find the methods easy

∀(x) (((reader(x)) ∧ ∃(y) ((theo-
rem(y)) ∧ (interestdeduce(x, y)))) →
(easymethod(x)))

Any relation which is transitive and irreflex-
ive is asymmetric

∀(x) ((((relation(x)) ∧ (transitive(x))) ∧ (ir-
reflexive(x)))→ (asymmetric(x)))

All diligent students are successful ∀(x) (((student(x)) ∧ (diligent(x)))→ (suc-
cessful(x)))

Unpleasant experiences are not eagerly de-
sirable

∀(x) (((unpleasant(x)) ∧ (experience(x)))
→ (¬ (eagerlydesirable(x))))

Everything which is lawful can be done
without scruple

∀(x) ((lawful(x))→ (donewithout(x, with-
out)))

Nobody who is dreaded is asked to prolong
his visit

(¬ ∃(x) ((dreaded(x)) ∧ (askpro-
longvisit(x))))

Iron is less dense than mercury (lessdense(Iron, mercury))
A constitutional amendment which bans
flag-burning should not be adopted

∀(x) (((constAmend(x)) ∧ (bans(x, flag-
burning)))→ (¬ (adopted(x))))

Either music originated from Greece or mu-
sic originated from Egypt

(((originated(music, Greece)) ∨ (orig-
inated(music, Egypt))) ∧ (¬ ((origi-
nated(music, Greece)) ∧ (originated(music,
Egypt)))))

Man is a social animal ∀(x) ((man(x))→ (socialanimal(x)))
Alfred sings alto while Paul sings bass ((sings(Alfred, alto)) ∧ (sings(Paul, bass)))
Moira was changing plugs and listening to
radio

∀(z) ((plug(z))→ ((changing(Moira, z)) ∧
(listening(Moira, radio))))

Every dog that is barking is gullible ∀(x) (((dog(x)) ∧ (barking(x))) →
(gullible(x)))

If Barbara practices she will win ((Practices(Barbara))→ (Win(Barbara)))
All grass is green ∀(x) ((Grass(x))→ (Green(x)))
There is a winning combination ∃(x) ((Combination(x)) ∧ (Winning(x)))
Every dog has his day ∀(x) ((Dog(x)) → ∃(y) ((Day(y)) ∧

(Has(x, y))))
Some cat did this ∃(x) ((Cat(x)) ∧ (DidThis(x)))
Everybody loves Paris ∀(x) (Loves(x, Paris))
Every even number is divisible by 2 ∀(x) ((Even(x))→ (Div(x, 2)))
Paul knows everything ∀(x) (Knows(Paul, x))
There is no prime number between 23 and
29

(¬ ∃(x) ((Prime(x)) ∧ (Between(x, 23,
29))))

Steve is a computer scientist (Compscientist(Steve))
Continued on next page

48

Table 5.1 – continued from previous page
Natural Language First Order Logic Translation

No integer is both even and odd (¬ ∃(x) ((Integer(x)) ∧ ((Even(x)) ∧
(Odd(x)))))

John likes anybody who does not like him-
self

∀(x) ((¬ (Likes(x, x)))→ (Likes(John, x)))

There is no person who is not happy (¬ ∃(x) ((Happy(x)) ∧ (¬ (Person(x)))))
All students are smart ∀(x) ((Student(x))→ (Smart(x)))
There exists a student ∃(x) (Student(x))
There exists a smart student ∃(x) ((Student(x)) ∧ (Smart(x)))
Bill is a student (Student(Bill))
Every student loves some student ∀(x) ((Student(x))→ ∃(y) ((Student(y))

