
INTERPROCEDURAL CONCOLIC

EXECUTION

An Application To Improve Test

Case Generation

A Thesis Submitted

in Partial Fulfilment of the Requirements

for the Degree of

MASTER OF TECHNOLOGY

by

Ashwini Kshitij

supervised by

Dr. Subhajit Roy

Dr. Amey Karkare

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

July 2015

CERIIFICATE

This is to certify that the work contained in this thesis entitled "Interprocedu-

ral Concolic Erecution: An Application to Improae Test Case Gener-

ation",, by Ashwini Kshitij (Rott No. 10327165), has been carried out under

our supervision and this work has not been submitted elsewhere for a degree.

<dr*trtfu.t t,o,,
Dr. Subhajit Roy

Assistant Professor,

Department of CStr,

IIT Kanpur.

tatt lrl zoi5/
Dr. Amey Karkare

Assistant Professor,

Department of CSE,

IIT Kanpur.

ffi

ABSTRACT

Interprocedural analysis is the cornerstone of determining precise program behavioral

information. Using this technique we can avoid making overly conversative assumptions

about the effects of procedures and the state at call sites. It aims at gathering informations

across multiple procedures.

In this thesis, to extend the concept of concolic execution to interprocedural calls we

modify the function call site. Just before the function call we set up the environment for

a procedure call. It enables it to guide the concolic execution of input parameters from

caller to callee and back. After the callee executes the calling environment is restored

with a modified symbolic state. A tool called CIL. has been used for any instrumentation

purpose.

Modifying the symbolic execution engine to collect the interprocedural analysis infor-

mation can have widepread applications in software verification and testing. The aim was

to improve the coverage of test suites that are automatically generated by intraprocedural

concolic testing tools. Experimenting this approach on a intraprocedural concolic testing

tool showed improved coverage on some programs. On TCAS benchmark it increased the

MCDC coverage by 30% with reduced number of test cases.

ii

Acknowledgements

I acknowledge, with gratitude, my debt of thanks to Professor Subhajit Roy for his

advise and encouragement and to Professor Amey Karkare for his aid and foresight. They

presented me with the opportunity to tackle interesting problems in field of Software

Testing. Their patient but firm guidance was critical to successful completion of my

research.

I appreciate the support of my friends and wingmates who always provided me with

the confidence and courage to tackle even the most challenging problems. Without their

help and councel, the completion this work would have been immeasurably more difficult.

I also want to express my sincere gratitude to BRNS for encouraging our research

work. Their encouragement motivated me to follow through this project.

-Ashwini Kshitij

iii

Contents

Certificate i

Abstract ii

Acknowledgement iii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Contributions . 4

1.4 Organisation of thesis . 4

2 Background 6

2.1 Interprocedural Data-flow Analysis . 6

2.1.1 Function Inlining . 6

2.1.2 Call String Approach . 8

2.2 Concolic Testing . 9

2.3 Related work . 11

2.3.1 Summary-based Analysis . 11

2.3.2 DART . 11

2.3.3 CUTE . 12

3 Methodology 13

3.1 Definitions . 13

3.2 Static Analyser . 13

3.2.1 Handle Expressions . 14

3.2.2 Variable Renaming . 15

iv

3.2.3 Extend Concolic Execution Engine 15

3.2.4 Call Site Transformation . 16

3.3 Set up Environment For Procedure Call . 18

3.3.1 Organising Argument Details . 18

3.3.2 Populate Symbol Table . 19

3.3.3 Variable Stack . 20

3.3.4 Return Handling . 21

3.4 Recursion . 22

3.4.1 Limitation of previous approach . 22

3.4.2 Need for Versions . 23

3.4.3 Variable Hash-Map . 24

3.4.4 Bound on Recursion . 25

4 Experiments 26

4.1 System Specifications . 26

4.2 Results . 26

4.3 Analysis . 28

5 Conclusion 30

v

List of Figures

1.1 Basic Module . 3

2.1 Function Inlined . 7

2.2 Calling Context . 8

2.3 Concolic Testing . 10

3.1 Variable Renaming . 15

3.2 sample program . 17

3.3 Transformed Call Site . 18

3.4 Two arguments at line 12 in figure 3.3 . 19

3.5 Variable Stack . 20

3.6 Concolic Return . 21

3.7 Program to compute factorial . 22

3.8 Function Variable Versions in Symbol Table 23

4.1 wcet prime . 29

vi

List of Tables

3.1 Symbol Table . 23

4.1 Benchmark Results . 27

vii

Chapter 1

Introduction

Symbolic execution has been a recipient of significant attention during the past few

years. It is now considered an effective technique in generation of high coverage test

suites. The idea has been invented more three decades ago[1] but it was after significant

improvements the potential of the idea was harnessed. One such important improvement

was symbolic execution alongside keeping track of concrete values (concolic execution)[2].

The main advantage of this technique is that whenever constraint solving complications

(like timeouts) occur during classical symbolic execution, it is alleviated using the concrete

values.

