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Abstract

A significant number of applications involve regular kernel.These kernels contain a

large amount of iterations which often take tremendous amount of time. Hence, it

has been necessary to create efficient parallel codes corresponding to these prob-

lems.While developing parallel programs to run on parallel computing platforms,

such as CUDA, OpenCL, etc. requires knowledge of platform-specific concepts, it

becomes very convenient if we automate the process of creating parallel code for

compute-intensive portions of the program.

We develop a tool CRINK , an end-to-end code transformation system, to convert

sequential C programs to CUDA prorgam. To analyse the performance,tool has been

tested on standard benchmarks and datasets,where we observed that computation

time reduces by a significant amount as the number of threads increases.
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Chapter 1

Introduction

Graphics Processing unit (GPU) has traditionally been used for computer graphics

and image processing as their highly parallel structure makes them more effective to

be computed on a GPU with a large number of cores designed for handling multiple

tasks simultaneously, rather than a general-purpose CPU which has very few cores

optimized for sequential serial processing. GPU-accelerated computing is the use of

a graphics processing unit (GPU) together with a CPU to accelerate computation

intensive applications.

GPU-accelerated computing offers unprecedented application performance by

offloading compute-intensive portions of the application to the GPU, while the re-

mainder of the code still runs on the CPU. From a user’s perspective, applications

simply run significantly faster[Nvi].

CUDA is a parallel programming platform created by NVIDIA and implemented

on GPU,which allows parallel computations with a large number of parallel threads.It

is used to execute instruction sets on GPU. Using CUDA, GPUs are used for Gen-

eral purpose computing on Graphics Processing Unit (GPGPU)[Cud12]. GPGPU

is the use of a GPU to perform computation in applications traditionally handled

by the central processing unit (CPU).

In this thesis, we propose CRINK, an end-to-end code transformation tool using

ROSE compiler, to automatically generate a CUDA program from a given sequantial

C program. This tool aims to save the user from learning deep implementation

1



Chapter 1. Introduction 2

details of CUDA by providing the generated parallel counterpart of their sequential

program.

We test and analyze the performance of CRINK over a number of standard

benchmarks.

1.1 Problem Statement

The objective of this thesis is to create a tool that can automatically convert an

input C program into CUDA C program, which can then be compiled using the

Nvidia nvcc compiler. The tool parallelizes the regular kernels in the program. We

transform the compute-intensive portions of the program so as to be able to run

them parallely on GPU , thereby converting the programs to CUDA C programs.

In this thesis,we have proposed tool named CRINK which is used to convert

Sequential C program to CUDA program,which parallelizes the expensive parts and

it is then tested over a number of standard benchmarks.

1.2 Motivation

A significant number of applications involve regular kernel. These kernels contain a

large amount of iterations which often take tremendous amount of time. Hence, for a

program with large number of iterations,if we can find some parallelization technique

which can take iterations that do not depend on other iterations and execute them

in parallel, then we can reduce the computation time by a significant amount. But

if these kernels will have some intra loop dependencies(e.g. iteration (i,j) depending

upon the iteration (i+k1,j+k2)) then blindly executing them in parallel on the GPU

will result in an incorrect output. So we need some proper mechanism to parallelize

such kind of loops. In this thesis, we have used some techniques like cycle shrinking

to handle these dependencies with in a loop, which partition the dependent intera-

tions into group of indepedent iterations which can be executed in parallel on a GPU.

2



Chapter 1. Introduction 3

Example 1 illustrates intra loop dependencies.

Example 1. for(i=1;i<N;i++){

x[i]=y[i+2];

y[i]=x[i-4];

}

Example 1 contains some intra-loop dependencies i.e. some iterations depend

upon the value of previous iterations. It is natural for a programmer to write a

sequential program for any application. But our automatic parallelization tool will

help the programmer to run the program in parallel using multiple threads on a

GPU accelerated system thereby reducing the computation time by a significant

amount. So, we propose a technique using which we can partition the dependent

iterations into a group of independent iterations which can be executed in parallel

on a GPU accelerated system.

CRINK serves as a ROSE plugin which auotmatically generates a parallel CUDA

program given an input sequential C program.

1.3 Related Work

A lot of research has been done in past few years in the field of automatic paralleliza-

tion of regular kernels. GPGPU provides a parallel system to application developers

but programming the application is complex in GPGPU. Many programming mod-

els are presented for application developement so that they can run on GPUs like

CUDA[SK10] But manual developement of the parallel code using these program-

ming model is still cumbersome.

CUDA-CHiLL[Rud10] system are based on the idea of a transformation script that

performs source-to-source transformations. It uses a polyhedral model to allow for

powerful composition of transformations.Lee et al.[LME09, LE10] presented a com-

piler framework for translating standard OpenMP shared-memory programs into

CUDA-based GPGPU programs,while Baskaran et al. [BRS10] proposed a fully

3



Chapter 1. Introduction 4

automatic source to source code transformation system from c to CUDA for affine

programs.

1.4 Outline of our Solution

CRINK takes sequential C programs as input and generates CUDA program as

output.The tool basically consists of following phases:

• Compilation Phase: For this purpose we use ROSE compiler(source to

source translator).

• Loop Normalization Phase: Loop is said to be normalized if the lower

bound is zero and the iterator increases by one. If loop does not satisfy this

condition, then we need to normalize the loop, as some of the dependence tests

are applicable only if a loop is normalized.

• Dependence testing Phase: This phase checks whether dependencies exist

within loops using either gcd[PK99] or banerjee[AK04] test.

• Parallelism extraction Phase: This phase uses Cycle Shrinking [Pol88] or

Extended cycle shrinking[SBS95] to partition the dependent iterations of the

loop into group of independent iterations.

• Code Generation Phase: This phase generates the CUDA C code based on

the information collected from previous phases.

The output code is compiled using the Nvidia nvcc compiler. We have tested the

tool over various standard benchmarks using standard datasets and it has been

observed that the computation time of the parallel program reduces as the number

of threads increase.

4



Chapter 1. Introduction 5

1.5 Thesis Organization

Rest of the thesis is organized as follows:

Chapter 2, Background, contains all the necessary background information to un-

derstand the tool like affine programs,loop normalization, dependence test, cycle

shrinking, CUDA, ROSE compiler.

Chapter 3,Implementation Details,discuss the various stages like compilation phase,

Dependence test, Parallelism Extraction, Code Generation in detail with the help

of an example

Chapter 4,Experiments and results,discuss the performance of CRINK by varying

the number of threads.

Chapter 5,Conclusion and Future Work,concludes the work of the thesis and scope

of future work.

5



Chapter 2

Background

This chapter will focus on some of the pre-requisites needed to understand CRINK

implementation details. This chapter is concluded with a discussion on ROSE com-

piler which has been used to design CRINK . Detailed background can be found in

[AK04, WSO95, Pol88, SBS95, SK10, KMP+96].

2.1 Affine Programs

Programs containing only affine loops are called affine programs. Whereas affine

loops are the loops in which array index and loop bounds are the linear functions of

loop index variables, hence their memory access pattern is always known at compile

time. It will become more clear with the help of following example.

Example 2. for(j=4;j<50;j++)

b[j+8]=b[j+3];

In this example, access pattern of array, b is a linear function of the loop index

variable, j and is known at compile time.

