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Abstract

Parallel programming has largely evolved as an efficient solution to a large num-

ber of compute intensive applications. Graphics Processing Unit (GPUs), tradition-

ally designed to process computer graphics, are now widely applied to process large

chunks of data parallely in many computationally expensive applications. While de-

veloping parallel programs to run on parallel computing platforms, such as CUDA,

OpenCL, etc. requires knowledge of platform-specific concepts, it becomes very con-

venient if the process of parallelizing compute intensive sections of the program can

be automated.

We develop a tool CRINK, an end-to-end code transformation system, to con-

vert sequential C programs to their parallel counterparts in CUDA. CRINK targets

to parallelize the expensive sections (sections within loops) of the program while

converting C programs to CUDA C programs. It incorporates handling of both

irregular and regular kernels. We use concepts of Cycle Shrinking and Extended

Cycle Shrinking for parallelism extractions and loop transformations.

To analyse the performance, we run CRINK over the expensive sections taken

from ZERO RC, SPEC, SANDIA RULES, Treepack and Higbie standard bench-

marks. Analysis is done over 66 varied configurations of the benchmarks and datasets

where we observe that drastic drops in computation times are achieved as the num-

ber of threads are increased while execution of the code transformed by CRINK.
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Chapter 1

Introduction

Graphics Processing unit (GPU) was traditionally designed for 3D graphics appli-

cation but because of increasing demand for high performance computing (HPC),

GPUs are now efficiently used in preference to CPUs for most of the computation-

ally expensive applications. GPUs and CPUs are different from each other in the

way they process data. CPUs have fewer cores to process the task sequentially while

GPUs have thousands of cores that can process the task parallely. GPU accelerated

computing takes the benefits of both GPU and CPU. The compute intensive part of

a program is made to run on the GPU while the remaining portion keeps executing

on CPU. Nowadays, GPUs are widely used in embedded systems, Mobile phones,

Personal Computers etc.

Compute Unified Device Architecture(CUDA)[Cud12] is a parallel programming

model which is created by Nvidia and implemented to interact with GPUs. CUDA

provides software environment to program developers for parallel computing. Using

CUDA, GPUs are made available to be used for general processing, commonly known

as General purpose computing on Graphics Processing Unit (GPGPU). CUDA is

available to software developers through CUDA accelerated libraries and the exten-

sions to some basic programming languages like C, C++, Fortran etc.

CUDA provides a multi-threaded model for general purpose computation on

GPUs. Manual implementation of parallel code using CUDA is still more complex

than parallel programming model like OpenMP, MPI etc as it involves better learn-

1



Chapter 1. Introduction 2

ing and understanding of CUDA architecture. The issue increases the need of some

tool that could convert sequential programs into their parallel counterparts. In this

thesis, we propose CRINK , an end-to-end code transformation tool. CRINK pro-

vides compiler support to facilitate the automatic code generation of parallel CUDA

programs from given input sequential programs.

We test and analyze the performance of CRINK over a number of standard

benchmarks, the results of which have been detailed in Chapter 6

1.1 Objective

The objective of this thesis is to create a tool that can automatically convert an input

C program into CUDA C program, which can then be compiled using nvcc (Nvidia

LLVM-based C/C++ compiler). To accomplish this, we needed to transform the

compute intensive portions of the program so as to be able to run them parallely,

thereby converting the programs to CUDA C programs. The goal of the thesis is

to achieve reductions in computation times of applications by transforming them to

CUDA C programs and being able to leverage the benefits of their parallel execution.

1.2 Motivation of Work

There are significant number of applications that contain regular or irregular kernels.

They may consist of a number of iterations which, if executed sequentially, would

become bottleneck to their computation times. Executing these iterations on GPU

reduces the execution time by providing highly parallel multi-core processing system

which processes large blocks of data efficiently. CUDA provides a platform to execute

these iterations parallely with the help of various threads that execute the instruction

in SIMD fashion. However, these kernels might contain some inter loop dependencies

— dependencies which exist across loop iterations. Parallel execution of such kernels

without taking care of such inter loop dependencies may lead to incorrect results.

Example 1 illustrates inter loop dependencies.

2



Chapter 1. Introduction 3

Example 1. for(i=3;i<N1;i++)

for(j=4;j<N2;j++){

x[i][j]=y[i-3][j-4];

y[i][j]=x[i-2][j-3];

}

Example 1 gives a simple case, where, for array variable x, iteration (i, j) depends

upon the iteration (i − 2, j − 3) and for array variable y, iteration (i, j) depends

upon the iteration (i− 3, j− 4). However, in practice, a large number of application

programs contain much more complex dependencies across loop iterations.

Therefore, we needed special mechanisms to handle inter loop dependencies while

parallelization. We present a technique that partitions dependent iterations into

groups of independent iterations, such that each independent group can be made to

execute parallely on GPUs.

1.3 Outline of the Solution

Automatic C to CUDA conversion system takes sequential C programs as input and

performs the following phases one by one as outlined in the Figure 1.1. Figure 1.1

gives an abstract view of the whole tool.

Figure 1.1: An Abstract View of CRINK .

The tool, largely consists of following phases:

• Compilation phase: All the lexical, syntactic and semantic analysis are

carried out in this phase.

3



Chapter 1. Introduction 4

• Dependence testing phase: This phase checks whether dependencies exist

within loops using gcd[PK99], banerjee[AK04] or omega[KMP+96] test.

• Parallelism extraction phase: This phase uses Cycle Shrinking [Pol88] or

Extended cycle shrinking[SBS95] technique to partition the loop iterations into

the group of independent iterations that can execute parallely on GPU.

• Code Generation phase: This phase generates the CUDA C code based on

the information extracted from the third phase.

The output code is compiled using the compiler which supports CUDA architecture

and parallelization is carried out at run time.

1.4 Contribution of the Thesis

In this thesis, we proposed and implemented a tool which provides automatic trans-

formation of C programs into paralllel CUDA programs using partition based ap-

proach for parallelism extraction. The input program can contains an affine or a

non-affine kernel. We have tested the tool over various standard benchmarks using

standard datasets and observes that the computation time of the generated parallel

program reduces as the number of threads increases while its execution.

1.5 Thesis Organization

Rest of the thesis is organized as follows:

Chapter 2, Background, describes the background information required to under-

stand the tool like CUDA, affine and non-affine programs, dependence test, cycle

shrinking.

Chapter 3, C to Cuda code generation Framework, discusses the various stages of

the tool like compilation phase, dependence testing, parallelization extraction and

code generation routines in detail.

Chapter 4, Methodology, gives the overview of the techniques and algorithms used

4



Chapter 1. Introduction 5

in the thesis. It also describes the implementation details of the tool.

Chapter 5, Experiments and Results, discusses the various experiments done on

the benchmarks using standard datasets.

Chapter 6, Literature Survey, discusses the literature survey done during the course

of the thesis work.

Chapter 7, Conclusion and Future work, concludes the work of the thesis and the

scope of future work.

5



Chapter 2

Background

This chapter provides an overview of the concepts required to understand this thesis.

The definitions and notations required to understand the theoretical aspects of this

dissertation are entirely covered in this chapter. Detailed background can be found

in [AK04, WSO95, Pol88, SBS95, SK10, KMP+96].

2.1 Compute Unified Device Architecture(CUDA)

CUDA[Cud12, SK10] a is a parallel computing architecture developed by Nvidia.

It provides a platform to perform parallel computation on Graphics accelerator and

thereby enables considerable increase in computing performance by harnessing the

power of GPUs. CUDA architecture exposes the general purpose computation on

GPUs as their primary capability. CRINK goal is to generate CUDA C program

that takes less time as compared to the traditional sequential program. CUDA C is

an extension to the industry standard C language to allow heterogeneous programs.

CUDA with standard language C consists of:

host code which executes by a single thread, and

kernel code executed by multiple parallel threads.

6



Chapter 2. Background 7

2.1.1 CUDA Programming Model

A CUDA program consists of different portions that are executed on CPU and

on GPU. Kernel is launched and its code is executed on GPU device by multiple

threads. Each kernel is executed as Grid of Thread Blocks. A Thread Block is a col-

lection of threads that cooperate by synchronizing their execution and by efficiently

accessing the respective block memory. Every thread is free to take any unique path

and cannot communicate with the threads from the other blocks.

Figure 2.1: CUDA Programming Model[cud].

A grid and block can be of one, two or three dimension and each of its element

is a block and thread respectively. Following are the built in CUDA variables:

girdDim.x,y,z gives the number of blocks in each direction

blockDim.x,y,z gives the number of threads in each direction

blockIdx.x,y,z gives the block index within a grid

threadIdx.x,y,z gives the thread index within a block

These variables are of dim3(integer vector) type. If a variable is declared as dim3

7



Chapter 2. Background 8

type, then any component unspecified has default value 1.

2.1.2 CUDA Memory Model

CUDA threads can access different memories during their execution as described

in Figure 2.2. Each thread has its own local memory and each block has its own

shared memory. There is a global memory from which every thread can access the

data. There are two other read-only memories, i.e. constant memory and texture

memory. CUDA architecture provides below listed memories:

• Local memory of each thread is allowed to be accessed by that particular

thread only. Each thread is executed by streamline processor. Therefore, local

memory can be accessed by only one streaming processor. Local memory is

present on the device, therefore it has high latency and low bandwidth.

• Shared memory is shared among the threads within a block. Each block is

executed on a multiprocessor. Therefore, shared memory can be accessed by

all streaming processors within a multiprocessor. Shared memory is present

on the chip hence it is faster then the local and global memoy.

• Global memory is the largest memory in terms of volume. It is present on the

device, and hence, has high bandwidth. Global memory can be accessed by

any thread within any block.

• Constant memory is a read only memory. It resides on device memory. Con-

stant memory is used for the data that will not change over the course of kernel

execution.

• Texture memory: Just like constant memory, texture memory is also a read

only memory that provides good performance, higher bandwidth only when

data access have certain patterns.

8



Chapter 2. Background 9

Each thread can
Read/Write per thread registers
Read/Write per thread local memory
Read/Write per block shared memory
Read/Write per grid global memory
Read only per grid constant memory
Read only per grid texture memory

Host can read/write global,
constant and texture memory

b

b

Figure 2.2: CUDA Memory Model

2.1.3 CUDA C programming Syntax

Following are the CUDA APIs and CUDA kernel syntax that will be used in this

thesis work:

• cudaMalloc() is used to allocate memory on device global memory. It re-

quires two parameters: address of a pointer to the allocated object and size

of the object. For example, cudaMalloc ((void **)devPtr, size t size)

allocates memory to devPtr on device of size size.

• cudaMemCpy() is used for memory data transfer. It requires four parame-
ters:

1. Pointer to source

2. Pointer to Destination

3. Size of the data to be transfer

4. Type of transfer i.e. Host to Host, Host to Device, Device to Device,
Device to Device

For example, cudaMemcpy (void *dst, const void *src, size t count,

cudaMemcpyHostToDevice) copies source src from host to destination dst on

device.

• cudaFree() frees object from device global memory. For example, cudaFree

(void *devPtr) frees the memory allocated to devPtr on device.

9



Chapter 2. Background 10

• Threads can be synchronized using cudaThreadSynchronize().

• CUDA kernel is defined as type qualifier functionName(Parameters)

Kernel Body. Unlike C functions, CUDA kernel is executed by various threads

parallely.

• CUDA kernel is called from host code as functionName<<<noOfBlock,

noOfThread>>>(Parameters). This specifies the number of threads that ex-

ecute the kernel. A grid can contain maximum 65535 blocks and a block can

contain maximum 512 threads.

2.2 Affine and Non-Affine Programs

Affine loops are the loops in which referenced array subscripts and loop bounds are

a linear function of the loop index variables. The memory access patterns within

the statements contained in the affine loops, can thus, always be known at compile

time. The programs containing affine loops are called affine or regular programs.

Example 2. for(i=4;i<50;i++)

a[i+6]=a[i-2];

Here, access pattern of array variable a, is a linear function of loop index. In

contrast to affine loops, non-affine loops are the ones where the memory access

patterns cannot be determined at compile time, since the array subscript expressions

and loop bounds do not form linear functions of the loop index variables. The

programs containing non-affine loops are called non-affine or irregular programs.

For example,

Example 3. for(i=2;i<20;i++)

a[b[i]]=a[c[i]]+a[d[i]];

Here, subscript of array variable a, depends on the value of ith iteration of array

b,c,d, which can not be known at compile time. Therefore, it is a non-affine loop.

10
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2.3 Data Dependence

A data dependency is a situation in which the data used by a program statement

(instruction) depends upon the data created by other statement. The technique

used to discover data dependencies among statements (or instructions) is called

dependence analysis.

Definition 1. There is a data dependence from statement S1 to statement S2 (state-

ment S2 depends on statement S1) if and only if[AK04] :

1. both statements access the same memory location and at least one of them

stores into it and

2. there is a feasible run-time execution path from S1 to S2

There are three types of data dependencies:

1. Flow Dependence occurs when a variable is assigned in one statement (say

S1) and is used in subsequently executed statement (say S2). It is denoted by

S1δfS2.

2. Anti Dependence occurs when a variable is used in one statement (say S1)

and is reassigned in subsequently executed statement (say S2). It is denoted

by S1δaS2.

3. Output Dependence occurs when a variable is assigned in one statement

(say S1) and is reassigned in subsequently executed statement (say S2). It is

denoted by S1δoS2.

In this thesis, we deal with nested loops. The following definitions and notations

are required to understand the theoretical aspects of data dependence:

• Consider a m-perfectly nested loop with (I1, I2, .., Im) denoting the respective

loop indices. Since every loop is normalized, 0 and (N1, N2, .., Nm) are the

lower and upper bounds of perfectly nested loops.

11



Chapter 2. Background 12

• Si(I1, I2, .., Im) denotes the ith indexed statement surrounded by m perfectly

nested loops, where Ij is the index of jth loop.

• Si < Sj implies that statement Si will execute before statement Sj.

• Si(i1, i2, .., im) represents an instance of statement of Si.

• W (Si(i1, i2, .., im)) and R(Si(i1, i2, .., im)) gives the set of variables that are

written and read respectively in Si.

• If statements Si and Sj are involved in dependence, such that Si < Sj, and

the data used or created in Si is recreated or used in Sj respectively, then the

statement Si is said to be dependence source and Sj is said to be dependence

sink.

• Two statements Si(I1, I2, .., Im) and Sj(I1, I2, .., Im) are said to be involved

in a dependence SiδSj only if there exists an instance Si(i1, i2, .., im) and

Sj(i1, i2, .., im), such that, Si(i1, i2, .., im) < Sj(i1, i2, .., im) becomes true and

following exists:

1. Flow dependence: W (Si(i1, i2, .., im))
⋂

R(Sj(i1, i2, .., in)) 6= φ

2. Anti dependence: R(Si(i1, i2, .., im))
⋂

W (Sj(i1, i2, .., im)) 6= φ

3. output dependence: W (Si(i1, i2, .., im))
⋂

W (Si(i1, i2, .., im)) 6= φ

where Si(I1, I2, .., Im) and Sj(I1, I2, .., Im) are the dependence source and

sink respectively.

2.3.1 Data Dependence in Loops

The statements within loops are executed multiple times leading to dependence

flows from one instance of executing statement to an instance of other statement or

the same statement. To represent dependence flows, Dependence Graphs [WSO95,

AK04] are used.

12
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Definition 2. Dependence Graphs are directed graphs that represent dependen-

cies between statements within a loop, where vertices of the graph are the various

statements within the loops and an edge among two vertices represent the presence

of dependence between them.

Figure 2.3b represents dependence graph corresponding to the loop shown in

figure 2.3a.