All practical programs involve procedure calls. The symbolic execution is relatively

simple if there are no function calls involved (intraprocedural analysis). A function call

tranfers the control from the caller to the callee. That function may very well modify the

symbolic state of the variables. If we transition the symbolic state correctly through the

function call, the symbolic execution will run more accurately with the modified symbolic

state and collect the precise alteration made to symbolic state within the procedure.

1.1 Motivation

Intraprocedural Analysis is performed on one procedure at a time. It is simple and conser-

vative. But almost all real world programs involve procedural calls. This poses a problem

for techniques such as symbolic execution since they dont know how the procedure is go-

ing to modify the symbolic state. This brings us to the need of extending this analysis

techniques to programs with functions and procedures. Although tools like DART[3] and

1

CREST[4] already have support for interprocedural analysis, we have developed our own

methodology to do that.

Listing 1.1: Motivational example

1 #include <stdio.h>

2

3 int dbl(int x) {

4 return 2*x;

5 }

6

7 int main(void) {

8 int a;

9 scanf("%d",&a);

10 if (dbl(a) + 3 == 9) {

11 return 0;

12 } else {

13 return 1;

14 }

15 }

Listing 1.1 is a modified program in /test/function.c from CREST[4] tool directory.

In this program a is treated as an input for which test cases are to be generated. When

intraprocedural concolic testing is done on main() procedure of this program only fifty

percent MCDC[5] coverage is generated. This implies only one branch is covered in this

program. The first test case is a randomly generated value of a that covers one branch

irrespective of its value. The next test case is generated using condition dbl(a) + 3 ==

9 in its path constraint, which is equivalent to condition 2a + 3 == 9. But intraproce-

dural analyser fails to infer that dbl(a) = 2a because it cannot analyse the operations

performed by dbl(). It substitutes the symbolic value of dbl(a) by its concrete value.

Now the path constraint is constant + 3 == 9. Without any variable in this equation, no

test input is generated in the next iteration. It fails to cover the other branch to produce

100% coverage. Thus a need arises to implement support for interprocedural analysis in

concolic testing.

2

1.2 Problem Statement

This thesis aims to provide a method that can capture the transformation of the symbolic

state of the inputs when the program goes through a function call. Our implementation

uses concolic execution engine[6] for the purpose. But the engine cannot handle a proce-

dure call. At the call site, the symbolic value is set to concrete value instead of modifying

it as per the operations performed on it by the callee function. Merging our approach

with this concolic engine will increase the precision of test case generation.

Figure 1.1: Basic Module

Figure 1.1 shown above gives a high-level idea of what our implementation does. We

are given a C program with a concolic execution engine integrated with it. Problem arises

with execution when it comes across a procedure call instruction. Concrete return value of

function is used instead of symbolic return value as the program does not have the ability

to follow through symbolic execution from caller to callee and then back to the caller.

We aim at solving this problem by instrumenting the call site. For such purposes in

our approach we have used a tool called CIL[7]. We first set up an environment before

commencing the callee procedure execution (in this case foo()). The operations for such

tasks is carried out by funcEntry() function which is instrumented just before foo() is

called. funcEntry() handles the mapping of symbolic and concolic values of actual pa-

rameters to formal parameters, the creation of variable stack (later explained in Chapter

3).

Similarly we instrument funcExit() function just after foo() call. The task of funcExit()

is to map the symbolic state of “return variable” to appropriate variable at the call site (if

3

any) and clear the symbolic values that were generated during call and execution of foo().

It also manages the variable stack appropriately. The implementation of funcEntry() and

funcExit() is done in C language and is defined in included C modules.

This approach ensures that symbolic execution is carried through correctly to and from

the callee. The modified state of symbolic variables is in accordance with operations of

concerned callee function (in our case foo()). This improves the accuracy and correctness

of the test suite generation in our tool.

1.3 Contributions

In this thesis we have accomplished the following:

• Designed an approach to apply inter-procedural analysis to concolic execution.

• Developed unit tests for verifying the features and functionality of test case gener-

ation tools.

• Dynamic support to handle recursive procedure calls.

1.4 Organisation of thesis

A brief summary of the contents of other chapters of this thesis are as follows.

Chapter 2 deals with the concepts which are necessary to understand the thesis.

Concolic execution is introduced and its advantages over classical symbolic execution and

random testing. An overview of approaches in interprocedural analysis like Function In-

lining and Call String have also been discussed in this chapter. We have also briefly

mentioned the related work that has been done in this field.

Chapter 3 discusses our implementation in a detailed manner. Some terminology

has been introduced to explain techniques employed in our work. But mostly the chapter

pertains to the relevant algorithms designed to accomplish the aim of this thesis and how

it should improve the scalability and accuracy of concolic IP analysis.

4

Chapter 4 contains the experimental results and their analysis after we run our mod-

ified tool on a set of standard benchmark programs. Analysis in done in terms of coverage

improvement and runtime of the tool.

Chapter 5 sheds light on future work and modifications that can be done to improve

the accuracy and performance of the approach discussed in this thesis.

5

Chapter 2

Background

2.1 Interprocedural Data-flow Analysis

This is a technique which is broadly defined as gathering of information across multiple

procedures (typically over the entire program). Procedure calls pose a barrier to program

analysis. Its aim is to avoid making conservative assumpions about the effect of procedures

and the state at call sites. Interprocedural analysis[8] requires:

• handling function calls and returns,

• parameter passing,

• creating and destroying local variables.

