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Abstract

Garbage collection is one of the most important features of programming languages.

It frees the programmer from the burden of manual deallocation of memory. The

most common technique used to traverse objects over heap is reachability tracing.

Garbage Collector collects only those objects which are not reachable. There are

still number of objects on heap which are reachable but not live. To collect such

objects, liveness of objects and their references need to be checked instead of reach-

ability alone while tracing on heap.

To check liveness of object and their references, liveness information should be avail-

able at runtime in garbage collector. We have achieved it with the help of infrastruc-

ture like Soot and JikesRVM. Soot transfers information to class file and serialized

file. JikesRVM takes care of this information at runtime. Performance of garbage

collector is measured in terms of number of objects live on heap against number of

objects reachable. We got reasonable improvement in garbage collection with some

of the standard benchmarks. Results show that liveness based garbage collection

always performs better or equal to reachability based garbage collection in terms of

memory.
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Chapter 1

Introduction

Garbage Collector(GC) tries to claim those objects in memory which are no longer

used in the program. The basic work of GC is to find out which objects are not

in use and reclaim the resources used by those objects. This frees the programmer

from handling object allocation and deallocation manually. GC was first design by

John McCarthy [1] to solve problems in Lisp. Now-a-days GCs are being used by

most programming languages like Java, Python, Perl etc.

The most common technique used in GC is reachability tracing. A GC collects

only those objects on heap which are either not live or not reachable through live

variables [2]. An object is said to be reachable if it is a root variable or there is

reference to the object from a root set of variables. Some objects are not going to be

used in the program even though they have a reference from the root set of variables

either directly or through a chain of reachable objects. To remove those objects on

heap, liveness of object should be checked instead of reachability [3] [4] [5]. We will

discuss about such an example in subsequent section.

1.1 Objective

To make objects live on heap based on liveness instead of reachability, root set

of objects with their liveness information needs to be passed from compile time to

runtime. Steps to achieve the required goal are as follows.

1
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• Make a design so that we can pass particular root set of objects at run time.

• Dump liveness information in serialize file.

• Access both the information at runtime for better performance.

1.2 Motivational Example

To understand the need of GC based on liveness instead of reachability, look at

the example shown in Fig 1.1, which contains a Java program, liveness information

of object x in the form of automaton and structure of object x on heap at line

number 3.

1 . Tree x, y, z, w, M1=4,M2=6;

//create perfect binary tree of height 4
2 . x = createStructure(M1);

3 . Runtime.getRuntime().gc();

4 . w = createStructure(M2);

5 . y = x.left ;
     while( y.right != null )  
             y = y.right ;

6 . z = x.right ;
     while ( z.left != null ) 

    z = z.left ;

7 . int t = y.data + z.data;

left

right

x

right

left

Reachable Object = 15

Live Object           = 7

(a) : Sample Program

(b) : Liveness information of object x at line number 3.

(c) : heap structure of object x at line number 3.
(d) : Results

1

x
8

124

2

119753 13 15

6 10 14

Figure 1.1: Motivational Example

The Program in Fig 1.1(a) defines objects at line number 1. At line number 2 it

calls method createStructure(4), which creates perfect binary tree of height 4 having

data value as their inorder traversal number and returns address of root node. Line

5 and 6 are code for finding predecessor and successor respectively. If we look at

line number 3 in the program, the only live variable present is x. The behavior of



3

x on heap as a finite automaton at runtime in the form of liveness information is

shown in Fig 1.1(b). If we apply given automaton on a heap structure of object x

and traverse through it by marking reference edges as solid, it gives heap structure

of x as shown in Fig 1.1(c). Looking at the heap structure mentioned in Fig 1.1(c)

we can notice the following things:

• Object reachable through solid line are live.

• Object reachable through dashed line are reachable but not live, these are

garbage and can be collected.

GC based on liveness rather than reachability can collect such objects. Taking

into account the above scenario, we can collect more number of garbage objects.

1.3 Contribution

Our contribution to this thesis can be described as follows:

• Passing information from compile time to runtime.