2.3.2 Iteration Space

The Iteration space of a loop provides the information regarding flow of the de-

pendence. It contains one point from every iteration. To represent the dependence

of any statement in one iteration to any statement in other iteration, an arrow is

marked from the source iteration to the sink iteration. This creates an iteration

space dependence graph. Figure 2.3c gives the iteration space for the example shown

in figure 2.3a.

for(i = 1; i < 7; i+ = 2)

for(j = 1; j < 7; j+ = 3)

S1 : A[i, j] = A[i, j] + x;

S2 : B[i, j] = A[i, j + 3];

S3 : C[i, j] = A[i, j] + 20;

(a) Double Nested Loop

S1

S2

S3

(b) Dependence Graph
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0 1 2 3 4 5 6 7

b b b b

b

b

b

b

b

b

b

b

i

j

b b b

bbb

bbb

(c) Iteration Space

Figure 2.3: Data Dependence in Loops
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2.3.3 Iteration Vector

One obvious way to label the iteration space is to use index variable iteration vec-

tors i.e., using the values of the loop index variables as the iteration vector. If we

consider a m-nested loop with loop indices (I1, I2, .., Im), then iteration vector i for

a particular iteration can be given as:

i =



i1

i2

.

.

.

im


where ik, 1 ≤ k ≤ m represents the iteration number for the loop at nesting level k.

2.3.4 Dependence Distance

Dependence distance is the difference between source and target iteration vectors of

a dependence relation. The dependence distance is itself a vector denoted by d as:

d = iT − iS (2.1)

where iT and iS are the target and source iteration vectors of a dependence relation.

An instance of statement p with iteration vector is represented by Sp[i]. If Sq[i+ d]

depends on Sp[i], then the dependence relation can be denoted as:

Spδ
∗
(d)Sq (2.2)

2.3.5 Direction Vector

The direction vector of a dependence relates the source and target iteration vectors.

If d is the dependence distance between statement S1 of ith iteration and statement

14
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S2 of jth iteration, then direction vector D(i, j) can be defined as:

D(i, j) =

” < ” ifd(i, j)k > 0

” = ” ifd(i, j)k = 0

” > ” ifd(i, j)k < 0

(2.3)

2.4 Data Dependence Test

Data dependence analysis is an essential part of compiler optimization. It tells

the compiler about the fragments of code which are independent (and hence can

execute in parallel) and the fragments of code which contain dependencies. A lot

of dependence tests are proposed in data dependence literature, out of which this

thesis uses GCD test[PK99], Banerjee’s test[AK04] and Omega test[KMP+96]. In

all these tests, there are trade-offs between accuracy and efficiency. Thus, these data

dependence tests always approximate results on conservative side i.e., a dependence

can exist if independence can not be proved. Data dependence testing is equivalent

to integer linear programming and therefore can not be solved generally.

2.4.1 GCD Test

GCD test is the most basic dependence test is also used as an initial step in many

tests. GCD test is based on a theorem of elementary number theory which states

that there exists an integer solution for a linear equation if greatest common divi-

sor(GCD) of coefficient on left hand side evenly divides the constant term at right

hand side. If this condition does not hold, it means that there is no integer solution

for the linear equation and hence dependence does not exist. For Example 2, the

linear equation will be:

ai1 + bi2 = (d− c) (2.4)

i1 + i2 = (6− 2)

In equation 2.4, a, b are the coefficients of loop variables and c, d are the constant

terms in the array subscript. Therefore, an integer solution will exist if GCD(a, b)

15
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evenly divides (d-c). So from lexical and syntactic analysis, we will be able to get

the read and write dependency variable and will extract the value of a, b, c and d.

If GCD(a,b) divides (d-c) then the dependency exists, otherwise not.

2.4.2 Banerjee Test

The Banerjee test is based on the Intermediate Value Theorem. The test calculates

the minimum and maximum value that the left hand side of linear equation 2.7 can

achieve. If the constant term (B0 − A0) of equation 2.7 does not fall between these

extreme values, then no dependence exists, otherwise a real solution to the linear

equation exists and hence, like GCD it will also return the maybe answer.

GCD Test is inefficient because most common GCD is 1 which divides everything.

Also, GCD indicates dependence even when the solution for dependence equation

exists outside the loop limits. Therefore, Banerjee Test tries to find the solution of

dependence equation under the constraints of direction vector and loop limits.

Let a be a real number. The positive part of a, denoted by a+, is given by following

expression:

a+ = if a >= 0 then a else 0 (2.5)

The negative part of a, denoted by a−, is given by following expression:

a− = if a >= 0 then 0 else − a (2.6)

The dependence equation of a statement present inside d nested loops is given as:

d∑
k=1

(AkIk − BkIk) = B0 − A0 (2.7)

For each k, find the lower and upper bounds such that:

LBψk

k ≤ (AkIk − BkIk ≤ UBψk

k (2.8)

16
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where LBψk

k is the direction vector. After taking summation we get:

d∑
k=1

LBψk

k ≤
d∑

k=1

(AkIk − BkIk) ≤
d∑

k=1

UBψk

k (2.9)

or,

d∑
k=1

LBψk

k ≤ B0 − A0 ≤
d∑

k=1

UBψk

k (2.10)

If either
∑d

k=1 LB
ψk

k > B0 − A0 or
∑d

k=1 UB
ψk

k < B0 − A0 is true, then the

solution does not exist within the loop constraints and therefore dependency may

not exist.

Following are the equations required for calculating the lower and upper bounds:

LB<
i = −(a−i + bi)

+(Ui − 1) + [(a−i + bi)
− + a+i ]Li − bi

UB<
i = (a+i − bi)+(Ui − 1)− [(a+i − bi)− + a−i ]Li − bi

LB=
i = −(ai − bi)−Ui + (ai − bi)+Li

UB=
i = (ai − bi)+Ui − (ai − bi)−Li

LB>
i = −(ai − b+i )−(Ui − 1) + [(ai − b+i )+Li + ai

UB>
i = (ai − b−i )+(Ui − 1)− [(ai − b−i )−Li + ai

where Li and Ui are the lower and upper bounds of ith loop.

2.4.3 Omega Test

The Omega test is based on a combination of the least remainder algorithm and

Fourier-Motzkin variable elimination (FMVE) [DCE73]. Omega test begins with a

derivation of Knuth’s least remainder algorithm that converts the linear equalities

and inequalities into the linear inequalities. An extension to standard FMVE is used

to determine if the resulting system of linear inequalities has an integer solution or

not.

In Omega calculator, a text based interface is given as input to Omega library which

manipulates integer tuple relations and set such as:

{[i, j]→ [j, j′] : 1 ≤ i < j < j′ ≤ n} and {[i, j] : 1 ≤ i < j ≤ n}

17
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For Example 2, input file for Omega calculator will be:

T := [i1, i2] : 4 <= i1, i2 <= 50 && i1 + 6 = i2 − 2;

T ;

and the corresponding output will be:

# Omega Calculator v2.1 (based on Omega Library 2.1, July, 2008) :

# T := [i1, i2] : 4 <= i1, i2 <= 50 && i1 + 6 = i2 − 2;

#

#T ;

[i1, i2 + 8] : 0 <= i1 <= 38

#

2.5 Cycle Shrinking

Cycle shrinking [Pol88] is a compiler transformation which is used to parallelize per-

fectly nested loops in which array access functions in the loop ststement are affine

function of loop indices and global parameters. It performs certain transformations

that parallelize these loops. These transformations use the data dependence graph

of the loop to identify whether the existing dependency allows the loop to be par-

allelized without violating their semantics. If dependency does not exists, then the

transformation is quite simple. In some cases when loops are complex, certain tests

have to be performed to determine whether the pattern of dependence allows loop

parallelization. Loops whose dependence graph do not form a strongly connected

component, can be fully or partially parallelizable. If the dependence graph contains

a cycle, then node splitting is performed to break the cycle, assuming atleast one of

the dependence is anti dependence.

Cycle Shrinking is used to extract parallelism that may be present in perfectly nested

loops. It is useful in cases where the dependence cycle of loop involves dependencies

with distances greater than 1. It transforms a serial loop into two perfectly nested

loops: an outermost serial and innermost parallel loop.

18
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2.5.1 Characteriztion of Reduction Factor

Cycle shrinking parallelizes the loop by partitioning the loop into groups of itera-

tions that are independent to each other. The partitioning is done on the basis of

distance vectors. This method finds out the minimum dependence distance (among

all Reference Pairs) that can transform the loop without altering its overall result

and hence expedite the loop by a factor of lambda(λ), called reduction factor.

The two array references that are involved in dependence and includes the source

and sink of dependence are called Reference Pair. Example 2 has only one reference

pair i.e. a[i+6]-a[i-2]. Consider a n-nested loop with indices I1, I2, .., In and fol-

lowing statement present inside the loop:

S1: A[I1 + a11, I2 + a12, .., In + a1n]=B[I1 + a21, I2 + aa22, .., In + a2n]

S2: B[I1 + b11, I2 + b12, .., In + b1n]=A[I1 + b21, I2 + ba22, .., In + b2n]

In above example, there are two reference pairs;

R1: S1:A[I1 + a11, I2 + a12, .., In + a1n] - S2:A[I1 + b21, I2 + ba22, .., In + b2n]

R1: S2:B[I1 + b11, I2 + b12, .., In + b1n] - S1:B[I1 + a21, I2 + aa22, .., In + a2n]

Linear equation for reference pair R1 will be:

I11 + a11 = I12 + a21

I21 + a12 = I22 + a22

..

..

In1 + a1n = In2 + a2n
and following are the linear equation of R2:

I11 + b11 = I12 + b21

I21 + b12 = I22 + b22

..

..

In1 + b1n = In2 + b2n

The distance vectors for reference pairs R1 and R2 are < φ1
1, φ

1
2, .., φ

1
n >=< a11 −

a21, a12−a22, .., a1n−a2n > and < φ2
1, φ

2
2, .., φ

2
n >=< b11− b21, b12− b22, .., b1n− b2n >

respectively. Finally reduction factor can be calculated as < λ1, λ2, .., λn >=<

19
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min(|φ1
1| , |φ2

1|),min(|φ1
2| , |φ2

2|), ..,min(|φ1
n| , |φ2

n|) >.

2.5.2 Simple Loops

Consider a dependence cycle where all dependence have same distance which should

be greater than 1. In such cases, cycle shrinking will speed up the loop by reduction

factor.

Case 1. Consider a singly nested serial loop with m statement S1, S2, .., Sm that are

involved in a dependence cycle, such that S1δS2δ....SmδS1. All m dependence have

a constant distance which is greater than 1. For constant dependence , the array

subscript expression of elements are of form I ± a, where a ≥ 0 and I is the loop

index. Loop transformations by this case can be obviated by the below example:

Example 4. DO I=1 to N

S1: A(I+K)=B(I)-1;

S1: A(I+K)=B(I)-1;

ENDO

Above is the example of loop with constant dependence distance. Transformed

loop of Example 4 using cycle shrinking(here, λ = k will be like:

DO I=1, N, K

DOALL J=1, I+K-1

S1: A(J+K)=B(J)-1;

S1: B(J+K)=A(J)+C(J);

ENDOALL

ENDO

Case 2. This case handles the loops where distance of each dependence is constant

but distance between dependencies are different. Consider cycle S1δ1S2, ..., SkδkS1

where φi is the distance of ith dependence. Then, without loss of generality, assume

that φ1 ≥ φ2 ≥, ..,≥ φn.
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Example 5. DO I=1, N

S1: X(I)=Y(I)+Z(I);

S2: Y(I+3)=X(I-4)*W(I);

ENDO

In Example 5, φ1 = 4, φ2 = 3. Acccording to section 2.5.1 , λ gets reduced by a

factor of λ = min{φ1, φ2} = 3. Therfore, the transformed loop will be:

DO J=1, N, 3

DOALL I=J, J+2

S1: X(I)=Y(I)+z(I);

S1: Y(I+3)=X(I-4)*W(I);

ENDOALL

ENDO

Algorithm 1 explains the loop transformation on simple loops.

Algorithm 1 Cycle Shrinking for Simple Loops

Input: A loop with I and N as the lower and upper bound, loop body and the
reduction factor λ

Output: Reconstructed loop
1: DO I = 0, N, λ
2: DOALL I1 = I, I + λ− 1
3: Loop Body
4: ENDOALL
5: ENDO

2.5.3 Complex Loops

The above two cases only handle the program with singly nested loop. To handle

the nested loops, cycle shrinking provides three different types of shrinking. These

shrinking are different to each other in the way they calculate individual and true

distances to compute reduction factor:

I. Simple Shrinking: In this, dependence cycle is considered separately for

each loop in the nest. Cycle shrinking is then applied to each individual loop in the

nest similar to the way shrinking is applied for simple loop.
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Algorithm 2 describes the method of simple shrinking for nested loops:

Algorithm 2 Simple Shrinking

Input: A m nested loop with loop indices I1, I2, .., Im, 0 and N1, N2, .., Nm as
the lower and upper bound respectively, loop body and the reduction factor
λ1, λ2, .., λm.

Output: Reconstructed loop
1: DO I1 = 0, N1, λ1
2: ..
3: ..
4: DO Im = 0, Nm, λm
5: DOALL J1 = I1, I1 + λ1 − 1
6: ..
7: ..
8: DOALL Jm = Im, Im + λm − 1
9: Loop Body
10: ..
11: ..
12: ENDOALL
13: ENDO

Consider the below example similar to example 1 in Chapter 1,

Example 6. Do I=3,N1

Do J=4,N2

S1: x[I][J]=y[I-3][J-4];

S2: y[I][J]=x[I-2][J-3];

ENDO

ENDO

Here, statements S1 and S2 are involved in dependence, such that S1δS2 and

S2δS1. Dependence distance for the two dependences are < φ1
1, φ

1
2 >=< 2, 3 > and

< φ2
1, φ

2
2 >=< 3, 4 >. Cycle shrinking will shrink the outer and inner loop by a

factor of λ1 = min(φ1
1, φ

1
2) = min(2, 3) = 2 and λ2 = min(φ2

1, φ
2
2) = min(3, 4) = 3.

Therefore, transformed loop will be:

DO I=3,N1,2

DO J=4,N2,3

DOALL I1=I,I+1

DOALL J1=J,J+2
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S1: x[I1][J1]=y[I1-3][J1-4];

S2: y[I1][J1]=x[I1-2][J1-3];

ENDOALL

ENDOALL

ENDO

ENDO

II. Selective shrinking:Selective shrinking also considers each component of

the distance vectors separately as in case of simple shrinking. A m-nested loop will

have m different dependence cycles associated with each loop. Each dependence in

a cycle is labeled with the corresponding element of its distance vector. Selective

shrinking computes the reduction factor λi(i = 1, 2, ..., k) for each loop in nest

starting from the outermost loop. The process stops when for some 1 ≤ j ≤ k,

λj ≥ 1, jth loop in the nest is blocked by a factor of λj. In addition, all loops nested

inside the jth loop are transformed to DOALL.

Algorithm 3 gives the design of complex loop transformation by selective shrink-

ing.

Algorithm 3 Selective Shrinking

Input: A m nested loop with L1, L2, .., Lm and U1, U2, .., Um as the lower and upper
bound respectively, loop body and the reduction factor λ1, λ2, .., λm. Let say
there exists a λk > 1.

Output: Reconstructed loop
1: DO I1 = 0, U1, λ1
2: ..
3: ..
4: DO Ik = 0, Uk, λk
5: DOALL J1 = I1, I1 + λ1 − 1
6: ..
7: ..
8: DOALL Jk = Ik, Ik + λk − 1
9: DOALL Ik+1 = Lk+1, Uk+1

10: ..
11: ..
12: DOALL Im = Lm, Um
13: Loop Body
14: ENDOALL
15: ENDO
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Transformed loop of Example 6 using selective shrinking will be as follows:

DO I=3,N1,2

DOALL I1=I,I+1

DOALL J=4,N2

S1: x[I1][J]=y[I1-3][J-4];

S2: y[I1][J]=x[I1-2][J-3];

ENDOALL

ENDOALL

ENDO

As stated earlier in selective cycle shrinking, if for any loop, λ > 1 becomes true,

then all the loops next to it will be converted to DOALL. In example 6, for outermost

loop, λ = 2. Therefore, all the inner loops will become DOALL.

