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Abstract

Code optimization or code transformation is an important phase in the process of

compiler construction. It is a complex procedure as it involves analysis of the entire

program. We propose a framework which assists in writing parallel transformations

and reduces efforts of manually writing these code transformations. The framework

consists of the specification language and a transformer generator tool. The spec-

ification language provides methods for dependence analysis and for manipulating

concerned code elements. The transformer generator tool works similar to the tools

such as Lex and Yacc used for generating Lexical Analyzers and Parsers. The tool

takes specifications as an input and generates transformer from it.

With the growing interest in the field of parallelization and High Performance

Computing (HPC), a lot of research has been going on in experimenting and in-

troducing new techniques which extract parallelism from the sequential programs.

Experiments are also needed to be done to decide the proper ordering of different

techniques to get the maximum benefit. Our framework will be useful with this

experimentation. Researchers and compiler writers can write specifications for dif-

ferent transformations and can test their effects using the generated transformers.

It is easy and time-reducing to write in the specification language as the length of

the specification is quite less as compared to the actual size of the transformations.
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Chapter 1

Introduction

In this thesis, we present our work on developing a framework for generation of par-

allelizing transformers. The framework helps in writing formal specifications and

generation of code for compiler transformations. In the literature, compiler trans-

formations are broadly classified into two classes- scalar and parallel transformations.

Scalar transformations mostly aim for reducing number of instructions or size of a

program. Eg. Dead Code Elimination and Constant Propagation. Parallelizing

transformations try to improve locality (spatial or temporal) in a program. In other

words, they try to change the dependence relations which restrict parallelism in a

program. Eg. Loop Interchange and Loop Distribution.

However, we focus our work on parallel transformations. The transformations

are formally specified with the help of dependence relations.

1.1 Motivation

Code optimization is an important phase in compiler constrution. In this phase,

code improving transformations are applied on a code to improve its performance.

The main aim of these transformations is to reduce the size or execution time of a

program. The phase has significant impact on high performance computing systems.

Many performance improving scalar and parallelizing transformations are de-

scribed in the literature. However, there are some important points which are to

1



2

be taken into consideration while applying these transformations to a program. A

thorough dependence analysis of a program is required to find out whether apply-

ing a transformation is legal or not because transformation should not change the

semantics of a program. The dependence analysis techniques used for this purpose

are often time-consuming. Also, the order in which transformations are applied has

a huge impact on the performance of the optimized code. Since, there cannot be a

well defined method that helps in deciding which optimizations to apply and where,

experimentation is essential to find out the best possible set or sequence of transfor-

mations for a particular program. To help out in these issues, a tool which reduces

efforts of manually writing code optimizers can be much beneficial.

Lex and Yacc are some of the most widely used tools in the areas of compiler con-

struction, and form an integral part of most of the modern compiler infrastructures.

These tools have greatly reduced the efforts of manually writing Lexical analyzers

and Parsers. Tools are also available to assist code generation. However, no such

tool is available to help in code optimization.

Our motivation behind this thesis was to develop a tool or a framework which can

help compiler writers in writing code optimizers. Such a tool can help researchers and

compiler writers in studying properties, performance and interdependencies of differ-

ent transformations, finding out a proper or beneficial sequence of transformations

on a specific program set and for experimenting with some new transformations.

1.2 Related Work

Whitfield and Soffa [1, 2, 3], Paleri, V. [4], and Karuri, K. [5] have worked on formally

specifying compiler optimizations and generating optimizers from the specifications.

Dependence relations are the basis for writing specifications in all of these works.

Whifield and Soffa, designed a specification language, GoSpeL (General Opti-

mization Specification Language) and an optimizer generator tool, GENensis. The

language has clear and easy semantics as sentential forms are used for writing specifi-

cations. For each optimization, GOSpeL requires specification of type, precondition
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and action to optimize the code. The type section specifies the types of required

code elements. Precondition consists of code patterns and dependence information.

Code patterns specify format of the code whereas dependence information consists

of global information about control and data dependences required for the specified

optimization. The action part consists of primitive actions which collectively give

effect of the optimizing transformation to be applied. The language is more conser-

vative as we cannot write subspecifications or nested conditions. Also, specification

of all the three parts are essential which is not feasible for every optimization. They

have generated many scalar and parallel transformations using the tool, GENesis.

Paleri, V. has designed a specification language which follows the formal (Q:R:P)

notation where, Q stands for quantifiers, R is a valid formula and P specifies pre-

condition. This is followed by the action part specifying primitive actions. The

precondition is specified using the same (Q:R:P) notation, allowing the nesting of

preconditions. Paleri’s language is less conservative as it offers flexibility in writing

condition and action part and allows nested conditions. However, the language is

more formal and thus has a slightly high learning quotient. The language constructs

are not easy to understand.

Karuri’s language uses hybrid approach. The language constructs are in the

setential form modelled using the formal (Q:R:P) notation. He has designed a tool,

OptGen to generate optimizers.

Both Paleri, V. and Karuri, K. have focussed on scalar transformations only.

1.3 Contribution

We have developed a system in which specifications are written using the specifi-

cation language. It takes specification as an input and generates the transformers

for the parallelizing optimization to be performed. These transformations, when

applied on a source code, transforms it as per the specification. The scope and

features of the system include the following.
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1.3.1 Intermediate Representation

The input program is converted into an intermediate representation. All the trans-

formations are performed on the intermediate code. So, choosing an appropriate in-

termediate representation is important. We have used Abstract Syntax Tree (AST)

as an intermediate representation.

1.3.2 Dependence Analysis

Preconditions are specified in the specifications in the form of dependence relations.

So, the input program is analyzed for data dependence and control dependence.

1.3.3 The Specification Language

Karuri, K. has explored scalar optimizations using the specification language de-

signed. As we have worked on parallel transformations, we modified his language

and added some constructs to it required to specify parallel transformations. The

details of the language are given in 4. We have specified some loop transformations

using the specification language.

1.3.4 Transformer Generator

We have designed and developed a tool which generates the transformer based on

the specifications read. It checks if the preconditions specified in the specification

are satisfied by the input program. If it does, actions specified in the specification

are performed. So, the tool is called transformer generator tool. The tool supports

generation of parallelizing transformations, specifically.

The system does not parallelize the transformed code. A parallelizing technique

can be used to get the desired results.
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1.4 Organization of the Thesis

The rest of the thesis is organized as follows.

Chapter 2: In this chapter, we give the Literature Survey done during the

course of the thesis work.

Chapter 3: In this chapter, we highlight the major background behind this

thesis. It describes some concepts which are sort of pre-requisites in writing speci-

fications for optimizations and understanding our tool.

Chapter 4: This chapter gives the overview of the specification language we

have used, along with two examples of specifications.

Chapter 5: This chapter gives the overview of the tool that generates parallel

transformers.

Chapter 6: In this chapter, we discuss the experiments performed and the

results obtained.

Chapter 7: In this chapter, we conclude the thesis while giving the possible

extensions associated with the thesis.