We have made required changes in Soot [6] and JikesRVM [7] so that we can

transfer object information through newly created instruction.

• Combining both the objects and its liveness information in the form of au-

tomaton at runtime which improve garbage collection.

1.4 Outline of Thesis

The rest of thesis is organized as follows. Chapter 2 gives background details

such as tools used, related work, approach towards solution etc. Chapter 3 discusses

about design and algorithms used for counting reachable as well as live objects.

Chapter 4 gives details about changes made at compile time. Chapter 5 describes

changes made at runtime. Chapter 6 presents the experimental results. Chapter 7

gives conclusion and future work.



Chapter 2

Background

This chapter gives the background details of terminology, infrastructure and related

work to place the research contribution of this thesis in context. Section 2.1 begins

with terminology used in this thesis. Section 2.2 describes Soot framework and

JikesRVM as an infrastructure tools used in thesis. Section 2.3 explores about the

explicit live reference analysis, which was used as a black box.

2.1 Terminology

Heap is a region of memory dynamically allocated to program at runtime. Blocks of

memory allocated on heap are referred as objects. Reclaiming those object is called

collection. Reclaiming such unused objects is known as garbage collection(GC).

Process which does this job is called garbage collector. Working thread, which does

the process of allocation and deallocation is known as mutator. GC which checks

liveness of all object on heap called as full heap collector. Current types of GC can

be found out by its plan. The plan gives details of GC such as mutator, collector,

constraints, tracing policy etc. Objects having reference from the root set of objects

are called as reachable objects. Now onwards live objects on heap are only those

objects which are used in program. References of such live objects should not be

considered as live unless it is used in further execution of program. Java bytecode

is referred as bytecode only. Tracing of objects based on reachability is also called

4
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as transitive closure tracing. Garbage collector based on reachability is referred as

RGC. Garbage collector based on liveness is referred as LGC. If we talked about

some program then it is Java program only unless it is explicitly mention. Java

provides a mechanism, called object serialization where an object can be represented

as sequence of byte that includes the object’s data as well information about the

type and the type of data store in object [8].

2.2 Frameworks Used

We use the following frameworks for our thesis :

• Soot[6] as a compile time framework to generate class file.

• JikesRVM[7] as a runtime framework to run this class file.

2.2.1 Soot framework

Our work is done in context with Soot optimizing framework developed by Sable Re-

search Group[6]. Soot is an extensible tool with a powerful API, which allows users

to write high level program analysis and transformation easily [9]. Soot provides tree

intermediate representations for Java namely, Jimple, Baf, Jasmin [10]. These in-

termediate representations allow different APIs for various optimization techniques.

In this project we are going to extend the basic bytecode instruction set to add a

new instruction objref . For this we have to extend existing Soot IR to incorporate

this new instruction. Soot version used in this work is soot-2.5.0.

Jimple is 3-address intermediate representation that has been design to simplify

analysis and transformation of java bytecode [11]. Baf [10] is composed of low level

instructions similar to Java bytecode. Jasmin [10] is a Java assembler interface. It

takes ASCII descriptions for Java classes and converts them into binary Java class

files suitable for loading into a Java interpreter.
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Architecture

Soot is an optimization framework which internally goes through several transfor-

mation of intermediate representations(IR). The flow of internal transformation is

shown in Fig 2.1[10].

Java Program

Jimple

Jasmin

Bytecode

Grimp Baf

Option 1 Option 2

Figure 2.1: Soot Framework

It takes java program as input and first converts it to Jimple IR which can be

optimized in several ways and later converts it to bytecode. Transformation from

Jimple to bytecode can be done in two different ways. One is through Jimple →

Grimp → Jasmin → byteCode and another is Jimple → Baf → Jasmin →

byteCode. Even though both the ways are equivalent, in this work second approach

has been explored due to it’s simplicity and ease of use.