III. True dependence shrinking(TD shrinking): In this, only true distances

are used to compute the reduction factor. Each dependence in the dependence cycle

is labeled by its true distance. Cycle shrinking is then applied as if the nested loop

was a single loop. True dependence shrinking treats a multidimensional iteration

space as a linear space. Consider a k-nested loop with upper bounds N1, N2, .., Nm

and φr be the rth dependence distance, then the true distance Φij between statement

i and j is defined as:

Φij =
k∑
r=1

φr

k∏
m=r+1

Nm (2.11)

For solving Example 6 using true dependence shrinking, firstly true distance

needs to be calculated using Equation 2.11. This true distance will give the total

number of iterations that can execute in parallel in one step. True distance for

Example 6 are:

Φ12 = φ1
1(N2 − 4 + 1) + φ1

2 = 2(N2 − 3) + 3

Φ21 = φ2
1(N2 − 4 + 1) + φ2

2 = 3(N2 − 3) + 4

Now the reduction factor λ = min(Φ12,Φ21) = 2(N2 − 3) + 3

Algorithm 4 explains the method of true dependence shrinking for complex loops:
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Algorithm 4 True Dependence Shrinking

Input: Two nested loop I, J with L1, L2 and U1, U2 as the lower and upper bound
respectively, loop body and the reduction factor λ.

Output: Reconstructed loop
1: N = U1 − L1 + 1
2: M = U2 − L2 + 1
3: DO I1 = 1, NM, λ
4: IL = (K/M)
5: IU = ((K + λ)/M)
6: JL = K%M
7: JU = M − ((K + λ)%M)
8: DOALL J = JL,M
9: Loop Body with indices IL and J
10: ENDOALL
11: DOALL I = IL, IU
12: DOALL J = L2, U2

13: Loop Body with indices I and J
14: ENDOALL
15: ENDOALL
16: DOALL J = L2, JU
17: Loop Body with indices IU and J
18: ENDOALL
19: ENDO

Therefore according to the Algorithm 4, Example 1 will be modified as:

DO K=1,NM,λ

IL=(K/M)

IU=((K+λ)/M)

JL=(K%M)

JU=M-((K+λ)%M)

DOALL J=JL,M

S1: x[IL][J]=y[IL-3][J-4];

S2: y[IL][J]=x[IL-2][J-3];

ENDOALL

DOALL I=IL,IU

DOALL J=L1,N2

S1: x[I][J]=y[I-3][J-4];

S2: y[I][J]=x[I-2][J-3];
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ENDOALL

ENDOALL

DOALL J=L2,JU

S1: x[IU][J]=y[IU-3][J-4];

S2: y[IU][J]=x[IU-2][J-3];

ENDOALL

ENDO

2.6 Extended Cycle Shrinking

Cycle shrinking reconstructs a loop to speed up the original loop by the reduction

factor. Cycle shrinking does this by partitioning the loop iterations into groups.

However, it will be of no use if the number of groups are large. Therefore, there can

be two improvements in basic cycle shrinking approach. First would be to reduce

the number of partitions and second would be to handle the loops that contain

variable dependence distances. To incorporate these two improvements, Extended

cycle shrinking [SBS95] was introduced.

Example 7. for(i=3;i<N1;i++)

for(j=4;j<N2;j++){

x[i][j]=y[i-3][j-4];

y[i][j]=x[i-2][j-3];

}
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(a) Simple Shrinking (b) Selective Shrinking

(c) True Dependence Shrinking (d) Extended Cycle shrinking

Figure 2.4: Different Partition for Example 7

2.6.1 Characterization of Reduction Factor

Consider the statement in Example 1 with constant dependence distance:

S1 : x[i][j] = y[i− 3][j − 4]

S2 : y[i][j] = x[i− 2][j − 3]

The process of calculating distance vector and reduction factor for extended cycle

shrinking for constant dependence distance is exactly same as for cycle shrinking.

Therefore, λ1 = min(φ1
1, φ

1
2) = 2 and λ2 = min(φ2

1, φ
2
2) = 3.

Now, consider a m-nested loop with loop indices I1, I2, .., Im and reference pair Sj−Si
that contains variable dependence distance:

Si : A[a10 + a11I1 + ..+ a1mIm, .., am0 + am1I1 + ..+ ammIm]

Sj : A[b10 + b11I1 + ..+ b1mIm, .., bm0 + bm1I1 + ..+ bmmIm]

Extended cycle shrinking for variable dependence distance use data dependence vec-

tor (DDV) for computing reduction factor. The data dependence vector is calculated

using the following equation:

λk =
(ak0 − bk0) +

∑m
i=1,i 6=k(aki − bki) ∗ Ii + (akk − bkk) ∗ Ik

bkk
(2.12)
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2.6.2 Extended Cycle Shrinking for Constant Dependence

Distance

For a m-nested loop with upper boundsN1, N2, .., Nm and reduction factors λ1, λ2, .., λm,

extended cycle shrinking partitions this loop into minimum among (dNi/Φie |1 ≤

i ≤ m,Φi 6= 0) groups. For instance, peakk be the first point of kth group and

START [i] be the ith coordinate of that group.

Following is the algorithm for extended cycle shrinking(constant dependence dis-

tance):

Algorithm 5 Extended Cycle Shrinking for Constant Dependence Distance

Input: A m nested loop I1, I2, .., Im with L1, L2, .., Lm and U1, U2, .., Um as the lower
and upper bound respectively, loop body and the distance vectors Φ1,Φ2, ..,Φm.

Output: Reconstructed loop
1: DO K = 1,min{dNi/Φie |1 ≤ i ≤ m,Φi 6= 0}+ 1
2: DOALL I = 0,m− 1
3: START [I] = (K − 1) ∗ Φi

4: ENDOALL
5: r = 1
6: while (r ≤ m) do
7: i = 1
8: while (i ≤ m) do
9: Introduce m nested DOALL loops based on following condition for each

loop:
10: if i < r then
11: DOALL Ir = START [r] + Φr, Nr

12: end if
13: if i = r then
14: DOALL Ir = START [r],min{START [r] + Φr − 1, Nr}
15: end if
16: if i > r then
17: DOALL Ir = START [r], Nr

18: end if
19: end while
20: end while
21: ENDO

Example 1 using Algorithm 5 will be transformed as given below:

DO K=1,min(dN1/2e , dN2/3e) + 1

DOALL I=0,1

START[I]=(K-1)*λI
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ENDOALL

DOALL I=START[0],min(START[0]+2,N1)

DOALL J=START[1],N2

S1: x[I][J]=y[I-3][J-4];

S2: y[I][J]=x[I-2][J-3];

ENDOALL

ENDOALL

DOALL I=START[0]+2,N1

DOALL J=START[1],min(START[1]+3,N2)

S1: x[I][J]=y[I-3][J-4];

S2: y[I][J]=x[I-2][J-3];

ENDOALL

ENDOALL

ENDO

2.6.3 Extended Cycle Shrinking for Variable Dependence

Distance

Algorithm for extended cycle shrinking for variable dependence distance is given

below:
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Algorithm 6 Extended Cycle Shrinking for Variable Dependence Distance

Input: A two dimensional loop with L1, L2 and U1, U2 as the lower and upper bound
respectively, loop body and the distance vectors < Φ1,Φ2 >. Each distance
vector is a function of loop indices I1, I2.

Output: Reconstructed loop
1: id1 = 1, id2 = 1
2: while ((id1 < U1)&&(id2 < U2)) do
3: nextid1 == bmin{phi1(id1, id2)}c
4: nextid2 == bmin{phi2(id1, id2)}c
5: doall I1 = id1,minnextid1, U1

6: doall I2 = id2, U2

7: Loop body
8: endoall
9: endoall
10: doall I1 = nextid1, U1

11: doall I2 = id2,minnextid2, U2

12: Loop body
13: endoall
14: endoall
15: end while
16: endo

In above algorithm, id1, id2 and nextid2, nextid2 marks the peak of two consec-

utive groups. Considering the below example:

Example 8. for(i=3;i<N1;i++)

for(j=4;j<N2;j++){

x[3*i+5][3*j+7]=y[i-3][j-4];

y[3*i+8][2*j]=x[2*i-2][j-3];

}

There are two reference pair i.e. R1 : x[3 ∗ i + 5][3 ∗ j + 7] − x[2 ∗ i − 2][j + 3]

and R2 : y[3 ∗ i + 8][2 ∗ j] − y[i + 3][j − 4] present in above example. For id1 = 1

and id2 = 1 distance vectors will be < φ1
1, φ

1
2 >=< 4, 6 > and < φ2

1, φ
2
2 >=< 7, 5 >

and hence the reduction vector are λ1 = 4 and λ2 = 5. Therefore, below is the

reconstructed loop using Algorithm 6:

id1 = 1, id2 = 1

while((id1 < N1)&&(id2 < N2)) {

nextid1=min(((3-2)*id1+(5+2))/2,((3-1)*id2+(8-3))/1)
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nextid2=min(((3-1)*id1+(7-3))/1,((2-1)*id2+(0+4))/1)

doall I = id1,min(nextid1, N1)

doall J = id2, N2

S1: x[3*I+5][3*J+7]=y[I+3][J-4];

S2: y[3*I+8][2*J]=x[2*I-2][J+3];

ENDOALL

ENDOALL

DOALL I = nextid1, N1

DOALL J = id2,min(nextid2, N2)

S1: x[3*I+5][3*J+7]=y[I+3][J-4];

S2: y[3*I+8][2*J]=x[2*I-2][J+3];

ENDOALL

ENDOALL

id1 = nextid1

id2 = nextid2

ENDO

}
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Chapter 3

Code Generation Framework

This chapter gives the overview of the different phases involved in the end-to-end

parallelization tool. These are Compilation Phase, Dependence Testing Phase, Par-

allelism Extraction Phase and Code Generation Phase. Figure 1.1 presented the

abstract view of Automatic C to CUDA code generation and the overall flow of the

transformation system. In this chapter, we describe various steps and methods of

each phase in detail.

3.1 Compilation Phase

This very first phase of the tool takes a sequential C program as input, performs

lexical and syntactic analysis and extracts the information needed for the further

phases. Figure 3.1 shows the flow of compiler front end of the system.
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Execute Anjana’s Code
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Figure 3.1: Compilation Phase.

3.1.1 Lexical Analysis

The Lexical analysis phase scans and segments the input program into small mean-

ingful units i.e., token. Before giving input to the lexical analyzer following points

must be ensured:

• The input file should be a C program. Any program other than that can not

be scanned by the lexical analyzer.

• The tool assumes that input program will be syntactically correct otherwise

it will generate error. Also it should be semantically correct since otherwise,

it might generate semantically incorrect program.

• The program can have affine or non-affine perfectly nested loop. To generate

the CUDA code for non-affine loops [Sin13] is used.

• The region that needs to be parallelized should be enclosed within # pragmas,

otherwise, the tool would not be able to spot the regions of interest and would

generate error.
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The scanner generates the tokens only for the region which is marked under

pragmas and for the variable declarations. The tokens for variable declarations

will give the type, size and value(if present) of the variables, and the tokens of the

marked region will give the information about the loop index, its boundaries and

the statement enclosed in loop.

3.1.2 Syntactic Analysis

Syntactic analysis, also known as Parsing, takes tokens generated from the lexical

analyzer and matches the grammar rules defined in yacc file. Since it is already

mentioned in lexical analysis that token will be generated only for marked regions

and for variable declaration, grammar rules are defined only for these sections.

3.1.3 Data Extraction

Syntactic analysis creates parse tree if grammar rules corresponding to the token

generated from the lexer matches. The process of data extraction works parallel

to the syntactic analyzer. Creation of parse tree ensures that the input program is

error free and hence following data can be extracted from the parse tree:

• Variable name, type, size and value if variable is initialized.

• Information about loop indices, bounds, relational operator and incremen-

t/decrement operator and value.

• Data about statement present inside the for loop and their subscript values.

Following data structures are created for above extracted data:

• List of statements inside the loop

• A list of variables that are used in the statements enclosed within perfectly

nested loop.

• List of loops with the details about their index, bounds, relational operator

and increment/decrement operator and value.
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3.1.4 Loop Normalization

Normalized loop is a standard form of loop that starts from 0 and increments by

1. There are some dependence tests that consider the loop upper and lower bound

while identifying the dependence in loop. Therefore performing dependence test in

non-normalized loop will give incorrect results and loop normalization is required

before going for further phases. Below are the two examples for non-normalized

loop:

Example 9. for(i=n;i>=0;i--)

a[i]=b[i]+d[i];

d[i]=a[i]+x[i];

Above is an example of reverse loop as it has n and 0 as lower and upper bound

values respectively. After normalization, the above loop will look like the following:

for(i=0;i<=n;i++)

a[n-i]=a[n-i]+x[n-i];

Example 10. for(i=3;i<50;i+=5)

a[i]=a[i]+x[i];

Here, the loop initial value is non-zero and increment value is not 1. Therefore,

this loop is not normalized. The normalized form of above example will be:

for(i=0;i<(50-3)/5;i++)

a[i]=a[i]+x[i];

Loop normalization process takes the information about loop from data extraction

step and identifies whether the loop is normalized or not. If not, then necessary

changes are carried out on the loop. After this step, everything will be processed on

the normalized loop.
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3.1.5 Dependence Extraction

Dependence extraction takes the data structures as input that are generated in data

extraction phase. It extracts out the variable referenced and their corresponding

write and read references made in the statement . Using this information it identifies

the dependence(like WAW, RAW, WAR) between the statements present inside the

perfectly nested loops. Dependence extraction finds out the following:

• List of all the statement variables that have write reference or read reference

and are involved in some dependence.

• List of write references that comes after a read reference(WAR dependence)

or a write reference(WAW dependence).

• List of all read references that come after a write reference(RAW dependence)

For Example 9, dependence extraction gives the following information:

• List of statement variables: a, b, d, x

• List of write references: a[i], d[i]

• List of read references: d[i], a[i]

The output of dependence extraction will be used by further phases of the tool.

3.1.6 Affine Test

This step checks whether the given input program contains an affine or an non-affine

loop. If the program contains an affine loop then the next phase will be dependence

testing, otherwise an existing approach [Sin13] is executed to convert sequential C

program into CUDA program.

3.2 Dependence Test

Consider a m-nested loop with large number of iterations which, if executed sequen-

tially, will take a huge computation time. So the idea is to parallelize the loop so that
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many iterations can execute in parallel and hence the loop takes less time compared

to sequential execution. But this can only happen if the statement within loop does

not form dependence with respect to loop. If loop statement indulges in dependence

which is carried by loop (i.e., loop carried dependence) then all iterations can not

execute in parallel. Therefore, loop dependence analysis is performed to find out if

dependence exists or not. If dependence exists, then there should be some technique

that will find out which iterations can execute in parallel and process takes place in

parallelism extraction pahase. But if dependence doesn not exist, then CUDA code

will be generated because each iteration can execute in parallel on GPU. Figure 3.2

shows the loop dependence analysis phase.

Dependence

(Identify Read and Write

Dependence

Dependency

Dependency Exists

Parallelism Extraction

Code Transformation
Routines

Input:

Variable
dependency variable
based on RAW, WAR,
WAW dependencies)

doesn’t
not existsOutput:

Exists/
Not Exists

GCD Test

Banerjee Test

Omega Test

Performs either of the test
based on the input

Figure 3.2: Dependence Test.

This phase takes read and write references of the variables involved in the de-

pendence (like WAW, RAW or WAW) as an input from the compilation phase. The

output of dependence testing is Yes if dependence exists and No if not.

The tool provides three different loop dependence test i.e. GCD, Banerjee
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and Omega test. User can configure which test to run using command line op-

tion. The user will have to enter his choice from command line and the choices

are --depTest=gcd(for GCD test), --depTest=banerjee(for Banerjee test) and

--depTest=omega(for omega test).

3.3 Parallelism Extraction

If dependency exists in input program, then next phase would be parallelism ex-

traction. Since dependency prevails, each loop iteration can not execute in parallel

to other iteration. The purpose of this phase is to extract parallelism out of the se-

quential loop by partitioning the iteration space into groups of iterations. Iterations

within a group are independent of each other and therefore all iterations within a

group can execute in parallel. While the iterations from different groups can have

dependency on each other, two groups cannot execute in parallel. Hence, only one

group will execute at a time on GPU. Figure 3.3 shows the different steps involved

in parallelism extraction phase. Seeing that dependency exists, the tool will require

read and write reference variables as input to identify the distance vectors.