2.2 Loop Normalization

A loop is said to be normalized if the lower bound is zero and its iterator increments

by one.

6



Chapter 2. Background 7

Example 3. for(j=4;j<50;j++)

b[j+8]=b[j+3];

In this example, the loop is not normalized. Loop normalization algorithm is

given below:

Algorithm 1 Loop normalization Algorithm(L0)[AK04]

Input: A loop L0 with L , U and S as the lower bound, upper bound and step size

respectively.

1: Let i be the unique compiler-generated loop induction variable.

2: S1: Replace the loop header for L0

3: DO I = L,U,S

4: with the adjusted loop header

5: DO i= 1,(U-L+S)/S;

6: S2: Replace each reference to I within loop by

7: i*S-S+L;

8: S3: Insert a finalization assignment

9: I=i*S-S+L;

10: immidiately after the end of the loop.

2.3 Data Dependence

There exists dependency between two iterations i and j ,if i ≤ j and

• ith iteration is reading a memory location which was written in jth iteration,

known as RAW (Read after write).

• ith iteration is writing a memory location which was read in jth iteration,

known as WAR(Write after read).

• ith iteration is writing a memory location which was written in jth iteration,

know as WAW(Write after write)

7



Chapter 2. Background 8

So,we need data dependence test to find which part of the code is independent

and which part of the code are inter-dependent.

2.4 Data Dependence Test

A lot of dependence tests are proposed in the data dependence literature, out of

which CRINK tool uses GCD test[PK99] and Banerjee’s test[AK04].All these tests

compare in terms of accuracy and efficiency. These dependence tests always approx-

imate results on conservative side i.e. a dependence can exist even if independence

can not be proved. Data dependence testing is equivalent to integer linear program-

ming and therefore can not be solved generally.

2.4.1 GCD Test

GCD[PK99] test is arguably the most basic dependence test. GCD test is based

on a theorem of elementary number theory which states that there exists an integer

solution for a linear equation if the greatest common divisor(GCD) of the coefficients

on left hand side evenly divides the constant term at right hand side. If this condition

does not hold, it means that there is no integer solution for the linear equation and

hence dependence does not exist. However if condition does apply then a dependence

does not necessarily exist.In this case GCD test gives a may be answer.

Consider the equation:

a1x1 + ....+ anxn = a0 (2.1)

Equation 2.1 has an integer solution iff GCD(a1,....an) divides a0.

Example 4. for(int i=0;i<100;i++){

a[2*i]=b[i];

c[i]=a[4*i+1];

}

In example 4,The GCD of (2,4) is 2 and dividend is 1. As 2 can not divide 1,so

there is no dependency between the two statements in the loop.

8



Chapter 2. Background 9

2.4.2 Banerjee Test

GCD test[AK04] does not provide any mechanism for bound checking and most

common gcd encountered in practice is 1 which divides everything , so to overcome

this, Banerjee test was proposed. The Banerjee test is based on the Intermediate

Value Theorem. The test calculates the minimum and maximum value that the left

hand side of linear equation 2.1 can achieve by using some mechanism which is

discussed later. If the constant term (a0) of equation 2.1 does not fall between max-

imum and minimum vaules(calculated above), then no dependence exists, otherwise

a real solution to the linear equation exists and it will return that dependency may

exist.

Let a be a real number. The positive part of a, denoted by a+, is given by following

expression:

a+ = if a >= 0 then a else 0 (2.2)

The negative part of a, denoted by a−, is given by following expression:

a− = if a >= 0 then 0 else − a (2.3)

The dependence equation of a statement present inside d nested loops is given as:

d∑
k=1

(AkIk − BkIk) = B0 − A0 (2.4)

For each k, find the lower and upper bounds such that:

LBψk

k ≤ (AkIk − BkIk ≤ UBψk

k (2.5)

where LBψk

k is the direction vector. After taking summation we get:

d∑
k=1

LBψk

k ≤
d∑

k=1

(AkIk − BkIk) ≤
d∑

k=1

UBψk

k (2.6)

9



Chapter 2. Background 10

or,
d∑

k=1

LBψk

k ≤ B0 − A0 ≤
d∑

k=1

UBψk

k (2.7)

If either (
∑d

k=1 LB
ψk

k > B0 − A0) or (
∑d

k=1 UB
ψk

k < B0 − A0) is true, then the

solution does not exist within the loop constraints and therefore dependency can

not exist.

Lower and upper bounds can be calculated by:

LB<
i = −(a−i + bi)

+(Ui − 1) + [(a−i + bi)
− + a+i ]Li − bi

UB<
i = (a+i − bi)+(Ui − 1)− [(a+i − bi)− + a−i ]Li − bi

LB=
i = −(ai − bi)−Ui + (ai − bi)+Li

UB=
i = (ai − bi)+Ui − (ai − bi)−Li

LB>
i = −(ai − b+i )−(Ui − 1) + [(ai − b+i )+Li + ai

UB>
i = (ai − b−i )+(Ui − 1)− [(ai − b−i )−Li + ai

where Li and Ui are the lower and upper bounds of ith loop.

2.5 Cycle Shrinking

Cycle shrinking [Pol88] is a compiler transformation which is used to parallelize se-

rial loops. This transformation uses the data dependence graph to check whether

the exisiting dependencies in the loop allow the loop to execute in parallel with-

out violating any semantics. If no dependence exists, our transformation is simple.

Otherwise loops with dependence graphs that do not form strongly connected com-

ponents can become fully or partially parallel. When the dependence graph forms

a cycle, node splitting can be used to break the cycle, assuming that atleast one of

the dependency involved is antidependency.

Cycle Shrinking is used to extract parallelism that may be present in perfectly nested

loops. With the help of cycle shrinking serial loop is transformed into two perfectly

nested loops: an outermost serial and innermost parallel loop.

10



Chapter 2. Background 11

2.5.1 Characterization of Reduction Factor

Cycle shrinking parallelizes the loop by partitioning the serial loop into two per-

fectly nested loops:an outermost serial and innermost parallel loop.The two array

references that are involved in dependence and includes the source and sink of de-

pendence are called Reference Pair. The partitioning is done on the basis of distance

vectors. This method finds out the minimum dependence distance (among all Ref-

erence Pairs) that can transform the loop without altering its overall result and

hence expedite the loop by a factor of lambda(λ), called reduction factor.

Example 2 has only one reference pair i.e. b[j+8]-b[j+3]. Consider a n-nested

loop with indices J1, J2, .., Jn and following statement present inside the loop:

S1: X[J1 + a11, J2 + a12, .., Jn + a1n]=Y[J1 + a21, J2 + aa22, .., Jn + a2n]

S2: Y[J1 + b11, J2 + b12, .., Jn + b1n]=X[J1 + b21, J2 + ba22, .., Jn + b2n]

In above Statements, there are two reference pairs;

Z1: S1:X[J1 + a11, J2 + a12, .., Jn + a1n] - S2:X[J1 + b21, J2 + ba22, .., Jn + b2n]

Z1: S2:Y[J1 + b11, J2 + b12, .., Jn + b1n] - S1:Y[J1 + a21, J2 + aa22, .., Jn + a2n]

Linear equation for reference pair Z1 will be:

J11 + a11 = J12 + a21

J21 + a12 = J22 + a22

..

..

