
Improving Liveness Based
Garbage Collector in Java

A Thesis Submitted

in Partial Fulfilment of the Requirements

for the Degree of

Bachelor of Technology - Master of Technology

by

Nikhil Pangarkar

Roll No. : Y9227374

under the guidance of

Prof. Amey Karkare

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

July, 2014

Abstract

Garbage collection is an important feature of Java which prevents memory

exhaustion, combat heap fragmentation and provides a more secure way to

use memory by the program. It frees up the programmer from manual memory

management which can lead to memory leaks that are difficult to catch. An

important part of garbage collection algorithms is how to identify if a memory

is in use or not. Typical garbage collectors use reachability to approximate

the heap memory that could be used in subsequent execution of the program.

But this conservative approach sometimes doesn’t reclaim all unused memory.

Liveness of a variable can provide a more tighter bound than reachability on

memory use by an executing program.

In this thesis we explore the possibility of using a liveness based garbage

collector for Java. We tackle the problem of providing liveness information

which is obtained at compile time to a garbage collector which is a runtime

module. We model the tracing problem on CFL reachability and offer some

improvements to the liveness based tracing algorithm. We have been able to

obtain a significant improvement in the running time of the liveness tracing

algorithm as compared to the naive algorithm used previously.

ii

Dedicated to

my parents and my brother.

iii

Acknowledgement
I would like to express my sincere gratitude towards my thesis supervisor

Dr.Amey Karkare for his constant support and encouragement. I am grateful

for his patient guidance and advice in giving a proper direction to my efforts.

I would also like to thank the faculty and staff of the Department of CSE for

the beautiful academic environment they have created here.

I am indebted to all my friends for making these past five years a memorable

one for me. I especially thank Vilay for his valuable input in my thesis.

Last, but not the least, I would like to thank my parents and siblings for their

love, constant support and encouragement. Without their support and pa-

tience this work would not have been possible.

Nikhil Pangarkar

iv

Contents

Abstract ii

List of Figures vii

List of Algorithms viii

1 Introduction 1

1.1 Motivational Example . 2

1.2 Contribution of this thesis . 3

1.3 Outline of the Thesis . 4

2 Background 5

2.1 Related Work . 5

2.2 Explicit Live Reference Analysis 6

2.3 Implementing Liveness Based Garbage Collection 7

3 Tracing Algorithm Design 9

3.1 CFL Reachability . 9

3.2 Tracing Algorithm . 11

3.3 Implementation . 13

4 Results and Analysis 15

4.1 Results . 16

4.2 Analysis . 19

4.3 Summary . 21

v

5 Conclusion 24

Bibliography 26

vi

List of Figures

1.1 Example 2: Heap snapshot . 3

2.1 Simple Access Graph . 6

3.1 CFL Reachability Example . 10

3.2 Access Graph and NFA . 11

4.1 BiSort Program . 16

4.2 Loop Program . 17

4.3 Reverse Program . 17

4.4 BST Program . 18

4.5 TreeAdd Program . 18

4.6 Access graph for BST . 19

4.7 CircularLoop.java . 20

vii

List of Algorithms

1 Garbage Collector Algorithm . 12

2 Tracing Algorithm for an Object . 13

3 Optimized Tracing Algorithm . 14

viii

Chapter 1

Introduction

An important component of programming languages which run in a virtual ex-

ecution environment is a Garbage Collector. Typically memory in heap that

is no longer referenced is ’garbage’ and thus can be collected to allocate new

objects in its place. This process is called Garbage Collection. Garbage Collec-

tion or memory-recycling typically handles memory leaks and is also responsi-

ble for heap de-fragmentation.

The perfect garbage collector(GC) would collect all objects that are not go-

ing to be used during the rest of the execution of the program. But it’s im-

possible to predict run-time scenarios. One popular conservative approach

to garbage collection is to compute all the objects that are reachable from a

root set of variables that are still currently in the scope of the program and

earmark them. The rest of the heap is marked as garbage and is ready to be

freed and used in allocation of objects. This leaves potentially large amount

of garbage behind in the form of objects that are reachable but not live. Live-

ness based garbage collector which analyze the whole program for liveness

data can potentially collect more garbage than reachability based garbage

collector.

1

2

In this thesis we discuss an approach to use liveness information of the pro-

gram to design a garbage collector for Java.