Chapter 2

Literature Survey

In this chapter, we present the Literature Survey done during the course of the

thesis work. Firstly, some classical books available in this area are enlisted. First

section contains a list of the articles published recently about different optimizing

transformations and automatic parallelization techniques. The previous work done

on the approach used in the thesis is already explained in section 1.2. The last

section of this chapter describes some articles presenting different other approaches

of generating and experimenting with the transformations.

Different program analysis techniques are discussed thoroughly in the literature.

Some code improving transformations are also described. Aho, Ullman and Sethi

[6] describe traditional scalar transformations and different approaches to data flow

analysis. Wolfe [7] describes data dependence analysis and some parallelizing trans-

formations. Muchnick [8], gives brief description of both scalar and parallelizing

transformations. Banerjee [9] discusses parallelizing transformations and different

data dependence analysis techniques. Allen and Kennedy focus [10] on analysis

and transformation techniques for parallel architectures. They cover parallelizing

transformations and their interactions, in detail.

6
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2.1 Compiler Optimization and Auto-Parallelization

Some recent work in the area of compiler optimizations and different automatic

parallelization techniques are described below.

Liu et al. [11] present an iteration-level loop parallelism technique for executing

different iterations of the same loop (serial or DOACROSS) in parallel. The aim

is to maximize the number of consecutive iterations that are independent of each

other and can be executed parallely. So, the statements are rearranged to migrate

dependencies acroos the different iterations of the same loop. A dependence graph

is created and dependecies are migrated among the edges of the graph using the

technique of ’Retiming’. In this way, loop optimization problem becomes the graph

optimization problem. Finally, a transformation algorithm which uses these retiming

values is described to generate optimized code for the loop into consideration. The

optimized code contains prologue, epilogue and loop which can now be parallelized.

Jie et al. [12] propose a nested loop fusion algorithm which performs cost analysis

of parallel loops. It ensures that the positive speedup is gained for the loop on which

Loop Fusion has been applied. The cost analysis module analyzes iteration sum of

a loop. The technique fails to give positive speed-up for the loops having relatively

small iteration sum trip. Loop Unrolling is applied on such loops to make them

serial. This decreases the depth of the nested loop which can avail application of

loop fusion.

Oancea et al. [13], introduce an Automatic Loop Parallelization technique. The

technique is based on both static and dynamic data dependence analysis. Compar-

atively, dynamic data dependence analysis techniques are less conservative whereas,

the execution overhead in static analysis is less. So, this paper proposes a hybrid

compiler technology that extracts maximum possible static information to reduce

cost of the dynamic analysis. The technique is better suited to parallelize larger

loops, but is less effective in driving code transformations such as loop interchange,

skewing, tiling, etc.
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Pouchet et al. [14] propose an optimization technique based on the polyhedral

model. The polyhedron is pruned, focussing on multidimensional statement inter-

leavings corresponding to a generalized combination of loop fusion, loop distribution

and code motion. In this technique, all possible dimensions and their interleavings

are explored and different optimizing program schedules are selected. The algorithm

then selects the best performing schedule.

hun Eom et al. [15] present a dynamic parallelization approach - Dynamic Out-

of-Order Java (DOJ). DOJ is the improvement suggested over OoOJava which is a

task-based dataflow programming model. DOJ handles two types of dependencies,

variable dependencies and heap dependencies. The main achievement of DOJ is in

compilation time. Due to the dynamic approach used in DOJ, it provides much

faster compilation whereas, a comparable speedup is obtained as in OoOJava.

Noll et al. [16] propose a design of a concurrency-aware JVM for the JIT com-

piler. It performs runtime task size optimizations. The optimization presented here

increases the parallel task size. It performs concurrent region merging of multiple

small concurrent regions into a larger concurrent region. The technique turns out

to be efficient for the applications which execute many smaller tasks.

2.2 Automatic generation of Transformations and

experimentation

Some approaches of automatic generation of optimizing transformations and to per-

form experimentation with different transformations are listed below.

Farnum, Charles [17] proposes a framework, Dora to support experimentation

with compiler optimizers. The framework uses a single Intermediate Langguage

schema to represent all languages. It applies existing optimizations to a new com-

bination of source language and target machine. Using Dora, it is possible to write

new optimizations in the reusable manner. So, Reusability and Extensibility are the

two achievements of the framework.
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Tiwari et al. [18] describe their framework for auto-tuning of optimizations.

The framework uses a search algorithm which evaluates different combinations of

compiler optimizations and selects the one with the best performance. It supports

automated code transformation and parameter search.

Thees et al. [19] present a model for automatic generation of implementations

from formal specifications. Estelle is a formal description technique which is designed

for the description of distributed, concurrent systems, in particular communication

protocols. The model consists of an Estelle compiler which can also be used as a

platform for different purposes such as performance monitoring, optimization and

to test implementation methods.

Davidson et al. [20] describe a system that automatically generates patterns for

a fast classical peephole optimizer. In the system, a retargetable machine-directed

optimizer is run at compile-compile time. Using its output the classical compile-time

peephole optimizer is automatically generated. In this way, the system achieves

thoroughness and retargetability of a machine directed peephole optimizer along

with the speed of a classical peephole optimizer.

Bansal et al. [21] propose the automatic generation of peephole superoptimiz-

ers. Superoptimizers find the optimal code sequence for a single, loop-free target

sequence. For several different target machines, optimal instruction sequences are

computed. An indexed optimization database is used to save all the optimizations

found by the superoptimizer. It reduces the efforts of computing optimization again

and again.

Tate et al. [22] use proof of equivalence between the original and transformed

concrete programs, to generate compiler optimizations. Information such as which

are the important aspects of the program and which can be discarded can be inferred

from these proofs. These proofs are generated by translation validation or a proof-

carrying compiler. The system accepts concrete examples of transformations as an

input and from the proofs of these instances derives optimization rules.



Chapter 3

Background

This chapter will focus on some of the key concepts which are pre-requisites in

writing formal specifications of transformations. We will briefly discuss different

parallelizing transformations and their constraints. The chapter is concluded with

a discussion on ROSE infrastructure which has been used in building our tool.

3.1 Key concepts in Compiler Optimizations

If a code is produced just by applying straightforward compiling algorithms, there

is often an ample scope of improving the code in terms of its execution time or

memory requirements, or both. Traditionally, program transformations which try

to improve the program code are called Optimizations. However, the word ”opti-

mization” is a misnomer as only in rare cases we get an object code which is optimal,

by any measure. Compilers that apply code-improving transformations are called

Optimizing Compilers. The transformations provided by an optimizing compiler

should satisfy following properties:

• A transformation must preserve the meaning of an input program. Sometimes

it is desirable to take a conservative approach of missing an opportunity to

apply a transformation rather than risk changing what the program does.

• A transformation must speed up programs by a measurable amount.