2.2.2 JikesRVM

Architecture of JikesRVM can be divided into Core Runtime Services, Magic, Com-

pilers, Memory Manager and Adaptive Optimization System [12]. We deal with two

of its components, namely Compilers and Memory Manager. Compiler generates

executable code from bytecode while Memory Manager take care of allocation and

deallocation of objects.
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Compilers

Compilers in JikesRVM are of three types(baseline, optimizing, JNI ). These com-

piler generate executable machine code from bytecode. Baseline compiler generate

code without optimizing bytecode. Optimizing compiler generate optimized byte-

code through various analysis on bytecode like constant propogation, dead code

elimination etc. Java Native InterfaceJNI compile native method by generating

code. Out of these compiler we are using baseline compiler to generate executable

machine code because of its simplicity and ease of use. We can select this compiler

at the time of building JikesRVM. Default compiler used in JikesRVM is baseline

compiler.

Memory Manager

Memory Manager handles the object allocation and deallocation. Memory manager

class is located at org.jikesrvm.mm.mminterface.MemoryManager in JikesRVM. It

provide mutator object for a current plan of garbage collector.

Object Model

Java object is composed of four pieces, JavaHeader, GCHeader, MiscHeader and

instance fields. Every object contains these portions. JavaHeader support language

level functions such as locking, hashcodes etc as shown in Fig 2.2.

GCHeader MiscHeader JavaHeader field0 field1 field2 field3 …….. fieldx fieldn

scalar layout :

Array layout :

GCHeader MiscHeader JavaHeader len ele1 ele2 ele3 ele4 …... eleN-1

scalar header

array header

Figure 2.2: Object Model



8

Object Header

The default object model uses a two word header. One word holds TIB pointer and

other one is shown in Fig 2.3.

Without Address Based Hashing 

T T T T T T T T T T T T T T T T T T T T H H H H H H H H H H A A

* T  - Thin lock bits (20 Bits) 
* H  - Hash code (10 Bits ) which denote actual hash code.
* A  - Available for use by GCHeader and/or MiscHeader(2 Bits).

Address Based Hashing 

T T T T T T T T T T T T T T T T T T T T T T H H A A A A A A A A

* T  - Thin lock bits (22 Bits) 
* H  - Hash code (2 Bits ) which denote actual hash code.
* A  - Available for use by GCHeader and/or MiscHeader(8 Bits).

Figure 2.3: Java Header

The word contains an inline thin lock, hash code and available bits. If Ad-

dress based hashing is used 2 hash bit denote 3 state of object(Hashed, UnHashed,

Hashed and Moved) to uniquely identify objects. In case of without address based

hashing all 10 bits are used for hash code. Available bits are used for GCHeader

and/or MiscHeader. Default model used in JikesRVM is address based hashing.

Users can change this hashing technique while building JikesRVM. Address based

hashing is used in our approach, as more number of bits are available to use. These

bits can be used to mark objects for counting, reachability check, liveness check etc.

2.3 Explicit Live Reference Analysis

(Heap Reference Analysis)

This is end-to-end solution for discovering live references of an object at compile time

[3][page 1:5]. It is an intra-procedural analyzer which predicts the inter-procedural

flow of data value. Data flow values represent the sets of automatons for all live



9

1 . Tree x, y, z;

2 . while( x.data < Max )
x = x.right ;

3 . y = x.left ;

4 . y = y.left; 

(a) : program segment

y

x

a

b

c

d

e

f

g

i

h

………………..

………………..

………………..

(b) : heap structure

right

left

left left

left

left

left

right right

X b ca

right

left left

(c) : automaton

Figure 2.4: Discovering explicit live references of an object at compile time

variable at each program point. To understand how this analysis calculates live

references of objects, look at the Fig 2.4. It contains code segment (Fig 2.4(a)) and

behavior of object x on heap (Fig 2.4(b)).

Looking at program segment, we can examine that x may point to objects a, d,

g at runtime depending on how many times while loop executes. After execution of

while loop, two left references of an object are accessed as shown in Fig 2.4(b). If

we try to express such behavior of an object with the help of an automaton then we

will get following kind of access expressions:

[x→ left→ left]

[x→ right→ left→ left]

[x→ right→ right→ left→ left]

[x→ right→ right→ right→ left→ left]

......