The tool uses Cycle shrinking [Pol88] and Extended cycle shrinking [SBS95] for par-

alleism extraction. The basic cycle shrinking offers three versions for shrinking i.e.

Simple, Selective and True dependence shrinking and the extended cycle shrinking

provides two versions i.e. extended cycle shrinking for constant dependence distance

and for variable dependence distance. Here also, user decides which cycle shrinking

to perform by giving any of the following options from command line:

Cycle shrinking type Command line option

Simple shrinking simple

Selective shrinking selective

True dependence shrinking true dependence

Extended cycle shrinking for constant dependence distance extShrinkingConst

Extended cycle shrinking for variable dependence distance extShrinkingVar
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Figure 3.3: Parallelism Extraction.

3.3.1 Compute Distance Vectors

Distance vector gives the distance between the two consecutive access of an array.
These successive access can be any of the following:

• write after write access

• read after write access

• write after read access

It takes read and write reference variables as input and then finds out all possible

reference pairs. Now distance vector can be calculated using these reference pairs.

If any variable is involved in more than one reference pair then each coordinate of

actual distance vector for that variable will take the minimum among the corre-

sponding coordinates of all the distance vector belonging to that variable. Consider

the following statement:

S1 : a[i][j]=b[i-2][j]+a[i-3][j-5];

S2 : x[i][j]=a[i-4][j-2];

Here, for array a there are two reference pairs: R1 : {S1 : a[i][j]−S1 : a[i−3][j−5]}
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and R2 : {S1 : a[i][j]−S2 : a[i−4][j−2]}. So the distance vector for R1 and R2 are

< φ1
1, φ

2
1 >=< 3, 5 > and < φ1

2, φ
2
2 >=< 4, 2 > respectively. Therefore the actual

distance vector correspond to a[][] is < 3, 2 >.

3.3.2 Compute True Distance (TD)

Calculating distance vector is the basic requirement of parallelism extraction. Af-

ter doing this, depending on the user preferred choice for cycle shrinking different

parameters are calculated. If user input is true dependence then true distance will

be calculated. For any dependence, the total number of loop iterations between

its source and sink is given by true distance. True distance is calculated using

equation 2.11.

3.3.3 Calculating Reduction Factor

After calculating distance vector, if user input is simple or selective or extShrinkingConst

then the reduction factor(λ) is calculated. As reduction factor is the minimum dis-

tance of each coordinate among all the corresponding coordinates of every distance

vectors. The ith value of λ gives the total number of iterations of loop at ith level

that can run in parallel.

If the user input is true dependence, then reduction factor will be calculated after

computing true distance. Because the true dependence shrinking imitates an m-

nested loop as a singly nested loop, the reduction factor in case of true dependence

shrinking contains a single value that gives the total number of iterations of this

single loop that can execute in parallel.

3.3.4 Compute Data Dependence Vector

Data dependence vector is calculated for each reference pair. If the user input is

extShrinkingVar then data dependence vector (DDV) are calculated using equa-

tion 2.12.

40



Chapter 3. Code Generation Framework 41

3.4 Code Generation

This is the last phase of the tool, that generates the final CUDA code as output. If

dependence exists then result of parallelism extraction, i.e. reduction factor or data

dependence vector, acts as an input for the code generation phase. Otherwise the

tool directly jumps to this phase after dependence testing. Using reduction factor

and DDVs the loop iterations are partitioned into groups of independent iterations.

Figure 3.4 shows the various routines involved in code generation.

Kernel function declaration code

Code generation for sequential C code(above pragmas)

Kernel variable code generation

Kernel memory allocation code generation

Separating sequential and parallel iterations based on

Kernel multi-level tiling code generation

Kernel function call code generation

Code generation for sequential code(below pragmas)

Kernel function code generation

inter-iteration dependencies
Final

CUDA code

Figure 3.4: Code Generation Phase.

Following are the code generation routines that will generate different portions

of the target CUDA code:

Kernel function declaration code: This is the initial step which will generate
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the code corresponding to the declaration of kernel declaration. The kernel function

declaration will give the information about kernel name, number of arguments and

their respective type.

Code generation for sequential C code(above pragmas): The input pro-

gram contains pragmas to mark the region which is compute intensive. The next

step is to generate the code for the portion of the input program above pragmas.

Kernel variable code generation: Since device variables are required for the

kernel execution that has memory allocated on device, this step will generate the

target code for declaration of these variables on host.

Kernel memory allocation code generation: This generates the code for allo-

cating memory to device variable declared in previous step on GPU. It allocates the

space for these variables on global memory.

Kernel multi-level tiling code generation: This generates the code for identi-

fying the number of thread and blocks required to execute the instruction on GPU.

Also, if data becomes too large to accommodate in one launch of kernel, then tiling

is required. Tiling partitions the data into tiles such that the size of each tile can

fulfill the demand of threads and blocks in a kernel launch. Consider an array a of

size N . Calculation of number of threads, blocks and tiles is given below:

int NTHREAD=512, NBLOCKS=65535;

int NUM THREADS = N, NUM BLOCKS=1, int NUM TILE=1;

dim3 THREADS(512);

dim3 BLOCKS(1);

if(NUM THREADS < NTHREAD){

THREADS.x=NUM THREADS;}
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else{

THREADS.x=NTHREAD;

NUM BLOCKS=NUM THREADS/512;

if(NUM BLOCKS<NBLOCK)

BLOCKS.x=NUM BLOCKS;

else{

BLOCKS.x=NBLOCK;

int temp=NUM BLOCKS;

NUM TILE=(temp % NBLOCK == 0)?(NUM BLOCKS/NBLOCK):

((NUM BLOCKS/NBLOCK)+1);}}

Separating sequential and parallel iterations based on inter-iteration de-

pendencies : This step generates the code for the loop transformation performed

by cycle shrinking

Kernel function call code generation: It generates the code for calling ker-

nel function. This will specify the number of threads and blocks allocated to the

function for execution and the actual parameters of the function.

Code generation for sequential code(below pragmas): This step of the code

generation phase generates the code for the portion below pragmas in the source

program. The code below and above pragmas has nothing to do with the GPU as

it will execute on CPU.

Kernel function code generation: This is the last step that generates the code

for the kernel function definition. In kernel body, indices are required to access the

data available on device. Indices are computed using CUDA variable. Code for

calculating an index is given below:

int index = blockDim.x*blockIdx.x + threadIdx.x
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In case of tiling,

int index = gridDim.x*blockDim.x* CUDA TILE + blockDim.x*blockIdx.x +

threadIdx.x

Here, CUDA TILE specifies the number of tile.

After the above routines, the final CUDA code is ready for execution on GPU.
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A tour to CRINK

This chapter gives outline of the overall working of CRINK . As already discussed,

this research uses GCD[WSO95], Banerjee[AK04], Omega[KMP+96] for dependence

test and Cycle shrinking[Pol88], Extended cycle shrinking[SBS95] for parallelism

extraction. This chapter explains the code transformation process in detail with the

help of some examples and by considering various user inputs, for instance, what

happens if user wants to perform Omega test and use true dependence shrinking

for parallelism extraction or to use Banerjee test and extended cycle shrinking for

dependence test and parallelism extraction etc.

4.1 Singly Nested Loops

Consider the below singly nested loop with only one statement:

Example 11. for(j=1;j<=10;j++)

A[j]=A[j+10]+10;

Then converting the sequential input into parallel CUDA program will pass

through following phases:

Compilation Phase

The very first phase of CRINK is Compilation. This step performs scanning and

parsing of input program which checks whether the input C program is syntactically
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correct or not. The next stage is to normalize the loop if its lower bound is some

non-zero value and the loop is incremented/decremented by the value greater than

1. The above example consists of non-normalized loop, therefore the loop normal-

ization stage normalizes the loop as given below:

for(j=0;j<=9;j++)

A[j+1]=A[j+11]+10;

After normalization, the next task is to identify whether the loop is affine or non-

affine. Since the array indices are linear function of loop variables, loop in Exam-

ple 11 is affine.

Dependence Test

Based on the user input i.e.gcd, banerjee or omega, this phase identifies the de-

pendency within a loop. Following are the results corresponding to various user

inputs:

• gcd: The linear equation for the normalized form of Example 11 is:

j1 + j2 = (11− 1)

Therefore the gcd(1, 1) evenly divides 10 and hence dependency exists.

• banerjee: For banerjee’s test, the lower and upper bound for different di-

rection vector will be:

LB<
j = −9 ≤ B0 − A0 = 10 ≤ UB<

j = −1

LB=
j = 0 ≤ B0 − A0 = 10 ≤ UB=

j = 0

LB<
j = 0 ≤ B0 − A0 = 10 ≤ UB>

j = 0

Since the value of (B0−A0) does not satisfy any of the lower and upper bound

constraints, no dependency exists with any of the direction vector.

• omega: The input file for omega calculator will be:

T1 := {[j11,j21]: 0 <= j11,j21 <= 9 && 1+j11 = 1+j21+10};
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T1;

and corresponding output file will be:

# Omega Calculator v2.1 (based on Omega Library 2.1, July, 2008):

# T1 := [j11,j21]: 0 <= j11,j21 <= 9 && 1+j11 = 1+j21+10;

#

# T1;

{[j11,j21] : FALSE }

#

The line containing {[j11,j21] : FALSE } specifies that there exists no de-

pendency.

Hence only GCD test assumes that dependence exists while Banerjee and Omega

come up with the solution that dependency does not exist.

Parallelism Extraction

Below is the calculation of reduction factor based on the user input for cycle shrink-

ing:

• simple or extShrinkingConst: Because there is only one reference pair

i.e. A[j + 1]− a[j + 11], the distance vector becomes the reduction factor(λ).

Therefore, λ = 10.

• selective or true dependence: Selective and true dependence shrinking

transform only nested loops. Howver, Example 11 consists of singly nested

loop. Therefore, these two shrinking approaches cannot be applied on the

above example.

• extShrinkingVar: Extended cycle shrinking are only applied to loops that

contain array indices of the form aj ± b and the array indices of Example 11

belongs to j ± b form. Therefore, this shrinking also cannot be applied.
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Code Transformation

Code transformation consists of several routines that perform various transforma-

tions on source C program to generate parallel CUDA code. The routines required

for code generation are already discussed in Chapter 3 ”Code Generation Frame-

work”. In parallelism extraction phase, it gets clear that for Example 11, only

simple shrinking and extended cycle shrinking for constant dependence distances

can be used for code generation while selective shrinking, true dependence shrinking

and extended cycle shrinking for variable dependence distance cannot be used for

code transformation as their conditions are not getting fulfilled.

Following are the scenarios corresponding to various user inputs for dependence test

and code transformation:

• If user wants to use gcd and simple for dependence test and parallelism ex-

traction respectively. Then GCD will detect dependence in the loop as already

discussed in Dependence Test phase and hence simple shrinking will transform

the loop as shown in Code 4.1.

Code 4.1: Loop Transformation using Simple Shrinking

int _SZ_A_1 = 100;

int *_DEV_A;

// Allocating device memory to the kernel variable

cudaMalloc((void**) &_DEV_A, sizeof(int)*_SZ_A_1);

// Copying Kernel variable from host to device

cudaMemcpy(_DEV_A, A, sizeof(int)*_SZ_A_1, cudaMemcpyHostToDevice);

int _NUM_THREADS = 100;

float _NUM_BLOCKS=1;

int _NUM_TILE=1;

dim3 _THREADS(512);

dim3 _BLOCKS(1);

// Tiling and declaring threads and blocks required for Kernel
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Execution

if(_NUM_THREADS < _NTHREAD)

_THREADS.x=_NUM_THREADS;

else{

_THREADS.x=_NTHREAD;

_NUM_BLOCKS=(_NUM_THREADS % _NTHREAD ==

0)?(_NUM_THREADS/_NTHREAD):((_NUM_THREADS/_NTHREAD)+1);

if(_NUM_BLOCKS<_NBLOCK)

_BLOCKS.x=_NUM_BLOCKS;

else{

_BLOCKS.x=_NBLOCK;

int temp=_NUM_BLOCKS;

_NUM_TILE=(temp % _NBLOCK ==

0)?(_NUM_BLOCKS/_NBLOCK):((_NUM_BLOCKS/_NBLOCK)+1);}}

int _CUDA_TILE;

// Code transformation through Simple cycle shrinking

for(j=0;j<=99;j+=100)

for(_CUDA_TILE=0;_CUDA_TILE<_NUM_TILE;_CUDA_TILE++){

_AFFINE_KERNEL<<<_BLOCKS,_THREADS>>>(_DEV_A, _SZ_A_1, 1, j,

0, 99, _CUDA_TILE);

cudaDeviceSynchronize();}

// Copying Kernel variable from device to host

cudaMemcpy(A, _DEV_A, sizeof(int)*_SZ_A_1, cudaMemcpyDeviceToHost);

// Releasing the memory allocated to kernel variable

cudaFree(_DEV_A);

Kernel definition for above code:

__global__ void _AFFINE_KERNEL(int* A,int _SZ_A_1,int phi_count, int

CUDA_j, int CUDA_L_j,int CUDA_U_j, int _CUDA_TILE){

int j = gridDim.x*blockDim.x*_CUDA_TILE +

blockDim.x*blockIdx.x + threadIdx.x;
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if((CUDA_j<=j)&&(j<(CUDA_j+100))&&(j<=CUDA_U_j)){

A[1+j]=A[1+j+100]+10;}}

• If user enters gcd for dependence test and either selective or true dependence

for loop reconstruction, then the tool generates a warning message stating

Oops!! Selective/ True Dependence shrinking can’t be applied on Single nested

loop and exits from the transformation system.

• If the user input is gcd and extShrinkingConst the parallel code generated

will be as shown in Code 4.2.

Code 4.2: Loop Transformation using Extended Cycle Shrinking for Constant De-

pendence Distance

int _SZ_A_1 = 100;

int *_DEV_A;

// Allocating device memory to the kernel variable

cudaMalloc((void**) &_DEV_A, sizeof(int)*_SZ_A_1);

// Copying Kernel variable from host to device

cudaMemcpy(_DEV_A, A, sizeof(int)*_SZ_A_1, cudaMemcpyHostToDevice);

int _NUM_THREADS = 100;

float _NUM_BLOCKS=1;

int _NUM_TILE=1;

dim3 _THREADS(512);

dim3 _BLOCKS(1);

// Tiling and declaring threads and blocks required for Kernel

Execution

if(_NUM_THREADS < _NTHREAD)

_THREADS.x=_NUM_THREADS;

else{

_THREADS.x=_NTHREAD;

_NUM_BLOCKS=(_NUM_THREADS % _NTHREAD ==
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0)?(_NUM_THREADS/_NTHREAD):((_NUM_THREADS/_NTHREAD)+1);

if(_NUM_BLOCKS<_NBLOCK)

_BLOCKS.x=_NUM_BLOCKS;

else {

_BLOCKS.x=_NBLOCK;

int temp=_NUM_BLOCKS;

_NUM_TILE=(temp % _NBLOCK ==

0)?(_NUM_BLOCKS/_NBLOCK):((_NUM_BLOCKS/_NBLOCK)+1);}}

// Code transformation through Extended cycle shrinking for constant

dependence distance

int ID_1, ID_2, START[1];

int _CUDA_TILE;

int Phi[1]={100};

int loopUpperLimits[1]={99};

for(ID_1=1;ID_1<=99/100+1;ID_1++){

for(ID_2=0;ID_2<1;ID_2++){

if(Phi[ID_2]>=0)

START[ID_2]=(ID_1-1)*Phi[ID_2];

else

START[ID_2]=loopUpperLimits[ID_2]+(ID_1-1)*Phi[ID_2];}

for(_CUDA_TILE=0;_CUDA_TILE<_NUM_TILE;_CUDA_TILE++){

_AFFINE_KERNEL<<<_BLOCKS,_THREADS>>>(_DEV_A, _SZ_A_1,

START[0], MIN(START[0]+100, 99), _CUDA_TILE);

cudaDeviceSynchronize();}}

// Copying Kernel variable from device to host

cudaMemcpy(A, _DEV_A, sizeof(int)*_SZ_A_1, cudaMemcpyDeviceToHost);

// Releasing the memory allocated to kernel variable

cudaFree(_DEV_A);

Kernel definition for above code:

__global__ void _AFFINE_KERNEL(int* A,int _SZ_A_1,int CUDA_L_j,int
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CUDA_U_j, int _CUDA_TILE){

int j = gridDim.x*blockDim.x*_CUDA_TILE +

blockDim.x*blockIdx.x + threadIdx.x;

if((CUDA_L_j<=j)&&(j<=CUDA_U_j)){

A[1+j]=A[1+j+100]+10;}}

• As already mentioned in parallelism extraction phase, extended cycle shrinking

for variable dependence distance cannot be applied to the loop containing array

index of the form j ± b. Therefore, for user input extShrinkingVar in place

of extShrinkingConst in previous case, a warning message gets generated

saying Oops!! Wrong input. Please give simple, selective, true dependence or

extShrinkingConst as input.

