Hot Code Reloading in Cloud Haskell

A thesis submitted
in Partial Fulfillment of the Requirements

for the Degree of
Master of Technology
by

Pankaj More

to the
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY KANPUR
June, 2014



CERTIFICATE

It is certified that the work contained in the thesis titled Hot Code Reloading in
Cloud Haskell, by Pankaj More, has been carried out under my supervision and

that this work has not been submitted elsewhere for a degree.

Prof Amey Karkare
Department of Computer Science & Engineering

II'T Kanpur

June, 2014



i

ABSTRACT

Name of student: Pankaj More Roll no: Y9227402
Degree for which submitted: Master of Technology
Department: Computer Science & Engineering

Thesis title: Hot Code Reloading in Cloud Haskell

Name of Thesis Supervisor: Prof Amey Karkare

Month and year of thesis submission: June, 2014

Zero downtime is a fairly common requirement in large scale distributed systems
running critical business logic. But, most of the software run in production today is
not built with this requirement in mind. The standard approach to maintain up-time
is by using redundant hardware which is both expensive and complex.

The ability of a program to update itself while in execution is commonly know
as Dynamic Software Updating. DSU also helps in rapid prototyping. The ability
to modify a running program on the fly is also useful in supporting interactive
programming.

Cloud Haskell is a framework for writing distributed applications in Haskell similar
to Erlang. In this thesis, we try to solve the problem of hot-code reloading a Cloud
Haskell application. We first try to figure out Erlang’s behaviour with respect to
message reliability, version existence and quiescence. We use Haskell’s code reloading
runtime facility to build a prototype solution which can upgrade a single process in a
module running on a single node without state preservation. We then discuss other
approaches which might scale better in a distributed scenario and can be generalized
to any Cloud Haskell like system. We conclude with a list of issues to be resolved to

develop a general solution to the problem of hot-code reloading in Cloud Haskell.



To my grandfather



Acknowledgements

First, I would like to thank my thesis adviser Dr Amey Karkare. Without him this
thesis would not have been possible. He patiently listened to my problems and gave
valuable insights. His proposal to consider ideas from proxy based approaches, was
very useful.

I’d also like to thank my parents and others in my life who inspire me and support
me in all my endeavours.

I would like to thank all the people at #haskell on Freenode IRC, who helped
me understand various intricacies of the Haskell programming language. The parallel-
haskell mailing list in particular was very useful to me during my research.

Special thanks to Tim Watson for helping me with Cloud Haskell on #haskell-

distributed and sketching out the proxy approach.



Contents

List of Figures

1 Introduction
1.1 Challenges in a distributed system . . . . . ... ... .. ... ...
1.2 Hot Code Reloading . . . . ... ... ... ... .. ... ...
1.21  The Problem . . . . ... ... ... ... .
1.2.2  Why Hot Code Reloading . . . . . .. ... .. ... .....
1.2.3 Example of Hot Code Reloading in Erlang . . . . . . . .. ..

1.3 Contributions . . . . . . . . ..

2 A brief tour of Cloud Haskell
2.1  The Design Decisions . . . . . . . ... ... .. ... ... ...
2.1.1 Implementing Erlang in Haskell . . . . . .. .. ... ... ..
2.1.2  Library vs Run Time System . . . . ... ... ... .....
2.1.3 Modular Architecture . . . . . ... ... L.
2.1.4 The Actor Model and Cloud Haskell . . . . . ... ... ...
2.1.5 Actor vs Thread . . . . . ... ... .. ... ... . .....
2.2 The Core API . . . . . . .. ..
2.3 Ping Pong in Cloud Haskell . . . . . .. ... ... ... ... ....

3 Related work
3.1 Formal specification of DSU . . . . . . . .. ... .. ... ......

3.2 Related ideas and techniques . . . . . .. ... ... ... .. ....

viii

10
10
11
12



3.2.1 Quiescence . . . . ...

3.2.2  Binary Code Rewriting . . . . . . .. ... ... ... .....

3.2.3 Proxies, Intermediaries and Indirection Levels . . . . . . . ..

3.2.4  State Transfer and Transformation Functions . . . . . . . ..

3.2.5  Source code static analysis . . . . . ... ..o

3.2.6  Using underlying facilities . . . . . . .. .. .. ... ... ..

3.2.7 Version Coexistence . . . . . . . . . ...

3.3 DSU and Functional Programming . . . . . .. ... ... ... ...

3.3.1 Haskell . . . . . . s

332 Erlang . . . . ..o

4 An Attempt at Hot Code Reloading

4.1 Understanding Erlang’s Behaviour . . . . . . .. .. ... ... ...

4.1.1 Message loss during updates . . . . . . . ... ... ... ...

4.1.2  Quiescence and Version Coexistence . . . . . ... ... ...

4.2 An approach using plugins . . . . . . . .. ... L

4.2.1 The Plugins Way . . . . . . ... .. .. oL

4.2.2 A minimal plugins example . . . .. .. ... ...

423 DSUin PingPong . . . . .. .. ... ... ...

4.2.4 Unresolved Problems . . . . . . . . . . . . . ... ... ...

4.3 The Proxy Approach . . . . . ... .. ... .

4.3.1 Cloning a Process. . . . . . . .. .. .. ... ...

4.3.2 Relocating a process . . . . . . . .. ... L.

4.3.3 Addressability and Roaming . . . . . . . ... ... ... ...

4.3.4 Other Problems . . . . . . . . . . ...

4.3.5 Evaluation . . . . . . ...

5 Conclusions

5.1 Implementation Challenges . . . . . . . . .. ... ... ... ....

5.2  Future work

vi

16
17
17
18
18
18
19
20
20
21

22
23
24
24
26
26
27
29
30
35
36
36
36
38
38



References

vii

43



List of Figures

1.1
1.2
2.1
2.2
4.1
4.2
4.3
4.4

An example of hot code loading . . . . . ... ... ... .. ... .. 4
An example of hot code loading . . . . . .. .. ... ... ... ... 5
Cloud Haskell APT . . . . .. ... ... . .. ... 12
Ping Pong in Cloud Haskell . . . . . .. .. .. ... ... ... ... 13
Program to check message loss in Erlang . . . . . . .. ... ... .. 25
A minimal plugins example . . . . . ... ... L. 28
DSU in Ping Pong - PingPong.hs . . . . . . .. ... ... ... ... 31

DSU in Ping Pong - Main.hs . . . . . . . .. .. ... ... ... ... 32



Chapter 1

Introduction

With CPU gigahertz race behind us, parallelism has started rising in importance.
When Moore’s law used to guarantee doubling CPU clock speed every two years, the
lazy strategy to improve the speed of a slow program was to simply wait. With time,
it would become automatically faster. But this does not happen anymore. CPU
clock speeds have stagnated. Programs have to be re-written to use multiple cores
to improve performance. The cost of scaling the number of cores on a multi-core
CPU is quite prohibitive. Buying expensive systems with large number of CPU cores
is termed as wvertical scaling. This is neither elastic nor very reliable. Horizontal
scaling is about using a large number of low cost compute machines and improving
performance by simply adding more machines. Horizontally scaling the computation
across a range of commodity compute nodes is much more cost effective, scales
more incrementally and is becoming increasingly popular for programming compute
intensive distributed applications. This approach of renting a cluster of nodes with
on-demand elastic scaling of resources is commonly known as “cloud computing”.
Cloud Haskell [1] is a framework for writing distributed cloud-based applications
in Haskell. It is conceptually very similar to Erlang [2] which is very popular in

industry [3].



1.1 Challenges in a distributed system

Developing distributed programs which can scale horizontally across a large number

of nodes presents some unique challenges:

o When programming the cluster as a whole, there is a need to coordinate various
processes running on heterogeneous systems. Most programming languages do
not directly address the problem of distributed concurrency. The dominant
model of concurrency in most mainstream programming languages is usually the
shared-memory variety. It relies on the concept of multiple threads modifying
shared mutable data. This model is not very useful in a distributed model.
Glasgow Distributed Haskell [4] tries to replicate the model of shared memory
concurrency in a distributed system. This model is not very successful because
the cost of moving data across in a distributed system becomes a dominant
factor. By making message passing explicit, Cloud Haskell exposes the cost of

message passing to the programmer.

e The problem of fault tolerance becomes non-trivial in a distributed system.
When a distributed program is running across hundreds of thousands of nodes,
some of the nodes will fail at any given moment of time with very high probab-
ility. A failure of a node should not require restarting the whole calculation , or
the calculation might never finish. The programmer needs tools to detect and
respond to failures as part of the programming model. Cloud Haskell allows

monitoring of processes and exposes primitives to handle node failures.

1.2 Hot Code Reloading

1.2.1 The Problem

Current Cloud Haskell systems cannot be easily upgraded from one version of the

code to the next. There is no support in the tool to enable safe upgrades. Moreover,



if there are multiple versions running concurrently, processes having incompatible
types won’t communicate and the current implementation fails silently. This makes
debugging very hard since the programmer cannot figure out the issue if no error
is generated due to incompatible versions. Ad-hoc update mechanisms like using
external tools for updating a cluster are neither safe nor efficient and very error-prone.

In this thesis, we work on the problem of supporting hot-code reloading, commonly
known in literature as Dynamic Software Updating, a running Cloud Haskell system

with zero downtime.

1.2.2 Why Hot Code Reloading

o Zero downtime is a fairly common requirement in large scale distributed systems
running critical business logic. This is especially true in financial transaction
systems, telephone switches, airline traffic control systems and other mission

critical systems.

e Hot code reloading is less expensive than using redundant hardware for man-
aging upgrades. Loss of web service during maintenance is no more acceptable
and leads to lost revenues. For example, Visa makes use of 21 main frames to
run its fifty-million-line transaction processing system. It is selectively able to
take machines down and upgrade them by preserving relevant state in other
online systems and complex state migration. This approach is expensive as

well as increases the complexity of deploying updates.

o It helps in rapid prototyping and increases developer productivity by reducing
the length of an iteration cycle. The ability to modify a running program and
update it on the fly saves a lot of time which would be otherwise wasted in
restarting a program and rebuilding all the relevant state. Moreover, the real
time feedback available to the programmer when he changes the program is

very valuable in supporting interactive programming.

« Language level updating facility is more reliable than using external tools to



safely update a software. Manually distributing the updated version using tools
like scp, puts the burden of responsibility on the programmer to make sure that
all nodes are running the same node. This can be quite error-prone because
Cloud Haskell would silently fail during communication between processes of

incompatible types.

1.2.3 Example of Hot Code Reloading in Erlang

Erlang supports language level dynamic software updating. A process in erlang can
update into the new version by making an external call to its module.