......

......

(2.1)

If we represent this information in the form of regular expression [13], then it
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looks like

x→ (right)∗ → left→ left

Finite automaton to represent above regular expression is shown in Fig 2.4(c).

This is the output of explicit live reference analysis for all objects in the program at

each program point. How to know liveness of program variable at compile time can

be found at [14] [13].



Chapter 3

Design

This chapter gives design of our complete application and describes algorithms

used in it. Design model is shown in Fig 3.1.

Java Program

Explicit Live Reference 
AnalysisAlgorithm 1

Algorithm 2
Algorithm 3

Virtual machine

.class .ser 

Baseline Compiler

machine 
code

VM 
stack

performance
performance in term of 
reachable and live objects

JikesRVM

Soot 

insert new bytecode 
instruction objref 

serialize object 
of graph array

sets of automaton at 
each program point

generates execution of objref 
instruction

object graph

java program

Figure 3.1: Design

Our application takes Java program as an input and gives performance as an

11
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output in terms of number of live objects on heap against number of reachable object.

We have implemented this in Soot framework for the transformation of bytecode

as shown in Algorithm 1. It transforms bytecode by inserting objref instruction

and dumps liveness information in serialized file. It uses Explicit Live Reference

Analysis as a black box from earlier work [3], which gives the behavior of object on

heap in the form of an automaton. JikesRVM takes class file as a input generated

by Soot. Components of JikesRVM are shown in Fig 3.1. Changes are made in

JikesRVM components to interpret the new bytecode instruction inserted in class

file. Generated machine code (including machine code for the new instruction objref

) from baseline compiler gets executed on virtual machine. Execution of objref calls

a method in virtual machine which takes an object as an argument. This method

accesses the liveness information from serialize file and gives performance as output.

3.1 Generation of class file and serialized file of

graph array

This transformation analysis runs in whole program mode [15] for transformation

of bytecode. Transformation of bytecode is performed under scene transformer [10].

Output of Explicit Live Reference Analysis gives data flow values at each unit state-

ment. These data flow values are sets of automatons for each live variables repre-

senting their behavior on heap [3]. The program finds GC call and replaces it with

new objref Vi statement for all live variable Vi. This statement gets inserted into

class file through various intermediate representations shown in Table 4.1. Chap-

ter 4 gives details of this new instruction and its transformation through various

intermediate representations. This instruction passes the root set of variables from

compile time to runtime. However data flow values of analysis are dumped in serial-

ized file. Name of these files are derived from line numbers of GC call in source code

as a unique value. This information is accessed in JikesRVM. Next section explains

about processing of this information.
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Algorithm 1: Generate appropriate .class file

Input : Java file as input
Output: .class file containing appropriate objref instruction and .ser file

containing liveness information of object.

1 ela = output of Explicit Live Reference Analysis ;

2 for each method M in java file do
3 for each statement S in method M do
4 if S = Runtime.getRuntime().gc() then
5 //get data flow values before statement S. graphset =

ela.getFlowBefore(S)

6 for all live variable Vi at program point S do
7 ObjectRefStmt a1 = Jimple.v().newObjectRefStmt(Vi);

8 units.insertBefore(a1, S);

9 graphArray.add(graphset.get(Vi))

10 end
11 //dump graphArray into LineNO.ser file

file.writeObject(graphArray);
12 end

13 end

14 end

3.2 Implementing LGC

We have a .class file and a .ser file as an output of Soot framework. These files

are fed as an input to JikesRVM. Figure 3.1 shows how these files are processed.

In this section we discuss tracing of an object using Algorithm 2 and Algorithm 3.