10
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• A transformation must be worth the effort. In some cases, transformations can

only be applied after detailed, often time-consuming, analysis of the source

program. For those transformations, the improvement gained is neutralized

by the resources consumed in acheiving it.

Transformations are broadly classified into two classes:

1. Scalar Transformations aim at reducing the size of a program.

2. Parallelizing Transformations aim at maximizing parallelism and memory lo-

cality in a program.

3.1.1 Dependences in Program

A dependence between any two statements in a program is defined as a relation

that constraints their execution order. There are two types of dependences which

can occur in a program. Control dependence is a constraint that arises due to the

control flow of a program whereas, a data dependence arises from the flow of data

between statements. Dependence is a principal tool used by compilers in analyzing

and transforming programs for their execution on parallel and vector machines. It

is helpful in determining when it is safe to make certain program transformations.

A transformation is ”safe”, if the transformed program preserves the correctness of

the input program.

3.1.2 Validity or Legality of a Transformation

Two computations are equivalent if given the same inputs, they produce identical

values for output variables. A valid transformation preserves all dependences in a

program. In other words, any transformation that reorders the execution of state-

ments in a program is said to be valid/legal if the transformation maintains the

order of source and sink for every dependence present in the program.
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3.1.3 Formal Definitions

Some of the important terms which are used frequently throughout the chapters are

enumerated below. These terms are well defined in the literature [10].

3.1.3.1 Data Dependence

There is a data dependence from statement s1 to statement s2 (statement s2 dependes

on statement s1) if and only if

1. both statements access the same memory location and at least one of them

stores into it and

2. there is a feasible run-time execution path from s1 to s2.

3.1.3.2 Iteration Number

For an arbitrary loop in which the loop index I runs from L and U in steps of

S, the (normalized) iteration number i of a specific iteration is equal to the value

(I − L+ 1)/S, where I is the value of the index on that iteration.

3.1.3.3 Nesting Level

In a loop nest, the nesting level of a specific loop is equal to one more than the

number of loops that enclose it.

3.1.3.4 Perfect loop nest, Imperfect loop nest

A set of nested loops is called a perfect loop nest iff all statements appearing in

the nest appear inside the body of the innermost loop. Otherwise, the loop nest is

called an imperfect loop nest.

3.1.3.5 Loop Dependence

There exists a dependence from statement s1 to statement s2 in a common nest of

loops if and only if there exisis two iteration numbers i and j for the nest such that
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1. i < j or i = j and there is a path from s1 to s2 in the body of the loop

2. statement s1 accesses memory location M on iteration i and statement s2

accesses location M on iteration j and

3. one of these accesses is a write.

3.1.3.6 Dependence Distance Vector

Suppose that there is a dependence from statement s1 on iteration i of a loop nest

and statement s2 on iteration j then the dependence distance vector d(i, j) is defined

as a vector of length n such that d(i, j)k = jk − ik.

3.1.3.7 Dependence Direction Vector

Suppose that there is a dependence from statement s1 on iteration i of a loop nest of n

loops and statement s2 on iteration j, then the dependence direction vector is D(i, j)

is defined as a vector of length n such that D (i, j)k =


” < ” if d (i, j)k > 0

” = ” if d (i, j)k = 0

” > ” if d (i, j)k < 0

3.1.3.8 Direction Matrix

The direction matrix for a nest of loops is a matrix in which each row is a direction

vector for some dependence between statements contained in the nest and every

such direction vector is represented by a row.

3.1.3.9 Loop-carried Dependence

Loop-carried dependence, is the dependence which exists only when the loop is iter-

ated. Statement s2 is said to have a loop-carried dependence on statement s1 if and

only if s1 references location M on iteration i, s2 references M on iteration j and

d(i, j) > 0 (that is, D(i, j) contains a ‘<’ as leftmost non ‘=’ component).
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3.1.3.10 Loop-independent Dependence

Loop-independent dependence is the dependence which exists because of the position

of the code within the loops. Statement s2 has a loop-independent dependence on

statement s1 if and only if there exist two iteration vectors i and j such that:

1. Statement s1 refers to memory location M on iteration i, s2 refers to M on

iteration j, and i = j.

2. There is a control flow path from s1 to s2 within the iteration.

3.1.3.11 Reordering Transformation

A reordering transformation is a program transformation that merely changes the

order of execution of the code, without adding or deleting any execution of any

statement.

3.1.4 Validity of a Transformation in terms of Dependence

Direction Vector

Let T be a transformation which when applied to a loop nest, does not rearrange

statements in the body of the loop. Then, T is said to be valid if it does not result

in dependences direction vectors having a leftmost non ’=’ component that is ’>’.

3.2 Some Parallelizing Transformations

Some of the parallelizing transformations described in the literature [10] and [8] are

explained below.

3.2.1 Loop Interchange

Loop interchange is a reordering transformation that swaps the ordering of two

adjacent loops in a perfect loop nest. This transformation is useful in extracting

parallelism. It is desirable to move loops with no dependences to outermost possible
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position. This shifting makes parallelization of outer loops feasible. Reordering of

a large number of statements takes place with this single transformation. So, loop

interchange is an important transformation.

Loop Interchange is legal if and only if any two statements in the inner loop do

not contain flow dependence with direction vector (<,>) .

3.2.2 Loop Permutation

Loop permutation generalizes loop interchange by allowing more than two loops to

be moved at once and by not requiring them to be adjacent.

A permutation of loops in a perfect loop nest is legal if and only if on applying

the same permutaion to columns of the direction matrix, the matrix does not have

’>’ direction as the leftmost non-’=’ direction in any row.

3.2.3 Loop Distribution

Loop distribution takes a loop that contains multiple statements and splits it into two

loops with the same iteration-space traversal, such that the first loop contains some

of the statements from the original loop and the second contains remaining. The

transformation eliminates loop carried dependences. So, it can be used to convert a

sequential loop to multiple parallel loops.

Loop distribution is legal if it does not result in breaking any cycles in dependence

graph of the original loop.

3.2.4 Loop Fusion

Loop fusion takes two adjacent loops that have the same iteration-space traversal

and combines their bodies into a single loop.

A fusion of two loops is legal if they have the same bounds and if there are no

dependences in the fused loop for which instructions from the first loop depend on

instructions from the second loop in the reverse direction.
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3.2.5 Loop Reversal

Loop reversal reverses the order in which a particular loop’s iterations are performed.

3.2.6 Unroll-and-jam

An unroll-and-jam to factor n consists of unrolling the outer loop n−1 times to create

n copies of the inner loop and fusing those copies together. The transformation

improves the efficiency of pipelined functional units.

An unroll-and-jam to factor n is legal if and only if there exists no dependence

with direction vector (<,>), such that the dependence distance for outer loop is

< n.

3.3 ROSE Compiler Infrastructure

ROSE [23], [24], [25] is an open source compiler infrastructure. It is developed by

Lawrence Livermore National Laboratory(LLNL). It provides support for multiple

languages. It can read and analyze source code written in the languages like C,

C++ and Fortran. It is useful for building tools for the program analysis and

transformation as well as code generation. ROSE is designed to build translators.