Jn1 + a1n = Jn2 + a2n
and linear equation for reference pair Z2 will be :

J11 + b11 = J12 + b21

J21 + b12 = J22 + b22

..

..

Jn1 + b1n = Jn2 + b2n

The distance vectors for reference pairs Z1 and Z2 are < φ1
1, φ

1
2, .., φ

1
n >=< a11 −

a21, a12 − a22, .., a1n − a2n > and < φ2
1, φ

2
2, .., φ

2
n >=< b11 − b21, b12 − b22, .., b1n −

b2n > respectively. Final step to calculate reduction factor is < λ1, λ2, .., λn >=<

11



Chapter 2. Background 12

min(|φ1
1| , |φ2

1|),min(|φ1
2| , |φ2

2|), ..,min(|φ1
n| , |φ2

n|) >.

2.5.2 Types of cycle shrinking

Cycle Shrinking speeds up the loop by factor λ called reduction factor as described

previously.

I. Simple Shrinking: Dependence cycle is considered separately for each loop

in the nest and then algorithm for simple shrinking is applied to each loop separately.

Algorithm 2 describes the method of simple shrinking for nested loops:

Algorithm 2 Simple Shrinking

Input: Consider a n nested loop with loop indices j1, j2, .., jn with l1, l2, .., ln as the
lower bound , u1, u2, .., un as upper bound and λ1, λ2, .., λn as reduction factor.

1: DO j1 = 0, u1, λ1
2: ..
3: ..
4: DO jn = 0, un, λn
5: Loop Body
6: ENDO

Output: Loop after applying simple cycle shrinking is:
7: DO j1 = 0, u1, λ1
8: ..
9: ..
10: DO jn = 0, un, λn
11: DOALL i1 = j1, j1 + λ1 − 1
12: ..
13: ..
14: DOALL in = jn, jn + λn − 1
15: Loop Body
16: ..
17: ..
18: ENDOALL
19: ENDO

Consider the example :

Example 5. Do I=3,N

S1: A[I]=B[I-2]-1;

S2: B[I]=A[I-3]*k;

ENDO

12



Chapter 2. Background 13

In the above example, statements S1 and S2 are involved in dependence, Re-

duction factor for this dependence is 2 and 3. But by definition of reduction factor

λ1 = min(φ1
1, φ

1
2) = min(2, 3) = 2.

Cycle shrinking will shrink the loop by a factor of 2. Therefore, transformed

loop will be:

DO J=3,N,2

DOALL I=J,J+1

S1: A[I]=B[I-2]-1;

S2: B[I]=A[I-3]*k;

ENDOALL

ENDO

II.Extended Cycle Shrinking [SBS95]Simple shrinking deals with the depen-

dence having constant distance and speeds up the loop by reduction factor. For

variable dependence distance, we need some improved version of simple shrinking

which can handle variable dependence distance and can reduce the number of par-

titions as well. For this purpose Extended cycle shriking was proposed. Extended

Cycle shrinking is basically used for constant dependence distance as well as for vari-

able dependence distance,giving better results as comapred to simple cycle shrinking

in case of constant dependence distance.

2.5.3 Reduction Factor for constant dependence distance

The process of calculating reduction factor for constant dependence distance is same

as that of Simple cycle shrinking.

2.5.4 Reduction Factor for variable dependence distance

Consider a n-nested loop with loop indices j1, j2, .., jn and reference pair Sj−Si that

contains variable dependence distance:

Si : A[a10 + a11j1 + ..+ a1njn, .., an0 + an1I1 + ..+ annjn]

Sj : A[b10 + b11j1 + ..+ b1njn, .., bn0 + bn1I1 + ..+ bnnjn]

13



Chapter 2. Background 14

Extended cycle shrinking for variable dependence distance use data dependence vec-

tor (DDV) for computing reduction factor. The data dependence vector is calculated

using the following equation:

λk =
(ak0 − bk0) +

∑n
i=1,i 6=k(aki − bki) ∗ Ii + (akk − bkk) ∗ Ik

bkk
(2.8)

2.5.5 Extended Cycle Shrinking for Constant Dependence

Distance

For an m-nested loop with upper boundsN1, N2, .., Nm and reduction factors λ1, λ2, .., λm,

extended cycle shrinking algorithm is given below and is explained with the help of

example 6

Algorithm 3 Extended Cycle Shrinking for Constant Dependence Distance

Input: A m nested loop I1, I2, .., Im with L1, L2, .., Lm and U1, U2, .., Um as the lower
and upper bound respectively, loop body and the distance vectors Φ1,Φ2, ..,Φm.

Output: Reconstructed loop
1: DO K = 1,min{dNi/Φie |1 ≤ i ≤ m,Φi 6= 0}+ 1
2: DOALL I = 0,m− 1
3: START [I] = (K − 1) ∗ Φi

4: ENDOALL
5: r = 1
6: while (r ≤ m) do
7: i = 1
8: while (i ≤ m) do
9: Introduce m nested DOALL loops based on following condition for each

loop:
10: if i < r then
11: DOALL Ir = START [r] + Φr, Nr

12: end if
13: if i = r then
14: DOALL Ir = START [r],min{START [r] + Φr − 1, Nr}
15: end if
16: if i > r then
17: DOALL Ir = START [r], Nr

18: end if
19: end while
20: end while
21: ENDO

14
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Example 6. Do I=1,10

Do J=1,8

S1: A[I+3,J+4]=B[I,J];

S2: B[I+2,J+3]=A[I,J];

ENDO

ENDO

Transformed loop after applying shrinking will be:

DO K=1,min(d10/2e , d8/3e) + 1

DOALL I=0,1

START[I]=(K-1)*λI

ENDOALL

DOALL I=START[0],min(START[0]+1,10)

DOALL J=START[1],8

S1: A[I+3,J+4]=B[I,J];

S2: B[I+2,J+3]=A[I,J];

ENDOALL

ENDOALL

DOALL I=START[0]+2,N1

DOALL J=START[1],min(START[1]+2,8)

S1: A[I+3,J+4]=B[I,J];

S2: B[I+2,J+3]=A[I,J];

ENDOALL

ENDOALL

ENDO

15
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2.5.6 Extended Cycle Shrinking for Variable Dependence

Distance

Algorithm for extended cycle shrinking[Sin14] for variable dependence distance is

given below and is explained with the help of example 7

Algorithm 4 Extended Cycle Shrinking for Variable Dependence Distance

Input: A two dimensional loop with L1, L2 and U1, U2 as the lower and upper bound

respectively, loop body and the distance vectors < Φ1,Φ2 >. Each distance

vector is a function of loop indices I1, I2.