1.1 Motivational Example

Let us look at two scenarios which highlight the improvement offered by live-

ness based garbage collection.

Program 1: Reachable variables not live

1 public static void main(String [] args)

2 {

3 Tree x = new Tree () ;

4 doSomething(x) ;

5 Tree y = new Tree () ;

6 doSomethingElse(y) ;

7 }

In the simple example Program 1 above, we can observe that we are allo-

cating a Tree object which is referenced by the variable x then doing some

computation over it and then allocating a new object which is referenced by

y and performing some other computation over it. If the garbage collector is

triggered at line number 5 then a reachability based GC would not be able to

reclaim the memory occupied by the object referenced by x because the vari-

able x is in the current local variable set. In other words since x is still in the

current scope of the program it can’t be collected. A liveness based GC would

identity that x is not a live variable at line number 5 and the object would be

freed to reclaim more memory.

Second example highlights the case when an object in heap is partially live.

Program 2 shows a simple program and Figure 1.1 shows a snapshot of the

heap memory at any program point after line number 4. The red path repre-

sents object references that can be accessed during the program execution.

3

Only the objects reachable via red edges are live. The rest can be garbage

collected using a liveness based garbage collector.

Program 2: Partially live objects

1 public static void main(String [] args)

2 {

3 / / Let x be complete binary tree of depth 4

4 BinaryTree x = new BinaryTree () ;

5 BinaryTree p = x ;

6 while(p. le f t !=null) {

7 p = p. le f t ;

8 }

9 doSomething(p) ;

10 }

8

2 3

9

1

14 1512 1310 11

4 5 6 7

Figure 1.1: Example 2: Heap snapshot

1.2 Contribution of this thesis

The liveness data of a program is available in the form of access graphs for

all the local variables which are live at a particular program point. These

access graphs outline the sub-structure of the object which is live. In this

thesis we describe an efficient algorithm to trace heap structure in a garbage

collector according to the access graph of the object. We use JikesRVM, a

research virtual machine for Java, to implement the algorithm and compare

4

its performance with a naive approach and traditional reachability garbage

collector approaches.

1.3 Outline of the Thesis

Chapter 2 describes prior work done in this field and describes the relevant

portions of JikesRVM, the Java Virtual Machine used for this project. Chapter

3 describes the algorithm, it’s implementation details and provides some the-

oretical analysis for the algorithm. Results are tabulated in Chapter 4 which

contains comparison of the algorithm’s performance with other approaches.

Finally we conclude with some pointers towards future improvement of the

project in Chapter 5.

Chapter 2

Background

In this chapter first we describe an inter-procedural liveness analysis for heap

in a Java like imperative programming language. Subsequently we will de-

scribe briefly a garbage collector that would serve as the foundation for our

improved algorithm.

2.1 Related Work

M. Hirzel et al. in [7] analyze and compare the improvement offered by type

accuracy and liveness accuracy in the context of garbage collection for C and

C++ languages. Type accuracy refers to the ability of the garbage collector to

distinguish between references and non-references whereas liveness accuracy

refers to the ability to identify live-references. Using a modified BDW garbage

collector [5] their study found upto 62% reduction in heap size when using an

inter-procedural liveness analysis to aid in garbage collection.

O.Agesen et al. [3] in a similar study for Java have found that adding a live

variable analysis to enhance the accuracy of a garbage collector reduced the

heap size by about 11%. They found that for most programs the improvement

is not significant but it does avoid situations where the program uses surpris-

ingly more heap space than required.

5

6

R. Asati et al. [4] provide a liveness analysis for a first-order functional

language followed by a mechanism to summarize the liveness information into

context free grammars (CFGs). They translated the CFGs into a finite state

automata which was used to tighten up marking during garbage collection.

They also proceeded to prove that a liveness based collector cannot do more

collections than a reachability based collector.

U. P. Khedkar et al. [12] offer an improved liveness analysis to identify dead

objects and explicitly set their references to null which is a technique called

"Cedar Mesa Folk Wisdom" [6]. In our work we have used the explicit live

reference analysis to achieve better garbage collection by using the analysis

output directly in the garbage collector rather than setting references null.

2.2 Explicit Live Reference Analysis

Heap reference analysis [12] presents a method to summarize liveness data

for objects. The access paths to all the live objects reachable from a variable

is translated directly into an access graph. This access graph is similar in

structure and function to a finite state automaton.