∧ (Loves(x, y))))
Bill takes Analysis or Geometry ((Takes(Bill, Analysis)) ∨ (Takes(Bill, Ge-

ometry)))
Bill takes Analysis and Geometry ((Takes(Bill, Analysis)) ∧ (Takes(Bill, Ge-

ometry)))
Bill does not take Analysis (¬ (Takes(Bill, Analysis)))
Bill has at least one sister ∃(x) (sister(x, Bill))
Bill has no sister (¬ ∃(x) (sister(x, Bill)))
Bill has at most one sister ∀(x) ∀(y) (((sister(x, Bill)) ∧ (sister(y,

Bill)))→ (Equal(x, y)))
Bill has exactly one sister ∃(x) ((sister(x, Bill)) ∧ ∀(y) ((sister(y,

Bill))→ (Equal(x, y))))
Bill has at least two sisters ∃(x) ∃(y) (((sister(y, Bill)) ∧ (sister(x,

Bill))) ∧ (¬ (Equal(x, y))))
Every student takes at least one course ∀(x) ((student(x))→ ∃(y) ((course(y)) ∧

(takes(x, y))))
Every student who takes Analysis also takes
Geometry

∀(x) (((student(x)) ∧ (takes(x, Analysis)))
→ (takes(x, Geometry)))

No student can fool all the other students (¬ ∃(x) ((student(x)) ∧ ∀(y) ((stu-
dent(y))→ (fool(x, y)))))

Neither Claire nor Jenny is in love with Max ((¬ (Love(Claire, Max))) ∧ (¬ (Love(Jenny,
Max))))

Jenny will not marry Max unless he is intel-
ligent and in love with her

((¬ ((Love(Max, Jenny)) ∧ (intelli-
gent(Max))))→ (¬ (Marry(Jenny, Max))))

Max is not both intelligent and in love with
Jenny

(¬ ((intelligent(Max)) ∧ (Love(Max,
Jenny))))

Jenny is Nancy youngest daughter and
Claire is her oldest daughter

((youngestdaughter(Jenny, Nancy)) ∧ (old-
estdaughter(Claire, Nancy)))

All small cubes are at back of a ∀(x) (((small(x)) ∧ (cube(x)))→ (backOf(x,
a)))

You can fool some of the people all the time ∃(x) ((people(x)) ∧ ∀(y) ((time(y)) →
(fool(x, y))))

You can fool all of the people some of the
time

∀(x) ((fool(x))→ ∃(y) ((time(y)) ∧ (peo-
ple(x, y))))

Continued on next page

49

Table 5.1 – continued from previous page
Natural Language First Order Logic Translation

All purple mushrooms are poisonous ∀(x) (((mushroom(x)) ∧ (purple(x))) →
(poisonous(x)))

Deb is not tall (¬ (tall(Deb)))
All bunnies are cute ∀(x) ((Bunny(x))→ (Cute(x)))
Every student who is taking AI is cool ∀(x) (((Student(x)) ∧ (TakingAI(x))) →

(Cool(x)))
There is atleast one student who does not
hate any of the AI homework

∃(x) ((student(x)) ∧ ∀(y) ((AIhome-
work(y))→ (¬ (Hates(x, y)))))

Cats rule and dogs drool (∀(x) ((Cat(x)) → (Rule(x))) ∧ ∀(y)
((Dog(y))→ (Drool(y))))

There is a mushroom that is purple and poi-
sonous

∃(x) ((Mushroom(x)) ∧ ((Purple(x)) ∧ (Poi-
sonous(x))))

There are no mushrooms that are purple and
poisonous

∀(x) ((Mushroom(x))→ (¬ ((Purple(x)) ∧
(Poisonous(x)))))

Elder Gods do not like Hello Kitty ∀(x) ((ElderGod(x))→ (¬ (Likes(x, Hello
Kitty))))

There is a bunny who is cute ∃(x) ((bunny(x)) ∧ (cute(x)))
There is only one Elvis ∃(x) ((isElvis(x)) ∧ ∀(y) ((isElvis(y))→

(Equal(x, y))))
Every child who owns a Pokemon Card is
cool

∀(x) (((child(x)) ∧ ∃(y) ((pokemon-
card(y)) ∧ (owns(x, y))))→ (cool(x)))