Output: Reconstructed loop

1: id1 = 1, id2 = 1

2: while ((id1 < U1)&&(id2 < U2)) do

3: nextid1 == bmin{phi1(id1, id2)}c

4: nextid2 == bmin{phi2(id1, id2)}c

5: doall I1 = id1,minnextid1, U1

6: doall I2 = id2, U2

7: Loop body

8: endoall

9: endoall

10: doall I1 = nextid1, U1

11: doall I2 = id2,minnextid2, U2

12: Loop body

13: endoall

14: endoall

15: end while

16: endo

Example 7. for(i=3;i<N1;i++)

for(j=4;j<N2;j++){

x[3*i+5][3*j+7]=y[i-3][j-4];

16
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y[3*i+8][2*j]=x[2*i-2][j-3];}

In above algorithm, id1, id2 and nextid2, nextid2 marks the peak of two consec-

utive groups. Considering the below example:

There are two reference pair i.e. R1 : x[3 ∗ i + 5][3 ∗ j + 7] − x[2 ∗ i − 2][j + 3]

and R2 : y[3 ∗ i + 8][2 ∗ j] − y[i + 3][j − 4] present in above example. For id1 = 1

and id2 = 1 distance vectors will be < φ1
1, φ

1
2 >=< 4, 6 > and < φ2

1, φ
2
2 >=< 7, 5 >

and hence the reduction vector are λ1 = 4 and λ2 = 5. Therefore, below is the

reconstructed loop using Algorithm 4:

id1 = 1, id2 = 1

WHILE((id1 < N1)&&(id2 < N2)) {

nextid1=min(((3-2)*id1+(5+2))/2,((3-1)*id2+(8-3))/1)

nextid2=min(((3-1)*id1+(7-3))/1,((2-1)*id2+(0+4))/1)

DOALL I = id1,min(nextid1, N1)

DOALL J = id2, N2

S1: x[3*I+5][3*J+7]=y[I+3][J-4];

S2: y[3*I+8][2*J]=x[2*I-2][J+3];

ENDOALL

ENDOALL

DOALL I = nextid1, N1

DOALL J = id2,min(nextid2, N2)

S1: x[3*I+5][3*J+7]=y[I+3][J-4];

S2: y[3*I+8][2*J]=x[2*I-2][J+3];

ENDOALL

ENDOALL

id1 = nextid1

id2 = nextid2

ENDO

}

17
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2.6 Compute Unified Device Architecture(CUDA)

NVIDIA introduced CUDA[Cud12] a general purpose parallel computing platform

and programming model that leverages the parallel compute engine in NVIDIA

GPUs to solve many complex computational problems in more efficient way than

on a CPU.

CUDA comes with a software environment that allows developers to use C as a

high-level programming language. Goal of CRINK is to take sequential C program

as input and generate parallel CUDA program as output.

Following feature of CUDA are used in this thesis work.

Features:

• CUDA program which generate a large number of threads to execute instruc-

tions set in parallel, consists of two levels of parallelism:

– Block level

– Thread level

CUDA with standard language C consists of:

– host code which is executed by a single thread on the host CPU.

– kernel code which is executed by multiple parallel threads on the GPU.

Parallel portion of the program are executed on device known as kernels.Each

Kernel is executed by many threads at a time and a grid is the entire array

thread generated by a kernel launch. A grid is divided into blocks and further

each block is divided into threads as shown in figure 2.1. A grid can have

at most 65535 number of blocks. Each block may have at most 512 threads.

Hence, maximum 512*65535 threads can be generated by parallelized program

at a time.

18
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• A grid and block can be of one, two or three dimension and each of its element

is a block and thread respectively. Following are the built in CUDA variables:

girdDim.x,y,z gives the number of blocks in each direction

blockDim.x,y,z gives the number of threads in each direction

blockIdx.x,y,z gives the block index within a grid

threadIdx.x,y,z gives the thread index within a block

These variables are of dim3(integer vector) type. If a variable is declared as

dim3 type and default value for this data type is 1.

• Instructions which are executed by GPU, can access only those memory loca-

tions which are located on GPU device. Hence, to access a data, it needs to

be transfered on device before executing the instructions.

Figure 2.1: CUDA Programming Model[cud]

2.6.1 CUDA C programming Syntax

Following are the CUDA kernel syntax that will be used in this thesis work:
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• cudaMalloc()

– Syntax:cudaMalloc ((void **)Ptr, size t size)

– Usage:It is used to allocate memory on device global memory. Two

parameters are required by this function, address of a pointer to the

allocated object and size of the object.

• cudaMemCpy()

– Syntax: cudaMemcpy (void *dest, const void *source, size t size,

cudaMemcpyHostToDevice)

– Usage: It is used for memory data transfer. It requires four parameters:

1. Pointer to source

2. Pointer to Destination

3. Size of the data to be transfer

4. Type of transfer i.e. Host to Host, Host to Device, Device to Device,

Device to Device

• cudaThreadSynchronize()

Threads can be synchronized using this function .

• To create a kernel, we declare it as a global function, as following,

global void function name(arguments)function specifications

• CUDA kernel is called from host code as:

functionName<<<noOfBlock,noOfThread>>>(Parameters) specifying the num-

ber of threads and blocks.

• The thread id and block id for all three dimensions of the thread, on the de-

vice, can be computed as following:

thread x = threadIdx.x; block x = blockIdx.x;

thread y = threadIdx.y; block y = blockIdx.y;
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thread z = threadIdx.z; block z = blockIdx.z;

2.7 ROSE Compiler Infrastructure

ROSE[DQWc] is an open source compiler infrastructure for building tools that can

read and write source code in multiple languages (C/C++/Fortran). ROSE is used

for building source-to-source translators. ROSE makes it easy to build tools that

read and operate on source code from large scale applications.

ROSE works by reading the source code and/or binary and generating an Abstract

Syntax Tree (AST). The AST forms a graph representing the structure of the source

code and is held in the memory. The nodes used to define the AST graph are an

intermediate representation(IR). ROSE also provides mechanisms to traverse and

manipulate the AST. Finally ROSE provides mechanisms to regenerate source code

from the AST.
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Implementation Details

The tool takes a sequential C program as input and outputs a corresponding CUDA

program involving various phases. This chapter describes all these phases Compila-

tion Phase, Loop Normalization, Dependence Testing Phase, Parallelism Extraction

Phase and Code Generation Phase in detail.

3.1 Compilation Phase

In this phase input code is passed to ROSE Compiler.[ros] ROSE reads the input

program and generates an Abstract Syntax Tree (AST) of the input code. The

nodes used to define the AST are an intermediate representation (IR) of the input

program. We traverse and manipulate the AST in various phases according to our

need.

3.1.1 Loop Normalization

Loop is said to be normalized if the lower bound is zero and its iterator increments

by 1. There are some dependency detection tests that consider the loop to be

normalized. Therefore performing dependence test on non-normalized loop will give

incorrect results, so loop normalization is required before going for further phases.

Below are the two examples of non-normalized loop:
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Figure 3.1: Compilation Phase

• Case 1

Example 8. for(i=10;i>=0;i--)

a[i]=b[i];

Above example represents reverse loop.After normalization, the above loop

will look like the following:

for(i=0;i<=10;i++)

a[10-i]=a[10-i];

• Case 2

Example 9. for(i=7;i<50;i+=3)

a[i]=b[i]+7;

Here, the lower bound of the loop is non-zero and its iterator increments by 3.

Therefore, this loop is not normalized. The normalized form of above example

will look like:

for(i=0;i<(50-7)/3;i++)

a[i*3+7]=b[i*3+7]+7;

After this step, everything will be processed on the normalized loop.
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• Function used for Loop normalization in CRINK :

– Syntax: void loop normalization(SgNode* forloop,set<string> var)

– In the above function SgNode represents the node in intermediate repre-

sentation(IR) of AST. Here we are looking for SgNode of type SgForState-

ment(represents the FOR statements in AST) and var is used to collect

all the array references in the loop.Using this function,we are normalizing

the FOR loop.