This make interprocedural analysis harder than intraprocedural analysis.

Application : Interprocedural analysis (IPA) enables the compiler to optimize the code

across different files (whole-program analysis), and can result in significant performance

improvements of the program by removing spurious data dependencies. Integrating IPA

with intraprocedural concolic execution will help compute the precise behavior of function

calls on the symbolic state of the variables.

2.1.1 Function Inlining

One of the approaches is function inlining which is the simplest and most widely used

approach for accurate interprocedural symbolic execution. We simply use the copy of

procedure’s Control Flow Graph (CFG) at each call site. This leads to function being

6

re-analyzed at every call site. This is can be avoided using function summaries. They are

implemented by merging all states at the function exit after computing an intraprocedural

path constraint in terms of function input.

Figure 2.1: Function Inlined

This technique does not require function calling overhead. It also saves the overhead

for manipulating function stack. In increases locality of reference by utilizing instruction

cache.

But there are significant drawbacks with this approach. Firstly, the performance over-

head will increase if we increase the size of the code that is to be inlined. The caller

function may not fit on the cache causing high cache miss rate. Similarly if there are too

many function calls involved, inlining maybe expensive since it will cause an exponential

increase in the size of the CFG.

Secondly it is also going to create problems in the recursive procedures. Same can be

said more generally for any scenario where there are cycles in the call graph. So basically

function inlining has scalability issues pertaining to code size. Lastly, procedure inlining

is only possible if the target of the call is known. Hence it will not be possible if call is

via a pointer or is “virtual”.

7

2.1.2 Call String Approach

In another IP analysis we observe the CFG’s of all the procedures. In this technique,

• When we encouter a function call we interpret it as a goto from the call intruction

to the first instruction of the procedure.

• Interpreting every return statement like a goto to the instruction following each call

site that invoked that procedure (Non-Deterministic).

Using this method non-deterministically will allow non feasible paths in our analysis which

will cause loss of accuracy. In a better approach called “Call String”[9] we keep track of

the where we came from, that is, the context of the call and where to return. To do this

we maintain a “string” that simulates a call stack. A feasible path is a control flow path

that is generated in accordance with the stack regime. A perfect solution is keep record

of the whole stack. This concept is easy and intuitive according to which every return

jumps to the instruction that’s immediately after the call site which corresponds to that

particular function call. By adding the context of the call to the information in the state

we can overcome the problem of passing through invalid paths.

Figure 2.2: Calling Context

Every procedure records their state information when they are invoked. Let us consider

the program in Figure 2.2. Here the labels c1 and c2 are saved in the state information

of foo(). This is so that p gets different values every time function foo() is called. Another

reason to save the labels is because they help in figuring out the respective return values

of call c1 ($$ → 4) and c2 ($$ → 6). Here $$ marks the return values.

This ensures context sensitivity of this approach. Call String method records the call

history and information collected is propogated back to the correct point. Call String at

any program point is the sequence of unfinished procedure calls (in the call stack) that

8

leads to that point. Implementing this algorithm is efficient for small strings. Problem

arises when call string generated is large since we can keep track of only limited number

of strings. This poses a limitation on the depth of function calls.

2.2 Concolic Testing

One popular approach for automated software testing is random testing [10] which in-

volves subjecting the program to be tested to a stream of random data. It is fast but it

can find only basic bugs like program crashes, code assertions or memory leaks. It is not

always possible to employ this technique specially when working with binaries since it is

very difficult to figure out the expected inputs. Random Testing fails to cover corner cases.

A more directed approach can be used by merging symbolic execution with concrete

execution (concolic execution[3]) and then using a an SMT-solver (like Z3[11]) to gener-

ate test inputs. This method is called Concolic testing. It is much more versatile than

symbolic execution. To understand why let us assume that our costraint solver cannot

handle non-linear constraint. Then a path constraint with some non-linear function in-

volved cannot be solved and symbolic execution will be stuck. Similar problem arises

when we encounter a closed third party library function say increment(). Symbolic execu-

tion alogorithm is unable to determine how to modify the symbolic state according to the

behavior of that function. For such cases the test cases cannot be generated by classical

symbolic execution[1]. Concolic Tesing addresses these limitations and resolves situations

like above by replacing the symbolic values by their concrete values so that the resulting

constraint can be solved by the constraint solvers.

The algorithm involves initialting the inputs with randomly generated values. The

program is executed and during the execution, on every conditional branch statement

program collects symbolic path constraints on inputs. Symbolic constriants are essentially

a set of logical constriants on input data. New program path is directed and executed

by negating/flipping the last condition of the path constraint. This is done until all the

feasible program paths are explored. To get the intuition, let us consider the program in

Figure 2.2 for concolic testing.