The access graph or the automaton has one start node. This node represents

the object referenced by the variable in the program. Each outgoing edge of

the graph represents a field of the object. Every node visited by the automaton

will be accessed in the program and thus it is not to be garbage collected. Let

us consider the simple example given below.

X leftTree

Figure 2.1: Simple Access Graph

7

In the heap we have a binary tree. Suppose figure 2.1 represents its access

graph. Each node of the tree has two fields leftTree and rightTree. In the

given automaton Node X represents the node of the tree which is referenced

by the variable X in the program. If we traverse the binary tree in accordance

with the automaton we will visit all the nodes of the binary tree along the path

from the X node to its left-most child. Every other node is garbage and hence

can be reclaimed by the garbage collector. Thus the sub-structure of an object

that is live at a particular program point is captured in the form of a finite

state automaton.

2.3 Implementing Liveness Based Garbage Col-

lection

LiveGC, a liveness based garbage collector is introduced in the concomitant

thesis [11]. It uses Soot implementation of the heap reference analysis men-

tioned in the section above.

Soot [14] is an open source optimization framework for Java developed by

Sable Research Group. Soot provides four intermediate representations for

Java namely, Jimple, Baf, Shimple, Grimp. These intermediate representations

allow different APIs for various optimization techniques. SOOT framework [2]

allows users to write various data-flow analyses.

JikesRVM is an open source Java Virtual Machine used for research in var-

ious virtual machine technologies. It is one of the most extensive virtual ma-

chines available. A major feature of JikesRVM is that its written almost com-

pletely in Java language itself. In this project we have extended JikesRVM to

implement a new liveness based garbage collector and then analyze its per-

formance with respect to other traditional garbage collection techniques.

8

One of the major challenge in implementing a liveness based garbage collec-

tor is providing compile time liveness information to garbage collector which

is a runtime module. The LiveGC garbage collector uses the following design

to achieve that goal.

LiveGC Design The Soot implementation of Heap reference analysis is re-

sponsible for computing access graphs. The liveness information for program

points that invoke garbage collector is stored in Java objects(access graphs)

which are stored in separate files using serialization. These files contain the

access graphs of all the live variables at the program point. The JVM would

de-serialize the files to get the access graphs.

Secondly a new bytecode instruction is inserted in the bytecode which pro-

vides the list of object references that are live and invokes the JVM routine to

handle collection.

At runtime the JVM thus contains a list of all the live variables and their cor-

responding access graphs. The garbage collector then does a simple traversal

of the heap in accordance with the access graphs.

In the next chapter we will discuss the tracing problem and describe an

algorithm which improves the running time performance of the heap trace in

LiveGC.

Chapter 3

Tracing Algorithm Design

In the previous chapter we described briefly the basic design of our solution to

the problem of liveness based garbage collection. The next step in the process

is to trace the heap memory in accordance with the liveness data. In this

chapter we will first look at a classical problem over which we modeled the

tracing problem and then discuss the algorithm for liveness based tracing of

heap.

3.1 CFL Reachability

A reachability problem in the context of graph analysis deals with answering

questions such as, is a particular node A reachable from node B along any path

in the graph. In CFL reachability [13] we consider only those paths such that

the concatenation of labels on the path edges belong to a particular context

free language.

Definition 1. A CFL reachability problem (G,L,Σ) is defined as follows. We

have context free language L over alphabet Σ and graph G whose labels are

alphabets from Σ. A path in G is an L − path if the word obtained after con-

catenating the labels of the path belongs to the language L. Two nodes are

considered reachable if there is an L− path connecting them.

9

10

Let us look at an example where the graph is as given in Figure 3.1 and the

CFG is a simple context free language L for valid bracketed expression. Start-

ing from A consider the path ABCGH and ABCDEFBCGH. Concatenating

the labels along both the paths yields a valid bracketed expression which be-

longs to the language L. Therefore both of them are L− Paths. Also note that

only H is reachable from A via an L− Path

Expr → Expr Expr

| ‘{’ Expr ‘}’

| ‘[’ Expr ‘]’

| ‘(’ Expr ‘)’

| ‘e’

| ε

Figure 3.1: CFL Reachability Example

There are 4 types of CFL-reachability problems:

1. all pairs L-path problem: Finding all pairs of nodes n1 and n2 connected

by an L-path

2. single source L-path problem: Finding all of nodes n2 such that there is

an L-path from from a particular node n1 to n2

3. single target L-path problem: Finding all of nodes n1 such that there is

an L-path from n1 to a particular node n2

11

4. single source single target L-path problem: Finding if there exists an

L-path from n1 to n2

3.2 Tracing Algorithm

As described in the previous chapter, using heap reference analysis we can

compute the access graphs for each live variable. Concatenating node labels

along any particular path starting from root node gives a valid access path. All

paths starting from the root node are a conservative approximation of all ac-

cess paths that could be used during the program execution. Take the example

access graph 3.2a below.

