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ABSTRACT

Software Verification is a discipline of Software Engineering which aims at assuring

that the software adhere with the requirements. Structural coverage is a testing mean

complying that the requirements based testcases have exercised the code structure. In

mission critical domains such as aviation industry, military software quality assurance

is subject to strict regulations. Modified Condition/Decision Coverage (MCDC) is a

whitebox testing metric with the objective of covering all the conditions and decisions in

the program along with showing the independent effect of conditions on overall decision’s

outcome. This thesis presents a new approach to automatic generation of testcases for

high MCDC coverage.

In the thesis, we have implemented concolic tester to automatically generate testcases.

The short circuiting approach to evaluate conditions inside a decision in C-Language is

used to decompose a decision into nested conditions using CIL. The approach involves

two major modules - levelling module and CDG module. Levelling module generates

testcases by flipping conditions at a specific nesting level, providing low coverage. CDG

module utilizes program’s control dependency information to find paths containing max-

imum number of uncovered conditions. We have also used MAXSAT to find maximum

satisfiable set for path constraints, hence providing high coverage.

The advantages of these modules are utilized in a combined approach to first generate

testcases using levelling module which then provides program state to CDG module.

Experimental results show an average coverage of 78.275 % for combined approach,

which is an improvement of 12.825 % over levelling module and 2.875 % over CDG

module.
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Chapter 1

Introduction

Software engineering is a systematic approach to software development. Software Quality

assurance is one of the most important steps taking most of the efforts which aims at

measuring the software quality according to the requirements using testing. As an

example, Ariane 5 rocket failed just after 37 seconds of its launch due to malfunction

of control software. Data conversion from 64 bit floating pointer number to 16 bit

integer to be stored in a variable representing horizontal bias caused trap. According to

DO - 178B standard, for certification of such software, test suites must provide MCDC

coverage of source code. MCDC stands for Modified Condition Decision Coverage is a

structure based testing strategy. MCDC is a stricter version to measure the test suite

with the aim of checking independent effect of each condition in the decision’s outcome.

Modified Condition/ Decision Coverage[1] is used as an exit criteria for critical projects

in avionics domain.

1.1 Problem Statement

Automated testing is a technique to reduce the time and effort taken for the testing

process. For constructing an automatic testing tool, a coverage criteria is required

which can be path coverage, branch coverage etc. According to the criteria, test suites

are generated automatically by the tool given software as input.

Objective of the Thesis is to automatically generate testcases according to MCDC[1]

criteria for C-Language with the aim of generating high coverage with minimum number

of testcases. To achieve this, we have used the concept of Concolic testing[4] which is a

combination of symbolic execution and concrete execution and was used introduced for

path coverage.

1
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Code 
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Constraint Solver 

CDG Module 
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Figure 1.1: Major Modules of tool developed

Figure 1.1 shows the major modules developed for our tool. In our approach we have

used a tool called CIL [2] which helps us in statically analyzing the code over Abstract

Syntax Tree. Using this tool, the decisions in the program are broken into nested if -

else structure according to short circuiting way of evaluating conditions inside a decision

in C. This short circuiting technique helps in relaxing the Independent Effect criteria

of MCDC as all conditions are not required so as to see the independent effect of a

condition [6].

We have developed our own concolic tester which has symbolic executor as its submod-

ule to drive program through the test cases. Once the program’s decisions are separated

the problem of MCDC coverage criteria reduces to the decision coverage of transformed

program. We generate test cases according to the MCDC criteria, to show indepen-

dent effect of each condition’s value on the overall outcome of decision, only one of the

conditions is flipped in a sequence of nested If/Else structure.

To achieve above functionality we have introduced levelling module, in which nesting

level is provided to each decision in the transformed program. For generating new

testcases according to MCDC criteria, only nodes at one level are flipped keeping the

lower level conditions as prefix of newly generated path constraint.
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Levelling module can not cover most of the conditions if conditions are control dependent

on other program statements that is, if there are some statements which determine

whether a particular statement is executed or not. In order to overcome the drawback,

we utilize Control Dependency information of program in the CDG module designed

to produce high coverage. A metric called score is used which defines the number of

uncovered nodes in Control Dependence Graph [10] according to this metric we find top

K paths having maximum number of uncovered conditions. We use MAXSAT [19] on

these top paths to find the maximum satisfiable set and generate testcases over this set.

1.2 Contributions

We contribute following to automatic testcase generation through this thesis:

• We have designed symbolic executor which can handle integers, floats, arrays,

structures and pointers.

• We proposed levelling method in which testcases are generated according to MCDC

criteria by flipping conditions at a specific nesting level.

• Control Dependency information of program is utilized to exploit control depen-

dent conditions and increase the coverage.

• MAXSAT is utilized to generate maximum satisfiable set of path constraints in-

creasing coverage in CDG module.

1.3 Organization of Thesis

The rest of the thesis is organized into chapters as follows:

Chapter 2 contains the basic concepts used in the thesis. This chapter contains the

definitions of coverages. We describe the steps used to get minimum number of testcases

for complex decisions from basic gates - and, or, not and xor. We also provide a brief

review of the related work relevant to our contribution and for the important concepts

like Symbolic Execution, Concolic Testing, automated testcase generation and MCDC.

Chapter 3 presents the detailed implementation of our tool. We introduce some

formal definitions followed by concepts and algorithms. We describe the algorithms for

Concolic Tester, Static Analyser which transforms and instruments the code, levelling

technique which is one of our approach for testcase generation.
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Chapter 4 introduces Control Dependency Graph module a second approach to test-

case generation. We describe the algorithm for creation, initialization of CDG, finding

top K paths, feasible paths using MAXSAT.

Chapter 5 deals with the experimental study and analysis of results obtained in terms

of coverage and time taken to produce testcases by the tool over benchmark programs.

Chapter 6 concludes the thesis with a summary of objective achieved. We also

discuss future extentions that can be done to improve the results of testcase generator

introduced in the thesis.



Chapter 2

Background Details

2.1 Basic Concepts

Definition 2.1. A condition is a boolean expression containing no boolean or logical

operators - And(&&), Or(||) and XOR. These are the atomic expressions which can not

be divided to further sub conditions.

Definition 2.2. A decision is a boolean expression composed of conditions with zero or

more boolean operators. An expression with same condition appearing multiple times

in a decision are considered as separate conditions.

Example: for decision expression (((u == 0) || (x >5)) && ((y <6) || (z == 0))), there

are four conditions in the decision which are (u == 0), (x >5), (y <6) and (z == 0).

MCDC Coverage: MCDC stands for Modified Condition Decision Coverage, it en-

hances condition/decision coverage by introducing independent effect of each condition

to the overall outcome of decision. Following are the MCDC coverage criteria:

• Each decision tries every possible outcome.

• Each condition in a decision takes on every possible outcome.

• Each condition in a decision is shown to independently affect outcome of decision.

• Each exit and entry point should be invoked atleast once.

• For a decision with n Boolean variables atleast n+1 test cases required.

Logic Gates: Logic gates are used for implementing logical functions on one or more

inputs producing single output. And gate, Or gate, Xor gate and Not gate are considered

5
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as the basic logic gates, knowing minimal number of test cases required for these logical

operators provide a basis for examining more complex boolean expressions.

And gate: For n input and gate the minimum number of test cases required to fulfill

MCDC criteria are following:

• All inputs are set to true such that the output for and gate comes to true.

• One by one each condition is set to false making the output false, this shows the

independent effect of every condition as how the overall outcome changes with

condition’s value. This step produces a total of ‘n’ test cases.

Table 2.1: Minimum Test Cases for 3 input And gate

Or gate: For n input or gate the minimum number of test cases required to fulfill

MCDC criteria are following:

• All inputs are set to false such that the output for or gate comes to false.