9

Figure 2.3: Concolic Testing

The program input variables are assigned random concrete values, say x = 1 and y =

1. The program runs and line 11 is executed. Path condition generated is :

¬(y == 3x) (2.1)

Now we negate the last condition in path constraint (PC has only one condition in

this case) to execute an alternate path. So the new path constraint generated is :

y == 3x (2.2)

which is examined by a SMT solver to generate the new input data. Out of many

different possible values for equation 2.2 solver picks say x = 1 and y = 3 which should

explore a different path than before. The program runs on these new inputs and generates

a new path condition :

(y == 3x) ∧ ¬(y == x+ 10) (2.3)

Like previously we negate the last condition of the path constraint to generate condition

for new path exploration. So we pass on the following constraint to solver to generate new

inputs

(y == 3x) ∧ (y == x+ 10) (2.4)

10

Let the new inputs generated be x = 5 and y = 15 we will lead to the execution of

line 13 and consequently line 14 which will hit the error or any other unexpected behavior.

Since there are no more paths left to explore, the algorithm will terminate generating a

set of input data for complete path coverage of this program.

2.3 Related work

2.3.1 Summary-based Analysis

New techniques have been invented that compute procedure summaries for performing

an interprocedural analysis of programs. In summary-based context-sensitive analysis we

create “summary”[12] which is succinct description of the observable behavior of each

procedure. The purpose of this approach is to prevent renanalysing the behavior of same

procedure when there are invoked at each call site.

The representation of every procedure has a single entry point. The analysis is divided

into following two phases:

• In fist phase we summarize the effects of a procedure and a transfer function is

computed in a bottom-up manner.

• In second phase we propogate the caller information to compute callee result in a

top-down manner.

2.3.2 DART

DART is an abbreviation for “Directed Automated Random Testing”[3] which is a tool

for automated test case generation developed by Patrice Godefroid, Nils Klarlund and

Koushik Sen. It utilizes the concept of concolic execution and is comprised of the following

techniques :

• Automated extraction of program interface from source code.

• Random testing the program interface by generating a test driver.

• Dynamic generation of test cases to direct alternate program execution path.

11

2.3.3 CUTE

CUTE stands for “A Concolic Unit Testing Engine for C”[13] which also addresses au-

tomatic test case generation with memory graphs as inputs. This tool is developed by

Koushik Sen, Darko Marinov and Gul Agha. It is similar to DART, thereby employs con-

colic testing technique. It resolves some of the limitations of DART and aims at testing

real-world examples of C code.

It provides a method for representing and solving approximate pointer contraints to

generate test inputs. The symbolic model being used and the theorm solver both are more

powerful and are built to be efficient in this system. As opposed to what DART does,

CUTE does not automatically extract program interface but lets user decide relation

among functions and their preconditions. The work also shows exactly how it made

approximations and trade off between speed vs. correctness and scenarios where CUTE

will not work correctly.

12

Chapter 3

Methodology

The algorithm that has been used to implement the interprocedural analysis in the concolic

execution engine has been described in detail in this chapter.

3.1 Definitions

We are given a program P which has a concolic execution engine C integrated with it.

Our aim is to combine interprocedural analysis with C so that the test case generation

can also take into account the effect of function calls. To implement this algorithm we will

instrument the code of P with our auxiliary code which will not alter the outcome of the

program P. Let

• f be the callee function used in call site.

• funcEntry() be the instrumented method that initiates concolic environment for

function call.

• funcExit() be the instrumented method that handles cleanup of symbolic structure

and return from a function call.

• S denote Variable Stack explained in Section 3.3.3.

3.2 Static Analyser

We have used a tool called CIL[14] (C Intermediate Language) to perform static analysis

of program P and source-to-source transformations on it. We do this by traversing the

13

AST (Abstract Syntax Tree) which is the in-memory data-structure which represents the

parsed program P.

3.2.1 Handle Expressions

This module accomplishes two tasks. It modifies the call site by simplifying the arguments

passed to the calle function. It also simplifies the return expression in the callee function.

At the call site the arguments of the function are examined one by one. If an argument

is not a variable or literal then it must be an expression. In case of expression, we store

the argument in a temporary local variable and pass that new variable as the parameter

instead. Similar approach applies to return values. If the return statement consists of a

variable, it is left unchanged otherwise it is transformed.

Listing 3.1: Expressions simplified

int func(int x,int y){ int func(int x,int y){

{ int tmp;

if (y < = 1) int cil_tmp4, cil_tmp4, cil_tmp4;

return x; if (y < = 1)

else {

return x * func(x-1,y); cil_tmp4 = x;

} return cil_tmp4;

} else {

cil_tmp5 = x - 1;

tmp = func(cil_tmp5, y);

cil_tmp6 = x * tmp;

return cil_tmp6;

}

}

We can see in Listing 3.1 the call sites and return statements have been transformed

such that in further stages we only have to deal with variables and literals. We will not

have to deal with complicated expressions. To create new local temporary variable we use

CIL API. It ensures to generate unique variable names to avoid any ambiguity. This phase

will have no effect on function calls with no arguments or functions which don’t return

any value (void).

14

3.2.2 Variable Renaming

The concolic testing engine used has symbolic table structure that is globally defined. The

entries in the table are manipulated using variable names of program P as the key. In

intraprocedural symbolic execution duplicate variable names are not an issue.