• Because banerjee and omega test does not detect any dependence in the loop,

irrespective of any user input for parallelism extraction the parallel code shown

in Code 4.3 will be generated.

Code 4.3: Loop Transformation when Dependency does not exists

int _SZ_A_1 = 100;

int *_DEV_A;

// Allocating device memory to the kernel variable

cudaMalloc((void**) &_DEV_A, sizeof(int)*_SZ_A_1);

// Copying Kernel variable from host to device

cudaMemcpy(_DEV_A, A, sizeof(int)*_SZ_A_1, cudaMemcpyHostToDevice);

int _NUM_THREADS = 100;

float _NUM_BLOCKS=1;

int _NUM_TILE=1;

dim3 _THREADS(512);

dim3 _BLOCKS(1);

// Tiling and declaring threads and blocks required for Kernel
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Execution

if(_NUM_THREADS < _NTHREAD)

_THREADS.x=_NUM_THREADS;

else{

_THREADS.x=_NTHREAD;

_NUM_BLOCKS=(_NUM_THREADS % _NTHREAD ==

0)?(_NUM_THREADS/_NTHREAD):((_NUM_THREADS/_NTHREAD)+1);

if(_NUM_BLOCKS<_NBLOCK)

_BLOCKS.x=_NUM_BLOCKS;

else {

_BLOCKS.x=_NBLOCK;

int temp=_NUM_BLOCKS;

_NUM_TILE=(temp % _NBLOCK ==

0)?(_NUM_BLOCKS/_NBLOCK):((_NUM_BLOCKS/_NBLOCK)+1);}}

int _CUDA_TILE;

for(_CUDA_TILE=0;_CUDA_TILE<_NUM_TILE;_CUDA_TILE++){

_AFFINE_KERNEL<<<_BLOCKS,_THREADS>>>(_DEV_A, _SZ_A_1, 0, 99,

_CUDA_TILE);

cudaDeviceSynchronize();}

// Copying Kernel variable from device to host

cudaMemcpy(A, _DEV_A, sizeof(int)*_SZ_A_1, cudaMemcpyDeviceToHost);

// Releasing the memory allocated to kernel variable

cudaFree(_DEV_A);

Kernel definition for above parallel code:

__global__ void _AFFINE_KERNEL(int* A,int _SZ_A_1,int CUDA_L_j,int

CUDA_U_j, int _CUDA_TILE){

int j = gridDim.x*blockDim.x*_CUDA_TILE +

blockDim.x*blockIdx.x + threadIdx.x;

if((CUDA_L_j<=j)&&(j<=CUDA_U_j)){

A[1+j]=A[1+j+100]+10;}}
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4.2 Multi-Nested Loops with Constant Dependence

Distance

Example 11 was a quite simple one that contains only one loop with a single state-

ment inside and also only one reference pair. We consider a more complex example

that could cover more user input scenarios.

Example 12. for(i=3;i<=23;i++)

for(j=5;j<=20;j++)

X[i+5][j+1]=Y[i-1][j-2]+X[i][j-1];

Y[i+2][j+2]=X[i+2][j-1]+10;

CRINK takes the C program containing the above loop as input and will pass

through following phases:

Compilation Phase

Compilation phase starts with lexical and syntactic analysis to ensure that the input

program does not contain any syntax error. At the time of parsing, data is extracted

from the tokens if the respective grammar rule matches. Since example 12 contains

non-normalized loop, below is the normalized form generated by the tool.

for(i=0;i<=20;i++)

for(j=0;j<=15;j++)

X[i+8][j+6]=Y[i+2][j+3]+X[i+3][j+4];

Y[i+5][j+7]=X[i+5][j+4]+10;

In normalized form the array indices of X and Y are linear function of loop variable,

hence this example consists of affine loop.

Dependence Test

For the above normalized loop, following are the results of carrying out various

dependence test:
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• gcd: GCD finds out the dependence with the help of linear equation of form:

ai1 + bi2 = (d− c) (4.1)

Dependence exists if gcd(a,b) evenly divides (d-c), where a,b are the coefficients

of loop variables and d,c are the constant terms. In example 12, there are three

reference pairs:

1. Linear equation for reference pair X[i+ 8][j + 6]−X[i+ 3][j + 4] are:

i1 + i2 = (8− 3)

j1 + j2 = 6− 4

2. Linear equation for reference pair X[i+ 8][j + 6]−X[i+ 5][j + 4] are:

i1 + i2 = (8− 5)

j1 + j2 = 6− 4

3. Linear equation for reference pair Y [i + 5][j + 7] − Y [i + 2][j + 3] are:

i1 + i2 = (5− 2)

j1 + j2 = 7− 3

In all above linear equations gcd(a,b) divides (d-c), GCD detects dependence

in the loop.

• banerjee: If user’s choice for dependence test is banerjee, then lower and

upper bounds for different direction vectors needs to be calculated. Figure 4.1

shows the upper and lower bound constraints for each reference pair present in

example 12. In figure 4.1, it is clear that the value of (B0−A0) in all reference

pairs satisfy the constraints for direction vector ’>’. Therefore, dependence

exists with direction vector ’>’ only.

• omega: For omega dependence test, input file for omega calculator is:

T1 := [i11,i21,j11,j21]: 0 <= i11,i21 <= 20 && 0 <= j11,j21 <= 15

&& 3+i11+2 = 3+i21-1 && 5+j11+2 = 5+j21-2;
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LB<
i = −20 ≤ B0 −A0 = 3 ≤ UB<

i = −1

LB=
i = 0 ≤ B0 −A0 = 3 ≤ UB=

i = 0

LB>
i = 1 ≤ B0 −A0 = 3 ≤ UB>

i = 20

LB<
j = −15 ≤ B0 −A0 = 2 ≤ UB<

j = −1

LB=
j = 0 ≤ B0 −A0 = 2 ≤ UB=

j = 0

LB>
j = 1 ≤ B0 −A0 = 2 ≤ UB>

j = 15

(a) For Reference Pair X[i+8][j +6]−X[i+3][j +4]

LB<
i = −20 ≤ B0 −A0 = 5 ≤ UB<

i = −1

LB=
i = 0 ≤ B0 −A0 = 5 ≤ UB=

i = 0

LB>
i = 1 ≤ B0 −A0 = 5 ≤ UB>

i = 20

LB<
j = −15 ≤ B0 −A0 = 2 ≤ UB<

j = −1

LB=
j = 0 ≤ B0 −A0 = 2 ≤ UB=

j = 0

LB>
j = 1 ≤ B0 −A0 = 2 ≤ UB>

j = 15

(b) For Reference Pair X[i+8][j +6]−X[i+5][j +4]

LB<
i = −20 ≤ B0 −A0 = 3 ≤ UB<

i = −1

LB=
i = 0 ≤ B0 −A0 = 3 ≤ UB=

i = 0

LB>
i = 1 ≤ B0 −A0 = 3 ≤ UB>

i = 20

LB<
j = −15 ≤ B0 −A0 = 4 ≤ UB<

j = −1

LB=
j = 0 ≤ B0 −A0 = 4 ≤ UB=

j = 0

LB>
j = 1 ≤ B0 −A0 = 4 ≤ UB>

j = 15

(c) For Reference Pair Y [i+ 5][j + 7]− Y [i+ 2][j + 3]

Figure 4.1: Upper and Lower Bound Constraints

T1;

T2 := [i11,i21,i22,j11,j21,j22]: 0 <= i11,i21,i22 <= 20 &&

0 <= j11,j21,j22 <= 15 && 3+i11+5 = 3+i21+2 && 5+j11+1 = 5+j21-1 &&

3+i11+5 = 3+i22 && 5+j11+1 = 5+j22-1;

T2;

and the output of omega calculator is given below: # Omega Calculator v2.1

(based on Omega Library 2.1, July, 2008):

# T1 := [i11,i21,j11,j21]: 0 <= i11,i21 <= 20 && 0 <= j11,j21 <=

15 && 3+i11+2 = 3+i21-1 && 5+j11+2 = 5+j21-2;

#

# T1;

[i11,i11+3,j11,j11+4]: 0 <= i11 <= 17 && 0 <= j11 <= 11
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#

# T2 := [i11,i21,i22,j11,j21,j22]: 0 <= i11,i21,i22 <= 20

&& 0 <= j11,j21,j22 <= 15 && 3+i11+5 = 3+i21+2 && 5+j11+1 = 5+j21-1

&& 3+i11+5 = 3+i22 && 5+j11+1 = 5+j22-1;

#

# T2;

[i11,i11+3,i11+5,j11,j11+2,j11+2]: 0 <= i11 <= 15 && 0 <= j11 <=

13

#

The line [i11,i11+3,j11,j11+4]: 0 <= i11 <= 17 && 0 <= j11 <= 11 and

[i11,i11+3,i11+5,j11,j11+2,j11+2]: 0 <= i11 <= 15 && 0 <= j11 <=

13 of omega output ensures that dependency exists.

Parallelism Extraction

The purpose of parallelism extraction is to find out the reduction factor by which

loop can speed up. In case of simple, selective and extended cycle shrinking for

constant dependence distance, reduction factor is calculated for each loop. In exam-

ple 12there are three reference pairs, so three distance vectors need to be calculated.

Therefore, computation of distance vectors is given below:

For reference pair X[i+ 8][j + 6]−X[i+ 3][j + 4] : < φ1
1, φ

1
2 >=< 5, 2 >

For reference pair X[i+ 8][j + 6]−X[i+ 5][j + 4] : < φ2
1, φ

2
2 >=< 3, 2 >

For reference pair Y [i+ 5][j + 7]− Y [i+ 2][j + 3] : < φ3
1, φ

3
2 >=< 3, 4 >

Therefore, reduction factor for simple, selective and extended cycle shrinking for

constant dependence distance is < λ1, λ2 >=< 3, 2 >. While for true dependence

shrinking reduction factor based on true distance. True distance for reference pairs

R1 : X[i + 8][j + 6] − X[i + 3][j + 4], R2 : X[i + 8][j + 6] − X[i + 5][j + 4] and

R3 : Y [i+ 5][j + 7]− Y [i+ 2][j + 3] are following respectively:
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ΦR1 = φ1
1(Uj − Lj) + φ1

2 = 3(15− 0) + 2 = 47

ΦR2 = φ2
1(Uj − Lj) + φ2

2 = 5(15− 0) + 2 = 77

ΦR3 = φ3
1(Uj − Lj) + φ3

2 = 3(15− 0) + 4 = 49

Hence, reduction factor(λ) for true dependence is min(ΦR1 ,ΦR2 ,ΦR3) = 47. For

this example also, extended cycle shrinking for variable dependence distance is not

applicable because of the same reason.

Code Transformation

Code transformation consists of various routines that generate the parallel CUDA

code corresponding to the input C program. This phase also carries out the trans-

formations required in various shrinking approach to reconstruct the loop. As all the

dependence test i.e., GCD, Banerjee and Omega detected dependence in the loop,

hence, irrespective of any user input for dependence test, the generated parallel code

for any particular shrinking approach will not change. Therefore, Code 4.4, 4.5, 4.6

and 4.7 show the parallel CUDA code generated for user input simple, selective,

true dependence and extShrinkingConst respectively.

Code 4.4: Loop Transformation using Simple Shrinking

int _SZ_Y_2 = 150;

int _SZ_Y_1 = 150;

int _SZ_X_2 = 150;

int _SZ_X_1 = 150;

int *_DEV_Y;

// Allocating memory to Kernel Variable and copying them on device

cudaMalloc((void**) &_DEV_Y, sizeof(int)*_SZ_Y_2*_SZ_Y_1);

cudaMemcpy(_DEV_Y, Y, sizeof(int)*_SZ_Y_2*_SZ_Y_1,

cudaMemcpyHostToDevice);

int *_DEV_X;

cudaMalloc((void**) &_DEV_X, sizeof(int)*_SZ_X_2*_SZ_X_1);

cudaMemcpy(_DEV_X, X, sizeof(int)*_SZ_X_2*_SZ_X_1,
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cudaMemcpyHostToDevice);

int _NUM_THREADS = 22500;

float _NUM_BLOCKS=1;

int _NUM_TILE=1;

dim3 _THREADS(512);

dim3 _BLOCKS(1);

// Tiling and declaring threads and blocks required for Kernel Execution

if(_NUM_THREADS < _NTHREAD)

{

_THREADS.x=150;

_THREADS.y=150;

}

else {

_NUM_BLOCKS=(_NUM_THREADS*1.0)/256;

_BLOCKS.x=_BLOCKS.y=ceil(sqrt(_NUM_BLOCKS));

_THREADS.x=_THREADS.y=ceil(sqrt(22500.0/(_BLOCKS.x*_BLOCKS.y)));

int temp=_NUM_BLOCKS;

if(_NUM_BLOCKS>_NBLOCK)

_NUM_TILE=(temp % _NBLOCK ==

0)?(_NUM_BLOCKS/_NBLOCK):((_NUM_BLOCKS/_NBLOCK)+1);

}

int _CUDA_TILE;

// Code transformation through Simple cycle shrinking

for(i=0;i<=137;i+=3)

for(j=0;j<=135;j+=2)

for(_CUDA_TILE=0;_CUDA_TILE<_NUM_TILE;_CUDA_TILE++){

_AFFINE_KERNEL<<<_BLOCKS,_THREADS>>>(_DEV_Y, _SZ_Y_2, _SZ_Y_1,

_DEV_X, _SZ_X_2, _SZ_X_1, 2, i, j, 0, 137, 0, 135, _CUDA_TILE);

cudaDeviceSynchronize();}

// Copying Kernel variable from device to host

cudaMemcpy(Y, _DEV_Y, sizeof(int)*_SZ_Y_2*_SZ_Y_1,
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cudaMemcpyDeviceToHost);

cudaMemcpy(X, _DEV_X, sizeof(int)*_SZ_X_2*_SZ_X_1,

cudaMemcpyDeviceToHost);

// Releasing the memory allocated to kernel variable

cudaFree(_DEV_Y);

cudaFree(_DEV_X);

Kernel definition for above parallel CUDA code:

__global__ void _AFFINE_KERNEL(int* Y,int _SZ_Y_2,int _SZ_Y_1,int* X,int

_SZ_X_2,int _SZ_X_1,int phi_count, int CUDA_i, int CUDA_j, int

CUDA_L_i,int CUDA_U_i, int CUDA_L_j,int CUDA_U_j, int _CUDA_TILE){

int i = gridDim.x*blockDim.x*_CUDA_TILE + blockDim.x*blockIdx.x +

threadIdx.x;

int j = gridDim.y*blockDim.y*_CUDA_TILE + blockDim.y*blockIdx.y +

threadIdx.y;

if((CUDA_i<=i)&&(i<(CUDA_i+3))&&(i<=CUDA_U_i)){

if((CUDA_j<=j)&&(j<(CUDA_j+2))&&(j<=CUDA_U_j)){

X[(3+i+5)*_SZ_X_1+5+j+1]=Y[(3+i-1)*_SZ_Y_1+5+j-2]