X leftTree

(a) Simple Access Graph

X
leftTree

leftTree

(b) Equivalent Automata

Figure 3.2: Access Graph and NFA

All the paths from root node x are of the format x.leftTree, x.leftTree.leftTree,

x.leftTree.leftTree etc. Which can also be represented by the regular expres-

sion x.leftTree∗. Since CFG are strictly more powerful than regular expres-

sion we can say that the access graph in this example can be encoded into a

CFG.

Another important thing to note about the access graphs is that they are

directed graphs and there can be self edges and loops in the graph but it has

12

to have a unique start edge which has no incoming edge. The access graphs

can be translated to equivalent Non-deterministic finite(NFAs) automata by a

simple method. If we label all the edges of the graph with the label of the

destination node of the edge we can get a NFA which is shown in 3.2b. NFAs

can be converted to regular languages which in turn are subset of context free

languages [8]. Therefore we can conclude that the access graphs are encoded

context free languages.

Our goal is to find all nodes in the heap that lie on some valid path on the

access graph. This is equivalent to finding all objects on heap whose reference

paths belong to the CFL encoded by the access graph. Thus the problem

reduces to single source L-path problem. By finding all the nodes reachable

from root node via a valid access path and all the nodes on these paths we

complete our objective.

We propose the following algorithm for the problem which is a modified DFS

algorithm.

Algorithm 1: Garbage Collector Algorithm

Function GCTrace(Object[] LiveObjs, AccessGraph[] GraphList)

for index← 0 to LiveObjs.size() do

X = LiveObjs[index]

G = GraphList[index]

root = G.rootNode()

TraceObject(X, G, root)

The input to the garbage collector is a list of live variables and their cor-

responding access graphs. The garbage collector iterates over the list and

handles tracing for each object through the function GCTrace. For each ob-

ject we invoke the function TraceObject.

13

Algorithm 2: Tracing Algorithm for an Object

Function TraceObject(Object X, AccessGraph G, GraphNode i)

label [X, i] = visited

for each edge (i, v) in G do

if X has a field v: then

Object f = X.v

if label [f, v] != visited then

TraceObject(f, G, v)

For each object X we have a corresponding access graph G. A 2D array

label keeps track of the nodes visited and the state of the automaton when the

node was visited. label[X, i] = visited represents object X was visited and the

state of the automaton was i. Then we iterate through all the outgoing edges

from the state i of the automaton. If an outgoing edge of the automaton is

present in X (by present in X we mean that there is a field of X with the same

name as the label of the outgoing edge) and its not yet visited via that state

of the automaton then we traverse that node recursively. Every node visited

by TraceObject is marked so that the garbage collector during the collection

phase doesn’t collect it as unused memory.

3.3 Implementation

We used JikesRVM, a Java virtual machine written in Java, for implementing

our algorithm. The code is implemented in the org.jikesrvm.mm.mmtkinterface

package in the GCMonitoration class.

The TraceObject algorithm discussed in the previous section is a recursive

function. This could lead to stack overflow exception for data structures that

have a large depth. To counter this the algorithm was translated to an equiv-

14

alent iterative procedure using a Stack. The final algorithm is shown below.

Algorithm 3: Optimized Tracing Algorithm

Function TraceWithGraphOpt(Object X, AccessGraph G)

Map map = new HashMap()

objectStack.push(X)

nodeStack.push(G.root())

while !objectStack.isEmpty() do

ProcessNode(G,map)

Function ProcessNode(AccessGraph G, Map map)

object = objectStack.pop()

root = nodeStack.pop()

label = map.get(object)

label[root.index()] = visited

for field f in object.fields do

for target t in root.targets do

if f == t then
child = f.loadObject()

label = map.get(child)

if label[t.index()] != visited then

objectStack.push(child)

nodeStack.push(t)

label[t.index()] = visited

map.put(label)

Chapter 4

Results and Analysis

Experiments carried out with LiveGC without the optimized algorithm de-

scibed in this thesis has been discussed in [11]. The results show a perfor-

mance increase in terms of the number of objects collected but the running

time performance is not encouraging. We have tested our algorithm against

the same set of benchmarks and compare its performance with naive method

and also with a reachability based trace.