But when dealing with multiple procedures all of which are capable of executing sym-

bolically, two different procedures may very well have variables with the same name. When

these variables are used as the key to manipulate the values in symbol table, it leads to

undefined behavior. Therefore we need to make the variables of all the procedures unique.

This is done by merging the variable name with the name of the procedure is whose scope

the variable belongs. Figure 3.1 demonstrates the renaming of the variables to resolve the

conflict of symbol table keys.

Figure 3.1: Variable Renaming

This method will work for non-recursive procedure calls. To handle recursion we have

developed an extended version of approach which will be discussed in section 3.4.

3.2.3 Extend Concolic Execution Engine

The current engine uses approaches such as handling set (or assignment) instructions sym-

bolically and unrolling of loops to carry out the symbolic execution. But these aproaches

are only applied on the procedure that the user demands to be tested. The remaining

procedures are unchanged.

Now on function call we want the symbolic execution to be able to continue in the callee

f. Hence we need to instrument all the procedures of program P such that it enables

them to be executed symbolically. So instead of applying the loop unrolling and symbolic

assignment only on user input procedure, they are applied on every procedure.

15

3.2.4 Call Site Transformation

Without interprocedural call handling whenever the concolic execution encountered a func-

tion call, it used the concrete value of the function result. There interprocedural symbolic

analysis could not be done. This problem is addressed by setting up a function call en-

vironment and function return environment, that will facilitate the transfer of symbolic

state from caller to callee and back. Algorithm 1 states the pseudocode of this approach.

Algorithm 1 Transform Call Site

Input : Program P
Output : P with modified call sites

1: procedure transform

2: for each procedure f ∈ P do

3: instList ←instructionList(f)
4: newList ← []

5: for each instruction C ∈ P do

6: if C is a call instruction then

7: argsList ← getArgumentsAsString(C.fname)

8: localsList ← getLocalsAsString(C.fname)

9: funcEntryInst ← makeCallInstruction(C.fname)

10: funcExitInst ← makeCallInstruction()

11: newList ← newList::[funcEntryInst]::[C]::[funcExitInst]

12: else

13: newList ← newList::[C]

14: end if

15: instList ← newList

16: end for

17: end for
18: end procedure

Algorithm 1 Description : The input to this algorithm is program P. Procedures

in program P are inspected for call sites where we need to do transformations such that

when control flows from caller to callee it has the symbolic information needed to execute

symbolically. (At line 7,8 and 9 C.fname is the name of the function called in the call

instruction C. At line 11 and 13 Operator :: denotes concatenation of two lists.)

If c is a call site which invokes a function f then parameters that are passed to the func-

tion f have certain symbolic and concrete values associated with them. Before f starts

executing, its actual parameters are analysed and their concolic values are mapped to its

formal parameters.

16

The function getArgumentsAsString in line 7 has two tasks. Firstly, it extracts the infor-

mation about actual parameters of f like if its a literal or variable (its name). Secondly,

it analyses the formal parameters of f ’s prototype and gathers information about their

name and type. Then this information is merged into a string, one parameter at a time.

This string is passed as a paramter to funcEntry() along with another string contain-

ing the names of local variables (created by getLocalsAsString() in line 8). The function

instrumented after call site c is funcExit() that does the task of cleaning up the interme-

diate data-structures created by funcEntry() and were necessary to execute f symbolically.

Figure 3.2: sample program

In the example shown in Figure 3.2 there is a call instruction at line 4 invoking func-

tion fact with two paramters. The information about both actual and formal paramters in

analysed and sent to funcEntry() as string argument at line 12 in Figure 3.3. The second

argument to funcEntry() is names of local variables of function fact. Using these argu-

ments, environment for fact to execute symbolically is set up by funcEntry(). Similarly,

funcExit() at line 15 in Figure 3.3 handles the task of cleanup of this environment after

fact has finished executing.

At line 16 in Figure 3.3 we also have function add entryToSTable which is used to

map the returned concolic values of function fact to appropriate variable, which is in our

case a. This will be discussed in Section 3.3.4.

17

Figure 3.3: Transformed Call Site

3.3 Set up Environment For Procedure Call

This section involves the runtime analysis of the arguments that are passed to funcEntry().

We will explain their utilization to create entries in global symbol table, to enable callee

function f to execute symbolically.

3.3.1 Organising Argument Details

Using the information of actual and formals parameters passed to the funcEntry(), we

construct a data structure Argument that has the following attributes:

• funcName : name of the function to which the argument is passed.

• vname : name of the associated formal parameter.

• type : 1 for int and 2 for real.

• apname : if actual argument is a variable, then its name.

• val : if actual argument is a literal, then its value.

Note that actual parameter can either be a variable or a literal, implying that only one

among apname or val can have a valid value. The other is going to be null so we have

to use them accordingly. We have passed this parameter information along with local

18

variable names of f to funcEntry() as discussed in Section 3.2.4. Using string tokenizing

and parsing within funcEntry(), we get a list of Arguments type structures.

This step is demonstrated in Figure 3.4 in reference to program shown in Figure 3.3.