• One by one each condition is set to true making the output true, this shows the

independent effect of every condition as how the overall outcome changes with

condition’s value. This step results in a total of ‘n’ test cases.

Table 2.2: Minimum Test Cases for 3 input Or gate

Xor gate: With respect to minimum number of test cases according to MCDC xor gate

differs from And & Or gate as there are different sets of test cases satisfying MCDC cri-

teria. Truth table for 2 input xor gate is shown in Table 2.3, any combination of three



Chapter 2. Background Details 7

Table 2.3: Truth Table for Xor gate

test cases will satisfy MCDC for xor gate.

Hence, mimimum number of test cases satisfying MCDC criteria for 2 input xor gate

requires one of the following set of test cases:

• testcases 1,2 and 3

• testcases 1,2 and 4

• testcases 1,3 and 4

• testcases 2,3 and 4

Not gate: The not gate works on single input which may be a single condition or logical

expression. Minimum number of test cases required are as follows:

• The only input set to false such that output comes to true.

• The only input set to true such that outcome comes to false.

To evaluate MCDC using the basic constructs or gates each decision is examined for all

operators to determine whether tests have exercised the operator according to minimum

number of test cases as discussed above. Following are the steps for identifying MCDC

test cases :

• Construct representation of source code.

• Determine test inputs from requirement based tests and create truth table for

decisions.

• Masked test cases are the one in which output of a particular gate is hidden from

observed output.
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• MCDC testcases are determined satisfying all the criteria listed above according

to minimum number of test cases required for basic constructs.

• Last step involves verifying the output obtained using these test cases with the

desired outcomes to confirm correct operation of software.

Table 2.4: Minimum test cases for example decision

Table 2.4 shows truth table for decision expression ( ((u == 0) || (x > 5)) &&

((y < 6) || (z == 0)) ). Each condition is represented as A, B, C & D as there are 4

conditions we need a minimum of 5 set of test cases in order to fulfill MCDC criteria.

One of the possible set of test case is highlighted in table as testcase {2, 5, 7, 8, 9}. In

the truth table, (underscore) symbol signifies that the value of condition is dont care

that is, it can take any value true/false without affecting the overall outcome of decision.

2.2 Concolic Testing

Concolic testing [4] is a hybrid approach to software verification that combines Symbolic

Execution, which involves representing program variables in terms of symbolic variables

and Concrete Execution, running program on particular inputs. This testing concept

was first introduced for path coverage. In this technique, first the program is run by

intializing symbolic variables with random inputs and the path condition is obtained

along with symbolic execution done on the path obtained. New path is directed from

the previous path by flipping or negating last condition seen.

Figure 2.1 shows an example program which checks if a given year is a leap year or not.

In order to elaborate concolic testing, we start with initializing year with random input,

where the value of year = 2000. The execution of program starts with this value of year

saving both concrete and symbolic values of variables in the executing path. As 2000 is
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1 #include <stdio.h>
2
3 int main()
4 {
5   int year;
6
7   printf("Enter a year to check if it is a leap year\n");
8   scanf("%d", &year);
9

10   if ( year%400 == 0)
11     printf("%d is a leap year.\n", year);
12
13   else if ( year%100 == 0)
14     printf("%d is not a leap year.\n", year);
15
16   else if ( year%4 == 0 )
17     printf("%d is a leap year.\n", year);
18
19   else
20     printf("%d is not a leap year.\n", year);  
21
22   return 0;
23 }

Figure 2.1: Example Program to explain Concolic Testing

a leap year therefore condition at line 10 gets executed and the path condition obtained

for current path is:

(year % 400) == 0 (2.1)

In order to explore new paths, the last condition obtained from the previous path con-

dition is negated. In the example above, new constraint generated is:

¬(year % 400) == 0 (2.2)

This constraint is examined by a solver in order to check whether this is a feasible path

for program. If it is then new set of values are generated for symbolic variables and

program is executed with these values. There may be many solutions which satisfy

the path constraint but the solver picks one among them. Let the input generated for

constraint given by Equation 2.2 be year = 1900. The new path condition obtained by

executing program is as follows:

¬(year%400 == 0) ∧ (year%100 == 0) (2.3)
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The above process is repeated till there is no new feasible path left to be explored. The

series of iteration for example program produces following constraints for complete path

coverage:

¬(year%400 == 0) ∧ ¬(year%100 == 0) ∧ (year%4 == 0) (2.4)

¬(year%400 == 0) ∧ ¬(year%100 == 0) ∧ ¬(year%4 == 0) (2.5)

2.2.1 Concolic Testing Process

The concolic testing process is carried out using following steps:

1. Determination of Symbolic Variables: Symbolic variables are the one for

which tester generates test inputs. These variables can be function arguments,

user inputs etc. These are the variables which drive the behaviour of program

under test.

2. Code Instrumentation: In this phase, the input code is instrumented with

additional code statically at compile time which keeps track of path conditions

symbolically when the program is executed with concrete inputs.

3. Concrete Execution: This step involves executing program with the test inputs.

These inputs are random for the first run, for successive iterations the test values

are generated using a solver based on the directed path conditions obtained form

previous runs.

4. Symbolic Execution: Symbolic execution module involves representing program

variables in terms of symbolic variables identified in step 1. During program execu-

tion, whenever there is an assignment statement the code is instrumented statically

with probe, such that each program variable is a function of symbolic variables or

collects symbolic path condition whenever there is an if condition.

5. Generating new constraints: The symbolic path condition obtained from pre-

vious run is directed to negate the last condition and generate a new constraint

for which there is a feasible path to be explored in the program.

6. Generating test inputs: The new path constraint generated in step 5 is sent to

constraint solver to check its feasibility. The test inputs are generated for feasible
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constraints, are set as new inputs and we move to step 3. Steps 3, 4, 5 and 6 are

repeated till there are no new feasible path left in program for exploration.

2.3 Related work

“Symbolic Execution and Program Testing” - an approach to testing was proposed by

James c. King. In the approach, rather than passing concrete values symbolic values

- variables with some values are passed to the program under test. The advantage of

approach is one symbolic execution represents a large set of concrete execution.

CUTE : CUTE [7] stands for “Concolic Unit Testing Engine” which combines Symbolic

execution and Concrete execution to generate test inputs to explore all feasible execution

paths.

DART : DART [5] stands for “Directed Automated Random Testing” , this was a tool

developed by Patrice Godefroid, Nils Klarlund and Koushik Sen as a unit testing method.

The tool uses concept of concolic testing for path coverage. It uses following techniques:

• Automatic interface extraction.

• Automatic test driver generation for random testing.

• Dynamic analysis of program behaviour to automatically generate test inputs in

order to drive execution along alternate paths,

Zeina Awedikian [9] proposed an approach to automatically generate test inputs accord-

ing to MCDC criteria. The steps followed in the approach are as follows:

1. For each decision, calculate the sets of MCDC coverage using truth table.

2. Following are the proposed fitness function:

• Branch Fitness: It is the branch distance function describing how far is the

decision statement under test from making its outcome true.

• Dependency Fitness: This function describes the series of decision statements

from entry which will help in reaching the decision under test obtained with the

help of Control Flow Graph.

3. Generate test inputs using Meta heuristic algorithms.



Chapter 2. Background Details 12

Liu et al. [12] proposed a unified algorithm to calculate fitness function which replaces

the branch fitness with a flag cost function, that considers the data dependence rela-

tionship between the definition and use of flag function creating a set of conditions.

Bokil et al. [13] have proposed a tool AutoGen that reduces the cost and effort for

test input preparation by automatically generating test inputs for C programs. Tool

takes the program and a criterion such as path coverage, statement coverage, decision

coverage, or Modified Condition/Decision Coverage (MCDC) as input and generates test

inputs satisfying the specified criterion.