For the sake of brevity we use LiveGC to refer to the liveness based GC used

in [11]. The optimized version discussed in this thesis would be referred to as

LiveGCOpt and the reachability based GC would be referred as RGC. We used

5 benchmarks - BiSort, Loop, DLoop, Reverse and TreeAdd.

15

16

4.1 Results

BiSort This benchmark contains a program that sorts using bitonic sort al-

gorithm [10]. The program creates a large binary tree and sorts them so that

the inorder traversal of the values is sorted. Results are shown in 4.1.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

-5 0 5 10 15 20 25 30 35 40

T
im

e
in

 n
an

os
ec

on
ds

Instance of program

LiveGC
LiveGCOpt

Figure 4.1: BiSort Program

Loop and Reverse Loop consists of large singly linked lists. The program

then traverses them starting from one end. The part of the list already tra-

versed represents garbage nodes which is captured by LiveGC and not by

RGC. The Reverse program reverses a single linked list. Results for the three

programs are shown in 4.2 and 4.3.

17

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 0 1 2 3 4 5 6 7 8

T
im

e
in

 n
an

os
ec

on
ds

Instance of program

LiveGC
LiveGCOpt

Figure 4.2: Loop Program

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 0 1 2 3 4 5 6 7 8 9

T
im

e
in

 n
an

os
ec

on
ds

Instance of program

LiveGC
LiveGCOpt

Figure 4.3: Reverse Program

BST and TreeAdd TreeAdd computes the number of nodes in the tree using

a recursive algorithm. Results for BST are shown in 4.4 and for TreeAdd are

shown in 4.5.

18

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
in

 n
an

os
ec

on
ds

Instance of program

LiveGC
LiveGCOpt

Figure 4.4: BST Program

 0

 2x109

 4x109

 6x109

 8x109

 1x1010

 1.2x1010

-5 0 5 10 15 20 25 30 35 40

T
im

e
in

 n
an

os
ec

on
ds

Instance of program

LiveGC
LiveGCOpt

Figure 4.5: TreeAdd Program

19

4.2 Analysis

We will discuss the results for three examples - BST, Loop and CircularLoop

and analyze the results obtained for the above programs.

4.2.1 BST

As we can see in 4.4 our modified algorithm has improved running time perfor-

mance of LiveGC. 4.6 shows one of the access graph used. Revisiting objects

using the same state in the access graph is redundant computation which is

avoided by the LiveGCOpt . This improves running time of the algorithm.

TreeAdd and BiSort also benefit from a similar situation.

Head

right_2

left_1 right_1

left_2

Figure 4.6: Access graph for BST

4.2.2 Loop

The results shown in 4.2 show that the running time was slightly more in case

of the modified algorithm as compared to the simple algorithm. Analyzing the

access graphs and the program shows that the structure of the heap is simple

and program flow in the heap is linear. With little or no circular traversal of the

heap the simple LiveGC executes similarly to LiveGCOpt. The improvement for

20

LiveGCOpt comes from the fact that heap objects that are visited again and

again during the tracing which is not applicable in this case. But LiveGCOpt

takes more time because of the added overhead of updating and looking up in

the map for visited objects. Similar explanation applies for DLoop and Reverse

program.

4.2.3 CircularLoop

Circular Loop contains a circular linked list which is traversed around using a

loop. The simple LiveGC fails for this program because the circular structure

of heap and the cycle in the access graph causes it to go into an infinite loop.

Observe the Program 3 given below and it’s corresponding access graph 4.7a

as output by the explicit live reference analysis.