It uses source-to-source approach to define such translators. It provides tools to

support the program analysis. It also provides support for users to build their own

forms of analysis and specialized transformations.

ROSE infrastructure works by reading the source code and generating an Ab-

stract Syntax Tree (AST). The source-to-source translator takes the source code

written in the high level language, as input, generates AST, performs the various

operations, transforms the AST again into High level language, and then outputs

the transformed code. The nodes used to define AST graph are Intermediate Rep-

resentation (IR). ROSE provides mechanisms to traverse and manipulate the AST

and also to regenerate source code from the AST.



Chapter 4

Specification of Transformations

Some parallelizing transformations were discussed in section 3.2. While the trans-

formations considered can be expressed in terms of dependence relations, they need

to be formalized to be consumed by the software. We need a formal specification

method which is powerful enough to express all the parallelizing transformations.

Such a formalization is beneficial to understand the properties, proper ordering and

the effects of application of the transformations.

Each transformation is specified in the form of a precondition and an action

part. The precondition part specifies the legality condition for the application of

the transformation so that the transformation does not change the semantics of

the program. The action part is a set of primitive actions which give the steps to

perform the transformation.

This chapter gives an overview of the method that we have used to specify

parallelizing transformations. Section 4.1 describes the formal method similar to

predicate logic. The formalization is used for the theoretical understanding of the

parallel transformations. Section 4.2 describes the specification language used by our

system. It explains some of the important language constructs and action routines

of the language.

17
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4.1 A Formal Specification Method

The specifications are expressed in a notation similar to the predicate form (Q:R:P)

read as, Q such that R for which P is true, where Q is a set of quantifiers, R is a

valid formula and P is a predicate. A nested specification is possible for complex

transformation as the predicate P is also expressed in the same (Q:R:P) format,

including quantifiers, a formula and the predicates. In a simple case, predicate

can take a form of a valid formula. This method is given by Paleri, V. [4] for

the formal specification. The method is powerful enough to express many complex

transformations. We have used this formalization method to express parallelizing

optimizations. This helps to understand the properties of transformations. The

transformations are then modeled into the specification language.

Following are the examples of parallel transformations specified in the (Q:R:P)

notation.

4.1.1 Formal Specification: Loop Interchange

Let us assume, we have a perfectly nested loop, say L. Let L1 and L2, are outer

and inner loops respectively in the loop nest L. The loop header of any loop, say

l is denoted as l.head. It consists of the initialization statement(s), the condition

statement(s), and the increment/decrement statement(s). Then, the preconditions

and the action corresponding to the loop interchange are as follows.

Precondition:

1. Flow dependence should not exist from L.L1.head to L.L2.head.

¬ (L.L1.head δ L.L2.head)

2. There should not exist a flow dependence with direction vector (<,>) between

any two statements of the loop nest L.

∀Si∀Sj : (Si ∈ L) : ¬(Siδ(<,>)Sj)
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Action: If the preconditions are satisfied, swap the headers of the two loops L1 and

L2, including the initialization statement, condition statement and the incremen-

t/decrement statement.

{ swap(L.L1.head, L.L2.head) }

The (Q:R:P) notation

∀(L) :

¬ (L.L1.head δ L.L2.head) :

(∀Si∀Sj : (Si ∈ L) ∧ (Sj ∈ L) : ¬(Siδ(<,>)Sj))

{ swap(L.L1.head, L.L2.head) }

The above notation is an example of nested specification. Here, precondition is

also expressed in the same (Q:R:P) format.

4.1.2 Formal Specification: Loop Fusion

Let us assume we have two loops, say L1 and L2, such that L1 is executing before

L2. Then, the precondition and action for the application of Loop Fusion are as

follows.

Precondition:

1. The two loops should iterate through the same interval with equal upper and

lower bounds.

(L1.LB == L2.LB) ∧ (L1.UB == L2.UB)

where,

LB stands for Lower bound of the loop, and

UB stands for the Upper bound of the loop.

2. After fusion, anti-dependence should not be introduced from the statements

of L2 to the statements of L1.

∀Si∀Sj : (Si ∈ L1) ∧ (Sj ∈ L2) : ¬(Sj δa Si)
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Action:

Merge the statements of the two loops into one single loop.

{ merge(L1, L2) }

The (Q:R:P) notation

∀(L1, L2) :

( (L1.LB == L2.LB) ∧ (L1.UB == L2.UB)) :

(∀Si∀Sj : (Si ∈ L1) ∧ (Sj ∈ L2) : ¬(Sj δa Si))

{ merge(L1, L2) }

4.2 The Specification Language

The specification language we have used to specify transformations takes the follow-

ing mentioned points into consideration.

• The specification language should be similar to the (Q:R:P) notation to get

the same power of expression. It should be able to express all the traditional

parallelizing optimizations. If some new transformation is to be introduced

or to be experimiented, it should be easily expressible in the specification

language.

• The optimizer generator software expects specification as an input. So, the

specifications should be written in a way such that it can be easily understood

by the software.

• The aim of the designed system is to reduce the efforts of writing parallel

transformations. So, the specification language should be simple and easy to

learn for the compiler writers.

• The language should not be very conservative. The user should be able to

express optimizations as aggressively as possible.

• The language should be extendable to provide scope of addition of new routines

and predicates.
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Our specification language is a ‘C’-like language which can be easily adopted by

any programmer. The language provides modularity with the scope of writing one

or many ‘subspecifications’, along with the ‘mainspecification’ to specify complex

transformations. The language is just a sentential modelling of the (Q:R:P) notation

which combines expression power of the formal notation with the easy syntax of the

sentential notations. The language offers flexibility in writing preconditions and

action routines so that transformations can be specified aggressively.

4.2.1 Format of the Specification Language

In this part of the section, the format of the specification in the specification language

is explained corresponding to some of the grammar rules in the language.

Grammar rules are shown in figure 4.1

Rule 1::  specification : subspecificationList mainspecification

Rule 2::  subSpecification : subSpecificationHeader subSpecificationBody

Rule 3::  subSpecificationHeader : retOrArgType ID  ( formalArguments ) varDeclaration

Rule 4::  mainSpecification : ID ( formalArguments ) varDeclaration mainSpecificationBody

Rule 5::  subSpecificationBody : compoundStatement

              mainSpecificationBody : compoundStatement

Rule 6::  compoundStatement : BEGIN statementList END

Rule 7::  statement : languageConstruct ’;’

                                 | primitiveAction ’;’

                                 | RETURN ID ’;’

                                 | RETURN boolValue ’;’

Figure 4.1: Rules in the Specification Language

1. Rule 1:

Every specification consists of two parts, an optional list of one or more sub-

specifications and the mainspecification.

2. Rule 2:

Both the mainspecification and the subspecification contain two parts, header
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and the body. A subspecification accepts a list of formal arguments and returns

some value. The subspecification is similar to a function or a subroutine in

‘C’-like languages. This provides modularity in the specification and makes it

easy to write complex transformations.