Program Code Transformation thesis [20] at NIT Rourkela proposed approach to trans-

form each boolean expression in to Sum of Products form and minimize using QUINE-

Mc-MLUSKY Technique. This introduces additional conditions in the tranformed pro-

gram. For concolic testing they used a tool called CREST used for test case generation

according to branch coverage technique.



Chapter 3

Methodology

This chapter gives a detailed description of the algorithm implemented for automatic

test case generation.

3.1 Definition

Given a C-Program P under test, our objective is to find a set of test cases for high

MCDC coverage of P with less number of testcases. To do so, the input program P is

instrumented with additional code X which helps to achieve the desired coverage and

X has no effects on output of program P. We use the following notations:

• Output(P, I) - The output of the program P when run with input I.

• I – Input generated by the tool for program P.

• Coverage(P, I) – This metric gives the coverage percentage when a program P is run

on input I.

3.2 Modules

To implement MCDC [1] test case generator, we use an extention of Concolic Testing [4]

approach. The Program P under test is transformed to break the decisions into nested

conditional structure which is done automatically by CIL [2]. The objective now reduces

to Decision Coverage of transformed program P, for MCDC the criteria of independent

effect of each condition in the decision’s outcome is exploited by levelling algorithm.

13
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The approach also uses program’s Control Dependency information for increased MCDC

coverage with optimum number of test cases.

The Major Components are:

• Static Analyser.

• Symbolic Executor.

• TestCase Generator.

• Control Dependence Graph (CDG Module).

• Coverage Module.

Figure 3.1 shows the schematic representation of the tool developed.

 
Program 

under test CIL Tool 
Transformed 

Program 
Identification of 

symbolic variables 

Constructing CDG 

Instrumented 

Program 
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Code 
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CDG Module 

Figure 3.1: Schematic Representation of approach

As seen in Figure 3.1, the program P is sent to static analyser which in our case

is CIL (C Intermediate Language) that transforms the decisions in to nested structure.
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Next we identify the symbolic variables of transformed program and level the decisions.

In the approach, we use two major modules - Levelling Module and CDG Module. In

Levelling Module, we direct the path conditions obtained in such a way that conditions

at a particular level are flipped together keeping the parent conditions as it is with the

aim of showing independent effect of each condition inside decision [1].

For CDG module, program’s Control Dependence Graph is constructed using

the CFG and Dominator relationship [17]. Top k paths are found on the basis of score

representing total number of uncovered conditions in the subtree of a node. MAXSAT

[19] is used to find the feasible set of conditions. Instrumentation of additional code X

is done as a part of analyzer. This transformed code is then used to generate new path

conditions using Levelling module and CDG module. The path condition obtained in

the form of prepositional formula is then given to constraint solver in order to obtain

test inputs. After generation of test inputs, program is driven with these inputs and

coverage analyzer gives the program’s coverage percentage.

3.3 Static Analyser

Static analysis of program involves traversing the program’s Abstract Syntax Tree gen-

erated by a tool called CIL – C Intermediate Language [2]. The functionalities of module

are explained below.

3.3.1 Extraction of Program Interface:

This module involves finding all the variables and their types that drive the function

under test. These variables represent Symbolic Values for Program P which includes

function arguments, user inputs and global variables. These Symbolic variables are the

test inputs for which values are generated.

Figure 3.2 shows an example C-Program. In the program, there are no func-

tion arguments or global variables. User inputs are - max, a, b and c these values

determine the behaviour of function under test. Hence, after visiting the Abstract Syn-

tax Tree of program we extract the Symbolic Variables as - max, a, b and c.

3.3.2 Test Driver Instrumentation:

After extraction of interface, program P is instrumented with test driver D. The function

of D is to initialize all the Symbolic Variables with random values. All the symbolic
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1 int findGrade()
2 {
3   int m,total, a, b, c, sum, per;
4
5   printf("Enter total marks & marks obtained by the student in 3 subjects: ");
6   scanf("%d%d%d%d",&m,&a,&b,&c);
7   printf("m=%d, a=%d, b=%d, c=%d\n",m,a,b,c);
8
9   if((a>m)||(b>m)||(c>m))

10     printf("\n\t!!Wrong data !!\n");
11
12 else
13   {  sum = a+b+c;
14   
15     if(sum>=240)
16      printf("Grade : A\n");
17
18    else if((sum>=180)&&(sum<240))
19      printf("Grade : B\n");
20   
21    else if((sum>=120)&&(sum<180))
22      printf("Grade : C\n"); 
23   
24    else
25      printf("Result : Fail\n");
26   }
27
28 return 0;
29 }

Figure 3.2: Example Program 1

variables are added to argument list of the function under test so that the test inputs

can be passed during function call itself. Figure 3.3 shows Test Driver for the example

program in Figure 3.2.

int testDriver()
{

int max, a, b, c;

 max = rand();
 a = rand();
 b = rand();
 c = rand();

 findGrade(max, a, b, c);

//other function calls..

return 0;
}

Figure 3.3: Instrumented Test Driver
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3.3.3 Code Transformation:

Code Transformation involves breaking the Decisions in program to nested If/Else struc-

ture which is already taken care by CIL [2]. This nested structure is based on how the

conditions are evaluated in C example, for (A && B) type of boolean expressions con-

dition B is evaluated only if condition A is true. Similarly for (A || B) type of boolean

expressions if condition A is true, condition B is not evaluated and if condition A is

false, then only condition B gets evaluated. Figure 3.4 shows the transformed code for

our example program.

3.3.4 Levelling the nested structure of conditions:

In this phase, nesting level is assigned to each decision in the program which is a part

of Levelling Module. This phase is important as further conditions will be directed for

testcase generation according to the levels, required by Independent Effect one of the

MCDC criteria [1]. The pseudocode representation of the phase is given in Algorithm 1.

Algorithm 1: Levelling Nested Structure

Input : Program P1

Output : P with instrumented code2

begin3

for each statement S ∈ P do4

if S is conditional then5

AddLevel(S, 1)6

EnQueue(Q, S)7

end if8

while Q is not Empty do9

Parent = DeQueue(Q)10

for each statement S’ in true block and false block of Parent do11

if S’ is conditional then12

AddLevel(S’, findLevel(Parent) + 1)13

EnQueue(Q, S’)14

end if15

end for16

end while17

end for18

end19
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1 int findGrade(void) 
2 { 
3   int m ;
4   int a ;
5   int b ;
6   int c ;
7   int sum ;
8
9   {

10
11   printf((char const   * __restrict  )"Enter total marks & marks obtained by the student in 3 

subjects: ");
12
13   scanf((char const   * __restrict  )"%d%d%d%d", & m, & a, & b, & c);
14
15   printf((char const   * __restrict  )"m=%d, a=%d, b=%d, c=%d\n", m, a, b, c);
16
17   if (a > m) {
18
19     printf((char const   * __restrict  )"\n\t!!Wrong data !!\n");
20   } else
21
22   if (b > m) {
23
24     printf((char const   * __restrict  )"\n\t!!Wrong data !!\n");
25   } else
26
27   if (c > m) {
28
29     printf((char const   * __restrict  )"\n\t!!Wrong data !!\n");
30   } else {
31
32     sum = (a + b) + c;
33
34     if (sum >= 240) {
35
36       printf((char const   * __restrict  )"Grade : A\n");
37     } else
38
39     if (sum >= 180) {
40
41       if (sum < 240) {
42
43         printf((char const   * __restrict  )"Grade : B\n");
44       } else {
45
46         goto _L;
47       }
48     } else
49     _L: /* CIL Label */
50
51     if (sum >= 120) {
52
53       if (sum < 180) {
54
55         printf((char const   * __restrict  )"Grade : C\n");
56       } else {
57
58         printf((char const   * __restrict  )"Result : Fail\n");
59       }
60     } else {
61
62       printf((char const   * __restrict  )"Result : Fail\n");
63     }
64   }
65
66   return (0);
67 }
68 }

Figure 3.4: Example Program showing code transformation
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Algorithm1 Description: The algorithm takes program P as input and generates P

with some instrumented code. In line number 5 to 8 each statement of program is visited

and if statement matches conditional type then nesting level 1 is assigned. A queue is

used to assign levels in Breadth First Manner. For each element of queue, statement

becomes parent(line number 10) and all the statements in its true and false block is

visited one by one in Line numbers 9 to 11. If statement is conditional, level is assigned

as parent’s level + 1 (line number 13) and the statement is queued for exploring its

block later. Table 3.1 shows levels assigned to conditional statements after code trans-

formation for example program.