We demonstrate an example of hot code reloading in erlang by the help of a
counter process. It can receive a message to increment the running counter, or a
message to send the current counter value, it can also receive a message to update

itself.

Figure 1.1 Hot code loading in erlang : version 1

%% A process whose only job is to keep a counter.
%% First version

-module(counter).

-export([start/0, codeswitch/1]).

start() -> loop(0).

loop(Sum) ->

receive
{increment, Count} ->
loop (Sum+Count) ;

{counter, Pid} ->
Pid ! {counter, Sum},
loop(Sum);
update ->
?MODULE : codeswitch(Sum)
% Force the use of 'codeswitch/1' from the latest MODULE version
end.

codeswitch(Sum) -> loop(Sum).

In version 2, we add the possibility to reset the counter to 0.



Figure 1.2 Hot code loading in erlang : version 2

%% Second version
-module(counter).
-export([start/0, codeswitch/1]).
start() -> loop(0).

loop(Sum) ->

receive
{increment, Count} ->
loop (Sum+Count) ;
reset ->
loop(0);

{counter, Pid} ->
Pid ! {counter, Sum},
loop(Sum);
update ->
?MODULE : codeswitch(Sum)
end.

codeswitch(Sum) -> loop(Sum).

On receiving an update message, loop will execute an external call to codeswitch.
If there is a new version of “counter” module in memory, the its codeswitch function
will be called with the update state. In our example, we pass the same state to the
new version.

The goal of hot code reloading in Cloud Haskell is to have similar style of code

upgrade facility as Erlang.

1.3 Contributions

The contributions made in this thesis are:

o Understanding Erlang’s behaviour with respect to Version Coexistence, Quies-

cence and message reliability during upgrades.

« A prototype implementation for upgrading a single Cloud Haskell node with

multiple processes with one version of module in memory with no state persist-



ence.

o A discussion on other approaches that we tried and the challenges faced.

o A high level overview of the prozy approach with emphasis on the problems of

addressibility, serialization and code transmission.

o Discovered multiple issues with plugins library which need to be fixed to enable

hot-code reloading in Cloud Haskell.

The rest of the thesis is organized as follows. Chapter 2 gives a brief tour of Cloud
Haskell and the design decisions taken which set the background for understanding
the rest of the thesis. Chapter 3 highlights the major related concepts found in the
field of Dynamic Software Updating. Chapter 4 describes our various experiments
and approaches to hot code reloading in Cloud Haskell. Chapter 5 concludes by
listing the important and urgent problems that need to be solved to enable full

support for hot-code reloading



Chapter 2

A brief tour of Cloud Haskell

In this chapter, we will briefly cover the overall design decisions which influence the
development of Cloud Haskell. This is useful in understanding the trade-offs taken
by Cloud Haskell. The problem of hot code reloading and our implementation in the

following chapters requires an understanding of these decisions.

2.1 The Design Decisions

2.1.1 Implementing Erlang in Haskell

The key idea is : Program the cluster as a whole, not individual nodes. Same program
runs on all the nodes. The programmer does not have to worry about how the
individual nodes behave. To implement this model, Cloud Haskell takes inspiration
from the Erlang [3] style of programming which has been highly successful in the
industry . The design decisions are influenced heavily by the motto: “If in doubt, do
it the way Erlang does it”.

We give reasons for why Cloud Haskell is an improvement over Erlang:

Improved tooling and library ecosystem Compared to Erlang, Haskell has a
much more mature ecosystem of tools and libraries. The package manager of

Haskell, Hackage has more than 5000 packages covering a variety of domains.



Static vs Dynamic Typing Haskell’s static typing with type inference eliminates

whole class of bugs at compile time.

Modular Architecture In erlang, the networking stack is embedded into its run
time system. It is difficult to use Erlang in exotic network protocols such as
infiniband, CCI, etc Cloud Haskell on the other hand keeps the network stack

decoupled as a library.

Multiple Concurrency Abstractions Apart from message passing across nodes,
individual nodes can still use concurrency primitives such as Threads and STM
as necessary. In case of high capacity, multi-core nodes, it might make better
sense to use shared concurrency constructs than actor model and Cloud Haskell
allows that. It encourages right abstraction at the right level. Erlang does not

provide other concurrency primitives.

A more precise and well-defined semantics Erlang’s semantics does not guar-
antee message reliability. In case of node disconnects, Erlang buffers the
messages temporarily and then drops messages, sacrificing reliability property.
Since messages cannot be buffered indefinitely, it is difficult to guarantee reliab-
ility. Cloud Haskell instead provides an explicit reconnect primitive to accept

intermediate message loss.

2.1.2 Library vs Run Time System

Compared to other approaches where the implementation is tied up with the run-time
system (RTS), Cloud Haskell is implemented as a Haskell library. The advantages

are the following :

Portability As a library, it can be compiled against Haskell compilers other than
GHC.

Modular The whole architectural flexibility afforded by Cloud Haskell is only pos-

sible because it is not tied with the RTS. Various layers of the stack can be



replaced with alternative implementations. Moreover, alternative implementa-

tions of Cloud Haskell can be developed and easily compared with each other.

Contributor Friendly GHC is a huge code-base and monolithic. If cloud haskell
was embedded into the run-time system, any contributions from other open-
source developers would be difficult due to the higher bar in developing patches

for GHC and getting those patches accepted.

Speed of Development GHC releases are usually bi-yearly or longer. Any small
improvements in Cloud Haskell would have to wait for six months to get to
mainstream if implemented inside the RTS. As a library, the fixes can be

uploaded continuously to Hackage without any delay.

2.1.3 Modular Architecture

Your distributed

application
—
libraries of distributed \
algorithms & patterns
\ Cloud Haskell
backend
/ |
Cloud Haskell

network transport
implementation

network transport

interface B

various network
libs and bindings

The architecture of Cloud Haskell is highly decoupled from the transport backend.
A major issue with Erlang is that it is difficult to use in exotic network protocols like
infiniband, CCI, etc. Cloud Haskell has a unified Network Transport interface which
provides a uniform abstraction for a variety of network protocols. Porting a Cloud

Haskell program to another network protocol is as simple as using the corresponding



10

network transport implementation for the given protocol. Even the Cloud Haskell
module is a stub API which simply re-exports the actual Cloud Haskell backend
API. This makes it very easy to try out competing implementations of Cloud Haskell

itself.

2.1.4 The Actor Model and Cloud Haskell

The dominant model of programming a distributed application running in a cluster
of nodes is via message-passing. MPI [5] and Actor Model [6] are the popular
models for message-passing. In actor model, isolated (no shared memory) lightweight
processes are the smallest program primitives [6]. These processes communicate only

by sending and receiving messages.

2.1.5 Actor vs Thread

Although, Actor is a concurrency abstraction similar to Thread, it has subtle differ-
ences which makes it suitable in a distributed setting. A comparison is listed in the
table below.

Table 2.1: Actor vs Thread

Actor Thread

can create more actors can create more thread

can have private local state can have private local state
has NO shared state has limited shared state

communicates via asynchronous message passing communicates via shared variables

The essential difference between the two is about isolation and message passing.
The appeal of actor model is its simplicity. By avoiding shared state, it eliminates a
whole class of concurrency bugs by definition. It is easier to reason about because
each actor can now be considered in isolation and independent of other actors.

More formally, an actor is a computational entity that, in response to a message

it receives, can concurrently [6] :

o send a finite number of messages to other actors



11

o create a finite number of new actors
o designate the behavior to be used for the next message it receives

The only popular programming language based on actor model is Erlang [7].
Recently there has been a rise in the number of different implementations of actor
model. Instead of designing a new programming language, the current actor based
systems are implemented by embedding as a concurrency paradigm inside a host
language. This has obvious advantages which are discussed in [8]. Some popular
implementations are Akka (Scala and Java), Celluloid (Ruby) and Cloud Haskell
(Haskell).

2.2 The Core API

For complete documentation of Cloud Haskell API, the haddock documentation can
be read at [9].

The central abstraction in Cloud Haskell for message passing is the Process monad.
It keeps track of the state associated with a process, primarily the message queue
associated with the process. Any code running in the Process monad has access to
the data structures representing the process and can pass these data structures to
other Process-monadic functions that it calls. All functions dealing with sending and

receiving of messages, spawning and linking processes must be in the Process monad.

« Since Process monad in an instance of MonadlO, arbitrary IO functions can

be called in Process monad via liftIO.

o Processld is a type corresponding to the process identifier. Nodeld is similarly

defined for nodes.

e Any type which is an instance of Typeable and Binary is also an instance of

Serializable.



12

» send takes a process-id and a serializable message and sends it asynchronously
to the corresponding process. An example in the next section demonstrates

the send and receive functions.

Figure 2.1 Core API

instance Monad Process
instance MonadIO Process

data ProcessId
data Nodeld

class (Typeable a, Binary a) => Serializable a

send :: Serializable a => ProcessId -> a -> Process ()
expect :: Serializable a => Process a

spawn :: NodeId -> Closure (Process ()) -> Process ProcessId
getSelfPid :: Process Processld

getSelfNode :: Process NodeIld

2.3 Ping Pong in Cloud Haskell

The program described in Figure 2.2 is the hello world equivalent in distributed
systems. A client process sends a Ping message to the server process. On receiving
the Ping, the server process prints a message “Got a Ping”.

In main, we initialize a network transport tcp backend, setup a local node and
run the process ignition on the local node.

The process “ignition” spawn the “server” process and the “client” process on
the local node and waits a while otherwise the child processes will get killed when
the parent terminates.

A channel is a tuple (SendPort a, ReceivePort a) on which only values of type

a” can be transmitted. In this case, it is the data type Ping. We create a binary

instance of Ping to make it serializable.



13

Figure 2.2 Ping Pong in Cloud Haskell

module Main where

import Control.Concurrent ( threadDelay )
import Data.Binary

import Data.Typeable

import Control.Distributed.Process
import Control.Distributed.Process.Node
import Network.Transport.TCP

data Ping = Ping deriving (Typeable)
-- binary instance declaration of Ping
instance Binary Ping where

put Ping = putWord8 0

get do { getWord8; return Ping }
-- Ping 1is now serializable
server rPing = do

Ping <- receiveChan rPing

1iftI0 $ putStrLn "Got a ping!"

client :: SendPort Ping -> Process ()
client sPing =
sendChan sPing Ping

ignition :: Process ()
ignition = do
-- start the server
sPing <- spawnChannelLocal server
-- start the client
spawnLocal $ client sPing
1iftI0 $ threadDelay 100000 -- wait a while

main :: I0 ()
main = do
Right transport <- createTransport "127.0.0.1" "86080"
defaultTCPParameters
node <- newLocalNode transport initRemoteTable
runProcess node ignition




14

The client sends Ping on the SendPort of server. In case of server, receiveChan
blocks until a message of type Ping is received on the receive port. On receiving the

message, server prints “Got a Ping” to the console.