3. Rule 3:

The subspecification header includes retOrArgType i.e. return value, ID i.e.

name of the specification, list of formal arguments enclosed within parantheses

and variable declaration which declares local variables of the subspecification.

4. Rule 4:

The mainspecification consists of the main precondition and action part. Both

subspecification and mainspecification define their own local variables. The

header of the main specification consists of ID i.e. name of the specification,

a list of formal arguments and the variable declaration part to declare local

variables.

5. Rule 5:

The body of the subspecification and the mainspecification consist of a state-

ment or a compound statement.

6. Rule 6:

In a compound statement, the statements are enclosed within the token begin

and the token end.

7. Rule 7:

A statement consists of a language construct, a primitive action or a return

statement. The language construct includes forall statement or an if state-

ment. The primitive actions are basic functions required to be performed by

the transformation.

All the rules explained in this section consist of the basic constructs that are used

in general, in any specification. However, in case of parallelizing transformations,



23

mostly loop dependences are taken into consideration. Some of the language con-

structs and primitive actions provided for dependence checking and to manipulate

loop structures are given below.

• FLOWDEP : To check flow dependence between the two statements

• FLOWDEPDIR: To check the direction of the flow dependence.

• ANTIDEP : To check the existence of anti-dependence between the statements.

• INLOOP : To check whether a statement is present inside a loop or not.

• loop createNewLoop(head): To create a new loop with the given header.

• addStatementToLoop(loop L, statement S) and deleteStatementFromLoop(loop

L, statement S): To add a statement to a given loop and to delete a statement

from a loop.

• bool flowDepDirMat(statement S1, statement S2, int pos1, int pos2, char dir1,

char dir2): returns true if the direction vector for the dependence between

statements S1 and S2 has the directions dir1 and dir2 at positions pos1 and

pos2 respectively.

So, the description given above is an overview of the specification language we

have used. There are many other constructs provided by the language. Some new

rules can be easily added to the language to provide some new features, if required.

Loop Interchange and Loop Fusion are specified in the specification language as

below.

4.2.2 Specification: Loop Interchange

Figure 4.2 shows the specification for Loop Interchange.

4.2.3 Specification: Loop Fusion

Figure 4.2 shows the specification for Fusion.



24

boolean legalINX (nestedforloop L)

var

        statement SI, SJ;

begin

forall (SI) satisfy ( inLoop ( L , SI ))

begin

        if exists (SJ) satisfy (inLoop (L, SJ) and (flowDep (SI, SJ) and flowDepDir (SI, SJ, <, >)))

                return false;

        ;

end

;

return true;

end

loopInterchange

var

        nestedforloop L;

begin

forall (L) satisfy (notflowDep (L.L1.head, L.L2.head))

        if legalINX (L)

                swap(L.L1, L.L2);

        ;

;

end

Figure 4.2: Loop Interchange
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boolean legalFuse(forloop L)

var

        statement SI, SJ;

begin

        forall (SI) satisfy ( inLoop ( L , SI ))

        begin

                if exists (SJ) satisfy (inLoop (L, SJ) and antiDep (SJ, SI))

                        return false;

                ;

        end

        ;

        return true;

end

loopFusion

var

        consecutiveforloop cL;

        forloop L;

        statement S;

begin

        forall (cL) satisfy (equals(cL.L1.LB, cL.L2.LB) and equals(cL.L1.UB, cL.L2.UB))

        begin

                L = createNewLoop(cL.L1.head);

                forall(S) satisfy(inLoop (cL.L1, S) or inLoop(cL.L2, S))

                begin

                        addStatementToLoop(L, S);

                end

                ;

                if(legalFuse(L))

                        replace(cL, L);

        end

        ;

end

Figure 4.3: Loop Fusion
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Generating Parallel Transformers

We have designed and developed a system which helps in generating parallel trans-

formers. The system provides a framework which accepts a specification as an input,

parses it, and generates code for it. The generated code is then applied on a C or

C++ program to get the transformed code. We have written specifications for some

of the important parallel transformations, and generated code for them. Our sys-

tem can either be used as a tool which helps in generating code transformers or as

an environment for experimenting with code transformations. This chapter gives a

brief overview of the framework that we have developed.

5.1 The Overview of the framework

The components of the system shown in figure 5.1 are described below.

An HLL source code is an input program written in high level language. The

Parser converts it to the Intermediate code. ROSE uses Abstract Syntax Tree

(AST) for Intermediate representation. Parallelizing transformations involve loop

operations such as modification of loop structures, recomputation of loop bounds,

or renaming of loop index variables. So, a high level Intermediate Representation

that retains information about loop structures from the source program is needed.

In AST, every node represents an IR for a specific code element. Hence, the use of

AST for intermediate representation has a significance for our framework.
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Figure 5.1: The transformer Generator Framework
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The Analysis and Transformation Library contains some important im-

plemented methods to assist the transformation process. It has two components as

follows.

• The Dependence Analyzer performs dependence analysis on the IR of the

source code and returns the corresponing dependence matrix. It uses methods

from ROSE Compiler to build dependence graph and to generate dependence

direction vectors for each dependence relation.

• The Transformation Library contains the implementations for the primitives

provided by the specification language. These methods are called by the trans-

former during the transformation process. The methods are applied to perform

various actions on the IR of the input program. The transformation library

uses ROSE methods to access and manipulate AST.

The Transformer Generator is the most important processing unit in the

framework. It takes Specification as an input and generates Transformer from

it. Section 5.2 describes the functionality of the transformer generator tool. The

transformer performs specified transformations on the IR of the input program and

generates the corresponding transformed IR. It contains functions corresponding

to the subspecifications and mainspecification specified in the given specification.

Transformer uses analysis and transformation library in the transformation process.

To check the preconditions specified in the specification, the transformer uses the

dependence matrix generated by the dependence analyzer. To perform the specified

action routines, the transformer calls the methods implemented in the transforma-

tion library.

The Unparser takes the transformed IR as an input and converts it to the

High Level Language Transformed Code which is the final output of the sys-

tem.
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5.2 The Transformer Generator

The transformer generator takes specifications for code transformations as an input.

These specifications are written in the specification language. For the generation

of the transformer, the transformer generator uses the method of syntax-directed

translation. For every production rule in the grammar, some semantic actions are

defined to generate code for the transformer. The tool uses the following steps to

generate transformers:

1. It performs Lexical and Syntax Analysis of the specification using Lex and

Yacc.

2. It generates code to call the parser which converts the input program into the

corresponding intermediate representation.

3. It generates code for the identification of code elements which are of inter-

est. The generated code iterates to traverse the whole AST to search for the

required code elements and creates a list of the code elements.

4. It generates code to call dependence analyzer, to collect the dependence infor-

mation of all the dependence relations present in the input program and to

create a dependence matrix to store the collected information.

5. It generates code which uses the dependence information of the program and

checks for the precondition specified in the specification.