Someone at Stanford is smart ∃(x) ((at(x, Stanford)) ∧ (smart(x)))
Pluto is a dog (dog(Pluto))
There is atleast one theif ∃(x) (thief(x))
Some cats are black ∃(x) ((cat(x)) ∧ (black(x)))
Every apple is delicious ∀(x) ((apple(x))→ (delicious(x)))
Peaches are edible unless they are rotten ∀(x) ((peach(x))→ ((¬ (edible(x)))→ (rot-

ten(x))))
The Dodgers win the pennant (win(Dodgers, pennant))
they will win the series (win(they, series))
some officers are present ∃(x) ((officer(x)) ∧ (present(x)))
all officers are captains ∀(x) ((officer(x))→ (captain(x)))
some captains are present ∃(x) ((captain(x)) ∧ (present(x)))
Alexander died from typhoid (died(Alexander, typhoid))
Lucy is a professor (isprof(Lucy))
All professors are people ∀(x) ((isprof(x))→ (isperson(x)))
Deans are professors ∀(x) ((isdean(x))→ (isprof(x)))
Lucy criticized John (criticize(Lucy, John))

50

5.3 Observations

We made some interesting observations in the process of building the current system. There

are some interesting properties about the way Natural Language is being translated to First

Order Logic that we understood. Some of them we will list down:

1. No generic rules completely based on POS Tags

We cannot have generic rules completely based on the POS tags. Example sentences

which have the POS tag sequence as DT NN VB DT NN,are:

Every executive has a secretary

∀ (x) executive(x)→∃(y)secretary(y,x)

Some executive has a secretary

∃ (x) executive(x)→∃(y)secretary(y,x)

Both these sentences have very different FOL structure but the POS tag structure is

very similar.

2. Multiple rules for plural variation

In order to get correct english while going from logic to english it becomes necessary

to specify in the rule whether the word is its singular form or plural form. e.g.,

John looks for a unicorn unicorn(x): x is a unicorn

∃(x) ((unicorn(x)) ∧(looks(John, x)))

Nelson teaches a few morons moron(x): x is a moron

∃(x) ((moron(x)) ∧(teaches(Nelson, x)))

all officers are captains

all students are smart

3. Multiple rules for same sentence and predicate variation

Given that we have rules based on structure of sentence and its predicate, we need to

have rules which have same sentence structure but have variation in their predicate

definition. e.g.,

Every flower has a fragrance

51

flower(x): x is a flower; has(x,y): x has y

∀(x) (flower(x)→has(x,fragrance))

Every executive has a secretary

executive(x): x is an executive; secretary(x): x has a secretary

∀(x) (executive(x)→secretary(x))

4. POS tagger highly sensitive

We have observed that the stanford POS Tagger is highly sensitive with respect to

the kind of tuning that we require. e.g.,

x/SYM is/VBZ a/DT human/NN

x/SYM is/VBZ human/JJ

Lucy/NNP criticized/NNP John/NNP

criticized/VBN

We can see in this example how the POS tags of the words change with addition or

deletion of words. We would have liked to have same POS tags for the words in

these case.

5. Lemma Dilemma

We encountered cases where even lemmatizing the words was of no use. This was

the case because we had different version of the word in US English and UK English.

One such example is,

Word Lemma

criticize criticize

criticise criticise

Table 5.2: Lemma Dilemma

Here criticize is the US usage and criticise is the UK usage.

Chapter 6

Conclusions and Future Works

In this thesis we have given a system which translates Natural Language sentences to First

Order Logic with the help of rules. We show that it is feasible to have rule based system

which would help us in translating Natural Language propositions. We also formalize the

problem by building a benchmark and having a framework where different algorithms

could be implemented for this problem.