Chapter 3

Related work

The research field concerning hot code reloading in software is known as Dynamic
Software Updating (DSU). DSU is a field of research focused on safely upgrading
programs while they are running [10]. Although there is no existing research on DSU
in the area of distributed functional programming, there is lot of work in the field
of imperative and object oriented programming languages. We will briefly describe
the main ideas and concepts found in the literature. For a detailed survey of DSU

systems, please refer to the survey by Miedes and Munoz-Escoi[11].

3.1 Formal specification of DSU

Any running program can be thought of a tuple (9, P) where § is the current program
state and P is the current program code. DSU systems transfer a running program
(0, P) to (8", P’). The state must be transformed into a representation P’ expects.
This requires a state transformer function. Thus, DSU transforms (9, P) to (S(¢), P).
An update is considered valid if and only if the running program (S(d), P’) can be
reduced to a point tuple (§’, P’) that is reachable from the starting point of the new
version of the program, (;,, P’). For a formal description of this validity, please
refer to the paper by Gupta, Jalote and Barua[12].

Although this is one formal definition for DSU, there is no consensus on the

standard definition of DSU which can be applied in all cases. Miedes and Munoz-



16

Escoi[11] presents a list of definitions and requirements expected of a DSU system

according to different authors.

3.2 Related ideas and techniques

In this section, we briefly discuss the most relevant concepts and techniques related
to dynamic software updating. Although most of these issues have been proposed in
the context of imperative programming languages, they serve to highlight high level

approaches and challenges faced while building any DSU system.

3.2.1 Quiescence

Many proposals for DSU use some form of quiescence. The basic idea is that before
an update, the component to be updated reaches some stable state. Depending on
the author, this stability requirement is defined in different ways.

In the paper by Kramer and Magee[13], a node is quiescent if it is not going
to start data exchange or receive any data from any other node [13]. In [14], the
authors argue that when upgrading a subset of nodes, they must be in a quiescent
state. Segal and Frieder [15] propose the concept of active process and inactive
process. They propose the criteria for a process to be inactive and argue that when
applying an update, the process must be inactive. [12] propose that before updating
a function, the execution stack is checked to see if the function is being executed.
The update should only be applied if it is not present. Giuffrida and Tanenbaum
[16] propose an update manager component. During an update, update manager
notifies the components to update. The components transit to a controlled state as
soon as possible and send a reply back. When the update manager receives all the
replies, the update can be applied.

Some authors have criticized the concept of quiescence and its blocking require-
ments. For example, Vandewoude et al. [17] argue that quiescence is stricter than

necessary. They propose the concept of tranquility[17] as a more relaxed alternative.



17

3.2.2 Binary Code Rewriting

Some authors propose rewriting of the binary code of the programs in memory, mostly
in Java and C. Fabry [18] was one of the first authors to propose the use of binary
rewriting in DSU systems. Bytecode rewriting of Java classes was proposed in [19]
to build an intermediary level that enable a regular Java application to be updated
in runtime. Hicks and Nettles [20] also use binary rewriting techniques to modify the
data types, service implementation and the client code that has access to the patched
code. Gregersen and Jgrgensen [21] used the standard instrumentation facilities
provided by the JVM as part of their mechanism of updating Java programs. There
are many tools and libraries that offer bytecode manipulation (including runtime
manipulation) for Java such as ObjectWeb ASM [22], CGLIB [23], Javassist [24],
JRebel [25] and others.

Haskell currently does not have any tooling or infrastructure for binary rewriting

or instrumentation of binary code.

3.2.3 Proxies, Intermediaries and Indirection Levels

The idea of redirecting function calls by remapping its handlers is used in [26, 18|.
Segal and Frieder [15, 27] use interprocedures, which are intermediate procedures
used to redirect the client invocations to old version procedures to their new version
counterparts. Purtilo, Hofmeister and Purtilo [28] propose the use of a software bus
to connect software modules by means of proxies. These proxies and the bus itself
intercept all the function calls and implement the dynamic reconfiguration of the
modules. Ajmani, Liskov and Shrira[30] propose the concept of simulation objects to
represent the past and future versions of an object. These objects are exposed to the
client as real objects. But internally they handle all redirection and invocation to
the actual objects.

We discuss a similar approach using proxies for Cloud Haskell in section 4.3



18

3.2.4 State Transfer and Transformation Functions

Several authors identify the need to migrate the state from old version to the new
version for consistency. The concept of state transfer was first proposed in [31].
The basic idea is defining two accessor functions getState and setState to retrieve
and set the state of a component. Before upgrading a component, using getState
a seriablizable representation of the state is obtained which can then be migrated
using some transformation functions supplied by the programmer like in [31, 26, 27,
20, 29] and then transferred to the new version by using setState function. Gregersen
and Jgrgensen also used a state transformation step which could be applied lazily

and on demand [21].

3.2.5 Source code static analysis

A variety of papers related to DSU use some kind of static analysis of the source
code to achieve different objectives. For instance, in [32, 33|, static analysis is used
to identify points in which it is possible to dynamically apply updates to the classes
which ensure some correctness property. Neamtiu et al. proposed Ginseng [34], a
DSU solution for programs written in C. In there proposal, they use static analysis
of the source code to ensure that the updates are type-safe. Moreover, they also
use annotated source code to identify safe points which is manually marked by the
programmer. Altekar et al. propose OPUS [35] which uses similar analysis to detect
unsafe dynamic updates. Authors like Hicks and Nettles [20] and Chen et al. in their
POLUS system [36] use static analysis to build a patch that can be applied to the

old version dynamically.

3.2.6 Using underlying facilities

A number of papers are based on the underlying features of the given programming
language or infrastructure. Bloom’s Ph. D. thesis’ [26] solution is based on the

programs written only in Argus programming language. For C, there are some options



19

like Gupta, Jalote and Barua [12], Ginseng by Neamtiu et al. [34] and POLUS by
Chen et al. [36]. In Java, there is great support for language level DSU facility
[37, 21, 38]. Dmitriev [39] uses an existing mechanism available in HotSpot Java
Virtual Machine to provide DSU of java code during debugging phase. Gregersen
and Jorgensen propose DSU solutions based on modifying the standard JVM.

The other approach is that authors provide their own custom infrastructure or
programming language. For example, Kramer and Magee proposal [13, 14] is based
on their CONIC configuration language and infrastructure. Stoyle et al. proposal
builds its own programming language, compiler, runtime and related tooling in [33].

Some solutions need specific hardware support. The proposal by Frieder and
Segal needs that the hardware architecture supports indirect addressing mode. Gupta,
Jalote and Barua [12] require that the hardware support segment based memory

addressing.

3.2.7 Version Coexistence

In some proposals, the new version can never co-exist with the old version. This is
ensured by asking the program to reach some stable state, performing the update
and then uninstalling the old version to prevent it from running at the same time.
The other approach is where multiple versions execute concurrently until all the
all clients are updated. For example, Segal and Frieder use interprocedures [15]
which delegate on the real implementations which can be old as well as new version.
Ajmani, Liskov and Shrira propose simulation objects as proxies that wrap the real
service objects. For a specific service object, multiple simulation objects can exist
which define the past and future versions of the object. All of them can co-exist and
be called by different pieces of client code which may be at different update stages.
POLUS [36] also allows old and new versions of the same code as well as data. But,

it ensures that old(new) code can only access old(new) data respectively.



20

3.3 DSU and Functional Programming

In the area of functional programming, there is lack of research work compared
to the imperative model. More specifically, in distributed functional programming
with message-passing semantics like Cloud Haskell, the field of DSU is relatively

unexplored.

3.3.1 Haskell

The major and only work in DSU in Haskell programming language is by Stewart and
Chakravarty [40]. In his Ph.D. thesis [41], Stewart provided mechanisms for dynamic
linking, loading, hot swapping and runtime type checking in Haskell for the first time.
The proposed solution is applicable to the problem of dynamic extension in statically
typed functional programming languages with type erasure [41]. It develops the
concept of fully dynamic software architectures, where the static core is minimal and
all code is hot swappable. This is different from many other dynamically extensible
architectures like Emacs and Linux Kernel which are not fully dynamic as some
core static functionality cannot be dynamically updated at runtime. They show its
feasibility by building two applications : Yi, an extensible editor and Lambdabot,
a plugin-based IRC robot, with ability for hot-code reloading as well as dynamic
re-configuration and extension via type-safe plugins and embedded DSLs.

The basic primitive is a runtime service provided by Glasgow Haskell Compiler to
load compiled Haskell modules into the address space of a running haskell application.
A library, called plugins [42] for dynamic linking and runtime evaluation of Haskell
code, is a major contribution of [41].

We will explore the use of plugins library in the next chapter to support hot-code

reloading techniques in Cloud Haskell.



21

3.3.2 Erlang

Armstrong et al. in his book titled, Concurrent Programming in ERLANG gives
exhaustive details about various features of Erlang including its hot-swapping facility.
But it does not talk about the implementation details or any formal understanding
of behaviour of dynamic updates in Erlang. The first work in trying to reason about
Erlang code was by Armstrong et al. in his Ph.D. thesis [2]. Building on his work,
Claessen tried to formalize a semantics for distributed erlang in [43] and improved
it further in [44]. But these semantics don’t accurately model the behaviour of
current implementation of erlang fully. Also there is no discussion in these papers to
formalize the dynamic update facility of erlang.

Svensson, Fredlund and Benac Earle[45] proposed a unified semantics for future
erlang implementations which behave the same in local and distributed scenarios of
erlang and help in understanding a number of poorly understood features of current
and future implementations of erlang. It also does not talk anything about DSU
semantics in erlang. The current implementation of erlang does not provide any safety
guarantees on its code swapping features. Although there are no formal guarantees, a
significant number of erlang production deployments using its code-reloading facility
and stress its importance as a major benefit of erlang.

Due to lack of any formal semantics for code reloading in erlang, we resort to
understanding its behaviour during updates by experimentation or reasoning, which

is discussed in the next chapter.



Chapter 4

An Attempt at Hot Code

Reloading

While searching for relevant implementations of DSU in distributed functional
programming, we found that Erlang’s language level hot-swapping [2] is very similar
to what we want to achieve. Since Cloud Haskell is already very similar in concept
to Erlang and the approach of Cloud Haskell designers has been : “If in doubt, do it
the way Erlang does it”, our initial approach was to follow on the footsteps of Erlang.
We tried to understand exactly how DSU works in Erlang. Even though there is no
formal semantics for DSU in Erlang, we found that even the documentation [46] for
implementation of Erlang and its specific behaviour during code upgrades was very
light on details . Hence, in this thesis, we do not focus on what the formal semantics
of Cloud Haskell should be. Imitating Erlang, we prototype, experiment and discuss
various approaches and their trade-offs in the context of Cloud Haskell.