Table 3.1: Nesting Level Table

Condition Statement id level Parent id

a >m 2 1 0
b >m 4 2 2
c >m 6 3 4

sum ≥ 240 9 4 6
sum ≥ 180 11 5 9
sum < 240 12 6 11
sum ≥ 120 15 6 11
sum < 180 16 7 15

3.3.5 Code Instrumentation:

In order to achieve functionalities such as symbolic execution, getting path condition in

the form of a level tree at run time, CDG construction program P is instrumented with

various function calls at appropriate location in the program.

3.4 Symbolic Executor

Symbolic Execution [3] is a program analysis method which means executing a pro-

gram with symbolic values rather than concrete values, where symbolic values are the

representation of program variables driving its behaviour. Each assignment statement

in the program is represented as a function or in terms of Symbolic Variables. Every

conditional statement expression is represented as a prepositional formula in terms of

Symbolic Variables. In our implementation, we maintain a symbol table for program

variables containing symbolic values and concrete values. For an assignment statement,

symbol table is looked up for each variable in the right hand side and replaced with its

symbolic value. Table 3.2 shows symbol table for example program.
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Table 3.2: Symbol Table for Example Program

Variable Symbolic value Concrete Value

m s0 100
a s1 80
b s2 80
c s3 80

sum (s1 + s2 + s3) 240

3.4.1 Customized Heap Allocation:

In the implementation, symbolic execution for data types like int and float are obtained

by maintaining a symbol table as explained above. Symbolic Execution for complex

data types such as Structures, Arrays or Pointers is achieved by maintaining a heap

structure as follows:

• Arrays : For an assignment statement such that array variables are accessed to set

value of any program variable, memory is allocated in the table with the array

name, index, assigned symbolic name and concrete value.While constructing prepo-

sitional formula from the expressions in conditions the allocated table is looked

up for a symbolic name and if found, condition is obtained in terms of symbolic

variable. If not found, a new entry for the variable is inserted int the table and

the symbolic value assigned is used. An example symbol table is given in Table 3.3.

Table 3.3: Array Datatype Sample Symbol Table

Array Name Index Symbolic Value Concrete Value

a 0 a0 12
a 5 a5 7
b 3 b3 15
c 2 c2 3
a 1 a1 4

• Pointers : As pointers store address of variables they point to, whenever there is

an assignment statement of a variable’s address to a single indirection pointer(p)

or double indirection pointer (ptr) as shown in the equations 3.1 and 3.2 below.

Two entries are added to the symbol table, one for mapping the address stored in

pointer variable and other for mapping address stored to its variable.

p = &var (3.1)
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ptr = &p (3.2)

The Symbol table values for above assignment are shown in Table 3.4 considering

var’s symbolic value was already inserted. For pointer p, we add two entries

signifying p stores an address, mapping p to addr and this address belongs to a

variable var and hence the entry addr to var. Depending on the number of pointer

indirection symbol table is looked up for respective symbolic values iteratively.

Table 3.4: Pointer Symbol Table Entry

Name Symbolic Value Concrete Value

p addr#var <address of var >
addr#var var -

var s0 55
ptr addr#p <address of p >

addr#p p -

For example, program checks if a pointer is NULL or not for this the value

stored by the pointer needs to be an address an thus we need one table lookup to

get the address. Suppose we have a condition *p > 10 we need to lookup for the

value of variable p points to thus we need symbolic value of var which is ‘s0’ and

the condition becomes s0 > 10. In we have a pointer with ‘n’ indirections then we

need to lookup the table 2*n + 1 times to fetch the symbolic value.

• Structures : Structures are user defined data types and there can be nested structures

in the program. For each structure object a table is created mapping its address to

the table, the fields of the structure are the contents of the table having symbolic

value and concrete values. In case of nested structures, the struct field points to

a new table where fields of this nested structure can be accessed and this process

continues recursively till there are no more nesting of structures.

For example, in order to obtain symbolic value for p.a.b.c where p,a and b are

of struct type Figure 3.5 shows the dynamic table allocation. Since, p is of type

structure we create a table for p’s fields now we found that field a is again of type

structure, again is table is allocated which is pointed by p’s field a and similalry

for b. Assuming c is not a struct type, the table of b contains one entry for c. The

number of table lookups required depends on the nesting level of structure whose

field is to be accessed.
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Figure 3.5: Symbol Table for Structure Type

3.5 TestCase generator for Levelling Module

Once the program P is run with random values a Path Condition is obtained, in order to

direct program through different branch we negate one or more conditions obtained from

previous run. The new directed path condition obtained is then sent to the constraint

solver Z3 [15] to check if new path is feasible if yes we get values for Symbolic Variables

and if infeasible we search for a new path by negating next level conditions.

1 int binarySearch(int A[], int l, int r, int key)
2 {
3     int m;
4    
5     while( l <= r )
6     {
7         m = l + (r-l)/2;
8       
9         if( A[m] == key ) 

10             return m;
11
12         if( A[m] < key ) 
13             l = m + 1;
14         else
15             r = m - 1;
16     }
17
18     return -1;
19 }

Figure 3.6: Example Program 2

Figure 3.6 shows an example program which uses binary search algorithm to find an

element in the array. The transformed program with loops unrolled is shown in Figure

3.7 we will use this program to understand the algorithm stated below for directing

path conditions. Let the initial path condition obtained by random run be as stated in

Equation 3.3
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PC = (l <= r)∧¬(∗(A+m) == key)∧(∗(A+m) < key)∧(l <= r)∧(∗(A+m) == key)

(3.3)

1 int binarySearch(int *A , int l , int r , int key ) 
2 { 
3   int m ;
4
5   {
6   {
7   if (l <= r) {
8     m = l + (r - l) / 2;
9     if (*(A + m) == key) {

10       return (m);
11     }
12     if (*(A + m) < key) {
13       l = m + 1;
14     } else {
15       r = m - 1;
16     }
17   }
18   if (l <= r) {
19     m = l + (r - l) / 2;
20     if (*(A + m) == key) {
21       return (m);
22     }
23     if (*(A + m) < key) {
24       l = m + 1;
25     } else {
26       r = m - 1;
27     }
28   }
29   }
30 #line 18
31   return (-1);
32 }
33 }

Figure 3.7: Transformed Example Program 2

The algorithm to construct new path conditions from the level tree obtained

is given in Algorithm 2.