Figure 3.4: Two arguments at line 12 in figure 3.3

3.3.2 Populate Symbol Table

After we created a systematic model of arguments, we need to populate the global symbol

table accordingly. Besides the arguments, we also need to handle local variable in f. For

locals, we create empty entries in symbol table. The algorithm used in this implementa-

tion is described below

Algorithm 2 Populate Symbol Table

Input : Argument list A, locals list L, symbol table S
Output : Modified symbol table S’ with entries for A and L

1: procedure populateStable(A,L, S)

2: for each argument a ∈ A do

3: if a.apname is a literal then

4: sym ← Constant

5: con ← a.val � a.val is the value of a

6: else

7: sym ← findSymbolicValue(a.apname) � a.apname is actual parameter

8: con ← findConcreteValue(a.apname)

9: end if

10: addEntryToSTable(a.vname, sym, con)

11: end for

12: for each local variable l ∈ L do

13: createEmptyEntryInSTable(l.name)

14: end for
15: end procedure

19

Algorithm 2 description : This algorithm maps the symbolic and concrete values of

actuals parameters at call site to the formal parameters of the function f. This is done

before f starts executing. For local variables, initially empty entries are created in the

symbol table. Functions findSymbolicValue and findConcreteValue at line 8 and 9 search

the symbolic and concrete values for a particular variable in the table. They are defined

in the C modules of concolic testing engine.

3.3.3 Variable Stack

In previous section, before the execution of f we have to populate symbol table with

respective variables of f. But it is important to do systematic clean up after f is done

executing. This includes deletion of entries from the table that were temporarily required

for symbolic execution of f. It is required so that spurious values may not only cause

inconsistencies but also caused the symbol table to overflow. For this purpose, we maintain

a stack S called variable stack. Each element of the stack stores the information regarding

variable entries in the symbol table for indiviual function. The contents of stack element

are as follows :

• funcName : name of the function for which this element is created.

• args : string array containing the names of formal paramters of funcName.

• locals : string array containing names of local variable in the scope of funcName.

• occurence : used to indicate the instance of funcName in the call stack. This is

explained in detail and how it is used to resolve recursive calls in Section 3.4.2.

Figure 3.5: Variable Stack

20

The behavior of variable stack is similar to function call stack. Whenever a function

call is encountered the variables (both arguments and locals) of the callee function are

pushed onto the stack S.. For example, in Figure 3.5 when f is called in main, its variable

details are pushed onto S. At the time statement S2 executes in g, stack has three elements

as shown in the figure. When we return from a function call, we pop an element from the

stack and delete the entries in the symbol table by referring the popped element.

The task of pushing the element on encountering a function call is done by a method fun-

cEntry() and popping the element after returning from that function is done by funcExit(),

both of which are defined in C modules.

3.3.4 Return Handling

After the environment is set up for f, it executes symbolically covering a specific path in

the control flow graph of f. It collects a summary that tranforms the symbolic values of

parameters to new symbolic return values. We need to map the concolic return values to

appropriate variable at call site.

For this, just before the function f returns, we copy the concolic return value to a global

variable. Then at call site, we assign the lvalue of call instruction to this global concolic

variable. Thus, the concolic execution flows to and from the callee correctly.

Figure 3.6: Concolic Return

Here in Figure 3.6, function f is called with parameter x. Its symbolic and concrete

value is modified according to function f’, which is a transition function along that path in

f. Variable z attains this new concolic value and is returned. To ensure transfer of modified

21

symbolic information on function return, we map the concolic value of z to global variable

and from them to t in main. Note that even if a function does not return a value it may

alter the global values.

3.4 Recursion

3.4.1 Limitation of previous approach

The approach that we have discussed until now can only handle non-recursive procedure

calls. The reason being that our algorithm did not have support for multiple versions of

same variable of the same function in the symbolic table. Our variable stack can handle

atmost one instance of a function at any given time. To explain this, given is an example

of recursive code.

Figure 3.7: Program to compute factorial

In this example, at line 14 a function call has been made to fac. Before the call

instruction executes, our algorithm maps concolic values from i to fac n and creates an

entry in the symbol table using fac n as the key. Now when the fac executes, it again

encounters a call instruction at line 7. Our algorithm should map the values from fac n-1

to “new” fac n. But it has no mechanism implemented to distinguish between different

versions of same variable of the same procedure. This leads to overwriting of previously

present entry of fac n in the symbol table (refer to table 3.1) . More important problem

that will arise is that after fact at line 7 executes and returns, it cannot restore the previous

symbolic state (i.e. before call was made). The concolic values of previous versions of the

22

key symVal conVal

:
:

fac n s0 c0
:

(a) call at line 14

key symVal conVal

:
fac n s1 c1
fac n s0 c0

:

(b) call at line 7

Table 3.1: Symbol Table

recurring function in the stack will be lost.

Therefore, we need to modify the key of symbol table such that we can keep track of

multiple instances of same function in the variable stack, allowing recursive call analysis.

3.4.2 Need for Versions

Versions of function variables have to be maintained according to number of instances

they have in the variable stack. It is made sure that the entries in the symbol table dont

get deleted or overwritten unless they are not needed anymore. One way to handle this

is to modify the key of symbol table such that they have function version associated with

them.