The design goal of Cloud Haskell is to be highly decoupled from the runtime
system (RTS). Our proposal tries to be independent of the RTS. We do not attempt
to make changes to the current RTS. Although we depend on the object loading
runtime facility of GHC, we are not keen on approaches which would require changes
to the current GHC runtime system.

The overall problem of supporting hot code reloading contains many different



23

subtle sub-problems. The challenges in solving these problems have been discussed
in the Ph.D. thesis by Epstein [47]. In our current approach, we only focus on
the problem of upgrading a process running on a single node. This corresponds
to the Erlang code-upgrade example shown in subsection 1.2.3. Specifically, we do
not consider the problem of coordinating upgrades, rollbacks, sending new code
to remote nodes and the problem of communicating processes with incompatible
versions. These are auxiliary problems but nevertheless important to the overall
DSU experience.

The smallest possible situation is : The ping pong example discussed in section 2.3.
How to update the server process from one version to the next? Before we can answer

that question, we need to figure out how Erlang upgrades modules.

4.1 Understanding Erlang’s Behaviour

According to the Erlang manual [46], it keeps two versions of a module in memory
i.e old and current. When a module is upgraded i.e new version of the module has

to be brought into memory :

the old version is discarded from memory

processes running the old version get killed

the current version is marked as old

the new version becomes current

How is an update triggered in Erlang?

« Fully qualified function calls of the form ?MODULE:foo() always refer to the

current version.

» Non qualified calls such as foo() refer to the version in which they were originally

invoked.



24

o Upgrading a running Erlang process reduces to compiling the module, loading
the new version into memory and finally calling the process using its fully-

qualified function name.

Before we start to sketch out how upgrades should work in Cloud Haskell, we try

to find answers to the following questions:

o What kind of guarantees does Erlang provide with respect to message reliability

specifically during an upgrade?

o Why does Erlang keep two versions of every module in memory?

4.1.1 Message loss during updates

The question is : What happens to messages in transit during an update? We figure
out the answer by trying a simple experiment using the code shown in Figure 4.1.

For a live demonstration of this experiment and related discussion, see [48].

See Figure 4.1 for the program under discussion. When run with N = 10, the
client sends an upgrade message to the server along with the Ping message on its
fifth transmission. The client sends 10 Pings and receives 10 Pongs confirming that

no message was lost during upgrades.

4.1.2 Quiescence and Version Coexistence

In Erlang, can we update a process at arbitrary point in time?

The answer is no. Upgrading requires a fully qualified function call to itself. The
process is like a single thread. It cannot do any other computation like listening to a
network socket or writing to a file while simultaneously calling its newer version. So,
the property of quiescence is trivial in Erlang by virtue of its isolated process model.
Moreover, since processes can be upgraded at different points in time, there is a
possibility of type mismatch when different versions communicate. Erlang leaves it to
the programmer who has to make sure that incompatible versions can communicate

by writing newer versions with backward-compatibility in mind.



25

Figure 4.1 Program to check message loss in Erlang during update

-module( 'pingpong').
-compile(export all).
-import(timer, [sleep/1]).

start(N) ->
Server = spawn(?MODULE,server,[]),
_ = spawn(?MODULE, client, [Server,N,0]).

server() ->
receive
upgrade ->
compile: file(?MODULE),
code:purge(?MODULE),
sleep(5000),
code:load file(?MODULE),
?MODULE:server();
{ping,Cid} ->
Cid ! pong,
server()
end.

client( ,0,C) ->
io:format("DONE!~n"),
io:format("Received ~p Pongs!~n",[C]);
client(Server,5,C) ->
io:format("Sending an upgrade message!~n"),
Server ! upgrade,
From = self(),
Server ! {ping,From},
io:format("Sent a PING!~n"),
receive
pong ->
io:format("Received a PONG!~n"),
client(Server,5-1,C+1)
end;
client(Server,N,C) ->
sleep(1000),
From = self(),
Server ! {ping,From},
io:format("Sent a PING!~n"),
receive
pong ->
io:format("Received a PONG!~n"),
client(Server,N-1,C+1)
end.




26

The smallest unit of compilation in Erlang is a module. If multiple processes are
defined and running inside the same module, upgrading the module from one process
should not force the other processes to upgrade also. In fact, multiple versions of a
module can co-exist in Erlang. But, it is not possible to support processes which
refer to arbitrarily old versions of the module. This would require keeping all past
versions of a module in memory leading to space leaks with time. Erlang keeps only
the current and the previous version of a module in memory. Older processes simply
get killed. This is more reliable than just keeping only one version of a module. In
single version scenario, other processes from the same module will get killed if one

process gets upgraded. This will be terrible in terms of reliability.

4.2 An approach using plugins

Plugins [42] provides an API for compiling and loading new code into a running
Haskell application. Our first approach uses plugins to compile and load the next

version.

4.2.1 The Plugins Way

When a Haskell program is made dynamic the plugins way, it is re-factored so that
the program state ¢ is passed as a parameter to the main function of the program.
There is a minimal static core with no application logic. It only takes cares of loading
the new version of the actual application. All the application logic sits in the dynamic
part which can be unloaded and reloaded by the static core.

If there is no active reference to a value in Haskell, the GHC garbage collector
reclaims it. While reloading the dynamic application, we need to keep a reference to
the program state. The only safe place is the static core. Since the whole dynamic
application is reloaded, we must return the execution to the static core with a
reference to the program state that needs to persisted. We need to define a function

called upgrade in the static core which is called from the dynamic application when



27

it is ready to upgrade. The dynamic application passes the state to upgrade function.
In the upgrade function, the old version is unloaded. The next version is compiled
and loaded. The upgrade function can apply transformation functions to transform
the state for the new version. The main symbol of dynamic application is resolved.
The (transformed) state is passed to the new main. The dynamic application receives
the state, short-circuits the initialization steps and continues running the upgraded
version.

This is the recommended way to refactor existing applications to make them

dynamic.

4.2.2 A minimal plugins example

We show a small example in Figure 4.2 of a Hello World Haskell program called
Plugin.hs which is continuously upgraded every 5 seconds after its execution round.
You can change the code of Plugin.hs and see the changes after every upgrade in 5
seconds when its new version is executed again.

The Main.hs module of the application is a static core responsible for reloading the
actual application. In this case, the application specific code is defined in Plugin.hs.
The upgrade function is defined in the static core. It re-compiles Plugin.hs, loads it
into memory and then calls the main of Plugin.hs by passing it the value upgrade.
The main of Plugin.hs runs and calls upgrade at the end which upgrades the Plugin
application. We can make changes to the Plugin.hs file and those changes will be
reflected in the output after the next upgrade.

In this example, we do not preserve any state of Plugin.hs but it is possible to
change the type of upgrade to pass the state of Plugin.hs to the static core. When
upgrade executes, it has a reference to the old state , it can transform the old state

if required and then can call the new version with (transformed) state.



28

Figure 4.2 A minimal plugins example

-- Plugin.hs
module Plugin (main) where

type DynamicT = IO ()

main :: DynamicT -> IO0 ()

main upgrade = do

-- print "New version Now!"
putStrLn "Hello World!"
putStrLn $ show $ thing

threadDelay 5000000 -- wait a while

upgrade

thing :: String
thing = "42"

-- Main. hs
module Main (main) where

import System.Plugins
import Control.Monad

upgrade :: I0 ()

upgrade = do
r <- makeAll "Plugin.hs" []
case r of

MakeFailure msgs -> putStrLn "failed to make" >> print msgs

MakeSuccess mc fp -> do
mv <- load fp []1 [] "main"
case mv of

LoadFailure msgs -> putStrLn "fail" >> print msgs
LoadSuccess m v -> print "Upgrade Done!" >> v upgrade

type DynamicT = IO ()

main :: I0 ()
main = upgrade




29

4.2.3 DSU in Ping Pong

We take the experiment performed in Erlang in Figure 4.1 and port it to Cloud
Haskell. Similar to the minimal plugins example, we have a static core here in
Main.hs with an upgrade function to upgrade our server process. We cannot follow
the plugins way in Cloud Haskell. We cannot extract the state of all processes and
preserve that state in the static core. Moreover, we must then short-circuit all the
transport initialization and process creation steps and resume from where we left
of. To be able to do this, we need a mechanism to extract the message queues and
set the message queues for individual processes. This is currently not possible in
Cloud Haskell. Therefore, we try a different approach. We directly pass the top
level symbol that we want to return to after upgrading , i.e server in this case. See
Figure 4.3 and Figure 4.4 for the source code of our approach.

When we run this program, we find that on the fifth Ping from the client, the
server upgrades and shows the changes made but then the whole application crashes
silently probably due to a segmentation fault. There is no debug info. We believe the
problem is probably related to keeping only one version of the module in memory.
To investigate this, we look into the source of plugins package. We find that it
indeed does not support loading multiple versions of the same module. Hence, the
client process cannot continue since it does not have the old object code in memory.
Its program counter is pointing to a junk value. It is like sweeping the rug from
underneath.

If we can change the loading mechanism in plugins to support version coexistence,
it would resolve the above problem. This is essential if we want to have reliable code
reloading in Cloud Haskell.

The other problem with this approach is that the message queues and internal
process state is not being shared with the new server. This is because the new server
is not called from inside the old server. It is called from the upgrade function which
does not have any internal state of the old server. This is like running a new server

from scratch without state persistence.