Algorithm 2: Directing Path Conditions for TestCase Generation

Input : Program P1

Output : Set of Test cases2

Initialize : Program is run on random inputs and path condition PC is obtained in3

form of level tree4

begin5

level ← 16
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position ← 07

EnQueue(Q, PC)8

While isEmpty(Q) is False do9

PC ← DeQueue(Q)10

if position=0 then11

PC’ ← Negate all conditions at level 112

level ← level + 113

position ← position + 114

else if isEmpty(level) then15

PC ← DeQueue(Q)16

level ← 117

position ← 018

else19

i ← 020

while i <position && node != NULL do21

moveToNextNode() at level 122

i++23

end while24

if i <position then25

level ← level + 126

position ← 127

end if28

currLevel ← 129

while currLevel <level do30

PC’ ← PC’ and conditions at currLevel31

currLevel++32

end while33

PC’ ← PC’ and flip all conditions at level34

position ← position + 135

end if36

if atleast one condition in PC’ is not seen then37

Get results from Constraint Solver for PC’38

Run P with new values39

EnQueue(PC’)40

else41

go to line 942

end if43

end While44

end45
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Algorithm2 Description: Let us assume that the path condition obtained when

program is run on random inputs is given by Equation 3.3. The level tree obtained for

path condition is shown in Figure 3.8 where (l ≤ r) is the condition at level 1 and each

node has parent, child and next pointers. The conditions at level 1 seem to be same but

they are different due to unrolling of loop. The next pointer points to next node in the

same level for a path condition. Parent and child pointers are according to the nesting

predecessor and successor relationship. As we can see, (*(A+m)!=key) is at level 2 with

parent as (l ≤ r) and points to the next node in the same level which is (*(A+m)==key)

having a different parent.

In the algorithm, position signifies number of the node if all nodes at a level

are enumerated and level signifies nesting level assigned previously. Position and level

together signify the position of parent node whose children are to be flipped in the next

run. All nodes at same level are connected to each other in the level tree. During the

first iteration (line numbers 11 to 14) all the conditions obtained at level 1 are negated

and the path condition obtained is shown in Equation 3.4. We negate all conditions of

same parent at same level because these are independent to each other and to cover two

independent conditions minimum number of testcases required is two.

PC ′(level1) = ¬(l <= r) ∧ ¬(l <= r) (3.4)

Figure 3.8: Path condition as level tree

Line number 15 checks if the next level is completely empty, that is, if no

parent is left whose children are yet to be flipped or all the nodes in the current level

are leaf nodes, then the testcases from this path condition is completely explored and
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we move to the next path condition. From line number 21 to 24 we move to the correct

position in the level tree at level. If all the children of the nodes at current level are

explored then we move to next level with position as 1 in lines 25 to 27. Once position

is located, a new path condition is constructed by adding all the parent conditions as

prefix until the desired level (line numbers 30 - 33). All nodes at level are flipped or

negated and conjuncted with the path condition. Running algorithm in the level tree of

Figure 3.8 following path conditions are generated:

PC ′(level2, position1) = (l <= r) ∧ (∗(A + m) == key) (3.5)

PC ′(level2, position2) = (l <= r) ∧ ¬(∗(A + m) == key) (3.6)

PC ′(level3, position1) = (l <= r) ∧ ¬(∗(A + m) == key) ∧ ¬(∗(A + m) < key) (3.7)

After constructing new path conditions these prepositional formula are given to

constraint solver to get the values for symbolic variables that makes the path condition

feasible. The program is run with the new inputs generated and the path condition

obtained is queued, process gets repeated till there are no new path conditions obtained

or there are successive number of more than ten tries to find a new condition which

increases coverage and we either got infeasible constraints or the constraints did not

improve the coverage. This is where levelling module stops, in our approach we have

followed the combined levelling and CDG module so, once levelling module is complete

CDG module starts which is discussed in Chapter 4.

3.6 Coverage Module

This module measures the coverage according to the test case obtained. All the condi-

tions that are partially or completely seen are extracted, each side true/false is given

a weight of 1. The coverage percentage [20] is evaluated according to the following

formula:

Coverage =
total weight of conditions× 100

2× total conditions
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Algorithm 3: MCDC Coverage

Input : Program P, Test Cases1

Output : MCDC coverage percentage2

begin3

for each statement s in Program P do4

if s is conditional statement then5

C List ← AddToList(condition(s))6

end if7

end for8

weight ← 09

for each testcase t ∈ testcases do10

for each condition c ∈ path condition do11

if c evaluates to TRUE then12

TRUE FLAG ← True13

end if14

if c evaluates to FALSE then15

FALSE FLAG ← False16

end if17

if both TRUE FLAG and FALSE FLAG are True then18

weight ← weight + 219

else if TRUE FLAG or FALSE FLAG are True then20

weight ← weight + 121

end if22

end for23

end for24

Coverage ← weight× 100

2× sizeOf (C List)
25

end26

Algorithm3 Description: From line number 4 to 8, C List which contains total num-

ber of conditions in the program is populated. For each testcase and each condition,

populate its TRUE FLAG or FALSE FLAG. If both true and false side of the condition

is seen then we add a weight of 2, if only one of the sides is seen weight of 1, which is

partial weight, is added in line numbers(18 - 22). The coverage is calculated using the

weights and total decision statements in the program.
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3.7 Summary

In this chapter, we discussed about the static analyser, symbolic execution engine, work-

ing of Levelling Module and coverage analyser. The drawback of levelling module is we

obtain less coverage when there are control dependent statements, levelling module will

not be able to generate the best coverage. To overcome this, we present second approach

followed using CDG Module in the next chapter.



Chapter 4

CDG Module

In Chapter 3, we introduced Levelling technique for testcase generation. The technique

lacks in producing a good coverage if program has control dependent statements. These

are the statements whose execution depends on some other statement in the program.

We use Control Dependency Information[9] of program P with the objective of exploring

maximum number of conditions giving high coverage. In the module, we choose a path

such that it contains maximum number of uncovered conditions, that is conditions whose

atleast one side is not seen. The phases of CDG module are as follows :

• CDG Construction

• CDG Initialization

• Finding Top K paths

• Finding feasible paths using MAXSAT

• Updation of CDG score

4.1 Control Dependence Graph Construction:

Control Dependence Graph [10] summarizes the sequence of conditions required to ex-

ecute a particular statement in the program. A statement Y is control dependent on

statement X if X determines whether Y executes or not. In order to determine depen-

dency following 2 conditions must hold between X and Y:

• There is a path from X to Y.

• X is not postdominated by Y. Y post dominates X if all paths from X reaches Y.

29



Chapter 4. CDG Module 30

CDG is constructed from CFG and Post Dominance [16] Relationship which is obtained

by finding dominance relationship in the reverse CFG of program. The above two points

are standard procedure to construct CDG [17] and we have implemented the algorithm

describing all steps as given below:

Algorithm 1: Constructing CDG

Input : Program P1

Output : Control Dependence Graph2

begin3

Cfg ← Control Flow Graph of P4

PostDominance Tree ← Dominance relation on reverse Cfg5

create an ‘entry’ node with id 06

for each statement S ∈ P do7

for each successor A of S do8

if A does not postdominate S then9

makeEdge(node(S) → node(A))10

else11

EnQueue(Q, A.predecessors)12

pred ← DeQueue(Q)13

while there is a predecessor of A and A does not postdominate pred do14

EnQueue(Q, pred.preds)15

pred ← DeQueue(Q)16

end while17

if isEmpty(Q) then18

makeEdge( node(entry) → node(A))19

else20

makeEdge( node(pred) → node(A))21

end if22

end for23

end for24

end25

Algorithm1 Description: In lines 4-5 cfg and post dominance tree of program P

is constructed. For each statement’s successor A, if A doesnot occur at all the paths

from S then A is control dependent on statement S (lines 9-10). Otherwise, all the

predecessors of A are searched till a node is obtained which is not post dominated by A

and if such node is not found that means A will be executed whenever program runs and
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is not dependent on any node (lines 14-21). CDG generated for our example program

of Figure 3.7 is shown in Figure 4.1.