Most of the GCs today trace the object using transitive closure, which is described

in Algorithm 2. A LGC traces the object with the help of graph as a liveness

information. It is described in Algorithm 3. As we discussed in the Introduction,

with the help of an example, that Algorithm 3 marks less number of object as live

compared to Normal tracing algorithm. As a result we can optimize heap memory

more efficiently. Performance of GC is measured in terms of number of live objects

in both these algorithms.
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Algorithm 2: Trace objects using transitive closure

Input : Root set of objects

Output: objects marked based on transitive closure

1 for all elements E in root set do

2 obj = E.getObject();

3 queue.insert(obj);

4 end

5 while ( !queue.isEmpty() ) do

6 obj = queue.remove();

7 mark(obj);

8 fields = obj.getAllReference();

9 for f in fields do

10 child = f.load();

11 if (child != null) and (testMarkBit(child) != true) then

12 queue.insert(child);

13 end

14 end

15 end

For implementation of this algorithm we have used 3 available bits of object

model shown in Fig 2.2. Out of the 8 bits available in addressed based hashing, last

3 bits are used because first few bits are used by GC for internal purpose. Last bit

is used for marking liveness of object. Next two bits are used to count reachable

and live objects with the help of standard DFS algorithm [16]. Algorithm 3 uses

three types of values in queue for marking objects as live. First one represent object
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itself. Second and third represent graph and current root node respectively.

Algorithm 3: Trace objects using graph.

Input : Root set of objects and their Graphs

Output: object marked based on graph

1 for all element E in root set do

2 object = E.getObject();

3 graph = E.getGraph();

4 currRoot = graph.getRoot();

5 queue.insert(pair¡object,pair¡graph,currRoot¿¿);

6 end

7 while ( !queue.isEmpty() ) do

8 element = queue.remove();

9 object = element.first;

10 mark(object)

11 graph = element.second.first;

12 currRoot = element.second.second;

13 fields = object.getAllReference();

14 targets = graph.getTargets(currRoot);

15 for f in fields do

16 for t in targets do

17 if f==t then

18 child = f.load();

19 if (child != null) and (testMarkBit(child) != true) then

20 queue.insert(Pair¡child,Pair¡graph,t¿¿)

21 end

22 end

23 end

24 end

25 end



Chapter 4

Implementation

This chapter explores the implementation details and issue related with it. Section

4.1 describes changes required at compile time to generate class file. Section 4.2

discuss implementation issue related with JikesRVM to run generated class file.

4.1 Changes at compile time

Java Program Heap Reference 
Analysis

Jimple
with support of new statement

Bytecode 
(.class)

Baf
with support of new instruction

Jasmin
produces correct bytecode

objref x

    push x
    objref

    load_1
    objref

Figure 4.1: Soot Changes

We are using Soot as an compile time framework. As discussed earlier, passing

16
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information from compile time to runtime is one of the challenges. In order to

resolve it, the object must be passed from compile time to runtime. We created

new instruction to pass this object. Intermediate representation of Soot framework

needs to be modify to parse this instruction. Modification required in intermediate

representations are shown in Fig 4.1 [10]. These changes are discussed in following

subsections.

4.1.1 Modification in Baf

As new statement is created in the grammar of Jimple IR, there is a need for support

in Baf IR. Therefore, same kind of changes are required in Baf IR. It requires addition

of two new functions, one for creating Baf instruction and other as an interface

between Baf and Jasmin Assembler as shown in code below.

// suppor t f o r adding new i n s t r u c t i o n in Baf

public ObjectRef Inst newObjectRefInst (Type opType , Local l ) {

return new BObjectRefInst ( opType , l ) ;

}

// I n t e r f a c e between Baf and Jasmin

public void caseObjec tRe f Ins t ( ObjectRef Inst i ) {

emit ( ” o b j r e f ” ) ;

}

4.1.2 Modification in Jasmin

Like Jimple and Baf, Jasmin also needs to be modified to support the new instruc-

tion. The modifications are shown in the code below. A new opcode opc objref

with number 203 is generated. Numbers upto 202 are already reserved. Information

of new opcode is added to runtime constants of Jasmin using function addInfo of
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InsnInfo.java. Then new instance of this instruction is created and added to the

existing Jasmin code by the funtion addInsn in ClassFile.java.