30

4.2.4 Unresolved Problems

In the approach described in subsection 4.2.3, we evaluate the call to new server at

end of upgrade. The type of upgrade is

type DynamicT = IO ()

upgrade :: IO ()

The type of server is

server :: DynamicT -> Process ()
server :: IO () -> Process ()
server upgrade :: Process ()

This should result in a compile time type error. But in practice, it compiles success-
fully. This is because of two reasons. The return type of load is polymorphic. The
GHC dynamic loader is unsafe. [41]. The compiler does not know the type of the
symbol server since it does not have the code of server at compile time. Since, the
return type of load is polymorphic, and the type of the upgrade is 10 (), the types

now become :

type DynamicT = I0 ()

upgrade :: IO0 ()

-- v refers to the value of symbol " ‘server''
v upgrade :: a

-- the type is instantiated to I0 ()

v upgrade :: IO ()

v i: I0 () -> I0 ()

server :: I0 () -> IO ()

Type checking succeeds, but it will most likely crash at run-time since the type of
server is obviously wrong. The strange behaviour is that if we execute the upgrade

with no change in the source code, the server continues to receive Pings and process



31

Figure 4.3 DSU in Ping Pong - PingPong.hs

-- PingPong. hs
module PingPong where ...

server :: DynamicT -> Process ()
server st = do
(cid,x) :: (ProcessId,Int) <- expect
send cid x
case x of
5 -> do
1iftI0 $ st
_ ->do
server st

client :: DynamicT -> Int -> ProcessId -> Process ()
client st 10 sid = return ()
client st c sid = do

me <- getSelfPid

send sid (me,c)

(v :: Int) <- expect

client st (c+1) sid

ignition :: DynamicT -> Process ()
ignition st= do
sid <- spawnLocal $ server st
cid <- spawnLocal $ client st 0 sid
1iftI0 $ threadDelay 100000 -- wait a while

type DynamicT = IO ()
main :: DynamicT -> I0 ()
main st = do
Right transport <- createTransport "127.0.0.1" "86080"
defaultTCPParameters
node <- newLocalNode transport initRemoteTable
runProcess node (ignition st)
closeTransport transport




32

Figure 4.4 DSU in Ping Pong - Main.hs

-- Main.hs
upgrade :: IO ()
upgrade = do
r <- makeAll "PingPong.hs" []
case r of
MakeFailure msgs -> putStrLn "failed to make" >> print msgs
MakeSuccess mc fp -> do
mv <- load fp [1 [] "server"
case mv of
LoadFailure msgs -> putStrLn "fail" >> print msgs
LoadSuccess m v -> do
unloadAll m
v upgrade

type DynamicT = IO ()

main :: I0 ()
main = upgrade

them after it is upgraded. This requires further investigation and the Cloud Haskell
maintainers have been notified about this issue.

Due to segfaults in the previous approach, we try a different approach where the
new server is called from the old server. How do we do this? Instead of calling the
new server inside upgrade, we can return it as a value and let the old server call the
new server. This is better than previous approach. Calling a Process () monadic
action inside another Process () action leads to sharing of the message queues and
internal process state. The bind operator of the Process monad hides all the magic.
This is how a recursive loop in server works. When the server calls itself at the end,
it shares the internal state with the new call.

Lets try to see if we can return new server to the old server after upgrading the
code. Then we can call the new server from the old. This will be exactly similar to
calling new server in Erlang. There, we just used a fully qualified function call and

the Erlang VM redirected it to the new version automatically.



33

For this problem, we reason using types. upgrade now returns the value of new
server. But it might not have any value to return in case there is no reloading (no
change in the source code. So, we wrap it inside a Maybe. The new type of upgrade

becomes

type DynamicT = IO (Maybe a)
upgrade :: DynamicT

upgrade :: IO (Maybe a)

upgrade returns Nothing in case of no change in code or Just server otherwise. Here,

a is instantiated to the type of server. The type of server is
server :: DynamicT -> Process ()

This leads to the following type for DynamicT:

type DynamicT = IO (Maybe (DynamicT -> Process ()) )

On compiling, we get a “Cycle in type synonym declarations” error which is
expected. In this approach, this problem is yet to be resolved. Since, we have
to return the value of the process and the process also need to take upgrade as a
parameter, there is a cyclic dependency which cannot be easily resolved.

We reason that if we want to return the symbol for new server inside the old

server, we cannot get around “Cycle in type synonym declarations” error:

o We cannot import the plugins library in the dynamic part i.e PingPong.hs.
When PingPong.hs is reloaded, all the modules imported by PingPong.hs are
unloaded and reloaded in turn. Since upgrade function needs functions from
the plugins library, we cannot define the upgrade function in the dynamic

application. The only place we can define it is in Main.hs.

e Since we need upgrade function inside the server process, can we import
Main.hs into PingPong.hs and use upgrade function without passing it as a

parameter to server? This is not possible because we cannot import Main.hs



34

into PingPong.hs. When PingPong.hs is unloaded, it will unload Main which

will unload plugins. If plugins module is unloaded, we cannot reload anything.

o The only remaining way is to pass the upgrade function as a value to PingPong.hs
functions. But if upgrade function needs to return the value of the new server,

we would get a “Cycle in type synonym declarations” error.

o If we do not insist that upgrade function return the value of the new server.
The above error will be resolved. In fact, if the upgrade function never returns,
but simply evaluates the value of the new server, it will be correct. This is the
approach taken in the plugins way. But, in this approach, we cannot share the
internal process state with the new server. We need to capture all the process

state and pass it to upgrade.

» To follow the plugins way and solve the problem of “Cycle in type synonym
declarations”, Cloud Haskell needs to be internally restructured, so that it is

possible to get and set internal process state.

In the current approach, what happens to the message queue of the process that
is being upgraded? If we do not make changes to the source, the old version and
the new version are same. The call to upgrade reloads the same code and calls the
new server. This works as expected and continues to send and receive messages.
The messages received during the upgrade remain in the message queue and are
acted upon by the new server. This implies that there is no message loss during the
upgrade. If we make changes to the source, the application crashes due to reasons
discussed above. But we believe that the message queue is still receiving the messages
during the upgrade and no messages are lost. The reason for this is the following.
Every node has a special process called the node controller. Among other things, it
is responsible for receiving the messages on behalf of all process running on the node
and then forward it to the mailbox of the intended process. As long as the process

is not killed, its mailbox will not be garbage collected. Since messages are received



35

by the node controller running on another thread, during an upgrade, the incoming
messages will not be discarded.
There are a couple of issues that we identified while using plugins library for this

project:

o The plugins library uses .hi files for module information and dependency chasing.
It parses these .hi files before loading.new version. This parsing is broken in
64 bit architecture. Our example in 4.3 has been tested to work only on X86

architecture.

e unload function, which is used to unload modules from the address space, does
not work in GHC 7.6. Although this has been fixed for static builds by Simon
Marlow in the next version of GHC, static builds would be longer to build and

take more space in general.

 Since plugins library uses GHC compiler to do run-time compilation, it currently
links the GHC compiler code to the static core. This increases the size of the
application binary from less than 1 MB to anywhere from 37 to 66 MB. There

is no way current to prevent the compiler from being linked.

Overall the GHC runtime infrastructure for code-reloading and plugins in par-
ticular are not widely used in production and have subtle bugs which are hard to
debug because of lack of good error messages and logging. Based on our experience,

we feel that there is lot of scope for improvement in this area.

4.3 The Proxy Approach

In this section, we will briefly discuss about a different approach based on the ideas
of indirection or proxies based on subsection 3.2.3.
In our previous approaches, we did not extract the state of a process. Its state

was implicit in the Process Monad (which is itself implemented as a State Monad).



36

The internal state of the Process is serializable. Hence, it should be possible to define

accessor functions like getState and setState to receive and set the state of a process.

4.3.1 Cloning a Process

Based on the primitives defined earlier, a function can be defined which will create a
clone of the old process with all the state intact and continue executing from the new
version of the module. But the old process instance must be killed before the new
process executes. From the perspective of the node controller, it should conceptually
look as if the process never died.

The type for clone will be:

oldProcess :: a -> Process ()

clone :: ProcessState -> a -> Process ()

Here ProcessState is the internal state of the old process. “a” refers to the type

(polymorphic) of the parameters passed to the old process.

4.3.2 Relocating a process

We can build a primitive for migrating a process between nodes. The type for relocate

will be:

relocate :: (Serializable a) => a -> NodeId -> Process ()

W

Here, “a” is instantiated to the type of internal process state (which was extracted
using getState). It takes the Nodeld to which it should relocate. This approach
has the advantage that it allows us to transparently relocate processes based on the

resource usage and load on different nodes.

4.3.3 Addressability and Roaming

To send a message to a process, only its Processld is required. Its Nodeld is part of

its Processld type. When a process sends a message to another process, the message



37

is sent based on the Nodeld of the Processld. The node-controller forwards the
message to the intended process. When a process relocates, it migrates from its
home node to a remote node. This is similar to roaming of users in cellular networks.
In cellular networks, roaming users are monitored by building tables of addresses of
currently roaming users.

Before a process relocates, it must notify its home node-controller about its new
Nodeld. Moreover, every node-controller should have a roaming registry, which keeps
track of these movements. When other processes, send a message to a relocated
process, the messages are initially sent to the home node-controller since the Processld
they have refers to the old Nodeld. The home node-controller needs to forward this
message to the current node-controller where the process resides. This leads to one
level of indirection. But if the nodes are far apart, this increases the latency and
bandwidth requirements. This indirection cannot be reduced. Since there might
be old values of Processld lingering in the system which would refer to the home
Nodeld.

One problem is that this approach has a race condition. What would happen if
a process which has initially relocated once, relocates again. After the relocation,
it notifies its home node-controller. But before the notification reaches home node-
controller, say a message expected for this process reaches its home node-controller.
Since the home node-controller’s entry has not been updated, it will forward the
message to the node from where it just relocated. This message will be lost since the
process does not exist on that node. One simple solution is that before relocating,
the process should also notify its local node-controller about the change. This node
controller can then keep the (from -> to) mapping of its relocation until a timer
expires. An appropriate worst case expiry time can be just a few seconds. The only
disadvantage is that now there can be a chain of hops that a message has to go
through if the process is hopping through a series of different nodes very rapidly.

But this scenario is purely hypothetical and unlikely to happen in a real problem.



38

4.3.4 Other Problems

Another major problem is decoding. We cannot used the old functions of Binary
typeclass in the target node to decode the incoming state. The Binary instance
to decode the new state does not yet exist on the target node if it has not been
upgraded. Hence, decoding will fail on the target node. This problem has been well
documented in [47]. One possible solution is to make it the user’s problem. The user
should provide transformer functions which take the ByteString of the old version
and convert it to the new version. Even in Erlang, gen server provides callbacks so
that the developer can provide these state transformation functions himself. These
transformation functions must exist even in nodes which are yet to be updated.
One way to achieve this is to break the update into two steps. First update only
contains these transformation functions and no type changes. In the next update,
type changes can be sent which can be decoded by using the transformation functions
sent in the first update.

The other problem is about sending the code of new version to remote nodes.
Although code can be sent to other nodes as a new type of message, the main issue
is to compile and bring it to the address space of the application. Here, the only
solution is to build every instance with plugins support so that new code can be
evaluated at run-time using plugins eval function. There is no easy way to do it
without depending on plugins library. Therefore, it is necessary that the plugins

library be robust and support version co-existence.

4.3.5 Evaluation

Our initial approach does not work well even in a single node scenario. There is no
state persistence as the upgraded process does not share the state of the old process.
But in the proxy approach, we propose primitives to extract the internal state of
a process which allows us to create clones of a process. This also enables us to get

around problem of “cyclic type synonyms”. We do not need to pass the value of new



39

server to the old server. We can instead clone the process using the internal state of
the server. This approach is also suitable in writing applications in the plugins way
where all internal state of processes need to be extracted and preserved via static
core during upgrades.