3.1.2 Affine Test

This step checks whether the given input program contains an affine or a non-affine

loop. Further phases will be carried out only for the affine loops.

Function used for Affine test in CRINK :

• Syntax: bool isPotentiallyAffine(SgExpression* expr)

• In the above function SgExpression represents the notion of an expression.

Expressions passed during function call are array indices and loop bounds and

they are checked if they are affine or not.

3.1.3 Data Extraction

ROSE generatesQ an Abstract Syntax Tree (AST),which ensures that input program

is error free and following data are extracted from the nodes in AST.

• Variable name, type, size and its value if the variable is initialized.

• Information about loop indices, bounds, relational operator and incremen-

t/decrement operator and value.

• Data about statements present inside the for loop and their subscript values.

After this, data structure is created to store all the values extracted in this phase.

Function used for Data Extraction in CRINK :
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• Syntax: void ref function(SgNode* for loop,SgFunctionDefinition

*defn )

• In the above function SgNode represents the node in the AST of the interme-

diate representation(IR) of input c program. Here we are looking for SgNode

of type SgForStatement(represents the FOR statements in AST). SgFunction-

Definition represents the scope of FOR statement.

3.1.4 Dependence Extraction

Dependence extraction takes the data structures as input that are generated in data

extraction phase. It extracts out the variable referenced and their corresponding

write and read references in the statements inside FOR loop.Using this information

we identify the dependence(like WAW, RAW, WAR) in the statements. Dependence

extraction finds out the following:

• List of all the statement variables that have write reference or read reference

and are involved in some dependence.

• List of write references that comes after a read reference(WAR dependence)

or a write reference(WAW dependence).

• List of all read references that come after a write reference(RAW dependence)

The output of dependence extraction will be used by further phases of the tool.

Functions used for Dependence Extraction(RAW,WAW,WAR)

in CRINK :

• Syntax: void calculate intersection RAW(loop* node)

– In the above function loop represents data structure that contains all the

necessary information required(read and write array references within

statements of for loop ) for calculating RAW.

• Syntax: void calculate intersection WAW(loop* node)
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– In the above function loop represents data structure that contains all the

necessary information required for calculating WAW.

• Syntax: void calculate intersection WAR(loop* node)

– In the above function loop represents data structure that contains all the

necessary information required for calculating WAR.

3.2 Dependence Test

Consider a loop with large number of iterations which, if executed sequentially,

would become bottleneck to the computation time of the program. To reduce the

computation time, we parallelize the loop so that many iterations can execute in

parallel and hence the loop takes less computation time. But this can only happen

if the statements within the loop does not form dependence with each other. If

loop statement indulges in dependence which is carried by loop (i.e., loop carried

dependence) then all iterations can not execute in parallel. Therefore, we need

some kind of dependence test to analyze it. If dependence exists, then we need

to find out which iterations can execute in parallel; the process taking place in

parallelism extraction phase. But if dependence does not exist, then CUDA code

will be generated because each iteration can execute in parallel on GPU. Dependence

test phase takes read and write references of the variables involved in the dependence

(like WAW, RAW or WAW) as an input from the compilation phase. The output

of dependence testing is Yes if dependence exists and No if it does not.

The tool provides two different loop dependence test i.e. GCD,Banerjee.User

can configure which test to run using command line option. The user will have to

enter his choice from command line and the choices are -test:gcd(for GCD test)

and -test:banerjee(for Banerjee test).

Function used for Dependence Test in CRINK :

• Syntax: void Dependence Testing Interface(char *test name, loop*

write,SgNode* loop,int loop number)
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• Here test name indicates the name of the test gcd or banerjee. write is a

data structure of type loop which stores read and write references with in a

particular loop.

3.3 Parallelism Extraction

If loop carried dependencies exist,then next step is to extract the parallelism. Since

dependency exists, loop iterations can not be executed in parallel. The aim of this

phase is to extract parallelism out of the sequential loop by partitioning the iteration

space into groups of iterations that are independent of each other and hence can

execute in parallel.

The tool uses Cycle shrinking [Pol88] and Extended cycle shrinking [SBS95] for

paralleism extraction. The basic cycle shrinking offers Simple shrinking and the

extended cycle shrinking provides two versions i.e. extended cycle shrinking for

constant dependence distance and for variable dependence distance. Here also, user

decides which cycle shrinking to perform by giving any of the following options from

command line:

Cycle shrinking type Command line option

Simple shrinking simple

Extended cycle shrinking for constant dependence distance extShrinking1

Extended cycle shrinking for variable dependence distance extShrinking2

Function used for Parallelism Extraction in CRINK :

• Syntax: void CycleShrinking( char *shrinking,loop* write,SgNode*

n,int loop number,set<string> var)

• Here shrinking indicates the type of shrinking; write is a data structure of type

loop which stores read and write references within a particular FOR loop n.
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3.3.1 Compute Distance Vectors

Distance vector is the distance between two consecutive array references involved in

dependency.These array references can be of the following type:

• write after write access

• read after write access

• write after read access

Using read and write reference variables in the loop, all possible reference pairs are

found. Thereafter the distance vector can be calculated using these reference pairs.

If any variable is involved in more than one reference pair then each coordinate of

actual distance vector for that variable will take the minimum among the corre-

sponding coordinates of all the distance vector belonging to that variable. Consider

the following statement:

S1 : x[i][j]=y[i-1][j-1]+x[i-2][j-6];

S2 : a[i][j]=x[i-3][j-2];

Here, for array x there are two reference pairs: R1 : {S1 : x[i][j]−S1 : x[i−2][j−6]}

and R2 : {S1 : x[i][j]−S2 : x[i−3][j−2]}. So the distance vector for R1 and R2 are

< φ1
1, φ

2
1 >=< 2, 6 > and < φ1

2, φ
2
2 >=< 3, 2 > respectively. Therefore the actual

distance vector for array a[ ][ ] is < 2, 2 >.

3.3.2 Calculating Reduction Factor

If for cycle shrinking user gives simple or extShrinking1 as input then we need

to calculate Reduction factor after calculating distance vector. Reduction factor is

the minimum distance of each coordinate among all the corresponding coordinates

of every distance vectors.

3.3.3 Compute Data Dependence Vector

If for cycle shrinking user gives extShrinking2 as input then we need to calculate

Data Dependence Vector for each reference pair using equation 2.8.
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3.4 Code Generation

Final phase of CRINK generates CUDA program as output. If dependence exists

, then we perform cycle shrinking on input code and output of cycle shrinking viz.

reduction factor and data dependence vector, acts as an input for code generation

phase. Otherwise we do not perform cycle shrinking and CRINK direclty jumps

to this phase after dependence testing. With the help of reduction factor and data

dependence vector,loop iterations are partitioned into set of independent iterations

that can execute in parallel. Figure 3.2 shows the various routines involved in code

generation.

Following are the code generation routines that will generate different portions of

the target CUDA code:

Code generation for kernel function declaration: This is the initial step of

code generation phase, it generate the code corresponding to the declaration of ker-

nel function. The kernel function declaration will give the information about kernel

name, number of arguments and their respective type.

Code generation of C code (above FOR loop): The next step is to gener-

ate the code for the sequential portion of the input program which is above the

FOR loop .