6. It generates code to call the primitives implemented in the transformation

library and perform action routines specified in the specification of the trans-

former.

7. Finally, it invokes the unparser which gives the transformed high level language

code.



30

5.3 Example Transformer: Loop Interchange

As an example, figure 5.2 shows the generated transformer code for the subspeci-

fication of loop interchange. The commented code is added manually to show the

parts of the specification corresponding to which transformer code is generated.

//boolean legalINX (nestedforloop L)

bool ROSE_legalINX (SgNestedForStatement *L)

{

//var

//      statement SI, SJ;

        SgStatement *SI, *SJ;

//forall (SI) satisfy ( inLoop ( L.L2 , SI ))

        Rose_STL_Container<SgNode*> stmtList = NodeQuery::querySubTree (L->L1, V_SgStatement);

        Rose_STL_Container<SgNode*>::iterator si = stmtList.begin();

        for (; si!= stmtList.end(); si++ )

        {

                SI = isSgStatement(*si);

                if(ROSE_inLoop(L->L2, SI))

                {

        //if exists (SJ) satisfy (inLoop (L.L2, SJ) and (flowDep (SI, SJ) and flowDepDir (SI, SJ, <, >)))

                        Rose_STL_Container<SgNode*>::iterator sj = stmtList.begin();

                        for (sj=si+1; sj!= stmtList.end(); sj++ )

                        {

                                SJ = isSgStatement(*sj);

                                if(ROSE_inLoop(L->L2, SJ) && (ROSE_flowDep(SI, SJ) && ROSE_flowDepDir(SI, SJ, ’<’, ’>’)))

                                        return false;

                        }

                }

        }

       return true;

}

Figure 5.2: Loop Interchange Subspecification: Generated Transformer
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Experiments and Results

We have written specifications for some parallel transformations and generated the

corresponding transformer using our framework. Generated transformers are then

applied on various inputs. The inputs we have used are the code snippets satisfying

different dependence conditions. These code snippets are taken from the examples

given in [10]. The inputs given to every transformer cover almost all the test cases

required to test the specific transformation.

6.1 Loop Interchange

For a 2-perfectly nested loop, the application of loop interchange transformation is

legal if head of the second loop does not depend on the head of the first loop and

the statements inside loop does not have a flow dependence between them with the

direction vector (<,>).

6.1.1 Specification: Loop Interchange

Figure 6.1 shows the specification written for Loop Interchange.
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boolean legalINX (nestedforloop L)

var

        statement SI, SJ;

begin

forall (SI) satisfy ( inLoop ( L , SI ))

begin

        if exists (SJ) satisfy (inLoop (L, SJ) and (flowDep (SI, SJ) and flowDepDir (SI, SJ, <, >)))

                return false;

        ;

end

;

return true;

end

loopInterchange

var

        nestedforloop L;

begin

forall (L) satisfy (notflowDep (L.L1.head, L.L2.head))

        if legalINX (L)

                swap(L.L1, L.L2);

        ;

;

end

Figure 6.1: Specification: Loop Interchange

6.1.2 Test Cases: Loop Interchange

We need a perfectly nested loop consisting of two loops to perform Loop Interchange.

We have considered different cases where statements in the loop have different di-

rection vectors.

1. Case 1: Dependence Vector (=,=)

Case 1 considers a loop with loop-independent dependence i.e. dependence

with the direction vector as (=,=). Figure 6.2 shows the input given and

output obtained for this case. Loop Interchange is legal in this case. So, the

output shows the interchanged loops.

for(I=1; I<=N; I++) 

{

        for(J = 1; J<= M; J++)

        {

                A[I][J] = A[I][J] + x;

        }

}

for (J = 1; J <= 50; J++) {

    for (I = 1; I <= 50; I++) {

      A[I][J] = (A[I][J] + x);

    }

  }

Figure 6.2: Loop Interchange: Case 1

2. Case 2: Dependence Vector (=, <)

Case 2 takes care of the loop which has loop-carried dependence with direction
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vector as (=, <). Figure 6.3 shows the input and output for this case. Loop

Interchange transformation is performed as it is legal in this case.

for( I=1;I<=N;I++) 

{

        for( J = 1;J<= M ;J++)

        {

                C[I][J+1] = A[I][J] + C[I][J];

        }

}

for (J = 1; J <= 50; J++) {

    for (I = 1; I <= 50; I++) {

      C[I][J + 1] = (A[I][J] + C[I][J]);

    }

  }

Figure 6.3: Loop Interchange: Case 2

3. Case 3: Dependence Vector (<,=)

In case 3, the loop shows a loop-carried dependence with direction vector as

(<,=). A legal loop interchange is performed with the loops as shown in the

figure 6.4

for(I=1; I<=N; I++) 

{

        for(J = 1; J<= M; J++) 

        {

                B[I+1][J] = A[I][J] + B[I][J];

        }

}

for (J = 1; J <= 50; J++) {

    for (I = 1; I <= 50; I++) {

      B[I + 1][J] = (A[I][J] + B[I][J]);

    }

  }

Figure 6.4: Loop Interchange: Case 3

4. Case 4: Dependence Vector (<,<)

Case 4 is an example of dependence carrying loop with direction vector, (<,<).

It is a candidate for valid loop interchange transformation. Figure 6.5 shows

the corresponding input ans output.

for( I = 1;I<= N;I++)

{

        for( J=1;J<=M;J++)

        {

                A[I+1][J+1] = A[I+1][J] + c;

                X[I][J] = A[I][J] + c;

        }

}

for (J = 1; J <= 50; J++) {

    for (I = 1; I <= 50; I++) {

      A[I + 1][J + 1] = (A[I + 1][J] + c);

      X[I][J] = (A[I][J] + c);

    }

  }

Figure 6.5: Loop Interchange: Case 4

5. Case 5: Dependence Vector (<,>)

Case 5 considers a case where loop transformation is not legal. It contains a
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loop with the statements inside the loop having dependence vector as (<,>).