One disadvantage is the indirection of messages to home nodes when the processes
have moved to a new node. Although, we propose solutions to this problem, it
increases the complexity of the node-controller. Since the node-controller is a
very important part of managing the node, any additional complexity which is not
very essential should not be added to the node-controller. The performance of the
node-controller is also the bottleneck in many cases. Increasing its complexity might
lead to poor performance. In the proxy approach, we still rely on plugins for dynamic
linking and code loading. There are issues with plugins which have been discussed in
subsection 4.2.4.

Building and maintaining internal tables of roaming processes might require lot
of changes to the source code of node-controller. We have not focused on how to
implement these changes in Cloud Haskell. This is left as a future work. We hope
that the high-level ideas discussed in this approach guide in implementing the prozy
approach. An implementation based on this approach needs be built to at least

demonstrate the feasibility of this approach.



Chapter 5

Conclusions

First, we laid the ground work by describing the problem and the motivations
for achieving hot-code reloading in Cloud Haskell. Then we gave a brief overview
of Cloud Haskell with a small example to understand Cloud Haskell applications.
After that we did an exhaustive classification of all the related work in the field of
Dynamic Software Updating in imperative languages based on the related concepts
and techniques used. We also briefly covered the state of the art in DSU in Erlang
and Haskell.

We then proposed our approach which relies on plugins to reload a process
running on a single node. We demonstrate an example of Ping Pong game between
clients and servers. Then we discussed the problems with our current approach in
subsection 4.2.4. We also proposed another approach based on the concept of Proxies
which does not have “cyclic type synonyms” issue. We discuss its advantages and

disadvantages in subsection 4.3.5.

5.1 Implementation Challenges

The major implementation challenges we faced are:

o Lack of documentation on how Erlang’s code reloading is implemented. A doc-
umentation of how Erlang implements code reloading can be a good case study

of implementation challenges in DSU in functional distributed programming.



41

o The lack of good debugging messages in plugins library. Lot of time was wasted

in figuring out that .hi parsing was broken in 64 bit architecture.

o Any restructuring of Cloud Haskell code requires complete understanding of
how various modules in Cloud Haskell interact. CLOC[49] says that Cloud
Haskell code is organized in 36 Haskell files and 5991 source lines of code. We
found documentation of the modules to be lacking. Since there is no high level
documentation of how Cloud Haskell code is structured, reading source code is
the only way to understand it. Moreover, its not easy to isolate state which is
distributed across different modules in Cloud Haskell without coupling them

together and rearranging all code across all modules.

o plugins library is neither actively maintained nor used by any major Haskell
projects. It is used by 13 packages on Hackage but most of them are small
applications, last updated three to six years ago and are not actively used in
production. We believe the plugins way of restructuring all code to pass the
program state around is not the best way to enable DSU in existing applications.
The reason no Haskell project uses DSU is because it is neither very low-friction
nor very easy to integrate. It should not required changing the architecture of
code. Some form of annotation to mark the state that needs to be preserved
would be ideal. The ecosystem for DSU is nascent in Haskell compared to
Java and C. Additional ways to achieve DSU that are easier to use in existing
applications and does not require drastic changes to the architecture of existing

applications, should increase its value and usage.

5.2 Future work

There are many problems which need to be solved before the goal of building a
full fledged hot-swappable version of Cloud Haskell can be realized. Some of them

include :

e Adding support for loading multiple versions of the same module in memory



42

using plugins. Both of the proposed approaches need multiple version support
from plugins library. The plugins project has not been maintained since quite
a few years. Only after multiple version loading is available in plugins, we can
hope to provide code reloading in Cloud Haskell as reliably as Erlang. Other
non-critical issues mentioned in subsection 4.2.4 should be fixed to make the

library more robust.

Building an implementation based on the ideas of Proxy approach in the
context of Cloud Haskell. This will not only solve the “cyclic type synonyms”
problem, it will be more flexible and provide a better way to manage resources

of different nodes.

Effective benchmarks for the static version and dynamic version of Cloud Haskell
to understand the performance and space penalties of using the dynamic version.

This is very essential if we want to use dynamic Cloud Haskell in production.



References

Jeff Epstein, Andrew P. Black and Simon Peyton-Jones. “Towards Haskell in
the Cloud”. In: Proceedings of the 4th ACM Symposium on Haskell. Haskell "11.
New York, NY, USA: ACM, 2011, pp. 118-129. 1SBN: 978-1-4503-0860-1. DOTI:
10.1145/2034675.2034690. URL: http://doi.acm.org/10.1145/2034675.
2034690 (visited on 27/05/2014).

Joe Armstrong, Robert Virding, Claes Wikstrom and Mike Williams. Concur-
rent Programming in ERLANG. 1993.

Erlang (programming language). In: Wikipedia, the free encyclopedia. Page
Version ID: 608888384. 24th May 2014. URL: https://en.wikipedia.org/
w/index.php?title=Erlang (programming language)&oldid=608888384
(visited on 01/06/2014).

Robert F. Pointon, Philip W. Trinder and H.-W. Loidl. “The design and imple-
mentation of Glasgow Distributed Haskell”. In: Implementation of Functional
Languages. Springer, 2001, pp. 53-70. URL: http://link.springer.com/
chapter/10.1007/3-540-45361-X 4 (visited on 01/06/2014).

William Gropp, Ewing Lusk and Anthony Skjellum. Using MPI: portable parallel
programming with the message-passing interface. Vol. 1. MIT press, 1999. URL:
http://books.google.co.in/books?hl=en&lr=&1id=xpBZORyRb - 0C&o0i=
fnd&pg=PA1&dg=mpi&ots=ub9ro00J9 &sig=7mwhI8BTmLgt nvsZRzywqO-YyA
(visited on 01/06,/2014).

Carl Hewitt, Peter Bishop and Richard Steiger. “A Universal Modular ACTOR
Formalism for Artificial Intelligence”. In: Proceedings of the 3rd International
Joint Conference on Artificial Intelligence. IJCAI'73. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1973, pp. 235-245. URL: http://dl.acm.
org/citation.cfm?id=1624775.1624804 (visited on 01/06/2014).

Gul Agha. An overview of actor languages. Vol. 21. 10. ACM, 1986. URL: http:
//dl.acm.org/citation.cfm?id=323743 (visited on 01/06/2014).

Rajesh K. Karmani, Amin Shali and Gul Agha. “Actor frameworks for the
JVM platform: a comparative analysis”. In: Proceedings of the 7th International
Conference on Principles and Practice of Programming in Java. ACM, 2009,
pp. 11-20. URL: http://dl.acm.org/citation.cfm?id=1596658 (visited on
01/06/2014).

Control. Distributed. Process. URL: http://hackage.haskell.org/package/
distributed-process-0.4.2/docs/Control-Distributed-Process.html
(visited on 27/05/2014).


http://dx.doi.org/10.1145/2034675.2034690
http://doi.acm.org/10.1145/2034675.2034690
http://doi.acm.org/10.1145/2034675.2034690
https://en.wikipedia.org/w/index.php?title=Erlang_(programming_language)&oldid=608888384
https://en.wikipedia.org/w/index.php?title=Erlang_(programming_language)&oldid=608888384
http://link.springer.com/chapter/10.1007/3-540-45361-X_4
http://link.springer.com/chapter/10.1007/3-540-45361-X_4
http://books.google.co.in/books?hl=en&lr=&id=xpBZ0RyRb-oC&oi=fnd&pg=PA1&dq=mpi&ots=ub9ro0OJ9_&sig=7mwhI8BTmLqt_nvsZRzywqO-YyA
http://books.google.co.in/books?hl=en&lr=&id=xpBZ0RyRb-oC&oi=fnd&pg=PA1&dq=mpi&ots=ub9ro0OJ9_&sig=7mwhI8BTmLqt_nvsZRzywqO-YyA
http://dl.acm.org/citation.cfm?id=1624775.1624804
http://dl.acm.org/citation.cfm?id=1624775.1624804
http://dl.acm.org/citation.cfm?id=323743
http://dl.acm.org/citation.cfm?id=323743
http://dl.acm.org/citation.cfm?id=1596658
http://hackage.haskell.org/package/distributed-process-0.4.2/docs/Control-Distributed-Process.html
http://hackage.haskell.org/package/distributed-process-0.4.2/docs/Control-Distributed-Process.html

[10]

[11]

[12]

[13]

[15]

[16]
[17]

[18]

[20]

44

Gavin Bierman, Michael Hicks, Peter Sewell and Gareth Stoyle. “Formalizing
Dynamic Software Updating”. In: 2003, pp. 13-23.

Emili Miedes and F. D. Munoz-Escoi. A survey about dynamic software updating.
Tech. Rep. ITI-SIDI-2012/003, Instituto Universitario Mixto Tecnolégico de
Informética, Universitat Politecnica de Valencia, 2012. URL: http://web.iti.
upv.es/~fmunyoz/research/pdf/TR-ITI-SIDI-2012003.pdf (visited on
30/05/2014).

D. Gupta, P. Jalote and G. Barua. “A formal framework for on-line software
version change”. In: IEEE Transactions on Software Engineering 22.2 (Feb.
1996), pp. 120-131. 1ssN: 0098-5589. DOI: 10.1109/32.485222.

Jeftf Kramer and Jeff Magee. “Dynamic Configuration for Distributed Systems”.
In: IEEE Trans. Softw. Eng. 11.4 (Apr. 1985), pp. 424-436. 1SSN: 0098-5589.
DOI: 10.1109/TSE. 1985.232231. URL: http://dx.doi.org/10.1109/TSE.
1985.232231 (visited on 01/06/2014).

Jeff Kramer and Jeff Magee. “The Evolving Philosophers Problem: Dynamic
Change Management”. In: IEEE Trans. Softw. Eng. 16.11 (Nov. 1990), pp. 1293
1306. 18SN: 0098-5589. DOI: 10.1109/32.60317. URL: http://dx.doi.org/10.
1109/32.60317 (visited on 01/06/2014).

M.E. Segal and O. Frieder. “Dynamically updating distributed software: sup-
porting change in uncertain and mistrustful environments”. In: , Conference on
Software Maintenance, 1989., Proceedings. , Conference on Software Mainten-
ance, 1989., Proceedings. Oct. 1989, pp. 254-261. DOI: 10.1109/ICSM.1989.
652109.

Cristiano Giuffrida and Andrew S. Tanenbaum. A Taxonomy of Live Updates.

Yves Vandewoude, Peter Ebraert, Yolande Berbers and Theo D’Hondt. “Tran-
quility: A Low Disruptive Alternative to Quiescence for Ensuring Safe Dynamic
Updates”. In: IEEE Trans. Softw. Eng. 33.12 (Dec. 2007), pp. 856-868. ISSN:
0098-5589. DOI: 10.1109/TSE.2007.70733. URL: http://dx.doi.org/10.
1109/TSE.2007.70733 (visited on 01/06/2014).