+X[(3+i)*_SZ_X_1+5+j-1];

Y[(3+i+2)*_SZ_Y_1+5+j+2]=X[(3+i+2)*_SZ_X_1+5+j-1]+10;}}}

Code 4.5: Loop Transformation using Selective Shrinking

int _SZ_Y_2 = 150;

int _SZ_Y_1 = 150;

int _SZ_X_2 = 150;

int _SZ_X_1 = 150;

int *_DEV_Y;

// Allocating memory to Kernel Variable and copying them on device

cudaMalloc((void**) &_DEV_Y, sizeof(int)*_SZ_Y_2*_SZ_Y_1);

cudaMemcpy(_DEV_Y, Y, sizeof(int)*_SZ_Y_2*_SZ_Y_1,

cudaMemcpyHostToDevice);
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int *_DEV_X;

cudaMalloc((void**) &_DEV_X, sizeof(int)*_SZ_X_2*_SZ_X_1);

cudaMemcpy(_DEV_X, X, sizeof(int)*_SZ_X_2*_SZ_X_1,

cudaMemcpyHostToDevice);

int _NUM_THREADS = 22500;

float _NUM_BLOCKS=1;

int _NUM_TILE=1;

dim3 _THREADS(512);

dim3 _BLOCKS(1);

// Tiling and declaring threads and blocks required for Kernel Execution

if(_NUM_THREADS < _NTHREAD){

_THREADS.x=150;

_THREADS.y=150;}

else {

_NUM_BLOCKS=(_NUM_THREADS*1.0)/256;

_BLOCKS.x=_BLOCKS.y=ceil(sqrt(_NUM_BLOCKS));

_THREADS.x=_THREADS.y=ceil(sqrt(22500.0/(_BLOCKS.x*_BLOCKS.y)));

int temp=_NUM_BLOCKS;

if(_NUM_BLOCKS>_NBLOCK)

_NUM_TILE=(temp % _NBLOCK ==

0)?(_NUM_BLOCKS/_NBLOCK):((_NUM_BLOCKS/_NBLOCK)+1);}

int _CUDA_TILE;

// Code transformation through Selective cycle shrinking

for(i=0;i<=137;i+=3)

for(_CUDA_TILE=0;_CUDA_TILE<_NUM_TILE;_CUDA_TILE++){

_AFFINE_KERNEL<<<_BLOCKS,_THREADS>>>(_DEV_Y, _SZ_Y_2, _SZ_Y_1,

_DEV_X, _SZ_X_2, _SZ_X_1, 2, i, j, 0, 137, 0, 135, _CUDA_TILE);

cudaDeviceSynchronize();}

// Copying Kernel variable from device to host

cudaMemcpy(Y, _DEV_Y, sizeof(int)*_SZ_Y_2*_SZ_Y_1,

cudaMemcpyDeviceToHost);
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cudaMemcpy(X, _DEV_X, sizeof(int)*_SZ_X_2*_SZ_X_1,

cudaMemcpyDeviceToHost);

// Releasing the memory allocated to kernel variable

cudaFree(_DEV_Y);

cudaFree(_DEV_X);

Kernel definition of above parallel code:

__global__ void _AFFINE_KERNEL(int* Y,int _SZ_Y_2,int _SZ_Y_1,int* X,int

_SZ_X_2,int _SZ_X_1,int phi_count, int CUDA_i, int CUDA_j, int

CUDA_L_i,int CUDA_U_i, int CUDA_L_j,int CUDA_U_j, int _CUDA_TILE){

int i = gridDim.x*blockDim.x*_CUDA_TILE + blockDim.x*blockIdx.x +

threadIdx.x;

int j = gridDim.y*blockDim.y*_CUDA_TILE + blockDim.y*blockIdx.y +

threadIdx.y;

if((CUDA_i<=i)&&(i<(CUDA_i+3))&&(i<=CUDA_U_i)){

if((CUDA_L_j<=j)&&(j<=CUDA_U_j)){

X[(3+i+5)*_SZ_X_1+5+j+1]=Y[(3+i-1)*_SZ_Y_1+5+j-2]

+X[(3+i)*_SZ_X_1+5+j-1];

Y[(3+i+2)*_SZ_Y_1+5+j+2]=X[(3+i+2)*_SZ_X_1+5+j-1]+10;}}}

Code 4.6: Loop Transformation using True Dependence Shrinking

int _SZ_Y_2 = 150;

int _SZ_Y_1 = 150;

int _SZ_X_2 = 150;

int _SZ_X_1 = 150;

int *_DEV_Y;

// Allocating memory to Kernel Variable and copying them on device

cudaMalloc((void**) &_DEV_Y, sizeof(int)*_SZ_Y_2*_SZ_Y_1);

cudaMemcpy(_DEV_Y, Y, sizeof(int)*_SZ_Y_2*_SZ_Y_1,

cudaMemcpyHostToDevice);

int *_DEV_X;
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cudaMalloc((void**) &_DEV_X, sizeof(int)*_SZ_X_2*_SZ_X_1);

cudaMemcpy(_DEV_X, X, sizeof(int)*_SZ_X_2*_SZ_X_1,

cudaMemcpyHostToDevice);

int _NUM_THREADS = 22500;

float _NUM_BLOCKS=1;

int _NUM_TILE=1;

dim3 _THREADS(512);

dim3 _BLOCKS(1);

// Tiling and declaring threads and blocks required for Kernel Execution

if(_NUM_THREADS < _NTHREAD){

_THREADS.x=150;

_THREADS.y=150;}

else{

_NUM_BLOCKS=(_NUM_THREADS*1.0)/256;

_BLOCKS.x=_BLOCKS.y=ceil(sqrt(_NUM_BLOCKS));

_THREADS.x=_THREADS.y=ceil(sqrt(22500.0/(_BLOCKS.x*_BLOCKS.y)));

int temp=_NUM_BLOCKS;

if(_NUM_BLOCKS>_NBLOCK)

_NUM_TILE=(temp % _NBLOCK ==

0)?(_NUM_BLOCKS/_NBLOCK):((_NUM_BLOCKS/_NBLOCK)+1);}

int _CUDA_TILE;

// Code transformation through True dependence shrinking

int lambda=407;

int id_1,id_2,id_3,id_4,id_5;

int UB_1=137-0;

int UB_2=135-0;

for(id_1=1;id_1<=(UB_1*UB_2);id_1+=lambda){

id_2=(id_1/UB_2);

id_3=((id_1+lambda)/UB_2);

id_4=(id_1%UB_2)-1;

id_5=UB_2-((id_1+lambda)%UB_2);

63



Chapter 4. A tour to CRINK 64

for(_CUDA_TILE=0;_CUDA_TILE<_NUM_TILE;_CUDA_TILE++){

_AFFINE_KERNEL_1<<<_BLOCKS,_THREADS>>>(_DEV_Y, _SZ_Y_2,

_SZ_Y_1, _DEV_X, _SZ_X_2, _SZ_X_1, id_2, id_4, UB_2,

_CUDA_TILE);

cudaDeviceSynchronize();}

for(_CUDA_TILE=0;_CUDA_TILE<_NUM_TILE;_CUDA_TILE++){

_AFFINE_KERNEL<<<_BLOCKS,_THREADS>>>(_DEV_Y, _SZ_Y_2,

_SZ_Y_1, _DEV_X, _SZ_X_2, _SZ_X_1, id_2, id_3, 0, 135,

_CUDA_TILE);

cudaDeviceSynchronize();}

for(_CUDA_TILE=0;_CUDA_TILE<_NUM_TILE;_CUDA_TILE++){

_AFFINE_KERNEL_1<<<_BLOCKS,_THREADS>>>(_DEV_Y, _SZ_Y_2,

_SZ_Y_1, _DEV_X, _SZ_X_2, _SZ_X_1, id_3, 0, id_5,

_CUDA_TILE);

cudaDeviceSynchronize();}}

// Copying Kernel variable from device to host

cudaMemcpy(Y, _DEV_Y, sizeof(int)*_SZ_Y_2*_SZ_Y_1,

cudaMemcpyDeviceToHost);

cudaMemcpy(X, _DEV_X, sizeof(int)*_SZ_X_2*_SZ_X_1,

cudaMemcpyDeviceToHost);

// Releasing the memory allocated to kernel variable

cudaFree(_DEV_Y);

cudaFree(_DEV_X);

Kernel definition for above parallel CUDA code:

__global__ void _AFFINE_KERNEL_1(int* Y,int _SZ_Y_2,int _SZ_Y_1,int*

X,int _SZ_X_2,int _SZ_X_1,int i, int id_1, int UB_1, int _CUDA_TILE){

int j = gridDim.y*blockDim.y*_CUDA_TILE + blockDim.y*blockIdx.y +

threadIdx.y;

if((id_1<=j)&&(j<=UB_1)){

X[(3+i+5)*_SZ_X_1+5+j+1]=Y[(3+i-1)*_SZ_Y_1+5+j-2]
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+X[(3+i)*_SZ_X_1+5+j-1];

Y[(3+i+2)*_SZ_Y_1+5+j+2]=X[(3+i+2)*_SZ_X_1+5+j-1]+10;}}

__global__ void _AFFINE_KERNEL(int* Y,int _SZ_Y_2,int _SZ_Y_1,int* X,int

_SZ_X_2,int _SZ_X_1,int CUDA_L_i,int CUDA_U_i, int CUDA_L_j,int

CUDA_U_j, int _CUDA_TILE){

int i = gridDim.x*blockDim.x*_CUDA_TILE + blockDim.x*blockIdx.x +

threadIdx.x;

int j = gridDim.y*blockDim.y*_CUDA_TILE + blockDim.y*blockIdx.y +

threadIdx.y;

if((CUDA_L_i<=i)&&(i<=CUDA_U_i)){

if((CUDA_L_j<=j)&&(j<=CUDA_U_j)){

X[(3+i+5)*_SZ_X_1+5+j+1]=Y[(3+i-1)*_SZ_Y_1+5+j-2]

+X[(3+i)*_SZ_X_1+5+j-1];

Y[(3+i+2)*_SZ_Y_1+5+j+2]=X[(3+i+2)*_SZ_X_1+5+j-1]+10;}}}

Code 4.7: Loop Transformation using Extended Cycle Shrinking for Constant De-

pendence Distance

int _SZ_Y_2 = 150;

int _SZ_Y_1 = 150;

int _SZ_X_2 = 150;

int _SZ_X_1 = 150;

int *_DEV_Y;

// Allocating memory to Kernel Variable and copying them on device

cudaMalloc((void**) &_DEV_Y, sizeof(int)*_SZ_Y_2*_SZ_Y_1);

cudaMemcpy(_DEV_Y, Y, sizeof(int)*_SZ_Y_2*_SZ_Y_1,

cudaMemcpyHostToDevice);

int *_DEV_X;

cudaMalloc((void**) &_DEV_X, sizeof(int)*_SZ_X_2*_SZ_X_1);

cudaMemcpy(_DEV_X, X, sizeof(int)*_SZ_X_2*_SZ_X_1,

cudaMemcpyHostToDevice);

65



Chapter 4. A tour to CRINK 66

int _NUM_THREADS = 22500;

float _NUM_BLOCKS=1;

int _NUM_TILE=1;

dim3 _THREADS(512);

dim3 _BLOCKS(1);

// Tiling and declaring threads and blocks required for Kernel Execution

if(_NUM_THREADS < _NTHREAD){

_THREADS.x=150;

_THREADS.y=150;}

else{

_NUM_BLOCKS=(_NUM_THREADS*1.0)/256;

_BLOCKS.x=_BLOCKS.y=ceil(sqrt(_NUM_BLOCKS));

_THREADS.x=_THREADS.y=ceil(sqrt(22500.0/(_BLOCKS.x*_BLOCKS.y)));

int temp=_NUM_BLOCKS;

if(_NUM_BLOCKS>_NBLOCK)

_NUM_TILE=(temp % _NBLOCK ==

0)?(_NUM_BLOCKS/_NBLOCK):((_NUM_BLOCKS/_NBLOCK)+1);}

// Code transformation through Extended cycle shrinking for constant

dependence distance

int ID_1, ID_2, START[2];

int _CUDA_TILE;

int Phi[2]={3, 2};

int loopUpperLimits[2]={137, 135};

for(ID_1=1;ID_1<=MIN(137/3, 135/2)+1;ID_1++){

for(ID_2=0;ID_2<2;ID_2++){

if(Phi[ID_2]>=0)

START[ID_2]=(ID_1-1)*Phi[ID_2];

else

START[ID_2]=loopUpperLimits[ID_2]+(ID_1-1)*Phi[ID_2];}

for(_CUDA_TILE=0;_CUDA_TILE<_NUM_TILE;_CUDA_TILE++){

_AFFINE_KERNEL<<<_BLOCKS,_THREADS>>>(_DEV_Y, _SZ_Y_2,
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_SZ_Y_1, _DEV_X, _SZ_X_2, _SZ_X_1, START[0],

MIN(START[0]+3, 137), START[1], 135, _CUDA_TILE);

cudaDeviceSynchronize();}

for(_CUDA_TILE=0;_CUDA_TILE<_NUM_TILE;_CUDA_TILE++){

_AFFINE_KERNEL<<<_BLOCKS,_THREADS>>>(_DEV_Y, _SZ_Y_2,

_SZ_Y_1, _DEV_X, _SZ_X_2, _SZ_X_1, START[0]+3, 137,

START[1], MIN(START[1]+2, 135), _CUDA_TILE);

cudaDeviceSynchronize();}}

// Copying Kernel variable from device to host

cudaMemcpy(Y, _DEV_Y, sizeof(int)*_SZ_Y_2*_SZ_Y_1,

cudaMemcpyDeviceToHost);

cudaMemcpy(X, _DEV_X, sizeof(int)*_SZ_X_2*_SZ_X_1,

cudaMemcpyDeviceToHost);

// Releasing the memory allocated to kernel variable

cudaFree(_DEV_Y);

cudaFree(_DEV_X);

Kernel definition for above code:

__global__ void _AFFINE_KERNEL(int* Y,int _SZ_Y_2,int _SZ_Y_1,int* X,int

_SZ_X_2,int _SZ_X_1,int CUDA_L_i,int CUDA_U_i, int CUDA_L_j,int

CUDA_U_j, int _CUDA_TILE){

int i = gridDim.x*blockDim.x*_CUDA_TILE + blockDim.x*blockIdx.x +

threadIdx.x;

int j = gridDim.y*blockDim.y*_CUDA_TILE + blockDim.y*blockIdx.y +

threadIdx.y;

if((CUDA_L_i<=i)&&(i<=CUDA_U_i)){

if((CUDA_L_j<=j)&&(j<=CUDA_U_j)){

X[(3+i+5)*_SZ_X_1+5+j+1]=Y[(3+i-1)*_SZ_Y_1+5+j-2]

+X[(3+i)*_SZ_X_1+5+j-1];

Y[(3+i+2)*_SZ_Y_1+5+j+2]=X[(3+i+2)*_SZ_X_1+5+j-1]+10;}}}
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4.3 Multi-Nested Loops with Variable Dependence

Distance

Till now, example for extended cycle shrinking for variable dependence distance

remains uncovered. The above two examples only cover simple, selective, true de-

pendence shrinking and extended cycle shrinking for constant dependence distance.

Therfore, here we unveil the example for extended cycle shrinking for variable de-

pendence shrinking:

Example 13. for(i=1;i<=21;i++)

for(j=1;j<=21;j++)

X[3*i+5][2*j+4]=Y[2*i-2][j+2]+23;

Y[3*i+4][3*j+4]=X[i-1][j+4];

Generating parallel CUDA code for the program containing this loop will pass

through the following phases:

Compilation Phase

The compilation phase of this example takes place in a same way as it happened

for example 11 and 12. After lexical, syntactic analysis and data extraction, loop

normalization is carried out. Since the lower limit of the loop in this example is

non-zero, it is non-normalized. After normalization this example becomes:

for(i=0;i<=20;i++)

for(j=0;j<=20;j++)

X[3*i+8][2*j+6]=Y[2*i][j+3]+23;

Y[3*i+7][3*j+7]=X[i][j+5];

This loop is also affine because all the array indices are linear functions of loop

variable.