Figure 6.6 shows the input and output for this case.

for(I=1;I<=N;I++)

{

        for(J=1;J<=M;J++)

        {

                A[I][J+1]=A[I+1][J]+c;

        }

}

for (I = 1; I <= 50; I++) {

    for (J = 1; J <= 50; J++) {

      A[I][J + 1] = (A[I + 1][J] + c);

    }

  }

Figure 6.6: Loop Interchange: Case 5

6. Case 6: (L1.head δ L2.head)

In this case, as shown in figure 6.7, the head of the second loop is depen-

dent on the head of the first loop. This condition restricts loop interchange

transformation.

for(I=1; I<=N; I++)

{

        for(J = 2; J<= I; J++)

        {

                A[I][J] = A[I][J-1] + B[I];

        }

}

for (I = 1; I <= 50; I++) {

    for (J = 2; J <= I; J++) {

      A[I][J] = (A[I][J - 1] + B[I]);

    }

  }

Figure 6.7: Loop Interchange: Case 6

6.2 Loop Distribution

Every statement in a loop can be legally distributed if it does not contain any loop

carried backward anti-dependence. We have considered two cases to specify loop

distribution. In the first case, if the precondition is satisfied, every statement in the

loop is executed in different loop resulting in consecutive loop sequence with number

of loops equals the number of statements in the original loop. In the second case,

when the precondition is not satisfied, only the statements which are not dependent

on any other statements are distributed into the new loops. In this case, the number

of new loops equals the number of loop-independent statements in the original loop.
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6.2.1 Specification: Loop Distribution

Figure 6.8 shows the specification written for Loop Distribution.

consecutiveforloop distributeAll(forloop L)

var

        statement S;

        forloop L1;

        consecutiveforloop C;

begin

        forall(S) satisfy(inLoop(L, S))

        begin

                L1 = createNewLoop(L.head);

                addStatementToLoop(L1, S);

                deleteStatementFromLoop(L, S);

                addLoop(C, L1);

        end;

        return C;

end

consecutiveforloop distributeIndependent(forloop L)

var

        statement SI, SJ;

        forloop L1;

        consecutiveforloop C;

begin

        forall(SI) satisfy(inLoop(L, SI))

        begin

                if not exists(SJ) satisfy(flowDep(SI, SJ) or antiDep(SJ, SI))

                        L1 = createNewLoop(L.head);

                        addStatementToLoop(L1, S);

                        deleteStatementFromLoop(L, S);

                        addLoop(C, L1);

                ;

        end;

        addLoop(C, L);

        return C;

end

boolean legalDistribute (forloop L)

var

        statement SI, SJ;

begin

forall (SI) satisfy ( inLoop ( L , SI ))

begin

	if exists (SJ) satisfy (inLoop (L, SJ) and antiDep (SJ, SI))

                return false;

        ;

end

;

return true;

end

loopDistribution

var

	forloop L;

        consecutiveforloop cL;

begin

        forall (L) 

	        if legalDistribute (L)

		        cL = distributeAll(L);

                else

                        cL = distributeIndependent(L);

	        ;

        ;

        replace(L, cL);

end

Figure 6.8: Specification: Loop Distribution

6.2.2 Test Cases: Loop Distribution

We have shown here two test cases, one shows legal transformation of loop distribu-

tion and the other shows the unchanged loop when the precondition is not satisfied

and it does not contain any loop independent statement.

1. Case 1: Legal Loop Distribution

Case 1 considers a loop with the statements not having anti-dependence be-

tween them. Figure 6.9 shows the input given and the transformed output.

2. Case 2: Invalid Loop Distribution
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for( I = 1;I<=N;I++)

{

	A[I+1] =B[I] + C;

	D[I] =A[I] + E;

}

for (I = 1; I <= 50; I++) {

    A[I+1] = B[I] + C;

    }

for(I = 1; I <= 50; I++) {

    D[I] = A[I] + E;

    }

Figure 6.9: Loop Distribution: Case 1

Case 2 shows a loop where statements have backward anti-dependence between

them. So, the transformation is invalid. Figure 6.10 shows the input and

unchanged code in the output.

for( I = 1;I<=N;I++)

{

	A[I] =B[I] + C;

	D[I] =A[I+1] + E;

}

for (I = 1; I <= 50; I++) {

    A[I] = B[I] + C;

    D[I] = A[I+1] + E;

    }

Figure 6.10: Loop Distribution: Case 2

6.3 Loop Fusion

A loop fusion is legal if it does not introduce any loop carried backward dependence

in the merged loop. To check this condition, first the two loops are merged into

a new loop. If the new loop does not contain any anti-dependence, the original

consecutive loops are replaced with the new merged loop.

6.3.1 Specification: Loop Fusion

Figure 6.11 shows the specification written for Loop Fusion.
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boolean legalFuse(forloop L)

var

        statement SI, SJ;

begin

        forall (SI) satisfy ( inLoop ( L , SI ))

        begin

                if exists (SJ) satisfy (inLoop (L, SJ) and antiDep (SJ, SI))

                        return false;

                ;

        end

        ;

        return true;

end

loopFusion

var

        consecutiveforloop cL;

        forloop L;

        statement S;

begin

        forall (cL) satisfy (equals(cL.L1.LB, cL.L2.LB) and equals(cL.L1.UB, cL.L2.UB))

        begin

                L = createNewLoop(cL.L1.head);

                forall(S) satisfy(inLoop (cL.L1, S) or inLoop(cL.L2, S))

                begin

                        addStatementToLoop(L, S);

                end

                ;

                if(legalFuse(L))

                        replace(cL, L);

        end

        ;

end

Figure 6.11: Specification: Loop Fusion
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6.3.2 Test Cases: Loop Fusion

We have shown here two test cases, one shows legal transformation of loop fusion

and the other shows the unchanged loop when the precondition is not satisfied and

the application of the transformation is invalid.

1. Case 1: Valid Loop Fusion

Case 1 considers a loop with the statements not having anti-dependence be-

tween them in the merged loop. Figure 6.12 shows the input given and the

transformed output.

for( I = 1;I<=N;I++)

{

	A[I+1] =B[I] + C;

}

for( I = 1;I<=N;I++)

{

	D[I] =A[I] + E;

}

for (I = 1; I <= 50; I++) {

    A[I+1] = B[I] + C;

    D[I] = A[I] + E;

    }

Figure 6.12: Loop Fusion: Case 1

2. Case 2: Invalid Loop Fusion

Case 2 shows a loop where backward anti-dependence is introduced after merg-

ing the loops. So, the transformation is invalid. Figure 6.13 shows the input

and unchanged code in the output.

for( I = 1;I<=N;I++)

{

	A[I] =B[I] + C;

}

for( I = 1;I<=N;I++)

{

	D[I] =A[I+1] + E;

}

for (I = 1; I <= 50; I++) {

    A[I] = B[I] + C;

    }

for (I = 1; I <= 50; I++) {

    D[I] = A[I+1] + E;

    }

Figure 6.13: Loop Fusion: Case 2

6.4 Loop Reversal

Loop Reversal is a simple transformation of reversing the direction of the iteration

space. It is always legal to perform this transformation. So, no precondition is
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involved to check the legality of the transformation. The transformation consists

of a set of action routines to modify initial statement, conditional statement and

the increment or decrement statement of the loop head. We have assumed that the

loop has only one initial statement, one conditional statement and one increment or

decrement statement.