R. S. Fabry. “How to Design a System in Which Modules Can Be Changed
on the Fly”. In: Proceedings of the 2Nd International Conference on Software
Engineering. ICSE '76. Los Alamitos, CA, USA: IEEE Computer Society Press,
1976, pp. 470-476. URL: http://dl.acm.org/citation.cfm?id=800253.
807720 (visited on 30/05/2014).

Marco Milazzo, Giuseppe Pappalardo, Emiliano Tramontana and Giuseppe
Ursino. “Handling Run-time Updates in Distributed Applications”. In: Proceed-
ings of the 2005 ACM Symposium on Applied Computing. SAC '05. New York,
NY, USA: ACM, 2005, pp. 1375-1380. 1SBN: 1-58113-964-0. DOI: 10.1145/
1066677 .1066987. URL: http://doi.acm.org/10.1145/1066677.1066987
(visited on 30/05/2014).

Michael Hicks and Scott Nettles. “Dynamic Software Updating”. In: ACM
Trans. Program. Lang. Syst. 27.6 (Nov. 2005), pp. 1049-1096. 1SSN: 0164-0925.
DOI: 10.1145/1108970.1108971. URL: http://doi.acm.org/10.1145/
1108970.1108971 (visited on 30/05/2014).


http://web.iti.upv.es/~fmunyoz/research/pdf/TR-ITI-SIDI-2012003.pdf
http://web.iti.upv.es/~fmunyoz/research/pdf/TR-ITI-SIDI-2012003.pdf
http://dx.doi.org/10.1109/32.485222
http://dx.doi.org/10.1109/TSE.1985.232231
http://dx.doi.org/10.1109/TSE.1985.232231
http://dx.doi.org/10.1109/TSE.1985.232231
http://dx.doi.org/10.1109/32.60317
http://dx.doi.org/10.1109/32.60317
http://dx.doi.org/10.1109/32.60317
http://dx.doi.org/10.1109/ICSM.1989.65219
http://dx.doi.org/10.1109/ICSM.1989.65219
http://dx.doi.org/10.1109/TSE.2007.70733
http://dx.doi.org/10.1109/TSE.2007.70733
http://dx.doi.org/10.1109/TSE.2007.70733
http://dl.acm.org/citation.cfm?id=800253.807720
http://dl.acm.org/citation.cfm?id=800253.807720
http://dx.doi.org/10.1145/1066677.1066987
http://dx.doi.org/10.1145/1066677.1066987
http://doi.acm.org/10.1145/1066677.1066987
http://dx.doi.org/10.1145/1108970.1108971
http://doi.acm.org/10.1145/1108970.1108971
http://doi.acm.org/10.1145/1108970.1108971

[21]

28]

[29]

[30]

[31]

[32]

45

Allan Raundahl Gregersen and Bo Ngrregaard Jgrgensen. “Dynamic update of
Java applications—balancing change flexibility vs programming transparency”.
In: Journal of Software Maintenance and Evolution: Research and Practice
21.2 (1st Mar. 2009), pp. 81-112. 1sSN: 1532-0618. DOI: 10.1002/smr . 406.
URL: http://onlinelibrary.wiley.com/doi/10.1002/smr.406/abstract
(visited on 30/05/2014).

Eric Bruneton, Romain Lenglet and Thierry Coupaye. “ASM: A code manipu-
lation tool to implement adaptable systems”. In: In Adaptable and extensible
component systems. 2002.

cglib/cglib. GitHub. URL: https://github.com/cglib/cglib (visited on
30/05/2014).

Javassist. URL: http://www.csg.ci.i.u-tokyo.ac.jp/~chiba/javassist/
(visited on 30/05/2014).

JRebel. zeroturnaround.com. URL: http://zeroturnaround.com/software/
jrebel/ (visited on 30/05/2014).

Toby Bloom. “Dynamic Module Replacement in a Distributed Programming
System”. In: in a Distributed Programming System, MIT-LCSTR -303. 1983.

Ophir Frieder and Mark E. Segal. “On Dynamically Updating a Computer Pro-
gram: From Concept to Prototype”. In: J. Syst. Softw. 14.2 (Feb. 1991), pp. 111-
128. 18SN: 0164-1212. DOI: 10.1016/0164 - 1212(91) 90096 - 0. URL: http:
//dx.doi.org/10.1016/0164-1212(91)90096-0 (visited on 30/05/2014).

James M. Purtilo. “The POLYLITH Software Bus”. In: ACM Trans. Program.
Lang. Syst. 16.1 (1994), pp. 151-174. 18sN: 0164-0925. DOT: 10.1145/174625.
174629. URL: http://doi.acm.org/10.1145/174625.174629 (visited on
30/05/2014).

Christine R. Hofmeister and James M. Purtilo. “A Framework for Dynamic
Reconfiguration of Distributed Programs”. In: In Proceedings of the 11th
International Conference on Distributed Computing Systems. 1993, pp. 560—
571.

Sameer Ajmani, Barbara Liskov and Liuba Shrira. “Modular Software Upgrades
for Distributed Systems”. In: Proceedings of the 20th European Conference on
Object-Oriented Programming. ECOOP’06. Berlin, Heidelberg: Springer-Verlag,
2006, pp. 452-476. 1SBN: 3-540-35726-2, 978-3-540-35726-1. DOI: 10.1007/
11785477 26. URL: http://dx.doi.org/10.1007/11785477 26 (visited on
30/05/2014).

Maurice P. Herlihy and Barbara Liskov. “A Value Transmission Method for
Abstract Data Types”. In: ACM Trans. Program. Lang. Syst. 4.4 (Oct. 1982),
pp. 527-551. 1SSN: 0164-0925. DOI: 10 . 1145/69622 .357182. URL: http:
//doi.acm.org/10.1145/69622.357182 (visited on 31/05/2014).

Yogesh Murarka and Umesh Bellur. “Correctness of Request Executions in
Online Updates of Concurrent Object Oriented Programs”. In: Proceedings
of the 2008 15th Asia-Pacific Software Engineering Conference. APSEC ’08.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 93-100. ISBN:
978-0-7695-3446-6. DOI: 10.1109/APSEC.2008.33. URL: http://dx.doi.org/
10.1109/APSEC.2008.33 (visited on 31/05/2014).


http://dx.doi.org/10.1002/smr.406
http://onlinelibrary.wiley.com/doi/10.1002/smr.406/abstract
https://github.com/cglib/cglib
http://www.csg.ci.i.u-tokyo.ac.jp/~chiba/javassist/
http://zeroturnaround.com/software/jrebel/
http://zeroturnaround.com/software/jrebel/
http://dx.doi.org/10.1016/0164-1212(91)90096-O
http://dx.doi.org/10.1016/0164-1212(91)90096-O
http://dx.doi.org/10.1016/0164-1212(91)90096-O
http://dx.doi.org/10.1145/174625.174629
http://dx.doi.org/10.1145/174625.174629
http://doi.acm.org/10.1145/174625.174629
http://dx.doi.org/10.1007/11785477_26
http://dx.doi.org/10.1007/11785477_26
http://dx.doi.org/10.1007/11785477_26
http://dx.doi.org/10.1145/69622.357182
http://doi.acm.org/10.1145/69622.357182
http://doi.acm.org/10.1145/69622.357182
http://dx.doi.org/10.1109/APSEC.2008.33
http://dx.doi.org/10.1109/APSEC.2008.33
http://dx.doi.org/10.1109/APSEC.2008.33

[33]

[34]

[36]

[37]

[40]

[42]

46

Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter Sewell and Iulian Neamtiu.
“Mutatis Mutandis: Safe and Predictable Dynamic Software Updating”. In:
ACM Trans. Program. Lang. Syst. 29.4 (Aug. 2007). 1SSN: 0164-0925. DOTI:
10.1145/1255450.1255455. URL: http://doi.acm.org/10.1145/1255450.
1255455 (visited on 31/05/2014).

[ulian Neamtiu, Michael Hicks, Gareth Stoyle and Manuel Oriol. “Practical
Dynamic Software Updating for C”. In: Proceedings of the 2006 ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI
'06. New York, NY, USA: ACM, 2006, pp. 72-83. ISBN: 1-59593-320-4. DOI:
10.1145/1133981.1133991. URL: http://doi.acm.org/10.1145/1133981.
1133991 (visited on 31/05/2014).

Gautam Altekar, Ilya Bagrak, Paul Burstein and Andrew Schultz. “OPUS: On-
line Patches and Updates for Security”. In: Proceedings of the 14th Conference
on USENIX Security Symposium - Volume 14. SSYM’05. Berkeley, CA, USA:
USENIX Association, 2005, pp. 19-19. URL: http://dl.acm.org/citation.
cfm?id=1251398.1251417 (visited on 31/05/2014).

Haibo Chen, Jie Yu, Rong Chen, Binyu Zang and Pen-Chung Yew. “POLUS:
A POwerful Live Updating System”. In: Proceedings of the 29th International
Conference on Software Engineering. ICSE '07. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 271-281. 1SBN: 0-7695-2828-7. pOI: 10.1109/
ICSE.2007.65. URL: http://dx.doi.org/10.1109/ICSE.2007.65 (visited
on 30/05/2014).

Filippo Banno, Daniele Marletta, Giuseppe Pappalardo and Emiliano Tra-
montana. “Handling Consistent Dynamic Updates on Distributed Systems”. In:
Proceedings of the The IEEE Symposium on Computers and Communications.
ISCC "10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 471—
476. 1SBN: 978-1-4244-7754-8. DOI: 10.1109/ISCC.2010.5546542. URL: http:
//dx.doi.org/10.1109/ISCC.2010.5546542 (visited on 30/05/2014).

Tobias Ritzau and Jesper Andersson. “Dynamic Deployment of Java Applica-
tions”. In: IN JAVA FOR EMBEDDED SYSTEMS WORKSHOP. 2000.

M. Dmitriev. “Towards flexible and safe technology for runtime evolution of
java language applications”. In: In Proceedings of the Workshop on Engineering
Complex Object-Oriented Systems for Evolution, in association with OOPSLA
2001 International Conference. 2001.

Don Stewart and Manuel M. T. Chakravarty. “Dynamic Applications from the
Ground Up”. In: Proceedings of the 2005 ACM SIGPLAN Workshop on Haskell.
Haskell 05. New York, NY, USA: ACM, 2005, pp. 27-38. 1SBN: 1-59593-071-X.
DOI: 10.1145/1088348.1088352. URL: http://doi.acm.org/10.1145/
1088348.1088352 (visited on 01/06/2014).