Major drawback of our system is that we need to have a lot of rules due to high complexity

in the structure of Natural Language. Rules in our system target the full structure of the

sentence in the non-recursive case, which adds to the count of rules. Optimal number of

rules for such a system would be the number of distinct structure for First Order Logic we

could have. We did clustering based on the First Order Logic structure on the benchmarks

and found that we have 248 different structures for FOL in our benchmarks.

We worked on a approach which targets partial sentence. Main focus was to reduce the

number of rules in our system. We built a prototype based on initial ideas and we got some

encouraging results. We had around 160 sentence being translated with around 25 rules.

Problem that we faced in this approach was that we were having multiple translations as

rules were being applied on partial structures so the order of rule application was playing a

role. We are still working on it and hope to get better results.

Appendix A

POS Tag Description

We give the complete list of Penn Tree Bank POS Tags. Fist column tell the POS Tag and

second column gives the description for the corresponding POS Tag.

Table A.1: POS Tags

POS Tag Description

CC Coordinating conjunction

CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Preposition or subordinating conjunction

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List item marker

MD Modal

NN Noun, singular or mass

NNS Noun, plural

Continued on next page

54

Table A.1 – continued from previous page

POS Tag Description

NNP Proper noun, singular

NNPS Proper noun, plural

PDT Predeterminer

POS Possessive ending

PRP Personal pronoun

PRP$ Possessive pronoun

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol

TO to

UH Interjection

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

WDT Wh-determiner

WP Wh-pronoun

WP$ Possessive wh-pronoun

WRB Wh-adverb

References

[1] Coursera. URL: https://www.coursera.org/.

[2] Khan Academy. URL: https://www.khanacademy.org/.

[3] Umair Z. Ahmed, Sumit Gulwani, and Amey Karkare. “Automatically Generating
Problems and Solutions for Natural Deduction”. In: Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence. IJCAI ’13. Beijing, China:
AAAI Press, 2013, pp. 1968–1975. ISBN: 978-1-57735-633-2. URL: http://dl.
acm.org/citation.cfm?id=2540128.2540411.

[4] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. “Automated feedback
generation for introductory programming assignments”. In: Proceedings of the
34th SIGPLAN conference on Programming Language Design and Implementation.
ACM. 2013.

[5] Rohit Singh, Sumit Gulwani, and Sriram K. Rajamani. “Automatically Generat-
ing Algebra Problems”. In: Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada. 2012. URL:
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/
view/5133.

[6] Chris Alvin, Sumit Gulwani, Rupak Majumdar, and Supratik Mukhopadhyay. “Syn-
thesis of Geometry Proof Problems”. In: Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec,
Canada. 2014, pp. 245–252. URL: http://www.aaai.org/ocs/index.
php/AAAI/AAAI14/paper/view/8617.

[7] Rajeev Alur, Loris D’Antoni, Sumit Gulwani, Dileep Kini, and Mahesh Viswanathan.
“Automated Grading of DFA Constructions”. In: IJCAI 2013, Proceedings of the
23rd International Joint Conference on Artificial Intelligence, Beijing, China, August
3-9, 2013. 2013. URL: http://www.aaai.org/ocs/index.php/IJCAI/
IJCAI13/paper/view/6759.

[8] John J. Kelly. The Essence of Logic. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1997. ISBN: 0-13-396375-6.

[9] Dave Barker-Plummer, Richard Cox, and Robert Dale. “Dimensions of Difficulty
in Translating Natural Language into First-Order Logic”. In: Educational Data
Mining - EDM 2009, Cordoba, Spain, July 1-3, 2009. Proceedings of the 2nd
International Conference on Educational Data Mining. 2009, pp. 220–229. URL:
http://www.educationaldatamining.org/EDM2009/uploads/
proceedings/barker.pdf.