//Add Runtime cons tant in Jasmin . Add i t s opcode name and l e n g t h .

public stat ic f ina l int o p c o b j r e f = 203 ;

//Add in format ion about new opcode in InsnIn fo . java

addInfo ( ” o b j r e f ” , RuntimeConstants . opc ob j r e f , ” o b j r e f ” ) ;

// Generate corresponding code in C l a s s F i l e . java

Insn i n s t = new Insn ( RuntimeConstants . o p c o b j r e f ) ;

getCode ( ) . addInsn ( i n s t ) ;

4.1.3 Adding new instruction to Soot

This section explains about adding new instruction in Soot through analysis. Code

to add statement ”objref local” in Jimple, before and after unit statement is as

follows.

// Adding new Statement in SOOT through Ana lys i s

ObjectRefStmt o = Jimple . v ( ) . newObjectRefStmt ( l o c a l ) ;

// Adding I n s t r u c t i o n b e f o r e and Af ter u n i t s ta tement .

un i t s . i n s e r t B e f o r e ( o , un i t ) ;

un i t s . i n s e r t A f t e r ( o , un i t ) ;

After adding this instruction in soot, its insertion in different intermediate rep-

resentations is shown in Table 4.1.
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Jimple Baf Jasmin Bytecode
objref local load.r args load 0 aload 0

objref .r objref objref

Table 4.1: Instruction in different intermediate representation

4.1.4 Correctness of bytecode

Java Bytecode Editor(JBE) [17] is a tool for reading and verifying bytecode. Byte-

code is modified to contain the new bytecode instruction. JBE is used to verify

bytecode. JBE is standerd Java byteCode reader, so similar changes are required in

JBE to interpret newly created instruction.

4.2 Changes at runtime

As we have made changes to Soot which is a compile time framework, similar changes

are required at runtime so that the modified class file will be executed on virtual

machine. To accomplish this task JikesRVM [7] is used as a runtime Virtual Ma-

chine(RVM).

4.2.1 Machine code generation

Baseline Compiler

JikesRVM takes .class file as input, which contains bytecode and converts it to

executable machine code through two types of compilers :(baseline, optimizing).

Machine code executes on VM. In this approach we explored baseline compiler be-

cause of its simplicity and ease of use. Most of the code in baseline compiler

is machine dependent. It contains BaselineCompiler, TemplateCompilerFramework,

BaselineCompilerImpl as main files [7]. Baseline compiler does code generation

process. As we get new bytecode instruction, baseline compiler will execute the

following code to generate executable machine code.

/∗∗
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∗ LiveGC Extension : emit machine code in b a s e l i n e compi ler

∗ 1 . copy parameter from operand s t a c k to r e g i s t e r .

∗ 2 . genera te c a l l to a b s o l u t e address in e n t r y p o i n t .

∗/

protected f ina l void e m i t o b j r e f ( ) {

// pass 1 parameter word

genParameterRegisterLoad (asm , 1 ) ;

// o f f s e t o f method in VM which w i l l be c a l l by t h i s i n s t r u c t i o n .

O f f s e t methodOffset = Entrypoints . objrefMethod . g e t O f f s e t ( ) ;

// a b s o l u t e address o f method .

O f f s e t absOf f s e t = Magic . getTocPointer ( ) . p lus ( methodOffset ) ;

asm . emitCALL Abs ( absOf f s e t ) ;

}

Stack Manipulation

obj

………

………

stack

1 . generateRegisterload
     from stack.
2 . generate call to
     method in JikesRVM  
     with obj as parameter

obj

Register T0

current 
stack 
pointer

objref(obj); 
method in MM

Current_stack_pointer--;

Build Reference Map

Figure 4.2: Stack Manipulation

Originally, statement inserted in Jimple of Soot framework is objref X, and it’s

bytecode form in class file is load 0 : objref . We have two machine instructions

after code generation process by baseline compiler as shown in code above. First

instruction generates register load for object and second instruction calls method in

JikesRVM by passing argument loaded in register. There is a reference available on
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stack for the object passed. To remove this reference there is a need to change the

reference map, located at BuildReferenceMap file. Details of stack manipulation can

be seen in Fig 4.2.