Occurence of a procedure at any time is defined as the number of instances of that same

procedure present in the call stack.

Figure 3.8: Function Variable Versions in Symbol Table

23

Therefore the key which was earlier defined in Section 3.2.2 is remodifed to keep track

the associated variable, procedure to which that variable belongs and that procedure’s

version (occurence) it the call stack. The new key is:

K � = f �(V, P,OP) (3.1)

where OP is the occurence of P in function call stack. Figure 3.8 shows the version

handling of multiple instances of same functions in the symbol table. When another

instance of function is pushed in the stack (recursively), no value in the symbol table is

overwritten. Similarly, when a function instance is popped from the stack, the concolic

values of previous version should be accessed.

3.4.3 Variable Hash-Map

The issue that arises with this approach is that we cannot rename variables in conjunction

with their versions (like we did in Section 3.2.2 using static analysis). This is because

the versions are created dynamically at runtime when function call stack is manipulated.

Therefore we create a hashmap M that maps the variable name to key in the symbol table.

Whenever concolic execution needs to refer the symbol table using variable V, we look

up the value corresponding to V in M and return the key. But we still have to maintain

the hashmap so that it always give the correct version of the key (the state of the variable

stack is dynamic and so are the versions of function variables). This can be explained

by considering a call instruction in the program that invokes function f. The operations

before and after the execution of f are as follows.

Before Function Execution

In Section 3.2.2 we discussed the algorithm to populate the symbol table with specific

values before executing a call instruction. We modify that algorithm slightly, instead of

using variable name as key in addEntryToSTable, we use our new key K’. Then we add

the new mapping (variable name, K’) to M. This keeps track of key K’ and its concolic

values, for when we need to do a query on the symbol table.

24

After Function Execution

When a function is done executing, the entries in the symbol table for that particular

version of function are deleted. To do this, we again use the hashmap to get the current

keys (containing current version of variables also) of symbol table that are no longer

required.

3.4.4 Bound on Recursion

To keep the size of symbol table in check and prevent the variable stack from overflowing,

we have to put an upper limit on the maximum number of instances that the variable

stack can have of a given function. This puts a cap on the precision of symbolic execution.

If the maximum number of versions allowed for a particular function be X, then the

symbolic execution will only continue uptil stack depth of X, after that the function

executes using only concrete values. The symbolic execution resumes when the stack

depth with respect to that function becomes less than or equal to X.

25

Chapter 4

Experiments

This chapter states the results generated by the tool on a certain set of programs. These

results are then compared with intraprocedural concolic testing.

4.1 System Specifications

Operating System Ubuntu 14.04 LTS

OS Type 64-bit

Processor Intel Core i7-4710HQ CPU @ 2.50 GHz × 8

Memory 7.7 GiB, 1600 MHz

4.2 Results

Interprocedural approach shows improvements where there are functions calls involved.

When a function summaries its effect on the inputs variables, we get more precise path

conditions. This is because instead of functions returning just concrete values they return

symbolic values as well. These path conditions act as prepositional formula for test case

generation.

The benchmarks program are judged based on the procedures tested. Procedures having

no branch conditions are not selected becuse the coverage reported is MCDC coverage[5]

and it is calculated using the number of branches in a procedure. The programs are timed

using GNU-time[15] that measures total number of CPU-seconds that the process spent in

26

user mode. Table 4.1 shows the results generated on some benchmark programs. The time

recorded includes the time taken to complete the instrumentation and runtime of test case

generation for a program. Instrumentating the code takes maximum of 250 milliseconds

among the test programs. The interprocedural analysis causes a slowdown of maximum

10 milliseconds in the test case generation. The maximum time recorded to run the tool

on a program is just under 1.5 seconds.

S NO Program Intraprocedural Tesing Interprocedural Testing
Coverage #TestCases Time Coverage #TestCases Time

1 TCAS 50 1 1.109 sec 50 2 1.235 sec

(Inhibit Biased Climb)

2 TCAS 14 11 1.009 sec 85 9 1.240 sec

(Non Crossing Biased Descend)

3 TCAS 33 8 0.998 sec 83 7 1.289 sec

(Non Crossing Biased Climb)

4 TCAS 52 4 1.092 sec 52 8 1.354 sec

(alt sep test)

5 primemod 66 2 1.010 sec 100 4 1.219 sec
(main)

6 heapSort 100 2 0.900 sec 100 2 1.143 sec

(heapSort)

7 crest1 50 1 0.915 sec 100 2 1.108 sec

(main)

8 crest2 50 1 1.048 sec 50 1 1.191 sec

(main)

9 spectral-norm 75 5 1.304 sec 75 5 1.412 sec

(eval At times u)

10 spectral-norm 75 5 1.295 sec 75 5 1.398 sec

(eval A times u)

11 faculty 50 3 0.853 sec 100 2 1.160 sec

(main)

12 linpack 36 17 1.129 36 17 1.235 sec

(daxpy ur)

13 linpack 50 10 1.014 50 10 1.217 sec

(dscal r)

14 linpack 42 2 1.037 42 2 1.267 sec

(ddot r)

15 prime 83 3 1.029 sec 50 2 1.243 sec

(prime)

Table 4.1: Benchmark Results

In Table 4.1 the names of the procedures tested are below the name of the program

in parenthesis.