Program 3: CircularLoop.java

1 <some−code>

2 CircularLoop c l i s t = new CircularLoop(n) ;

3 / / creates a circular linked l i s t of length ’n ’

4 for (i=0; i<n; i++) {

5 c l i s t = c l i s t . next ;

6 }

7 / / some code which uses ’ c l i s t ’

8 doSomething(c l i s t) ;

nextcList=root

(a) Access Graph

next

next

nextnext

cList

(b) Heap snapshot assuming n=4

Figure 4.7: CircularLoop.java

The access graph 4.7a clearly outlines that all field references named ‘next’

of the object ‘cList’ are to be traversed recursively. But since in reality the

21

structure in heap is circular, as illustrated in 4.7b this would lead to an infinite

loop without marking objects that have been visited by the algorithm. Which

is why LiveGCOpt works for this program whereas LiveGC gets trapped into

an infinite loop.

4.3 Summary

For calculating space performance we use the same approach as used in the

accompanying thesis [11]. In this approach number of objects calculated that

are marked by the RGC and LiveGC are separately counted and divided by the

number of GC calls. This gives an average measure for garbage collection. The

results tabulated in 4.1 show that LiveGC and LiveGCOpt both perform better

than RGC for all benchmarks except one for which performance is as good as

RGC. There is no extra garbage collected in case of LiveGCOpt as compared

to LiveGC which is expected behavior because the algorithm discussed in this

thesis works only on improving running time.

SrNo Program
Avg number of
objects on heap

Percentage of
extra garbage

RGC LiveGC LiveGCOpt
1 BiSort 11.47 6.36 6.36 14.32
2 Loop 32500 25000 25000 18.75
3 DLoop 37999 25000 25000 24.99
4 Reverse 38889 27778 27778 22.22
5 TreeAdd 3.87 3.7 3.7 1.02
6 BST 33534 33534 33534 0
7 GCBench 1173 1 1 117300

Table 4.1: Average performance of LiveGC over complete program

We used Java system utility functions to calculate precisely the running time

of the three tracing algorithms used namely - RGC, LiveGC and LiveGCOpt.

The results are tabulated in 4.2. As discussed in previous section for programs

22

which do not involve circular structure in heap and access graph like Loop and

Reverse the LiveGCOpt performs slower because of the overhead incurred due

to using a map. For BiSort and BST the performance increase is drastic as

the redundancy in tracing is reduced. RGC is faster than both LiveGC and

LiveGCOpt at the expense of collecting less garbage. GCBench benchmark

for garbage collector allocates large data structures on heap which are never

deallocated and not used over the full range of the program. This kind of

situation is tailor made for liveness based garbage collection and both liveness

based collector perform sharply better than RGC in this case.

SrNo Program
Running Time

in ms
Percentage of

time improvement
over LiveGC

RGC LiveGC LiveGCOpt
1 BiSort 0.2 31 14 54.83
2 Loop 48 1653 1762 -6.59
3 DLoop 77 1666 1763 -5.82
4 Reverse 88 1837 1966 -7.02
5 TreeAdd 9 1115 1104 0.98
6 BST 94 7832 4237 45.90
7 GCBench 206 22 21 4.76

Table 4.2: Comparison of running time performance between LiveGC, LiveG-
COpt and RGC

Another heuristic was implemented to improve performance. In this heuris-

tic LiveGCOpt trace traversed according to the given algorithm and reverted

back to RGC tracing if the number of times a particular node was visited is

greater than a fixed constant k. We ran our tests on the same set of bench-

marks for a variety of values for k. The results are tabulated below in Table

4.3.

We can observe from the table below that as the value of k increases the

running time performance gradually becomes more closer to LiveGCOpt. But

23

the improving time performance is not without its trade-off. For k = 1 the

reduction in heap space from garbage collection is identical to that of RGC

showing no improvement. Whereas for k = 3 heap size reduction is identical to

LiveGCOpt but so is the time performance. For k = 2 performance is identical

to LiveGCOpt except for the performance of BiSort and TreeAdd.

Program
Running Time in ms

RGC
LiveGCOpt

(k = 1)
LiveGCOpt

(k = 2)
LiveGCOpt

(k = 3)
LiveGCOpt

BiSort 0.2 4 12 14 14
Loop 48 49 1800 1823 1762

DLoop 77 75 1795 1792 1763
Reverse 88 81 1997 1997 1966
TreeAdd 9 11 13 1126 1104

BST 94 90 4591 4378 4237
GCBench 206 221 22 22 21

Table 4.3: Comparison of running time performance between LiveGC with
heuristic, LiveGCOpt and RGC

Apart from the programs tabulated above we also tested CircularLoop pro-

gram which doesn’t execute on LiveGC because of the limitations discussed in

previous section.