Figure 4.1: CDG for Example Program 2

The CDG shown above consists of nodes and edges where diamond shaped nodes are the

decision statements. Each node has a number representing the statement id, following

table shows the statement id of conditional nodes -

Table 4.1: Mapping decisions to statement id

Condition Statement id Line number

(l ≤ r) 2 7
(*(A + m) == key) 4 9

(*(A + m) <key) 6 12
(l ≤ r) 9 18

(*(A + m) == key) 11 20
(*(A + m) <key) 13 23

In the program of Figure 3.7 we observe that if condition of node 4 is true then we return

from the function. Thus the execution of statement 6 and 9 depends on the outcome

of node 4. Also, execution of 9 depends on the outcome of 2 as the path going to the

true side of 2 might go to exit. Thus we say that statement 9 is control dependent on

statement 2 and 4.
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4.2 CDG Initialization:

In this phase, CDG nodes are initialized with a metric called Score. This metric defines

the total number of conditions in the subtree whose true or false side or both has not

been seen. The initialization is done in the reverse breadth first search manner. Each

internal node has score equal to maximum of sum of all scores in true block side and

false block side. The leaf conditional nodes have a score of one if any of the true or false

side is not seen otherwise has a score of zero if both true and false outcomes is seen.

Procedure for initializing or updating scores of all CDG nodes is given in Algorithm 2.

Algorithm 2: Initialize CDG

Input : CDG of P1

Output : CDG with score2

begin3

for each node ‘n’ traversed in reverse BFS order do4

if n is conditional leaf node then5

if both side of n has been seen then6

setScore(n, 0)7

setOutcome(n,1)8

else if true side seen then9

setScore(n, 1)10

setOutcome(n, 0)11

else12

setScore(n,1)13

setOutcome(n,1)14

end if15

else16

sumTrue ←
∑

(scores of all nodes in true side)17

sumFalse ←
∑

(scores of all nodes in false side)18

if sumTrue >sumFalse then19

setScore(n, sumTrue)20

setOutcome(n,1)21

else22

setScore(n, sumFalse)23

setOutcome(n,0)24

end if25

if both sides of n not seen then26
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setScore(n, getScore(n)+1)27

end if28

end if29

end for30

end31

Algorithm2 Description: In the algorithm above, score gives total number of uncov-

ered conditions and outcome tells whether maximum score is found at true/false block

of the condition. We use a function named setOutcome which updates node n with

0/1 representing true/false side where we get maximum uncovered conditions. In line

numbers 5-15 score is assigned to the conditional leaf nodes if condition’s both side has

been seen initialize a score of 0. If one side is seen then score is initialized as 1.

The nodes are visited in reverse breadth first Order. For, internal conditional nodes

the sum of all the scores of nodes in true block and false block is calculated and the

maximum of these score is assigned to the node done in lines 17-25. If conditional node

itself is not been true or false then a score of 1 is added as the uncovered side of this

condition also needs to be explored (lines 26-28). CDG initialized with scores after some

runs is shown in Figure 4.2 where each node represents (statement id, score, outcome).

Figure 4.2: CDG Initialized for Example Program 2
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Table 4.2: Outcome of Conditions seen

Condition Statement id Line number True side False side

(l ≤ r) 2 7 1 1
(*(A + m) == key) 4 9 1 1

(*(A + m) <key) 6 12 0 1
(l ≤ r) 9 18 1 0

(*(A + m) == key) 11 20 1 0
(*(A + m) <key) 13 23 0 0

Table 4.2 shown above, represents the conditon’s outcome seen at a particular point.

We will consider this table to update score in CDG shown in Figure 4.2. Starting with

node 13, from table we know that both side of 13 has not been seen yet therefore we

give it a score of 1 and outcome 1. Similarly for node 6, its true side is not seen so give

it a score of 1 and outcome 1. For internal node, lets consider node 4, sum of true side

of node 4 is a score of 0 and false side is score of 4 (summing score of 9 and 6) and the

outcome desired is 0. Similarly, other nodes are updated with score and outcome.

4.3 Finding top K paths according to weight:

In this phase, top K paths are found based on score calculated from previous phase

such that topmost path has maximum number of uncovered conditions. At every node,

next node in the path is obtained by checking whether true/false block have maximum

number of uncovered conditions using score at every node. The parameter K is user

dependent it can be varied to cover more number of conditions, for our experimental

purposes we have used K as five. The procedure for determining top k paths is given in

Algorithm 3.

Algorithm 3: Top K paths

Input : CDG of P1

Output : K paths2

begin3

while k >0 do4

push(s, root)5

while isEmpty(s) is false do6

outcome = getOutcome(s, top)7

pop(s)8

if outcome then9
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for all nodes n in True block of stack top do10

push(n)11

Add n to the current path12

end for13

else14

for all nodes n in False block of stack top do15

pop(s)16

push(n)17

Add n to the current path18

end for19

end if20

end while21

Update CDG scores such that nodes in the current path has been seen with respective22

outcome23

end while24

end25

Algorithm3 Description: The path starts from root and outcome of each node is

found which determines whether maximum number of uncovered conditions are there in

true block or false block done in line numbers 5-8. From line numbers 9 to 20 all the

conditions in either true block or false block is discovered thus directing the new path

conditions. For determining second, third and so on best paths we update the scores

of all the nodes in previous path such that respective outcome of node is seen hence

decreasing the overall weight of path.

Figure 4.3 shows the topmost path for CDG initialized. The path from entry is high-

lighted and marked with the outcome of previous node needed in order to reach next

node. At every node we check visiting true/false side will cover more number of condi-

tions. Thus the path obtained is 2 - 4 - (9,6) - 11 - 13 and the path constraint is given

as follows:

PC ′(TopPath) = (l <= r) ∧ ¬(∗(A + m) == key) ∧ (∗(A + m) < key) ∧ (l <= r)

∧ ¬(∗(A + m) == key) ∧ (∗(A + m) < key)

(4.1)

Since, the path obtained in Figure 4.3 is feasible we update scores of CDG such that

these nodes are seen and then find the top path in updated CDG as shown in Figure

4.4. The second top path is highlighted in the figure with the outcomes labelled which

is 2 - 4 - 9 - 11 - 13. For first path there were 4 uncovered conditions and testcase for
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Figure 4.3: Top Path for CDG

the path constraint will cover nodes 6 and 11. Thus in this path we are still left with

two uncovered conditions 9 and 13, these conditions will be covered by successive paths.

Once top paths are found, we revert back the scores changed in CDG.

4.4 Finding maximum weight feasible paths using MAXSAT:

The objective of this phase is to find prefix path that is a path starting from entry with-

out any infeasible node in between, having maximum number of uncovered conditions.

The topmost paths found in previous phase is checked for its feasiblity by determining

maximum number of satisfiable conditions using MAXSAT [19]. Once satisfiable con-

dition set is known, prefix set of conditions is found by checking the nodes in the path

from entry. The weight of these paths determines the best satisfiable path and testcases

are obtained against its path conditions .

Since the CDG for example program 2 of Figure 3.7 has no infeasible paths,

let us consider CDG of example program 1 Figure 3.4 and Table 3.1 for mapping of

statement ids to conditions. After covering nodes 2, 4 and 6 both sides say we have seen

the following path condition before initializing CDG.
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Figure 4.4: New path with updated scores

PC = ¬(a > m)∧¬(b > m)∧¬(c > m)∧¬(sum >= 240)∧(sum >= 180)∧(sum < 240)

(4.2)

Running Algorithm 3 to find the top path we get the path highlighted in Figure 4.5. Path

constraint for this path is checked for its feasibility using MAXSAT [19], but the path

is infeasible as false of node 9 and false of node 12 makes it infeasible. The conditions

for these nodes are:

PC = ¬(a > max) ∧ ¬(b > max) ∧ ¬(c > max) ∧ ¬(sum >= 240)∧

(sum >= 180) ∧ ¬(sum < 240) ∧ (sum >= 120) ∧ (sum < 180)
(4.3)

MAXSAT [19] will solve the above constraint and give the satisfiable set till node 11,

therefore the prefix feasible path obtained will be : 2 - 4 - 6 - 9 - 11. This process is

repeated for every path and then we check for the best path amongst them that is a
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Figure 4.5: Infeasible Path for CDG

path which can cover maximum number of conditions and determine testcases for paths

accordingly.