Dependence test

Among GCD, banerjee and omega any of the test can be used to deduce dependency.

There are two reference pairs in the normalized form of example 13 i.e., R1 : X[3 ∗

68



Chapter 4. A tour to CRINK 69

i+ 5][2 ∗ j + 4]−X[i][j + 5] and R2 : Y [3 ∗ i+ 4][3 ∗ j + 4]− Y [2 ∗ i][j + 3]. Linear

equation for reference pair R1 is given below:

i : 3 ∗ i1 + 5 = i2

j : 2 ∗ j1 + 4 = j2 + 5

Comparing these two linear equations with equation 4.1, gcd(a,b) evenly divides

(d-c). Now linear equation for reference pair R2 becomes as follows:

i : 3 ∗ i1 + 4 = 2 ∗ i2
j : 3 ∗ j1 + 4 = j2 + 3

For this equation also gcd(a,b) divides (d-c), hence dependence exists in loop because

of both X and Y array. Therefore, if user input is gcd, then it detects dependence

in the loop. To detect dependence using banerjee test, upper and lower bounds

for every reference pair needs to be calculated. Following are the lower and upper

bounds with respect to direction vector (<,=, >). For reference pair R1,

LB<
i = −20 ≤ B0 − A0 = 8 ≤ UB<

i = 37

LB=
i = 0 ≤ B0 − A0 = 8 ≤ UB=

i = 40

LB<
i = 3 ≤ B0 − A0 = 8 ≤ UB>

i = 60

LB<
j = −20 ≤ B0 − A0 = 1 ≤ UB<

j = 18

LB=
j = 0 ≤ B0 − A0 = 1 ≤ UB=

j = 20

LB<
j = 2 ≤ B0 − A0 = 1 ≤ UB>

j = 40

For refernece pair R2,

LB<
i = −40 ≤ B0 − A0 = 7 ≤ UB<

i = 17

LB=
i = 0 ≤ B0 − A0 = 7 ≤ UB=

i = 20

LB<
i = 3 ≤ B0 − A0 = 7 ≤ UB>

i = 60

LB<
j = −20 ≤ B0 − A0 = 4 ≤ UB<

j = 37

LB=
j = 0 ≤ B0 − A0 = 4 ≤ UB=

j = 40

LB<
j = 3 ≤ B0 − A0 = 4 ≤ UB>

j = 60
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As the value of (B0−A0) lies within each bound constraints of R1 and R2, therefore

dependency exists.

If user opts for omega, then omega input.in file is generated that acts as an input

for omega calculator:

T1 := [i11,i21,j11,j21]: 0 <= i11,i21 <= 20 && 0 <= j11,j21 <= 20

&& 3+3*i11+4 = 2+2*i21-2 && 3+3*j11+4 = 1+j21+2;

T1;

T2 := [i11,i21,j11,j21]: 0 <= i11,i21 <= 20 && 0 <= j11,j21 <= 20

&& 3+3*i11+5 = 1+i21-1 && 2+2*j11+4 = 1+j21+4;

T2;

The output of omega calculator will be:

# Omega Calculator v2.1 (based on Omega Library 2.1, July, 2008):

# T1 := [i11,i21,j11,j21]: 0 <= i11,i21 <= 20 && 0 <= j11,j21 <= 20

&& 3+3*i11+4 = 2+2*i21-2 && 3+3*j11+4 = 1+j21+2;

#

# T1;

[i11,i21,j11,3j11+4]: 7+3i11 = 2i21 && 5 <= i21 <= 20

&& 0 <= j11 <= 5

#

# T2 := [i11,i21,j11,j21]: 0 <= i11,i21 <= 20 && 0 <= j11,j21 <= 20

&& 3+3*i11+5 = 1+i21-1 && 2+2*j11+4 = 1+j21+4;

#

# T2;

[i11,3i11+8,j11,2j11+1]: 0 <= i11 <= 4 && 0 <= j11 <= 9

#
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The line [i11,i21,j11,3j11+4]: 7+3i11 = 2i21 && 5 <= i21 <= 20 && 0 <= j11

<= 5 and [i11,3i11+8,j11,2j11+1]: 0 <= i11 <= 4 && 0 <= j11 <= 9 ensure that

dependency exists.

Parallelism Extraction

The array indices of example 13 belong to the form (ai±b). This implies that the de-

pendence distance varies with the change in loop iteration. Hence simple, selective,

true dependence shrinking and extended cycle shrinking for constant dependence

distance cannot be applied to this example as these approaches are applicable to

the loop containing constant dependence distance. Therefore, only extended cy-

cle shrinking for variable dependence distance is applicable for this example. To

extract parallelism out of the loop, data dependence vectors(DDV) are required

for each reference pair. As already discussed in Chapter 2, data dependence vec-

tor for refernce pair Si : A[a10 + a11I1 + .. + a1mIm, .., am0 + am1I1 + .. + ammIm] -

Sj : A[b10 + b11I1 + .. + b1mIm, .., bm0 + bm1I1 + .. + bmmIm] is calculated by below

equation:

φk =
(ak0 − bk0) +

∑m
i=1,i 6=k +(akk − bkk)
bkk

(4.2)

Using equation 4.2, DDV for reference pairs R1 : X[3 ∗ i+ 5][2 ∗ j + 4]−X[i][j + 5]

and R2 : Y [3 ∗ i+ 4][3 ∗ j + 4]− Y [2 ∗ i][j + 3] are calculated:

R1 : < φ1
1, φ

1
2 >=< (5−0)+(3−1)

1
, (4−5)+(3−2)

1
>

R2 : < φ2
1, φ

2
2 >=< (4−0)+(3−2)

2
, (4−3)+(3−1)

1
>

Code Transformation

As specified in above phase, only extended cycle shrinking for variable depen-

dence distance can be used to extract parallelism. Therefore, only user input

extShrinkingVar can be used to generate parallel CUDA code for the given sequen-

tial C program while for other user input such as simple, selective, true dependence

and extShrinkingConst, a warning message gets generated saying ”Oops!! Code

Generation for Variable Dependence Distance can only happen through Extended

Cycle Shrinking”. Code 4.8 shows the code generated by extended cycle shrinking

for variable dependence distance.
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Code 4.8: Loop Transformation using Extended Cycle Shrinking for Variable De-

pendence Distance

int _SZ_Y_2 = 300;

int _SZ_Y_1 = 300;

int _SZ_X_2 = 300;

int _SZ_X_1 = 300;

int *_DEV_Y;

// Allocating memory to Kernel Variable and copying them on device

cudaMalloc((void**) &_DEV_Y, sizeof(int)*_SZ_Y_2*_SZ_Y_1);

cudaMemcpy(_DEV_Y, Y, sizeof(int)*_SZ_Y_2*_SZ_Y_1,

cudaMemcpyHostToDevice);

int *_DEV_X;

cudaMalloc((void**) &_DEV_X, sizeof(int)*_SZ_X_2*_SZ_X_1);

cudaMemcpy(_DEV_X, X, sizeof(int)*_SZ_X_2*_SZ_X_1,

cudaMemcpyHostToDevice);

int _NUM_THREADS = 90000;

float _NUM_BLOCKS=1;

int _NUM_TILE=1;

dim3 _THREADS(512);

dim3 _BLOCKS(1);

// Tiling and declaring threads and blocks required for Kernel Execution

if(_NUM_THREADS < _NTHREAD){

_THREADS.x=300;

_THREADS.y=300;}

else{

_NUM_BLOCKS=(_NUM_THREADS*1.0)/256;

_BLOCKS.x=_BLOCKS.y=ceil(sqrt(_NUM_BLOCKS));

_THREADS.x=_THREADS.y=ceil(sqrt(90000.0/(_BLOCKS.x*_BLOCKS.y)));

int temp=_NUM_BLOCKS;

if(_NUM_BLOCKS>_NBLOCK)

_NUM_TILE=(temp % _NBLOCK ==
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0)?(_NUM_BLOCKS/_NBLOCK):((_NUM_BLOCKS/_NBLOCK)+1);}

int _CUDA_TILE;

// Code transformation through Extended cycle shrinking for variable

dependence distance

int ID_1=0, next_ID_1, ID_2=0, next_ID_2;

while((ID_1<79)&&(ID_2<89)){

next_ID_1 = MIN((((8)+(2)*ID_1+(0)*ID_2)/(1)),

(((7)+(1)*ID_1+(0)*ID_2)/(2)));

next_ID_2 = MIN((((1)+(0)*ID_1+(1)*ID_2)/(1)),

(((4)+(0)*ID_1+(2)*ID_2)/(1)));

for(_CUDA_TILE=0;_CUDA_TILE<_NUM_TILE;_CUDA_TILE++){

_AFFINE_KERNEL<<<_BLOCKS,_THREADS>>>(_DEV_Y, _SZ_Y_2,

_SZ_Y_1, _DEV_X, _SZ_X_2, _SZ_X_1, ID_1, MIN(next_ID_1,

79), ID_1, 89, _CUDA_TILE);

cudaDeviceSynchronize();}

for(_CUDA_TILE=0;_CUDA_TILE<_NUM_TILE;_CUDA_TILE++){

_AFFINE_KERNEL<<<_BLOCKS,_THREADS>>>(_DEV_Y, _SZ_Y_2,

_SZ_Y_1, _DEV_X, _SZ_X_2, _SZ_X_1, next_ID_1, 79, ID_2,

MIN(next_ID_2, 89), _CUDA_TILE);

cudaDeviceSynchronize();}

ID_1=next_ID_1;

ID_2=next_ID_2;}

// Copying Kernel variable from device to host

cudaMemcpy(Y, _DEV_Y, sizeof(int)*_SZ_Y_2*_SZ_Y_1,

cudaMemcpyDeviceToHost);

cudaMemcpy(X, _DEV_X, sizeof(int)*_SZ_X_2*_SZ_X_1,

cudaMemcpyDeviceToHost);

// Releasing the memory allocated to kernel variable

cudaFree(_DEV_Y);

cudaFree(_DEV_X);
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Kernel definition of above parllel code:

__global__ void _AFFINE_KERNEL(int* Y,int _SZ_Y_2,int _SZ_Y_1,int* X,int

_SZ_X_2,int _SZ_X_1,int CUDA_L_i,int CUDA_U_i, int CUDA_L_j,int

CUDA_U_j, int _CUDA_TILE){

int i = gridDim.x*blockDim.x*_CUDA_TILE + blockDim.x*blockIdx.x +

threadIdx.x;

int j = gridDim.y*blockDim.y*_CUDA_TILE + blockDim.y*blockIdx.y +

threadIdx.y;

if((CUDA_L_i<=i)&&(i<=CUDA_U_i)){

if((CUDA_L_j<=j)&&(j<=CUDA_U_j)){

X[(3+3*i+5)*_SZ_X_1+2+2*j+4]=Y[(2+2*i-2)*_SZ_Y_1+1+j+2]+23;

Y[(3+3*i+4)*_SZ_Y_1+3+3*j+4]=X[(1+i-1)*_SZ_X_1+1+j+4];}}}
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Literature Survey

This chapter gives the survey of related work done in the domain of this thesis. It list

out the research performed in automatic parallelization, loop transformation, code

generation. Also these work helps in finding out the area that is remain unexplored

in all of them.

5.1 Automatic Parallelization

Parallel programming starts with the emergence of computing. The need of par-

allelization arises because of the application that contains loops, array references

and takes huge computation time when executed sequentially. A lot of research

has been done in the field of parallelizing compilers and automatic parallelization

of programs. Earlier the work was mainly performed for the program written in

FORTRAN [ZBG88, LP98, AK87] but later on because of the emerging need of

industry towards C/C++ programming languages considerable research are done

towards automatic parallelization of the programs written in these language. Au-

tomatic parallelization get widespread because it does not requires any effort from

the programmer side for parallelization and optimization of programs.
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5.1.1 Polyhedral Transformation Framework

Polyhedral compiler framework provides a powerful framework for program analysis

and transformation. Polyhedral model identify the transformation to be performed

on the nested loops by viewing the statement instance as an integer point in a well

define space called polyhedron of statement. Various automatic parallelization tech-

niques [Bon13, BBH+08, BBK+08b, PBB+10] uses polyhedral model for program

transformation. Tools like PLUTO[BHRS08, Rud10, VCJC+13] provides a fully

automatic polyhedral source to source transformation system that optimize regular

program for paralllelization and locality. Some research [PBB+10] combines the it-

erative and model driven optimization to present a search space which is expressed

using polyhedral model. This search space contains complex loop transformation

like loop fusion, loop tiling, loop interchanging and loop shifting.

5.1.2 Loop Transformation Framework

Many compute intensive application spend their execution time in nested loops.

One way to parallelize these loops is to perform various transformations like loop

unrolling, interchange, skewing, distribution, reversal. A lot of research [LP94,

AGMM00] has been done in the field of automatic parallelization using loop trans-

formation. Hall et al. [HCC+10] proposed loop transformation recipes which acts

as an high level interface to code transformation and code generation. This inter-

face is a part of auto-tuning framework that presents a set of implementation for a

computation from which it automatically selects the best implementation. M.F.P.

O’Boyle and P.M.W. Knijnenburg [OK99] develops an optimization framework that

combines the data and loop transformation to minimize parallelization overhead on

distributed shared memory machines. Their work also proves that only data or only

loop transformation will not be able to give efficient parallelization.
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5.1.3 Other transformation framework

Other than polyhedral and loop transformation framework there are several other

transformation framework [CA04, VRDB10, KBB+07, BBK+08a, PBB+10, GZA+11,

GT14] that helps in automatic parallelization. Tranformations are not only for

the FORTRAN or industry standard C/C++ programming language but there are

frameworks for other languages like for JAVA [CA04]. Automatic parallelization

are required for the complex nested loops involves in various applications. Paral-

lelization for stencil computation [KBB+07] focuses on the issues affecting parallel

execution of tiled iteration space that are embedded into the perfectly nested it-

eration space. It introduce the concept of overlapped tiling and split tiling that

eliminate the inter-tile dependencies. Vandierendonck et al. proposed a parallax in-

frastructure [VRDB10] to parallelize irregular pointer intensive applications. They

presented a light weight programming model to identify the thread level parallelism.

It adds annotation to the program that describe its properties which a static com-

piler cannot find out. Also several research has been done in optimizing affine loop

nests for different memory architectures [Bon13, BBK+08a].

5.2 Automatic Code Generation for GPGPUs

Because of the demand of multiple processing element on a single chip, the need

of multicore architecture emerges out. Graphic processing unit(GPUs) are one of

them and a powerful computation system. Traditionally GPUs only handles the

graphics related application, but now they are going to be used for general pur-

pose computations called as GPGPU. Even though GPGPU provides a parallel

system to application developers but programming the application is complex in

GPGPU. Many programming models are presented for application developement so

that they can run on GPUs like CUDA[SK10], OpenCL[MGMG11] etc. But manual

developement of the parallel code using these programming model is still cumber-

some than the parallel programming language like OpenMP. Several research has
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been done in the area of code generation framework but they all suffered from the

scalability challenge. Baskaran et al.[BRS10] proposed a fully automatic source to

source code transformation system from c to CUDA for affine programs. While Lee

et al.[LME09, LE10] presented a compiler framework to perform program optimiza-

tion and translation of OpenMP application into CUDA based GPGPU application.

They have taken the advantage of OpenMP programming paradigm for CUDA pro-

gramming. CUDA-CHILL [Rud10] proposed a compiler framework and code gen-

eration for optimization of sequential loops. Different from the above works this

thesis develops an end to end code transformation tool that convert and optimize

sequential regular or irregular programs written in C language to generate efficient

parallel CUDA program.
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Chapter 6

Performance Evaluation

This chapter outlines the experimental evaluation of CRINK . Design and imple-

mentation of which has already been discussed in Chapter 3 and 4. This chapter will

discuss the results of various experiment performed on code generated by CRINK .