6.4.1 Specification: Loop Reversal

Figure 6.14 shows the specification for Loop Reversal.

loopReverse


var


        forloop L;


        int lb, ub;


begin


        forall (L) 


        begin


                lb = getInitialValue(L.head);


                ub = getConditionalValue(L.head);


                setInitialValue(L.head, ub);


                setConditionalValue(L.head, lb);


                reverseCondition(L.head);


                if(isIncrement(L.head))


                        setDecrement(L.head);


                ;


                if(isDecrement(L.head))


                        setIncrement(L.head);


                ;


        end


        ;


end

Figure 6.14: Specification: Loop Reversal

6.4.2 Test Cases: Loop reversal

As no preconditions are involved, we have considered only one case here. Figure 6.15

shows the input and output for the transformation.

for( I = 1;I<=N;I++)

{

	A[I] =B[I] + C;

	D[I] =A[I+1] + E;

}

for (I = 50; I >= 1; I--) {

    A[I] = B[I] + C;

    D[I] = A[I+1] + E;

    }

Figure 6.15: Loop Reversal
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6.5 Loop Permutation

This is the general form of loop interchange. It swaps two loops at any given position

in the perfect loop nest with arbitrary number of loops. A loop permutation is legal

if after permutation, first non-‘=’ member in the dependence direction matrix is ‘<’.

It has a complex precondition depending on the position of the loops to be swapped.

6.5.1 Specification: Loop Permutation

Figure 6.16 gives the specification for loop permutation.

boolean legalPermute (nestedforloop L, int d1, int d2)

var

        statement SI, SJ;

begin

        forall (SI) satisfy ( inLoop ( L.nest[last] , SI ))

        begin

        if exists(SJ) satisfy(inLoop(L.nest[last], SJ) and flowDep(SI,SJ) and 

(flowDepDirMat(SI, SJ, d1, d2, =, >) or flowDepDirMat(SI, SJ, d1, d2, <, =) or flowDepDirMat(SI, SJ, d1, d2, <, <) ) 

and GTE(flowDepDirMatFirstLT(SI, SJ),  d1))

                return false;

        end

        ;

        return true;

end

loopPermutation (int l1, int l2)

var

        nestedforloop L;

begin

        forall (L) satisfy (notflowDep (L.nest[l1].head, L.nest[l2].head) )

        if (legalPermute (L, l1, l2))

                swap(L.nest[l1], L.nest[l2]);

        ;

;

end

Figure 6.16: Specification: Loop Permutation

6.5.2 Test Cases: Loop Permutation

This transformation takes positions of loops to be swapped as input.

1. Case 1: Direction Matrix not containing ‘>’ direction

The loop nest shown in case 1 does not contain the direction ‘>’ in the direction

matrix. So, the precondition is true for any input positions. Figure 6.17 shows

the input given and the trasformed output.
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for( I=1;I<=N;I++)

{

        for( J = 1;J<= M;J++)

        {

                for( K = 1;K<= L;K++)

                {

                        A[I+1][J][K] = A[I][J][K] + X1;

                        B[I][J][K+1] = B[I][J][K] + X2;

                        C[I+1][J+1][K+1] = C[I][J][K] + X3;

                }

        }

}

for(I = 1; I <= N; I++) {

    for(K = 1; K<= L; K++) {

        for(J = 1; J <= M; J++) {

            A[I+1][J][K] = A[I][J][K] + X1;

            B[I][J][K+1] = B[I][J][K] + X2;

            C[I+1][J+1][K+1] = C[I][J][K] + X3;

            }

        }

    }

LoopPermutation (2, 3)

Figure 6.17: Loop Permutation: Case 1

2. Case 2: Valid Permutation for Direction Matrix containing ‘>’

direction

In this case, direction matrix contains ‘>’ direction but the swapping of two

loops at the given position does not make the first non-‘=’direction in the

direction matrix as ‘>’. So, the transformation is legal as shown in figure 6.18.

for(I = 2; I <= N+1; I++) {

    for(K = 1; K<= L; K++) {

        for(J = 2; J <= M+1; J++) {

            A[I][J][K+1] = A[I][J-1][K]+ A[I-1][J][K+2];

            }

        }

    }

LoopPermutation (2, 3)

for( I = 2;I<=N+1;I++)

{

	for( J = 2;J<= M+1;j++)

	{

		for( K = 1;K<=L;K++)

		{

			A[I][J][K+1] = A[I][J-1][K]+ A[I-1][J][K+2];

		}

	}

}

Figure 6.18: Loop Permutation: Case 2

3. Case 3: Invalid Permutation for Direction Matrix containing ‘>’

direction

In this case, direction matrix contains ‘>’ direction and the swapping of two

loops at the given position makes the first non-‘=’direction in the direction

matrix as ‘>’. So, the transformation is not legal as shown in figure 6.19.

for(I = 2; I <= N+1; I++) {

    for(J = 2; J <= M+1; J++) {

        for(K = 1; K <= L; K++) {

            A[I][J][K+1] = A[I][J-1][K]+ A[I-1][J][K+2];

            }

        }

    }

LoopPermutation (1, 3)

for( I = 2;I<=N+1;I++)

{

	for( J = 2;J<= M+1;j++)

	{

		for( K = 1;K<=L;K++)

		{

			A[I][J][K+1] = A[I][J-1][K]+ A[I-1][J][K+2];

		}

	}

}

Figure 6.19: Loop Permutation: Case 3



Chapter 7

Conclusion and Future Work

In this thesis work, we have studied different algorithms of parallel transformations

to find out the preconditions and action routines associated with them. We speci-

fied them formally using the specification language. We have written specifications

for some of the traditional parallel transformations. We found that the precondi-

tions in parallel transformations are mostly based on dependence direction vectors

and their action routines work with the structures of the loops present in a pro-

gram. The specification language we have used is derived from the work in [5].

We have added some predefined primitive routines such as createNewLoop(head),

addStatementToLoop(loop L, statement S), depDirMat(statement, statement), etc

to the language. These routines are useful while writing specifications for parallel

transformations.

We have developed a prototype of the framework to generate parallel transform-

ers from the specifications. We have used ROSE Compiler Framework which uses

Abstract Syntax Tree (AST) for intermediate representation. The use of AST helps

in loop restructuring. Using the framework, we have generated transformers for the

specifications we have written. We considered parallel transformations, Loop Inter-

change, Loop Distribution, Loop Fusion, Loop Reversal, and Loop Permutation for

experimentation. The transformers generated from the specifications are applied on

different input programs written in C language. These inputs are the code snippets

from [10] and satisfy different dependence conditions.

42
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We have generated transformers as aggressive as possible but in some cases, it

becomes conservative. For example, in case of loop distribution and loop fusion,

specifications become conservative if anti-dependences are encountered. This leaves

a scope for improvement in specifications. Addition of more primitives to the

specification language can help to overcome this issue.

The framework developed in this thesis provides legality check for the transfor-

mations so that the semantics of the programs remain valid. A parallel transformer

turns out to be beneficial if after its application, the parallelism in the program

increases. However, it is not always beneficial to apply the parallel transforma-

tions. In some cases, transformed loops becomes parallelizable while in some cases,

parallelizable loops are transformed into non-parallelizable form. For the selective

transformation, which loops are to be transformed, cost based analysis is required.

This can be an important future work associated with this thesis.

The framework aims to increase number of parallelizable loops from the input

program. To make them run in parallel, some parallelization technique is needed.

So, associating some automatic parallelization technique with this work can be an

another important extension.
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