27

4.3 Analysis

Interprocedural implementation shows good improvements in TCAS benchmark and some

others. In shows coverage improvement from 33% to 83% in TCAS-2. It achieves this

with a reduced number of test cases.

All the programs have function calls but not all of them show improvement in coverage.

The reason is that to influence the coverage, the functions should effect the path conditions.

To do this, functions should alter the symbolic state of the variables of the program. That

is why programs like crest2 have several function calls but shows no improvement in

coverage whereas program discussed in Section 1.1 shows 100% coverage.

A WCET benchmark program faculty highlights the handling of recursive features.

This program contains a functions that calculates factorial recusively. The intraprocedural

testing gives 50% coverage in 3 test cases whereas interprocedural testing improves it to

100 % in 2 test cases.

In concolic execution test cases are generated according to the path constraint ob-

tained in the consecutive runs. The last condition of path constraint is flipped and passed

to constraint solver to obtain new test case that explores a different path. But concolic

engine we are using also aims at minimizing the number of test cases. Therefore flipping

of conditions is done on the basis of levels. The conditions on the same level are flipped

at the same time.

if (C1)

statement1;

if (C2)

statement2;

If there are two conditions C1 and C2 that are on the same level then they will

be flipped together to get the new test case. If execution of C2 block depends on the

execution of statement1 then the coverage achieved may not be maximum. This is what

happens in WCET program prime where the intraprocedural testing gives 83% coverage

while interprocedural testing gives 50% coverage. After levelling module executes the

CDG module also could not find any feasible paths to increase the coverage.

Figure 4.1 shows the code snippet of prime in WCET benchmarks. Program starts

with random input n=3. At line 25, the intraprocedural approach uses the concrete value

28

Figure 4.1: wcet prime

of function even(n) and could not include this condition in its path constraint. Whereas

the interprocedural analysis infers even(n) is symbolically equivalent to n%2 and adds

n%2==0 in its path constraint. Therefore in the next iteration interprocedural execution

generates an even number n=10 and return at line 26 is executed. Whereas in case of

intraprocedural execution the next generated input does not have to be even and solver

generated n=9. This leads to execution of line 27 to line 30 which increases the final

coverage using concolic execution.

29

Chapter 5

Conclusion

In this thesis, we have designed a method to intergrate interprocedural analysis with in-

traprocedural concolic execution engine. This not only improves the coverage of a program

but in some cases does it with lesser number of test cases. Only in a few cases the coverage

of intraprocedural testing gives better results than interprocedural testing.

We have handled recursive procedural. Recursion is nested only until a certain bound

after which only concrete execution takes place.

A small C unit test suite have also been a contribution which can be used to verify and

compare the features of different test case generation tools like CREST[4], PathCrawler[16]

and more.

30

Bibliography

[1] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: three

decades later. Communications of the ACM, 56(2):82–90, 2013.

[2] Koushik Sen. Concolic testing. In ASE ’07 Proceedings of the twenty-second

IEEE/ACM international conference on Automated software engineering, pages 571–

572. ACM, 2007.

[3] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed automated ran-

dom testing. In ACM Sigplan Notices, volume 40, pages 213–223. ACM, 2005.

[4] Crest. http://jburnim.github.io/crest/. Accessed: 2015-06-27.

[5] Zeina Awedikian. Automatic generation of test input data for mc/dc test coverage.

Soccer Lab, Ecole Polytechnique de Montreal.

[6] Sonam Tiwari. Automatic generation of test cases for high mcdc coverage. Indian

Institute Of Technology Kanpur. Computer Science Department, 2014.

[7] Cil documentation. https://www.cs.berkeley.edu/~necula/cil/api/Cil.html.

Accessed: 2015-02-12.

[8] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis.

New York University. Courant Institute of Mathematical Sciences. ComputerScience

Department, 1978.

[9] Call string approach. http://nptel.ac.in/courses/106108052/module20/

interproc-a.pdf. Accessed: 2015-05-23.

[10] Random testing. http://www.slideshare.net/cankaya07/

random-testing-15393318. Accessed: 2015-05-18.

31

[11] Z3 constraint solver. http://z3.codeplex.com/. Accessed: 2015-05-18.

[12] Erik M Nystrom, Hong-Seok Kim, and W Hwu Wen-mei. Bottom-up and top-down

context-sensitive summary-based pointer analysis. In Static Analysis, pages 165–180.

Springer, 2004.

[13] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing engine

for C, volume 30. ACM, 2005.

[14] Cil-infrastructure for c program analysis and transformation. http://www.cs.

berkeley.edu/necula/cil/api/Cil.html. Accessed: 2015-01-12.

[15] Gnu time. http://man7.org/linux/man-pages/man1/time.1.html. Accessed:

2015-06-29.

[16] Nicky Williams, Bruno Marre, Patricia Mouy, and Muriel Roger. Pathcrawler: Au-

tomatic generation of path tests by combining static and dynamic analysis. In De-

pendable Computing-EDCC 5, pages 281–292. Springer, 2005.

32