The generated CUDA code is executed on the GPU machines and their performance

in terms of execution time are illustrated through graphs.

6.1 Experimental Setup

The performance of generated parallel CUDA code is tested on GPU platform. The

GPU machine used for experiment is Tesla C1060 which is Nvidia’s third brand

of GPUs. Tesla C1060 has 240 cores and 4GB memory with compute capability

1.3. All the experiments are performed on gpu01.cc.iitk.ac.in, gpu02.cc.iitk.ac.in

and gpu04.cc.iitk.ac.in server which has nvcc as Nvidia CUDA compiler installed

on it. The tool has been tested for various standard benchmarks and some other

kernels with the help of some standard datasets. The testing of various kernel have

also put reduction factor into consideration i.e. experiments has been performed for

various kernel by modifying the reduction factor.
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6.2 Testing Setup

The tool has been tested for the loops taken from Higbie (the collection of vec-

torizable loops) [Hig], various standard programs available on [jbu] and standard

benchmarks SPEC. Since for each kernel different parallel CUDA code can be gen-

erated, following factors are taken into considerations while evaluating results for

each kernel:

• User input for dependence test i.e gcd, banerjee and omega. Because for

a particular program one test may detect dependence and other may not,

therefore different parallel code will be generated.

• If dependence exists, then depending upon the user input for parallelism ex-

traction i.e. simple, selective, true dependence, extShrinkingConst and

extShrinkingVar different parallel code gets generated.

6.3 Standard Datasets

To test the performance of our tool, we have used the standard datasets [Dat]. These

datasets are the two dimensional sparse matrix collection created by University of

Florida. The dataset used in this thesis are listed below:

1. PajekCSphd [Paj]

2. PajekEVA [Paj]

3. PajekHEP-th-new [Paj]

4. SNAPp2pGnutella04 [SNA]

5. Nasabarth5 [Nas]

6. BarabasiNotreDame www [Bar]
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6.4 Performance Analysis

This section will inspect each standard kernel and its corresponding parallel CUDA

code generated by CRINK . It will examine the result when the CUDA code is

executed on GPUs for different standard dataset and for different λ value.

Table 6.1 list out the standard benchmarks used in this thesis and gives the

corresponnding description:

Benchmarks Description
ZERO RC C library to find out the solution for the system of non-linear equation
Higbie Collection of various vectorizable loops written by {Lee Higbie}
Treepack C library to performs some calculation on tree
Sandia Rules C library to generates a wide range of quadrature of various orders
SPEC Benchmark designed to test the CPU performance.

Table 6.1: Standard benchmarks used

Table 6.2 shows the performance of various benchmarks on standard datasets. It

presents the execution time for different parallelism extraction methods correspond

to each benchmark. The λ value indicates the reduction factor with respect to cor-

responding cycle shrinking approach. As discussed earlier in Chapter 2, calculation

of λ value for true dependence shrinking depends upon the true distance and for

simple, selective and extended cycle shrinking for constant dependence distance de-

pends on distance vectors. In Table 6.2, for loop ID refers to the benchmark file line

number in which the for loop occurs.
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Benchmarks
For Loop

ID
Dependence

Test
Dependency

Exists
Cycle

Shrinking
λ

value
Dataset

Runtime
(Threads x Blocks)

128x1 512x8 512x64

ZERO RC
zero rc.c

:123

GCD,
Banerjee,
Omega

Yes

Simple
shrinking

2

CSphd 0.16269 0.01262 0.01262
EVA 2.37350 0.10438 0.04872
barth5 198.46145 6.90151 0.98608
p2p-

Gnutella04
94.41442 2.80765 0.63796

HEP-th-new 6488.75220 215.77367 30.74060
NotreDame

www
44899.2898 5886.7611 213.7435

Extended
cycle

shrinking
for

constant
dependence
distance

2

CSphd 0.11505 0.02141 0.02141
EVA 1.55880 0.06632 0.06659
barth5 127.49446 4.40064 0.53989
p2p-

Gnutella04
54.45787 1.74379 0.36136

HEP-th-new 4214.08422 131.96046 16.80648
NotreDame

www
28996.88856 916.99014 116.73602

Higbie higbie:1510
GCD,

Banerjee,
Omega

Yes

Simple
shrinking

<NV2,NV3>

CSphd 0.05786 0.01839 0.01839
EVA 0.93374 0.12417 0.07155
barth5 1.23790 0.15600 0.02076
p2p-

Gnutella04
40.00787 5.01940 0.65543

HEP-th-new 8847.3863 1075.5344 137.8398
NotreDame

www
130085.6058 Time out Time out

Selective
shrinking

NV2*M

CSphd 0.00389 0.00124 0.00124
EVA 0.03602 0.00504 0.00023
barth5 1.20648 0.15084 0.02076
p2p-

Gnutella04
0.56067 0.07453 0.00955

HEP-th-new 40.85149 5.10508 0.65994
NotreDame

www
380.7156 47.39323 5.98502

True
dependence
shrinking

NV2*M+NV3

CSphd 0.01109 0.00347 0.00347
EVA 0.09166 0.01275 0.00738
barth5 3.55874 0.44109 0.06383
p2p-

Gnutella04
1.69831 0.20951 0.02956

HEP-th-new 114.52113 14.34307 1.91028
NotreDame

www
1041.74659 131.24814 16.76237

Extended
cycle

shrinking
for

constant
dependence
distance

<NV2,NV3>

CSphd 0.00569 0.00180 0.00180
EVA 0.04542 0.00628 0.00366
barth5 1.73036 0.21479 0.02937
p2p-

Gnutella04
0.82107 0.10267 0.01360

HEP-th-new 54.94935 6.87558 0.88530
NotreDame

www
496.44444 62.01346 7.82824

Treepack
treepack.c

:3543

GCD,
Banerjee,
Omega

Yes

Simple
shrinking

2

CSphd 0.10784 0.01524 0.01524
EVA 1.57178 0.05871 0.05944
barth5 127.38594 4.24979 0.55260
p2p-

Gnutella04
53.56174 1.71252 0.34366

HEP-th-new 4207.57740 131.49243 16.66710
NotreDame

www
29049.41600 910.74710 115.81394

Extended
cycle

shrinking
for

constant
dependence
distance

2

CSphd 0.16126 0.024619 0.024619
EVA 2.36471 0.09487 0.09474
barth5 195.29583 6.84860 0.95559
p2p-

Gnutella04
82.40414 2.79328 0.62027

HEP-th-new 6437.51152 213.02812 30.07215
NotreDame

www
44559.91662 1463.56947 1465.056
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Benchmarks
For Loop

ID
Dependence

Test
Dependency

Exists
Cycle

Shrinking
λ

value
Dataset

Runtime
(Threads x Blocks)

128x1 512x8 512x64

SANDIA
RULES

sandia
rules.c:6571

Banerjee No NA NA

CSphd 0.00020 0.00003 0.00003
EVA 0.00073 0.00004 0.000048
barth5 0.00648 0.00027 0.00008
p2p-

Gnutella04
0.00421 0.00017 0.00007

HEP-th-new 0.03725 0.00143 0.00039
NotreDame

www
0.09727 0.003432 0.00073

SPEC
blocksort.c

:842

GCD,
Banerjee,
Omega

Yes

Simple
shrinking

nblock

CSphd 0.00080 0.00011 0.00011
EVA 0.00797 0.00024 0.00024
barth5 0.50741 0.01712 0.00215
p2p-

Gnutella04
0.21617 0.00705 0.00139

HEP-th-new 16.81098 0.52985 0.06743
NotreDame

www
116.26934 3.66369 0.46903

Extended
cycle

shrinking
for

constant
dependence
distance

nblock

CSphd 0.00072 0.000131
EVA 0.00933 0.00040 0.00020
barth5 0.72144 0.02568 0.00364
p2p-

Gnutella04
0.31060 0.01044 0.00237

HEP-th-new 23.58767 0.78993 0.11371
NotreDame

www
162.97816 5.42086 0.78510

Table 6.2: Performance analysis for different configuration of standard benchmarks
and datasets

6.4.1 Results for ZERO RC Benchmark

For ZERO RC benchmark, the referenced array in loop is single dimensional. There-

fore, simple shrinking and extended cycle shrinking for constant dependence distance

are used for parallelism extraction.

Fig 6.1 - 6.6 shows the performance of ZERO RC benchmark on standard datasets

when simple shrinking is used.
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Figure 6.1: Plot for CSphd

0

0.5

1

1.5

2

2.5

  0  20  40  60  80 100

C
O

M
P

U
T

A
T

IO
N

 T
IM

E
 (

S
E

C
)

NUMBER OF THREADS (x10
2
)

compute time

Figure 6.2: Plot for EVA
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Figure 6.3: Plot for barth5
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Figure 6.4: Plot for p2p-Gnutella04
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Figure 6.5: Plot for HEP-th-new
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Figure 6.6: Plot for NotreDame www

Fig 6.7 - 6.12 shows the performance of ZERO RC benchmark when extended

cycle shrinking is used for parallelism extraction.
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Figure 6.7: Plot for CSphd
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Figure 6.8: Plot for EVA
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Figure 6.9: Plot for barth5
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Figure 6.10: Plot for p2p-Gnutella04
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Figure 6.11: Plot for HEP-th-new
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Figure 6.12: Plot for
NotreDame www

6.4.2 Results for Higbie Benchmark

The loop that we have considered in higbie consists of dependence detected by all

the dependence test i.e. GCD, Banerjee and Omega. The array referenced in the

loop is two dimensional hence, simple, selective, true dependence and extended cycle

shrinking for constant dependence shrinking is used for parallelism extraction.

Figure 6.13 - 6.17 represents the results for simple shrinking.
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Figure 6.13: Plot for CSphd
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Figure 6.14: Plot for EVA
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Figure 6.15: Plot for barth5

0

10

20

30

40

50

 0 10 20 30 40 50 60 70

C
O

M
P

U
T

A
T

IO
N

 T
IM

E
 (

S
E

C
)

NUMBER OF THREADS (x10
3
)

compute time

Figure 6.16: Plot for p2p-Gnutella04
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Figure 6.17: Plot for HEP-th-new

Figure 6.18 - 6.23 shows the performance of higbie using selective shrinking.
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Figure 6.18: Plot for CSphd
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Figure 6.19: Plot for EVA
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Figure 6.20: Plot for barth5
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Figure 6.21: Plot for p2p-Gnutella04
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Figure 6.22: Plot for HEP-th-new
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Figure 6.23: Plot for
NotreDame www

Figure 6.24 - 6.29 shows the performance using true dependence shrinking

0.002

0.004

0.006

0.008

0.01

0.012

 0  5 10 15 20 25

C
O

M
P

U
T

A
T

IO
N

 T
IM

E
 (

S
E

C
)

NUMBER OF THREADS (x10
2
)

compute time

Figure 6.24: Plot for CSphd
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Figure 6.25: Plot for EVA
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Figure 6.26: Plot for barth5
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Figure 6.27: Plot for p2p-Gnutella04
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Figure 6.28: Plot for HEP-th-new
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Figure 6.29: Plot for
NotreDame www

Figure 6.30 - 6.35 shows the results for extended cycle shrinking
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Figure 6.30: Plot for CSphd
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Figure 6.31: Plot for EVA
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Figure 6.32: Plot for barth5
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Figure 6.33: Plot for p2p-Gnutella04
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Figure 6.34: Plot for HEP-th-new
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Figure 6.35: Plot for
NotreDame www

6.4.3 Results for Sandia Rules Benchmark

In Sandia Rules, the considered loop does not contain dependency if user choice

for dependence test is banerjee. This implies that each iteration can execute in

parallel. Figure 6.36 - 6.41 shows the performance of Sandia Rules benchmarks on

standard dataset.
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Figure 6.36: Plot for CSphd
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Figure 6.37: Plot for EVA
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Figure 6.38: Plot for barth5
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Figure 6.39: Plot for p2p-Gnutella04
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Figure 6.40: Plot for HEP-th-new
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Figure 6.41: Plot for
NotreDame www

6.4.4 Results for Treepack Benchmark

In Treepack benchmark, any user choice for dependence test detects loop depen-

dence. Sine the loop contains single dimensional array with subscript of i± b form,

only simple and extended cycle shrinking for constant dependence distance can be

used for parallelism extraction. Following are the figures that represents the per-

formance of treepack benchmark on various standard datasets, varying number of

parallel threads.

Plots for Simple shrinking,
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Figure 6.42: Plot for CSphd
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Figure 6.43: Plot for EVA
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Figure 6.44: Plot for barth5
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Figure 6.45: Plot for p2p-Gnutella04
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Figure 6.46: Plot for HEP-th-new
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Figure 6.47: Plot for
NotreDame www
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Plots for Extended cycle shrinking for constant dependence distance,
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Figure 6.48: Plot for CSphd
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Figure 6.49: Plot for EVA
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Figure 6.50: Plot for barth5
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Figure 6.51: Plot for p2p-Gnutella04
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Figure 6.52: Plot for HEP-th-new
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Figure 6.53: Plot for
NotreDame www

6.4.5 Results for SPEC Benchmark

For SPEC benchmark, tool is able to detects the dependence within the loop con-

taining single dimensional array, hence simple and extended cycle shrinking are

used for code transformation. Below are the graphs representing the performance
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of benchmark with the variation in parallel threads.

Plots for Simple shrinking,
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Figure 6.54: Plot for CSphd
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Figure 6.55: Plot for EVA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 0  5 10 15 20 25 30 35

C
O

M
P

U
T

A
T

IO
N

 T
IM

E
 (

S
E

C
)

NUMBER OF THREADS (x10
3
)

compute time

Figure 6.56: Plot for barth5
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Figure 6.57: Plot for p2p-Gnutella04
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Figure 6.58: Plot for HEP-th-new
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Figure 6.59: Plot for
NotreDame www

Plots for Extended cycle shrinking for constant dependence distance,
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Figure 6.60: Plot for CSphd
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Figure 6.61: Plot for EVA
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Figure 6.62: Plot for barth5
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Figure 6.63: Plot for p2p-Gnutella04
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Figure 6.64: Plot for HEP-th-new
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Figure 6.65: Plot for
NotreDame www
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6.5 Results Analysis

From the above plots, we conclude that computation time of generated parallel pro-

gram decreases with the increase in number of threads. Initially when the number

of threads are very less, execution of program take huge computation time specially

for the large standard datasets like HEP-th-new and NotreDame www. But as the

threads increases the drastic change in the computation time reduction is observed

and later on it become constant. When the number of threads becomes very large

then execution time of the program become constant, this happens due to the block

overhead. As block overhead is negligible for the less number of threads and be-

come significant with respect to computation time when it approaches to very large

number.
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Conclusion and Future Work

CRINK is a source to source transformation system that converts an input sequen-

tial C program into a parallel program which can run on CUDA platform. The

input can be an affine or a non-affine C program. Based upon the dependencies

present in the loop within the program, the tool is able to extract parallelism using

cycle shrinking [Pol88] and extended cycle shrinking techniques [SBS95]. CRINK

uses simple, selective, true dependence, extended cycle shrinking for constant de-

pendence distance and variable dependence distance for loop transformations. The

tool is tested on 66 different configurations of standard benchmarks and datasets.

Based on these benchmarks, the generated code performs better if dependence dis-

tance is large. We are able to conclude that as the number of threads increases, the

computation time reduces exponentially, and later on it may become constant for

large number of threads.

Various challenges occur while developing this tool, thereby imposing some limita-

tions over CRINK . Some of them are listed below :

1. Not able to handle imperfectly nested loops.

2. It can only handle one loop at a time.

3. Loop should be either affine or non-affine. The tool cannot handle the fusion

of affine and non-affine loops.
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Future work can include improvements over CRINK , some of which are listed

below:

1. Handling imperfectly nested loops.

2. Handling loops that contain both affine and non-affine dependencies.

3. Loop transformation of three or more nested loops using true dependence

shrinking.
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