Kernel variable code generation and memory allocation: Kernel execution

needs device variables allocated on device, so this step generates the target code for

declaration of these variables on host and allocates the memory for these variables

in global memory.

Kernel multi-level tiling code generation: This generates the code for identi-

fying the number of thread and blocks required to execute the instruction on GPU.

Also, if data becomes too large to accommodate in one launch of kernel, then tiling

is required. Tiling partitions the data into tiles such that the size of each tile can
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Figure 3.2: Code Generation Phase.
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fulfill the demand of threads and blocks in a kernel launch. Consider an array a of

size N . Calculation of number of threads, blocks and tiles is given below:

int NTHREAD=512, NBLOCKS=65535;

int NUM THREADS = N, NUM BLOCKS=1, int NUM TILE=1;

dim3 THREADS(512);

dim3 BLOCKS(1);

if(NUM THREADS < NTHREAD){

THREADS.x=NUM THREADS;}

else{

THREADS.x=NTHREAD;

NUM BLOCKS=NUM THREADS/512;

if(NUM BLOCKS<NBLOCK)

BLOCKS.x=NUM BLOCKS;

else{

BLOCKS.x=NBLOCK;

int temp=NUM BLOCKS;

NUM TILE=(temp % NBLOCK == 0)?(NUM BLOCKS/NBLOCK):

((NUM BLOCKS/NBLOCK)+1);}}

Separating sequential and parallel iterations based on result from cy-

cle shrinking: This step uses the result of cycle shriking phase(Reduction factor

and DDV) and generates the code for the loop transformation.

Code generation for kernel function definition: This step generates the code

for kernel function call. This function will specify the number of threads and blocks

allocated to the function .

Code generation for C code (below FOR loop): This step of the code gener-
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ation phase generates the code for the portion below FOR loop in the sequential C

program.

Code generation for kernel function definition: This is the last step of code

generation phase.It generates the code for the kernel function definition. In func-

tion body, we require indices to access the data available on device. So,Indices are

computed using CUDA variable. Code for calculating an index is given below:

int index = blockDim.x*blockIdx.x + threadIdx.x

In case of tiling,

int index = gridDim.x*blockDim.x* CUDA TILE + blockDim.x*blockIdx.x +

threadIdx.x

Here, CUDA TILE specifies the number of tile.

After processing all these steps, the final CUDA code is ready for execution on GPU.

3.5 How to use CRINK

In this section, we have briefly defined the overall working of CRINK with the help

of an example by considering various user inputs for dependence test and cycle

shrinking. As already discussed, CRINK uses GCD [WSO95] or Banerjee [AK04]

for dependence test and Cycle shrinking [Pol88] or Extended cycle shrinking [SBS95]

for parallelism extraction.

3.5.1 Working of tool explained with the help of an example

Firslty to run tool type the following command with choices for Dependency test

and cycle shrinking:

./main file -test:gcd/banerjee -shrink:simple/extShrinking1/extShrinking2

Consider the below FOR loop:

Example 10. for(j=1;j<=10;j++)

A[j]=A[j+10]+10;
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Process of converting the sequential input program to parallel CUDA program

will pass through following phases:

Compilation Phase

In this phase input code is compiled using ROSE compiler.ROSE reads the input

program and generate an Abstract Syntax Tree (AST) representing the structure of

input program.

• Loop Normalization

If loop is not normalized,then we need to normalize the FOR loop. In Example

10, loop is not normalized, so we apply loop normalization algorithm. After

normalizing loop, we get:

for(j=0;j<=9;j++)

A[j+1]=A[j+11]+10;

• Affine test

Now we need to check whether loop is affine or non-affine. In Example 10,array

indices are linear function of loop variable i, so the loop is affine.

Dependence Test

To find whether intra-loop dependencies exist or not, we perform dependence test.

Based on the user input i.e.gcd or banerjee, this phase identifies the dependency

within a loop. After performing both tests on Example 10, following are the results

corresponding to various user inputs:

• gcd: The linear equation for the normalized form of Example 10 is:

j1 + j2 = (11− 1)

Therefore the gcd(1, 1) evenly divides 10 and hence dependency exists.

• banerjee: For banerjee test, we calculate upper and lower bounds for different

direction vectors, for Example 10 these bounds will be:
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LB<
j = −9 ≤ B0 − A0 = 10 ≤ UB<

j = −1

LB=
j = 0 ≤ B0 − A0 = 10 ≤ UB=

j = 0

LB<
j = 0 ≤ B0 − A0 = 10 ≤ UB>

j = 0

It is clear that value of (B0 −A0) does not satisfy any of the lower and upper

bound constraints, so no dependence exists with any of the direction vector.

Parallelism Extraction

Based on the user input for cycle shrinking,we calculate the reduction factor as per

follow:

• simple or extShrinking1: If user inputs simple or extShrinking1,then we

calculate reduction factor,which is used to speed up the loop. Because there

is only one reference pair i.e. A[j + 1] − A[j + 11] in this example, both the

distance vector and reduction factor (λ) are same. Therefore, reduction factor

(λ)=10.

• extShrinking2: Extended cycle shrinking for variable dependence distance

can only be applied to loops that contain array indices of the form aj±b,where

a > 1 but for the array indices of Example 10, a = 1. Therefore, we can not

apply this shrinking on the FOR loop.

Code Generation

Code generation process involves various routines which are discussed in detail in

Chapter 3. The reduction factor calculated during parallelism extraction phase is

taken as input to this phase. After applying all the routines,we get CUDA program

corresponding to the input program.

Following are the scenarios corresponding to various user inputs for dependence test

and code transformation:

• If user inputs gcd for dependence test and simple for cycle shrinking. Then

GCD will detect dependence in the loop as already discussed in Dependence

Test phase and calculate the reduction factor. Hence simple shrinking will
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transform the loop as shown in Code 3.1.

Code 3.1: Loop Transformation using Simple Shrinking

int _SZ_A_0 = 10;

int *_DEV_A_0;

// Allocating device memory to the kernel variable

cudaMalloc((void**) &_DEV_A_0, sizeof(int)*_SZ_A_1);

// Copying Kernel variable from host to device

cudaMemcpy(_DEV_A, A, sizeof(int)*_SZ_A_1, cudaMemcpyHostToDevice);

int _NUM_THREADS = 10;

float _NUM_BLOCKS=1;

int _NUM_TILE=1;

dim3 _THREADS(512);

dim3 _BLOCKS(1);

// Tiling and declaring threads and blocks required for Kernel

Execution

if(_NUM_THREADS < _NTHREAD)

_THREADS.x=_NUM_THREADS;

else{

_THREADS.x=_NTHREAD;

_NUM_BLOCKS=(_NUM_THREADS % _NTHREAD ==

0)?(_NUM_THREADS/_NTHREAD):((_NUM_THREADS/_NTHREAD)+1);

if(_NUM_BLOCKS<_NBLOCK)

_BLOCKS.x=_NUM_BLOCKS;

else{

_BLOCKS.x=_NBLOCK;

int temp=_NUM_BLOCKS;

_NUM_TILE=(temp % _NBLOCK ==

0)?(_NUM_BLOCKS/_NBLOCK):((_NUM_BLOCKS/_NBLOCK)+1);}}
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int _CUDA_TILE;