4.5 Updation of CDG score:

After each test run using the testcases for paths obtained from prevous phase, scores of

nodes are updated by first updating the score of leaf nodes in the outcome side (true

/ false block) to 0 and hence propagating this score upwards towards root with similar

procedure as given in Algorithm 2. This process of updating scores, finding paths, using

MAXSAT, getting testcases, running programs over generated testcases are repeated
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either till no paths are left to be explored or there are successive more that ten failed

tries to increase the coverage.

4.6 Summary

In this chapter, we discussed about utilizing control dependency information for higher

coverage. Concept of score defined as a heuristic to drive through various paths and

MAXSAT with the objective of getting high coverage were introduced. In next chapter

we present and analyse the results obtained by Levelling module ,CDG Module and

combined levelling and CDG module.
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Experimental Results

In this chapter, we observe the results of experiments over a set of benchmark programs

along with analyzing the results obtained from various approach discussed in previous

chapters.

5.1 Results

Table 5.1 shows summary of results obtained, the major columns define levelling module,

CDG module and the combined approach followed. For each module, coverage obtained,

number of testcases produced and time taken by the module, which includes code in-

strumentation and static analysis is shown.

The levelling module, in which we provide nesting level to conditions and direct path

conditions so that conditions at a specific level is only flipped, doesnot handle the in-

feasible constraints, if found we search for a new condition that can be directed. The

module searches for new feasible path conditions till there are more than or equal to

ten successive tries which results in either infeasible path constraints, path constraints

such that all the conditions were already seen or there are no more path conditions to

be explored. If any of these are true, the module stops and gives the results in form of

Coverage, testcases obtained and time taken for the complete run.

CDG module consists of CDG construction, defining score for each node, finding top

K paths, using MAXSAT to find the feasible set of constraints, running the program

through best paths where score defines the total number of uncovered conditions in the

40
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subtree. As we are running the module when no conditions were covered, a single test-

case covers many conditions at once. The results are produced over forty benchmark

programs which are explored till either there are no paths left in CDG or there are more

than or equal to ten unsuccessful attempts to increase coverage.

Combined module works with both levelling module and CDG module. At first levelling

module explores all possible conditions according to MCDC. The state of program that

is, the number of conditions covered, from levelling module is used to initialize CDG

and explore maximum number of uncovered conditions.

Table 5.1: Results obtained by three approaches

S No Program Function Levelling Module CDG Module Combined Module
Coverage TestCases Time Coverage TestCases Time Coverage TestCases Time

1-10 Linpack

idamax 45 4 2.028 s 63 4 2.080 s 72 6 2.180 s
dscal ur 25 2 2.016 s 85 6 2.088 s 85 6 2.056 s
ddot ur 23 1 2.012 s 65 4 1.988 s 65 4 2.212 s
daxpy ur 28 2 2.004 s 67 5 2.156 s 67 5 2.244 s
dscal r 41 2 2.016 s 83 4 2.020 s 83 4 1.932 s
ddot r 38 2 2.008 s 61 3 1.994 s 61 3 2.064 s
daxpy r 40 2 2.008 s 65 4 2.080 s 65 4 2.160 s
dgesl 80 11 2.164 s 87 13 2.176 s 95 17 2.628 s
dgefa 80 8 2.148 s 68 6 2.248 s 80 8 1.940 s
matgen 75 2 2.152 s 50 1 1.884 s 75 2 2.160 s

11-15 WCET

select 63 3 2.020 s 63 4 2.176 s 66 4 3.104 s
expint 71 4 1.992 s 71 4 2.028 s 71 4 2.040 s

qurt fabs 100 2 1.800 s 100 2 1.760 s 100 2 1.800 s
qurt sqrt 57 2 1.840 s 50 1 1.984 s 57 2 2.072 s

qurt 66 2 1.628 s 66 2 2.116 s 66 2 1.896 s

16-19 BRNS

selectMedian 31 3 2.020 s 31 4 2.284 s 31 3 2.192 s
UpCounter 95 10 1.852 s 95 10 2.200 s 95 10 1.876 s

AAS 56 7 2.036 s 97 14 2.560 s 97 15 2.360 s
GroupAAS 35 5 2.610 s 61 8 2.696 s 64 10 3.000 s

20-22 Heap Sort
adjust 93 5 2.028 s 81 4 2.036 s 93 5 1.868 s
heapify 80 3 1.928 s 70 3 2.036 s 80 3 2.056 s
heapSort 100 2 2.008 s 100 2 2.380 s 100 2 1.720 s

23 Insertion Sort insertionSort 79 4 2.008 s 83 4 2.056 s 83 5 2.052 s
24 Bubble Sort bubbleSort 70 3 1.956 s 83 5 2.104 s 83 4 1.924 s

25-26 Quick Sort
partition 62 3 2.036 s 87 3 1.992 s 100 4 1.829 s
quickSort 60 2 2.028 s 60 3 1.984 s 60 2 2.004 s

27 Merge two arrays merge 89 4 1.912 s 96 5 2.172 s 96 5 1.956 s

28-29 Tic Tac Toe
checkwin 84 13 2.156 s 90 14 2.988 s 98 20 2.568 s

tictactoeMain 38 2 2.020 s 52 5 2.576 s 56 6 2.532 s
30 Triangle triangleCheck 47 5 2.028 s 79 9 2.320 s 79 9 3.496 s
31 Binary Search in Array binarySearch 41 2 2.004 s 91 5 2.036 s 91 5 1.928 s
32 ATM atm 95 8 2.020 s 95 8 3.140 s 95 8 1.960 s
33 Median of 2 Sorted Arrays getMedian 87 5 2.020 s 75 3 2.112 s 87 5 2.048 s

34-40 TCAS

Own Below Threat 100 2 1.744 s 100 2 1.780 s 100 2 1.744 s
Own Above Threat 100 2 1.724 s 100 2 1.740 s 100 2 1.724 s

Positive RA Alt Thresh 100 5 1.724 s 100 5 1.868 s 100 5 1.724 s
Inhibit Biased Climb 100 2 1.728 s 100 2 1.760 s 100 2 1.728 s

Non Crossing Biased Climb 37 2 2.008 s 37 3 2.124 s 37 2 2.048 s
Non Crossing Biased Descend 37 2 2.008 s 37 3 2.952 s 37 2 2.004 s

alt sep test 61 5 2.008 s 61 5 2.144 s 61 5 2.068 s

From Table 5.1 we observe that for levelling module, most of the programs produces less

coverage when compared to maximum coverage that can be achieved. Although, for 6

progams from heapSort, TCAS and WCET 100 % coverage is achieved. The minimum
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coverage percentage for this module is 23 %. For the above set of programs, maximum

number of testcases obtained is 13 and minimum is 1. The less coverage is due to infea-

sible paths which shows scope of improvement in the module. Time taken by module is

around 2 seconds 12 milliseconds which includes the time taken to instrument the pro-

gram and generate all possible testcases. The average coverage obtained with levelling

approach is 65.225 % for the set of forty programs.

For CDG Module, we observe an increase in coverage of programs as compared to level-

ling module. The maximum coverage obtained is 100 percent and minimum is 31. The

maximum number of testcases obtained is 14. The average coverage obtained by using

CDG module is 75.125 %. The time taken for generating test cases using CDG module

is approximate 2 seconds and 300 milliseconds including program instrumentation and

static analysis.