[10] Automata Tutor. URL: http://www.automatatutor.com/about/.

https://www.coursera.org/
https://www.khanacademy.org/
http://dl.acm.org/citation.cfm?id=2540128.2540411
http://dl.acm.org/citation.cfm?id=2540128.2540411
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5133
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5133
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8617
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8617
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6759
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6759
http://www.educationaldatamining.org/EDM2009/uploads/proceedings/barker.pdf
http://www.educationaldatamining.org/EDM2009/uploads/proceedings/barker.pdf
http://www.automatatutor.com/about/

56

[11] Luca Aceto. Ode to the Automata Tutor. URL: http://processalgebra.
blogspot.in/2015/03/ode-to-automata-tutor.html.

[12] Dave Barker-Plummer, Richard Cox, and Robert Dale. “Student Translations of
Natural Language into Logic: The Grade Grinder Translation Corpus Release 1.0”.
In: Proceedings of the 4th International Conference on Educational Data Mining,
Eindhoven, The Netherlands, July 6-8, 2011. 2011, pp. 51–60. URL: http://
educationaldatamining.org/EDM2011/wp-content/uploads/
proc/edm2011_paper28_full_Barker-Plummer.pdf.

[13] Sumit Gulwani and Mark Marron. “NLyze: interactive programming by natural
language for spreadsheet data analysis and manipulation”. In: International Con-
ference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27,
2014. 2014, pp. 803–814. DOI: 10.1145/2588555.2612177. URL: http:
//doi.acm.org/10.1145/2588555.2612177.

[14] S. Torge N. E. Fuchs U. Schwertel. “Controlled Natural Language Can Replace
First-Order Logic”. In: 14th IEEE International Conference on Automated Software
Engineering, ASE’99, Cocoa Beach, Florida, October 1999. Cocoa Beach, Florida:
IEEE, Oct. 1999, pp. 295–298. URL: http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=802325&tag=1.

[15] Luke S. Zettlemoyer and Michael Collins. “Learning to Map Sentences to Logical
Form: Structured Classification with Probabilistic Categorial Grammars”. In: CoRR
abs/1207.1420 (2012). URL: http://arxiv.org/abs/1207.1420.

[16] Yoav Artzi and Luke Zettlemoyer. “Weakly Supervised Learning of Semantic Parsers
for Mapping Instructions to Actions”. In: Transactions of the Association for Com-
putational Linguistics 1.1 (2013), pp. 49–62.

[17] Chris Quirk, Pallavi Choudhury, Jianfeng Gao, Hisami Suzuki, Kristina Toutanova,
Michael Gamon, Wen-tau Yih, Colin Cherry, and Lucy Vanderwende. “MSR SPLAT,
a language analysis toolkit”. In: Proceedings of the Demonstration Session at the
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. Montrèal, Canada: Association for
Computational Linguistics, 2012, pp. 21–24. URL: http://aclweb.org/
anthology/N12-3006.

[18] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. “The Stanford CoreNLP Natural Language Pro-
cessing Toolkit”. In: Proceedings of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations. Baltimore, Maryland: Associ-
ation for Computational Linguistics, June 2014, pp. 55–60. URL: http://www.
aclweb.org/anthology/P/P14/P14-5010.

http://processalgebra.blogspot.in/2015/03/ode-to-automata-tutor.html
http://processalgebra.blogspot.in/2015/03/ode-to-automata-tutor.html
http://educationaldatamining.org/EDM2011/wp-content/uploads/proc/edm2011_paper28_full_Barker-Plummer.pdf
http://educationaldatamining.org/EDM2011/wp-content/uploads/proc/edm2011_paper28_full_Barker-Plummer.pdf
http://educationaldatamining.org/EDM2011/wp-content/uploads/proc/edm2011_paper28_full_Barker-Plummer.pdf
http://dx.doi.org/10.1145/2588555.2612177
http://doi.acm.org/10.1145/2588555.2612177
http://doi.acm.org/10.1145/2588555.2612177
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=802325&tag=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=802325&tag=1
http://arxiv.org/abs/1207.1420
http://aclweb.org/anthology/N12-3006
http://aclweb.org/anthology/N12-3006
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010