Don Stewart. “Dynamic extension of typed functional languages”. PhD thesis.
PhD thesis, University of New South Wales, 2010. URL: http://unsworks.
unsw . edu . au/ fapi/datastream/ unsworks : 9098 / SOURCEO2 (visited on
01/06/2014).

Hackage: plugins: Dynamic linking for Haskell and C' objects. URL: http:
//hackage.haskell.org/package/plugins (visited on 01/06/2014).


http://dx.doi.org/10.1145/1255450.1255455
http://doi.acm.org/10.1145/1255450.1255455
http://doi.acm.org/10.1145/1255450.1255455
http://dx.doi.org/10.1145/1133981.1133991
http://doi.acm.org/10.1145/1133981.1133991
http://doi.acm.org/10.1145/1133981.1133991
http://dl.acm.org/citation.cfm?id=1251398.1251417
http://dl.acm.org/citation.cfm?id=1251398.1251417
http://dx.doi.org/10.1109/ICSE.2007.65
http://dx.doi.org/10.1109/ICSE.2007.65
http://dx.doi.org/10.1109/ICSE.2007.65
http://dx.doi.org/10.1109/ISCC.2010.5546542
http://dx.doi.org/10.1109/ISCC.2010.5546542
http://dx.doi.org/10.1109/ISCC.2010.5546542
http://dx.doi.org/10.1145/1088348.1088352
http://doi.acm.org/10.1145/1088348.1088352
http://doi.acm.org/10.1145/1088348.1088352
http://unsworks.unsw.edu.au/fapi/datastream/unsworks:9098/SOURCE02
http://unsworks.unsw.edu.au/fapi/datastream/unsworks:9098/SOURCE02
http://hackage.haskell.org/package/plugins
http://hackage.haskell.org/package/plugins

[43]
[44]

[45]

[52]

47

Koen Claessen. “A semantics for distributed erlang”. In: In Proceedings of the
ACM SIPGLAN 2005 Erlang Workshop. ACM Press, 2005, pp. 78-87.

Hans Svensson. “A more accurate semantics for distributed Erlang”. In: In

Proceedings of the ACM SIPGLAN 2007 Erlang Workshop. 2007.

Hans Svensson, Lars AAke Fredlund and Clara Benac Earle. “A Unified
Semantics for Future Erlang”. In: Proceedings of the 9th ACM SIGPLAN
Workshop on Erlang. Erlang '10. New York, NY, USA: ACM, 2010, pp. 23—
32. ISBN: 978-1-4503-0253-1. DOI: 10.1145/1863509.1863514. URL: http:
//doi.acm.org/10.1145/1863509.1863514 (visited on 27/05/2014).

Erlang — Compilation and Code Loading. URL: http://www.erlang.org/doc/
reference_manual/code loading.html (visited on 02/06/2014).

Jeffrey Epstein. “Functional programming for the data centre”. PhD thesis. MS
thesis, University of Cambridge, 2011. URL: http://msr-waypoint.com/en-
us/um/people/simonpj/papers/parallel/epstein-thesis.pdf (visited on
27/05/2014).

Pankaj More. Do messages get lost when erlang modules are upgraded? Pankaj
More. URL: http://pankajmore. in/code - reloading - in- erlang . html
(visited on 03/06/2014).

CLOC - Count Lines of Code. URL: http://cloc.sourceforge.net/ (visited
on 06/06,/2014).

Well-Typed - The Haskell Consultants: A Cloud Haskell Appetiser (Parallel
Haskell Digest 11). URL: http://www.well-typed.com/blog/68/ (visited on
27/05/2014).

Dynamic Software Updating. In: Wikipedia, the free encyclopedia. Page Version
ID: 608555677. 21st May 2014. URL: https://en.wikipedia.org/w/index.
php?title=Dynamic Software Updating&oldid=608555677 (visited on
30/05/2014).

Haibo Chen, Jie Yu, Chengqun Hang, Binyu Zang and Pen-Chung Yew. “Dy-
namic Software Updating Using a Relaxed Consistency Model”. In: IEEE
Trans. Softw. Eng. 37.5 (Sept. 2011), pp. 679-694. 1sSN: 0098-5589. DOTI:
10.1109/TSE.2010.79. URL: http://dx.doi.org/10.1109/TSE.2010.79
(visited on 30/05/2014).

Eugene Kuleshov. Using the ASM framework to implement common Java
bytecode transformation patterns. 2007.

Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba and Kozo Itano. “A
Bytecode Translator for Distributed Execution of "Legacy” Java Software”. In:
Springer-Verlag, 2001, pp. 236-255.

Apache Commons BCEL™ -, URL: https://commons.apache.org/proper/
commons - bcel/ (visited on 30/05/2014).

Allan Raundahl Gregersen, Douglas Simon and Bo Ngrregaard Jgrgensen.
“Towards a Dynamic-update-enabled JVM”. In: Proceedings of the Workshop
on AOP and Meta-Data for Software Evolution. RAM-SE '09. New York, NY,
USA: ACM, 2009, 2:1-2:7. 1SBN: 978-1-60558-548-2. DOT: 10.1145/1562860.
1562862. URL: http://doi.acm.org/10.1145/1562860.1562862 (visited on
30/05/2014).


http://dx.doi.org/10.1145/1863509.1863514
http://doi.acm.org/10.1145/1863509.1863514
http://doi.acm.org/10.1145/1863509.1863514
http://www.erlang.org/doc/reference_manual/code_loading.html
http://www.erlang.org/doc/reference_manual/code_loading.html
http://msr-waypoint.com/en-us/um/people/simonpj/papers/parallel/epstein-thesis.pdf
http://msr-waypoint.com/en-us/um/people/simonpj/papers/parallel/epstein-thesis.pdf
http://pankajmore.in/code-reloading-in-erlang.html
http://cloc.sourceforge.net/
http://www.well-typed.com/blog/68/
https://en.wikipedia.org/w/index.php?title=Dynamic_Software_Updating&oldid=608555677
https://en.wikipedia.org/w/index.php?title=Dynamic_Software_Updating&oldid=608555677
http://dx.doi.org/10.1109/TSE.2010.79
http://dx.doi.org/10.1109/TSE.2010.79
https://commons.apache.org/proper/commons-bcel/
https://commons.apache.org/proper/commons-bcel/
http://dx.doi.org/10.1145/1562860.1562862
http://dx.doi.org/10.1145/1562860.1562862
http://doi.acm.org/10.1145/1562860.1562862

[57]

[60]

[61]

[62]

48

Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger and David
Walker. “Abstractions for Network Update”. In: Proceedings of the ACM
SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication. SIGCOMM ’12. New York, NY, USA:
ACM, 2012, pp. 323-334. 1SBN: 978-1-4503-1419-0. DOL: 10.1145/2342356.
2342427. URL: http://doi.acm.org/10.1145/2342356.2342427 (visited on
30/05/2014).

Marcin Solarski, Aus Krakéw, Vorsitzender Prof and Dr-ing Stefan Jahnichen.
Dynamic Upgrade of Distributed Software Components Promotionsausschuss:
vorgelegt von Dipl.-Ing.

Marcin Solarski and Hein Meling. “Towards Upgrading Actively Replicated
Servers On-the-Fly”. In: Proceedings of the 26th International Computer Soft-
ware and Applications Conference on Prolonging Software Life: Development
and Redevelopment. COMPSAC ’02. Washington, DC, USA: IEEE Computer
Society, 2002, pp. 1038-1046. ISBN: 0-7695-1727-7. URL: http://dl.acm.org/
citation.cfm?id=645984.675551 (visited on 31/05/2014).

Nigamanth Sridhar, Scott M. Pike and Bruce W. Weide. “Dynamic Module
Replacement in Distributed Protocols”. In: Proceedings of the 23rd International
Conference on Distributed Computing Systems. ICDCS '03. Washington, DC,
USA: IEEE Computer Society, 2003, pp. 620—. 1SBN: 0-7695-1920-2. URL: http:
//dl.acm.org/citation.cfm?id=850929.851923 (visited on 31/05/2014).

André Pang, Don Stewart, Sean Seefried and Manuel M. T. Chakravarty.
“Plugging Haskell in”. In: Proceedings of the 2004 ACM SIGPLAN Workshop
on Haskell. Haskell ’04. New York, NY, USA: ACM, 2004, pp. 10-21. ISBN:
1-58113-850-4. DOI: 10.1145/1017472.1017478. URL: http://doi.acm.org/
10.1145/1017472.1017478 (visited on 01/06,/2014).

Lars Aake Fredlund. “A framework for reasoning about Erlang code”. PhD
thesis. Tekniska hogsk., 2001. URL: http://soda.swedish-ict.se/3113/1/
SICS diss 29.pdf (visited on 01/06/2014).


http://dx.doi.org/10.1145/2342356.2342427
http://dx.doi.org/10.1145/2342356.2342427
http://doi.acm.org/10.1145/2342356.2342427
http://dl.acm.org/citation.cfm?id=645984.675551
http://dl.acm.org/citation.cfm?id=645984.675551
http://dl.acm.org/citation.cfm?id=850929.851923
http://dl.acm.org/citation.cfm?id=850929.851923
http://dx.doi.org/10.1145/1017472.1017478
http://doi.acm.org/10.1145/1017472.1017478
http://doi.acm.org/10.1145/1017472.1017478
http://soda.swedish-ict.se/3113/1/SICS_diss_29.pdf
http://soda.swedish-ict.se/3113/1/SICS_diss_29.pdf

	List of Figures
	Introduction
	Challenges in a distributed system
	Hot Code Reloading
	The Problem
	Why Hot Code Reloading
	Example of Hot Code Reloading in Erlang

	Contributions

	A brief tour of Cloud Haskell 
	The Design Decisions
	Implementing Erlang in Haskell
	Library vs Run Time System
	Modular Architecture
	The Actor Model and Cloud Haskell
	Actor vs Thread

	The Core API
	Ping Pong in Cloud Haskell

	Related work
	Formal specification of DSU
	Related ideas and techniques
	Quiescence
	Binary Code Rewriting
	Proxies, Intermediaries and Indirection Levels
	State Transfer and Transformation Functions
	Source code static analysis
	Using underlying facilities
	Version Coexistence

	DSU and Functional Programming
	Haskell
	Erlang


	An Attempt at Hot Code Reloading
	Understanding Erlang's Behaviour
	Message loss during updates
	Quiescence and Version Coexistence

	An approach using plugins
	The Plugins Way
	A minimal plugins example
	DSU in Ping Pong
	Unresolved Problems

	The Proxy Approach
	Cloning a Process
	Relocating a process
	Addressability and Roaming
	Other Problems
	Evaluation


	Conclusions
	Implementation Challenges
	Future work

	References