Chapter 5

Conclusion

One disadvantage of garbage collectors is the performance hit programs

have to incur due to a parallel GC thread that can also stop execution for a

while as in the case for Stop-the-World type of garbage collectors. For a live-

ness based garbage collector to be viable alternative to reachability based col-

lector we have to improve the performance of the gc both in terms of memory

reclaimed and execution time. The algorithm we proposed has improved the

running time of the tracing algorithm in most which is the most time consum-

ing phase of the collection process. Also the results show that the garbage

collected is around 20% more as compared to a reachability based garbage

collector. So we have improved running time without compromising on the

memory efficiency of LiveGC. The LiveGCOpt outperforms LiveGC by almost

50% in some cases. In cases where is performs slower the difference is less

than 8%. Also LiveGCOpt is a more complete tracing algorithm as it also han-

dles cases such as CircularLoop which is not handled by LiveGC.

There is scope for some more improvement which would improve the perfor-

mance of the algorithm. The number of vertices in the access graph directly

correlates to the running time of the algorithm. We can reduce the number of

nodes in the access graph by converting the automaton to a more conserva-

tive automaton which would give a better performance albeit at the expense

24

25

of gathering less garbage. Each object in the VM has an object header [1]

which contains bits of information which are used for storing type informa-

tion, hashcode, locks, and GC bits. Using GC bits in the object header instead

of a separate map for storing the visited labels could lead to a better perfor-

mance.

Bibliography

[1] JikesRVM: Object Model. http://jikesrvm.org/Object+Model.

[2] SOOT: a Java Optimization Framework. http://www.sable.mcgill.ca/
soot/.

[3] Ole Agesen, David Detlefs, and J Eliot Moss. Garbage collection and local
variable type-precision and liveness in java virtual machines. In ACM
SIGPLAN Notices, volume 33, pages 269–279. ACM, 1998.

[4] Rahul Asati, Amitabha Sanyal, Amey Karkare, and Alan Mycroft.
Liveness-based garbage collection. In Compiler Construction, pages 85–
106. Springer, 2014.

[5] Hans Boehm, Alan Demers, and Mark Weiser. A garbage collector for c
and c++, 2002.

[6] David Gadbois, C Fiterman, D Chase, M Shapiro, K Nilsen, P Haahr,
N Barnes, and PP PIRI-NEN. The gc faq, 2007.

[7] Martin Hirzel, Amer Diwan, and Johannes Henkel. On the usefulness
of type and liveness accuracy for garbage collection and leak detection.
ACM Transactions on Programming Languages and Systems (TOPLAS),
24(6):593–624, 2002.

[8] John E Hopcroft. Introduction to automata theory, languages, and com-
putation. Pearson Education India, 1979.

[9] Susan Horwitz, Thomas Reps, and Mooly Sagiv. Demand interprocedural
dataflow analysis. SIGSOFT Softw. Eng. Notes, 20(4):104–115, October
1995.

[10] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2005.

[11] Vilay Kandi. Liveness based garbage collection in java. Master’s thesis,
IIT Kanpur, 2014.

[12] Uday P Khedker, Amitabha Sanyal, and Amey Karkare. Heap reference
analysis using access graphs. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 30(1):1, 2007.

[13] Thomas Reps. Program analysis via graph reachability. Information and
software technology, 40(11):701–726, 1998.

26

http://jikesrvm.org/Object+Model
http://www.sable.mcgill.ca/soot/
http://www.sable.mcgill.ca/soot/

27

[14] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick
Lam, and Vijay Sundaresan. Soot-a java bytecode optimization frame-
work. In Proceedings of the 1999 conference of the Centre for Advanced
Studies on Collaborative research, page 13. IBM Press, 1999.

	Abstract
	List of Figures
	List of Algorithms
	1 Introduction
	1.1 Motivational Example
	1.2 Contribution of this thesis
	1.3 Outline of the Thesis

	2 Background
	2.1 Related Work
	2.2 Explicit Live Reference Analysis
	2.3 Implementing Liveness Based Garbage Collection

	3 Tracing Algorithm Design
	3.1 CFL Reachability
	3.2 Tracing Algorithm
	3.3 Implementation

	4 Results and Analysis
	4.1 Results
	4.2 Analysis
	4.3 Summary

	5 Conclusion
	Bibliography