// Code transformation through Simple cycle shrinking

for(j=0;j<=9;j+=10)

for(_CUDA_TILE=0;_CUDA_TILE<_NUM_TILE;_CUDA_TILE++){

_AFFINE_KERNEL<<<_BLOCKS,_THREADS>>>(_DEV_A, _SZ_A_1, 1, j,

0, 9, _CUDA_TILE);

cudaDeviceSynchronize();}

// Copying Kernel variable from device to host

cudaMemcpy(A, _DEV_A, sizeof(int)*_SZ_A_1, cudaMemcpyDeviceToHost);

// Releasing the memory allocated to kernel variable

cudaFree(_DEV_A);

Kernel definition for above code:

__global__ void _AFFINE_KERNEL(int* A,int _SZ_A_1,int phi_count, int

CUDA_j, int CUDA_L_j,int CUDA_U_j, int _CUDA_TILE){

int j = gridDim.x*blockDim.x*_CUDA_TILE +

blockDim.x*blockIdx.x + threadIdx.x;

if((CUDA_j<=j)&&(j<(CUDA_j+10))&&(j<=CUDA_U_j)){

A[1+j]=A[1+j+10]+10;}}

• If the user input is gcd and extShrinking1 the parallel code generated will

be as shown in Code 3.2.

Code 3.2: Loop Transformation using Extended Cycle Shrinking for Constant

Dependence Distance

int _SZ_A_1 = 10;

int *_DEV_A;

// Allocating device memory to the kernel variable

cudaMalloc((void**) &_DEV_A, sizeof(int)*_SZ_A_1);

// Copying Kernel variable from host to device

cudaMemcpy(_DEV_A, A, sizeof(int)*_SZ_A_1, cudaMemcpyHostToDevice);
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int _NUM_THREADS = 10;

float _NUM_BLOCKS=1;

int _NUM_TILE=1;

dim3 _THREADS(512);

dim3 _BLOCKS(1);

// Tiling and declaring threads and blocks required for Kernel

Execution

if(_NUM_THREADS < _NTHREAD)

_THREADS.x=_NUM_THREADS;

else{

_THREADS.x=_NTHREAD;

_NUM_BLOCKS=(_NUM_THREADS % _NTHREAD ==

0)?(_NUM_THREADS/_NTHREAD):((_NUM_THREADS/_NTHREAD)+1);

if(_NUM_BLOCKS<_NBLOCK)

_BLOCKS.x=_NUM_BLOCKS;

else {

_BLOCKS.x=_NBLOCK;

int temp=_NUM_BLOCKS;

_NUM_TILE=(temp % _NBLOCK ==

0)?(_NUM_BLOCKS/_NBLOCK):((_NUM_BLOCKS/_NBLOCK)+1);}}

// Code transformation through Extended cycle shrinking for constant

dependence distance

int ID_1, ID_2, START[1];

int _CUDA_TILE;

int Phi[1]={100};

int loopUpperLimits[1]={9};

for(ID_1=1;ID_1<=9/10+1;ID_1++){

for(ID_2=0;ID_2<1;ID_2++){

if(Phi[ID_2]>=0)

START[ID_2]=(ID_1-1)*Phi[ID_2];

else
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START[ID_2]=loopUpperLimits[ID_2]+(ID_1-1)*Phi[ID_2];}

for(_CUDA_TILE=0;_CUDA_TILE<_NUM_TILE;_CUDA_TILE++){

_AFFINE_KERNEL<<<_BLOCKS,_THREADS>>>(_DEV_A, _SZ_A_1,

START[0], MIN(START[0]+10, 9), _CUDA_TILE);

cudaDeviceSynchronize();}}

// Copying Kernel variable from device to host

cudaMemcpy(A, _DEV_A, sizeof(int)*_SZ_A_1, cudaMemcpyDeviceToHost);

// Releasing the memory allocated to kernel variable

cudaFree(_DEV_A);

Kernel definition for above code:

__global__ void _AFFINE_KERNEL(int* A,int _SZ_A_1,int CUDA_L_j,int

CUDA_U_j, int _CUDA_TILE){

int j = gridDim.x*blockDim.x*_CUDA_TILE +

blockDim.x*blockIdx.x + threadIdx.x;

if((CUDA_L_j<=j)&&(j<=CUDA_U_j)){

A[1+j]=A[1+j+10]+10;}}

• As already mentioned in parallelism extraction phase, extended cycle shrinking

for variable dependence distance cannot be applied to the loop containing array

index of the form j ± b. Therefore, for user input extShrinking2 in place

of extShrinking1 in previous case, an error message gets generated saying

“Oops!! Wrong input. Please give simple or extShrinking1 as input”.

• Because banerjee test does not detect any dependence in the loop, irrespective

of any user input for parallelism extraction, the parallel code shown in Code

3.3 will be generated.

Code 3.3: Loop Transformation when Dependency does not exists

int _SZ_A_1 = 10;

int *_DEV_A;
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// Allocating device memory to the kernel variable

cudaMalloc((void**) &_DEV_A, sizeof(int)*_SZ_A_1);

// Copying Kernel variable from host to device

cudaMemcpy(_DEV_A, A, sizeof(int)*_SZ_A_1, cudaMemcpyHostToDevice);

int _NUM_THREADS = 10;

float _NUM_BLOCKS=1;

int _NUM_TILE=1;

dim3 _THREADS(512);

dim3 _BLOCKS(1);

// Tiling and declaring threads and blocks required for Kernel

Execution

if(_NUM_THREADS < _NTHREAD)

_THREADS.x=_NUM_THREADS;

else{

_THREADS.x=_NTHREAD;

_NUM_BLOCKS=(_NUM_THREADS % _NTHREAD ==

0)?(_NUM_THREADS/_NTHREAD):((_NUM_THREADS/_NTHREAD)+1);

if(_NUM_BLOCKS<_NBLOCK)

_BLOCKS.x=_NUM_BLOCKS;

else {

_BLOCKS.x=_NBLOCK;

int temp=_NUM_BLOCKS;

_NUM_TILE=(temp % _NBLOCK ==

0)?(_NUM_BLOCKS/_NBLOCK):((_NUM_BLOCKS/_NBLOCK)+1);}}

int _CUDA_TILE;

for(_CUDA_TILE=0;_CUDA_TILE<_NUM_TILE;_CUDA_TILE++){

_AFFINE_KERNEL<<<_BLOCKS,_THREADS>>>(_DEV_A, _SZ_A_1, 0, 9,

_CUDA_TILE);

cudaDeviceSynchronize();}

// Copying Kernel variable from device to host

cudaMemcpy(A, _DEV_A, sizeof(int)*_SZ_A_1, cudaMemcpyDeviceToHost);
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// Releasing the memory allocated to kernel variable

cudaFree(_DEV_A);

Kernel definition for above parallel code:

__global__ void _AFFINE_KERNEL(int* A,int _SZ_A_1,int CUDA_L_j,int

CUDA_U_j, int _CUDA_TILE){

int j = gridDim.x*blockDim.x*_CUDA_TILE +

blockDim.x*blockIdx.x + threadIdx.x;

if((CUDA_L_j<=j)&&(j<=CUDA_U_j)){

A[1+j]=A[1+j+10]+10;}}
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Chapter 4

Experiments and results

In this chapter, we outline the experimental evaluation of cuda code generated by

CRINK .The generated CUDA code is executed on the GPU machines and their

performance in terms of computation time versus number of threads are illustrated

through graphs.