The results obtained by using combined approach shows an increase in the coverage for

most of the programs over levelling module. Some programs like matgen, GroupAAS

shows an increase in coverage from CDG module. Around 52 percent of the programs are

observed to get a coverage of more than 80 %. The average coverage obtained by using

combined approach is 78.275 %. Time taken by the module is approximate 2 seconds

and 500 milliseconds which involves all the instrumentation and static analysis of code

along with the execution time of levelling and CDG module. The maximum number of

testcases obtained by using this approach is 20 and hence increase in coverage.

5.2 Comparison on TestCases

Table 5.2 shows the number of testcases generated when a module is forced to exploit

conditions and reach various thresholds used for comparison. In order to compare num-

ber of testcases produced by levelling module, CDG module and combined module, we

have set thresholds to be 40 percent, 60 percent and 80 percent. The star mark used

in table shows that for a program the module cannot reach the threshold even after

exhaustive search.

For program AAS, the number of testcases generated by levelling and combined mod-

ule is more than that of CDG module for same threshold percentage. Programs such

as dgesl, expint produces same number of testcases for all three approaches. For pro-

grams such as dgefa, AAS, checkwin we observe that CDG module can reach a coverage
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threshold of 80 percent in less number of testcases than levelling module and combined

approach. ATM program shows that levelling module provides threshold coverage with

less number of testcases as compared to CDG module and combined module. Whereas

combined module always generate testcases greater than or equal to levelling and CDG

module.

Table 5.2: Comparison on Number of TestCases

Program Function 40 percent 60 percent 80 Percent
LevellingCDGCombinedLevellingCDGCombinedLevellingCDGCombined

1-10 Linpack

idamax 3 3 3 * 4 6 * * *
dscal ur * 3 3 * 4 4 * 5 5
ddot ur * 3 3 * 4 4 * * *
daxpy ur * 3 3 * 4 4 * * *
dscal r 2 2 2 * 3 3 * 4 4
ddot r * 3 3 * 3 3 * * *
daxpy r 2 2 2 * 4 4 * * *
dgesl 3 3 3 6 7 6 11 11 11
dgefa 2 4 2 5 5 5 13 * 13
matgen 1 1 1 2 * 2 * * *

11-15 WCET

select 1 1 1 4 3 2 * * *
expint 2 2 2 4 * 4 * 3 4

qurt fabs 1 1 1 2 2 2 2 2 2
qurt sqrt 1 1 1 * * * * * *

qurt 1 1 1 2 2 2 * * *

16-19 BRNS

selectMedian * * * * * * * * *
UpCounter 3 3 3 5 4 5 8 7 8

AAS 5 3 5 8 4 8 12 8 12
GroupAAS * 4 6 * 8 9 * * *

20-22
Heap Sort adjust 1 1 1 2 2 2 4 4 4

heapify 1 1 1 3 3 3 3 * 3
heapSort 1 1 1 2 2 2 2 2 2

23 Insertion Sort insertionSort 1 1 1 2 2 2 * 4 5
24 Bubble Sort bubbleSort 1 1 1 2 3 3 * 5 4

25-26 Quick Sort
partition 2 2 2 3 2 3 * 3 *
quickSort 2 1 2 2 2 2 * * *

27 Merge two arrays merge 2 2 2 3 2 2 4 4 4
28-29 Tic Tac Toe checkwin 3 2 3 5 2 5 10 8 10

tictactoeMain * 3 3 * 5 * * * *
30 Triangle triangleCheck 5 2 5 * 4 6 * * *
31 Binary Search in Array binarySearch 2 2 2 * 3 3 * 5 5
32 ATM atm 1 1 2 3 4 4 5 6 7
33 Median of 2 Sorted Arrays getMedian 1 1 1 2 2 2 5 * 5

34-40 TCAS

Own Below Threat 1 1 1 2 2 2 2 2 2
Own Above Threat 1 1 1 2 2 2 2 2 2

Positive RA Alt Thresh 2 2 2 3 3 3 4 4 4
Inhibit Biased Climb 1 1 1 2 2 2 2 2 2

Non Crossing Biased Climb * * * * * * * * *
Non Crossing Biased Descend * * * * * * * * *

alt sep test 5 4 5 5 4 5 * * *

Thus, from the table above we conclude that there are some cases for which levelling

module performs better than CDG module. Combined approach results in more number

of testcases with higher coverage as there are programs like dgefa and heapify for which

CDG can not reach higher threshold.
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5.3 Overall Analysis

In this section, we will compare the results obtained by using Levelling module, CDG

module and the combined approach.

Figure 5.1: Analysis of Coverage

From the graph shown in Figure 5.1 we observe the coverage obtained by three ap-

proaches for a set of forty programs. As seen in section 5.1, the combined approach

gives a coverage either equal to levelling module or CDG module for most of the cases.

Whereas we also observerd that combined approach results in more coverage than lev-

elling and CDG in many cases.

In the graph shown above, blue line signifies levelling module, red represents CDG

module and green shows combined module. We observe that coverage obtained by

combined approach that is green line is mostly higher than other modules resulting in

best coverage. From levelling to combined approach we get an increase of 12.825 %

in the coverage and CDG to combined approach results in an increase in 2.875 % of

increase in coverage.
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Figure 5.2: Distribution of Coverage

In Figure 5.2, we show the distribution of program according to different range of cov-

erage for combined approach. Around 52.5 % of programs from set of forty programs

achieved a coverage greater than 80 percent and 35 % were able to cover more than 60

percent while 12.5 % of programs generate testcases for coverage less than 60 percent.

Thus, we conclude here that Combined approach is better than levelling module and

CDG module, providing higher coverage.
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Conclusions and Future Work

In the thesis, we have proposed a new approach to automatic testcase generation for high

MCDC coverage of program under test. Here we have developed concolic tester which

is used along with levelling module and CDG module to generate MCDC testcases.

Levelling module consists of providing nesting levels and directing path conditions such

that all nodes at same level are flipped together. This module along with concolic

executor provides an average coverage of 65.225 percent for set of forty programs and

average time taken for the module is 2.012 seconds.

CDG module consists of CDG creation, initialization, finding top K paths, using MAXSAT

to generate path constraints having maximum number of uncovered conditions to gener-

ate testcases along with concolic tester. Average coverage of 75.125 percent is obtained

with average time taken of 2.3 seconds. The combined approach of levelling module

followed by CDG module provides an average coverage of 78.275 percent and the time

taken using this approach is 2.5 seconds. In terms of coverage, the combined approach

outperforms both levelling module and CDG module.

Table 6.1: Features supported by Tool

Category Features Supported by Tool

Data Types
Integers, Floats, Arrays, Pointers, Structures X

Char, Strings, Enum, Typedef, Union, Multidimensional Arrays ×

Operators
Arithmetic, Logical, Relational, Ternary operators X

Bitwise operators ×
Control Structures If/else, Loop X

File Handling ×
Heap manipulation ×

46
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Table 6.1 shows a brief summary of the constraints on the tool developed. The bench-

mark programs and results are according to the features supported by the tool. Hence,

the results are subject to change once the unsupported features are handled.

We briefly outline the following possible extentions to work -

• In the thesis, interfunctional prodecure calls are not handled. Including this will let

us perform symbolic execution for these functions returning values. These values

can be generated and hence will increase the coverage.

• For symbolic execution on struct in C, we have used a customized heap allocation

approach which creates a nesting of symbol tables for each structure object. This

process utilizes lot of memory and is inefficient as it involves searching symbolic

name for a variable in nested tables. Optimizing this can reduce memory required

and time for table lookup.

• Machine learning techniques can be used to predict infeasible paths of the program

in advance.

• Slicing is a program decomposition method in which statements are extracted

relevant to a particular computation. The work can be extended by calculating

MCDC percentage on a sliced version of program to improve coverage.
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