4.2.2 Support for newly created instruction

To support a class file containing extra instructions, JikesRVM has to be modified.

Modules with their corresponding changes are described below.

Bytecode Constant

Bytecode constant is the information about Java bytecode that appear in the ”code”

attribute of a .class file. A new unused bytecode information has to be inserted

corresponding to bytecode instruction objref .

int JBC objref = 203;

int JBC length[203] = 1;

String JBC name[203] = ”objref ”

(4.1)

BuildReferenceMap

It works with baseline compiler in calculating the GC maps for local variables and

the java operand stack. These GC maps abstractly finds which stack slots and

local variable contain references at the start of bytecode. When objref instruction

is parsed in BuildReferenceMap, it will decrement stack top pointer and skip the

instruction.

Entry Point

Entry Point represent fields and methods of the virtual machine that are needed by

compiler-generated machine code or C runtime code. In this module we declared

the method which is going to be called by code generated through baseline compiler.
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Runtime Entry Point

These ”helper functions” are called from machine code emitted by BaselineCompi-

lerImpl. They contain definitions of fields and methods declared in Entry Point. We

define our method named ”objref ” with argument as object in this module, which

eventually is the method in memory manager.

Memory Manager

At this location we have objects which are passed from compile time. Next, we

access the corresponding graph file which was dumped at compile time.



Chapter 5

Experimentation

In order to show the effectiveness of LCG, we have calculated the number of objects

live on heap with two different algorithms. One is by marking objects and their ref-

erences based on transitive closure. Other is by marking objects and their references

based on automaton as a liveness information.

5.1 Experimental methodology and measurements

LGC collects more number of garbage objects, which gives the evidence of improve-

ment over RGC. Experiments were performed on Intel(R)coreTM i7−4770 CPU@3.40GHz×

8 processor with 15.3 GiB of memory and 64-bit 14.04 LTS Ubuntu operating sys-

tem. Benchmarks used were BiSort, Loop, DLoop, Reverse, TreeAdd and BST.

Performance of these benchmarks is shown with the help of graphs. X-axis in the

graphs represent instance of program point. Instance of program points are those

points where explicit call of GC is triggered. These explicit calls are triggered after

some threshold amount of statement executions. Overall performance of benchmark

programs are shown in Table 5.1.

BiSort

This is a class that represents values to be sorted by the BiSort algorithm. It

performs a bitonic sort based upon the Bilardi and Nicolau algorithm [18]. BiSort

23
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Figure 5.1: Bitonical Sort

algorithm was implemented in variety of architectures like shuffle-exchange [19],

binary cube [20], the mesh [21] etc. In BiSort algorithm, initially it creates a tree

structure of all such objects having bitonic sequence and then it sorts using bitonical

sort. Performance of this algorithm with respect to number of live objects and

reachable objects are shown in Fig 5.1.

Loop and DLoop

Loop and DLoop are the classes which represent single and double linked lists re-

spectively. These programs are used in most of the architectures and application

in recent times[22]. Loop and DLoop creates a linked list and traverses through

it. Running these programs on our application will give optimal solution for the

number of live objects on heap as shown in Fig 5.2 and Fig 5.3.
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Figure 5.2: Loop

Figure 5.3: DLoop
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Reverse, TreeAdd and BST

Reverse is a class representing linked list which creates a linked list and then reverse

it. From graph shown in Fig 5.4, we can observe that after creation of list, RGC

doesn’t collect those objects which are not live. TreeAdd is program which contains

a tree (as a data structure) and a function which will calculate total number of tree

node. TreeAdd calculates left subtree first and then right subtree. Performance of

LGC for Tree add is as shown in Fig 5.5.

Figure 5.4: Reverse

BST is a class which represents tree structures on heap. It creates a binary

tree and searches on it with the help of a recursive algorithm. Its performance with

respect to memory is shown in Fig 5.6. From the figure, we can see that performance

of heap structure is growing till the tree structure is being created. After that, we

are not able to collect garbage from such cases as the whole tree structure is live.