4.1 Experimental Setup

The generated parallel CUDA code is tested on GPU platform. The GPU machine

used for experiment is Tesla C1060 which is Nvidia’s third brand of GPUs. Tesla

C1060 has 240 cores and 4GB memory with compute capability 1.3. All the experi-

ments are performed on gpu01.cc.iitk.ac.in and gpu04.cc.iitk.ac.in server which has

nvcc as Nvidia CUDA compiler installed on it. The tool has been tested for vari-

ous standard benchmarks and some other kernels with the help of some standard

datasets. We have tested the CRINK on various standard programs available on

[jbu] and results are demostrated with the help of graphs.

4.2 Standard Datasets

We have used the standard datasets [Dat] to test the performance of CRINK .

These datasets are the sparse matrix collection created by University of Florida.
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The dataset used in this thesis are listed below:

1. PajekCSphd [Paj]

2. PajekEVA [Paj]

3. PajekHEP-th-new [Paj]

4. SNAPp2pGnutella04 [SNA]

5. Nasabarth5 [Nas]

6. BarabasiNotreDame www [Bar]

4.3 Benchmarks

• ARRAY RETURN benchmark

ARRAY RETURN is a benchmark designed to create arrays in functions and

return them in argument list.

• BACKTRACK BINARY RC

BACKTRACK BINARY RC is a C library which carries out a backtrack

search for a set of binary decisions, using reverse communication (RC)

• CIRCLE RULE CIRCLE RULE is a C library which computes quadrature

rules for the unit circle in 2D, that is, the circumference of the circle of radius

1 and center (0,0).

• VALGRIND VALGRIND is a directory of C programs which illustrate the

use of VALGRIND, a suite of programs which includes a memory leak detector.

42



Chapter 4. Experiments and results 43

4.4 Performance Analysis

In this section,we calculate the computation time for each standard kernel generated

by CRINK for different standard datasets and it has been shown in the following

plots that as the number of threads increases, the computation time decreases ini-

tially for certain number of threads and later it becomes constant(shown in table

4.1). This happens due to the block overhead.
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(a) Array Return with CSphd Dataset

(b) Array Return with EVA Dataset

(c) Array Return with hepth Dataset
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(d) Array Return with Barth5 Dataset

(e) Array Return with NotreDame www Dataset

(f) Array Return with p2p-Gnutella04 Dataset
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(a) Backtrack binary rc with CSphd Dataset

(b) Backtrack binary rc with EVA Dataset

(c) Backtrack binary rc with hepth Dataset
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(d) Backtrack binary rc with Barth5 Dataset

(e) Backtrack binary rc with NotreDame www Dataset

(f) Backtrack binary rc with p2p-Gnutella04 Dataset
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(a) Circle rule with CSphd Dataset

(b) Circle rule with EVA Dataset

(c) Circle rule with hepth Dataset
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(d) Circle rule with Barth5 Dataset

(e) Circle rule with NotreDame www Dataset

(f) Circle rule with p2p-Gnutella04 Dataset
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(a) Valgrind with CSphd Dataset

(b) Valgrind with EVA Dataset

(c) Valgrind with hepth Dataset
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(d) Valgrind with Barth5 Dataset

(e) Valgrind with NotreDame www Dataset

(f) Valgrind with p2p-Gnutella04 Dataset
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Benchmarks Dataset
Time Taken by sequential

C program(sec)

Data Transfer

Time(sec)

Runtime(ms)

(Threads x Blocks)

Limiting threads

and corresponding time taken

128x1 512x8 512x64 Limiting Threads Time Taken(ms)

Array Return

CSphd 0.023106 0.0002 0.206 0.013 0.013 1024 0.013

EVA 0.087395 0.002 0.716 0.022 0.021 4096 0.021

barth5 0.821172 0.020000 6.388 0.079 0.057 32768 0.057

p2p-

Gnutella04
0.534134 0.010000 4.962 0.054 0.042 65536 0.039

HEP-th-new 5.14159 0.130000 40.892 0.303 0.183 8388608 0.153

NotreDame

www
12.124565 0.200000 102.881 0.341 0.207 16777216 0.147

Backtrack

binary rc

CSphd 0.024971 0.0002 0.228 0.013 0.013 65536 0.013

EVA 0.097614 0.002 0.791 0.023 0.020 65536 0.020

barth5 0.816178 0.020000 7.157 0.066 0.054 131072 0.053

p2p-

Gnutella04
0.52386 0.010000 4.193 0.046 0.041 65536 0.039

HEP-th-new 5.080103 0.130000 40.766 0.229 0.181 1048576 0.141

NotreDame

www
12.160771 0.20000 96.411 0.487 0.203 2097152 0.166

Circle rule

CSphd 0.024793 0.0002 0.218 0.014 0.013 16384 0.013

EVA 0.087395 0.002 0.707 0.023 0.021 16384 0.021

barth5 0.858775 0.020000 7.013 0.074 0.053 32768 0.053

p2p-

Gnutella04
0.560026 0.010000 4.511 5.467 0.040 65536 0.039

HEP-th-new 4.900622 0.130000 39.438 0.233 0.139 524288 0.139

NotreDame

www
15.89101 0.20000 103.284 1.309 1.678 4194304 0.14

Valgrind

CSphd 0.050151 0.0002 0.315 0.023 0.021 8192 0.021

EVA 0.162255 0.002 0.982 0.026 0.020 32768 0.020

barth5 4.641323 0.020000 12.366 0.143 0.048 1048576 0.036

p2p-

Gnutella04
1.494457 0.010000 8.089 0.107 0.16 1048576 0.024

HEP-th-new 33.926026 0.130000 66.263 0.676 1.012 2097152 0.147

NotreDame

www
92.686521 0.20000 134.338 6.711 0.304 2097152 0.100

Table 4.1: Results on standard benchmarks
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Conclusion and Future Work

CRINK is a an end to end code transformation system that converts an input se-

quential C program ,using ROSE compiler,into a parallel CUDA program. The input

program can be an affine or a non-affine C program. We are handling affine loops

only. The tool is tested on standard benchmarks and datasets. This thesis work

concludes that as the number of threads increases, the computation time reduces

exponentially for certain number of threads which is shown in Chapter 4 , and later

on it may become constant for large number of threads (value of that particular

thread after which computation time becomes constant is shown in Table 4.1 ) .

Various challenges occur while developing this tool, thereby imposing some limita-

tions over CRINK . Future work can include improvements over CRINK , some of

which are listed below:

1. Handling non-affine loops.

2. Handling loops that contain both affine and non-affine dependencies.

3. Handling while loops.

4. Handling loops containing multidimensional arrays and nested loops.

5. Handling imperfectly nested loops.
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5.1 Our contribution in the thesis

The need of parallelization arises because applications which contains loops, take

huge computation time, when executed sequentially. Therefore we need some par-

allelization techniques to reduce the computation time.

CRINK is automatic source to source parallelization tool. It does not requires any

effort from the programmer’s side for parallelization and optimization of programs.

Manual developement of the parallel code using a programming model is cumber-

some,because then user needs to understand the programming language. In our tool

CRINK , even if the user does not know about CUDA programming language ,then

also he can use it easily. CRINK performs much better than sequential C programs

which becomes clear from the table 4.1.
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