It also contains a recursive function and HRA analysis doesn’t predict behavior of

such objects on heap as discussed in section 2.3 .
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Figure 5.5: TreeAdd

Figure 5.6: BST
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5.2 Overall performance of program

We now calculate performance of the complete program instead of taking snapshots

at each point. Performance of complete program is calculated in terms of observation

values and percentage of extra garbage that can be collected by LGC. To analyze it

we have set a count variable for statements in each benchmark program for which

there is a change in memory. If count variable reaches some threshold value then

we are taking a snapshot of all reachable objects and live objects on heap. Such

points where snapshot is taken are referred as program points. At each program

point, snapshot values are taken as reachable count and live count for RGC and

LGC respectively.

Average number of objects present on heap for RGC and LGC having n program

points is calculated by equation 5.1

RGCavg =

n∑
i=1

reachable counti

n

LGCavg =

n∑
i=1

live counti

n

(5.1)

Percentage of extra garbage present for a program(P) at a point(i) is calculated as

follows:

GPi
=

reachable counti − live counti
reachable counti

× 100

Average of percentage of extra garbage collected for complete program having n

program points is:

GP =

n∑
i=1

GPi

n

Computation of all these values for benchmark programs described earlier are shown

in Table 5.1.

We have taken running times for RGC and LGC which are based on tracing al-

gorithms discussed in Algorithm 2 and Algorithm 3. The running times for different
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SrNo Program
Avg number of
objects on heap

Time(in ms)
Percentage of

extra garbage
RGC LGC RGC LGC

1 BiSort 11.47 6.36 0.2 31 14.32
2 Loop 32500 25000 46 1653 18.75
3 DLoop 37999 25000 77 1666 24.99
4 Reverse 38889 27778 88 1837 22.22
5 TreeAdd 3.87 3.7 2 63 1.02
6 BST 33534 33534 94 7832 0

Table 5.1: Average performance of LGC over complete program

benchmarks are shown in Table 5.1. It shows that, we have achieved more garbage

collection from the program at the expense of time. We can improve the running

time of LGC using graph reachability which is discussed in the accompanying thesis

[23].
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Conclusion and Future Work

This work fulfills the basic objective of passing object references and the informa-

tion about live references at runtime to trace the object based on liveness instead

of reachability. This liveness information is useful to run garbage collector at run-

time for better memory footprint. We have traced the objects at runtime with the

liveness information provided in the form of automatons. The results are obtained

based on count value of the number of objects present on heap for both RGC and

LGC. Looking at the results shown in observation Table 5.1, we can say that LGC

performs better or near about equal to RGC in all benchmarks. In LGC for the

programs Loop, DLoop and Reverse, average increase in garbage collected(GP ) for

complete program is close to 20%, which is a significant improvement against exist-

ing RGC. In worse case if all the objects and their references are live till the end

of the program, then graph tracing algorithm traverses like an RGC, as shown in

TreeAdd example Fig 5.5. We can say that the number of live objects are always less

than or equal to number of reachable objects. Therefore LGC will always perform

at least as much as RGC, if not better.

This thesis work shows that the results in terms of number of objects that are

live on heap instead of actual snapshot of memory after running the garbage col-

lector. Current garbage collectors work with mutator program objects and objects

created for internal purpose in VM. We don’t have liveness information of such VM
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objects because Explicit Live Reference Analysis runs at compile time. Therefore for

collecting VM objects, GC traces objects based on transitive closure. Heap memory

in JikesRVM is divided into spaces and the memory manager of JikesRVM allocates

different objects in different spaces depending on the size of objects allocated. Each

space has a different collection policy. We need a different policy for VM objects and

mutator program objects. To run graph based tracing algorithm, objects in program

have to be allocated in a separate single space. LGC can be run with a single space

by changing allocation and deallocation policy of VM. Immediate future work would

be to create a separate VM space for mutator programs which uses liveness based

tracing for its garbage collection policy. We have dumped liveness information in

the serialized file and accessed it at runtime. In future it can be dumped to class

file itself and appropriate changes in VM can be made.
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