
Applying Machine Learning to Rank Domain-specific Logical

Expressions of Natural Language Descriptions

A Thesis Submitted

in Partial Fulfillment of the Requirements

for the Degree of

Master of Technology

by

Sailesh Kumar Raju Ramayanam

Y8127403

under the guidance of

Dr. Amey Karkare

to the

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

May 2013

i

ABSTRACT

We address the problem of ranking a set of candidate translations of an English sentence. The

ranking reflects the order of probability of correctness of the translations. Such kind of ranking

is an important and essential phase in most of the natural language translation systems. Most

of the attempts to solve this problem employ adhoc methods for scoring the translations. We

propose a systematic two level approach to tackle this problem. For the first level, we identify

certain characteristics of a candidate translation, which reflect its possibility of being correct.

We present methods to quantify these characteristics. For the second level, we propose a way of

combining the component scores from level 1. We present a novel loss function which captures

the notion of our success metric (the number of test inputs for which the correct formula is

given rank 1). We validate all our ideas using extensive experiments. The results show that

most of our ideas indeed work as expected.

ii

Acknowledgements

This work would not have been possible without the invaluable guidance and support of my

guide, Dr. Amey Karkare. I am truly indebted and express my earnest thanks to him. I

also express my sincere thanks to Dr. Sumit Gulwani, Dr. Subhajit Roy and Dr. Mark

Marron for providing their valuable time whenever needed and even at very short notices.

Many ideas in this work are due to the fruitful discussions we had. I also thank Aditya Desai,

Nidhi Jain and Vineet Hingorani, who, besides being brilliant project partners, were very

dear friends and made working on this thesis an enjoyable experience. I genuinely feel honored

to have worked with so many great minds.

I must surely thank the department of Computer Science and Engineering, IIT Kanpur, for

providing me with an excellent environment for research.

I would like to thank my parents, my sisters and all family members for their immense

support and trust. Apart from these, there are many others and it is difficult to mention the

names of everyone but I must mention Mr. Mohammed Rafi, Sr. Celine, Sr. Basil, Mr. Rama

Lingeswara Rao, Mr. N. Chowdary Babu, Mr. Chandra Sekhar Naidu and the Rural Develop-

ment Trust, without whose support I would not have made such a fruitful journey. I thank all

my friends at IIT Kanpur for making my stay here one of the most memorable ones.

Last, but not the least, I thank God Almighty, for showering me with all the above blessings.

iii

Dedicated to my

Father: Seeta Rama Raju R

Mother: Seeta Rama Laskhmi R

Sister & Brother-in-law: Hymavathi, Veera

Sister: Madhuri

family, teachers and friends

iv

Contents

1 Introduction 1

1.1 Applications of Natural Language Translation Systems 1

1.1.1 Querying Systems . 1

1.1.2 Intelligent Tutoring Systems . 2

1.1.3 Program Synthesis . 2

1.2 Our Work . 3

2 Existing Work and Contributions of Our Work 4

2.1 Existing Work . 4

2.2 Our Contributions . 6

3 Framework and Problem Statement 7

3.1 Input . 7

3.2 Translation Process . 9

3.2.1 Step 1: Generation of initial expressions 9

3.2.2 Step 2: Combination of expressions . 11

3.2.3 Step 3: Extracting a correct Translation 13

3.3 Problem Statement: Ranking a set of translations 13

4 Machine Learning for Ranking 14

4.1 Two levels of Machine Learning . 14

4.2 Significance of two level approach . 14

4.3 Level 1: Computing Component Scores . 15

4.3.1 Component 1: Fraction of Used words . 15

v

4.3.2 Component 2: Word to Terminal Probability 19

4.3.3 Component 3: Connections Probability 23

4.4 Level 2: Combining Component scores . 30

4.4.1 Setup for Combining Component Scores 30

4.4.2 Gradient Descent . 34

4.5 Summary . 34

5 Experiments and Results 35

5.1 Experimental Setup . 35

5.1.1 Machine Learning . 35

5.1.2 Benchmarks . 35

5.1.3 Ranking Scheme . 35

5.1.4 Cross Validation . 37

5.2 Overall Result . 37

5.3 Strength of the component scores . 38

5.4 Behavior of loss function . 41

5.4.1 Effect of Gradient Descent . 42

5.5 Generality of our learning . 43

6 Conclusion and Future Work 45

vi

List of Figures

4.1 A parse tree from Stanford Parser . 25

4.2 Nature of loss function . 33

5.1 Loss Function in action . 42

vii

List of Tables

5.1 Overall Performance . 37

5.2 Weakness V/s Goodness of Component Scores: Top ranks 38

5.3 Weakness V/s Goodness of Component Scores: Top 3 ranks 39

5.4 Significance of Component Scores . 41

5.5 Effect of gradient descent . 42

5.6 Generality of learning . 44

viii

List of Algorithms

1 Generation of initial expressions . 10

2 Combination of Expressions . 13

3 getTrainingData(Sentence S, Translation F) . 21

4 Train a classifier for Component 2 . 22

5 Compute the Score2 of a translation of the given sentence 22

6 getTrainingData(Sentence S, CandidateTranslations T , CorrectTranslation tc,

TrainingData[] D) . 28

7 Train classifiers for Component 3 . 28

8 Compute the score 3 of a translation of the given sentence 29

ix

Chapter 1

Introduction

Systems that can translate input in natural language to an intermediate logic have numerous

applications ranging from providing comfortable querying systems, to intelligent tutoring sys-

tems, to program synthesis and many more. It seems natural if end-users, who are not very

comfortable with computers, desire to have a natural language interface. Surprisingly, such a

desire is equally strong among computer professionals as well. But, the kind of applications

desired by the people in these two extremes can be quite unrelated. For example, an end user

would wish to have a system that allows to query in English, whereas a data analyst would want

a spreadsheet system that accepts commands in English. Thus, the applications are diverse and

the target users are also equally diverse.

1.1 Applications of Natural Language Translation Systems

1.1.1 Querying Systems

Most of the querying systems today provide a graphical interface. Drop down menus, text fields,

check boxes etc. are among the most common ways of choosing the query attributes. This kind

of systems are very easy and comfortable to use when the queries are simple and the number

of attributes is small.

Example: In order to find flights available to go from Denver to Atlanta, one simply has

to choose the source and destination cities.

Websites like MakeMyTrip[12], Yatra[18], ClearTrip[4] have very good user interface for such

queries. Now suppose, the user wants to know the flights from Denver to Atlanta which stop

1

CHAPTER 1. INTRODUCTION 2

at Pittsburgh. The user has to choose one more query attribute. Another user may want to

know the latest such flight, which provides dinner and of a particular airlines. To allow such

complicated queries, the interface should have the options to choose many attributes. This is

a challenge on the part of the designer, because as the number of possible attributes increases,

the interface becomes denser and the user experience might deteriorate. On the other hand, if

the attributes are limited, then the queries that can be made also become limited. So a tradeoff

has to be made. Note that here the system is capable of executing complex queries and the

user might also be wanting to make complex queries. The only hurdle that prevents complex

queries is the limitation imposed by the graphical interface.

A natural language interface, on the other hand, has no such limitations because the interface

involves giving a natural language description which can be given as plain text.

1.1.2 Intelligent Tutoring Systems

With the advent of websites like KhanAcademy[1], learning has taken a new turn. Opportunity

for learning has surpassed many hurdles like location, age etc. and the virtual classroom is

available to thousands of users, at the comfort of learning from home. The scale and the variety

of courses is so huge that it is impractical to monitor each student manually. Moreover, the

question base keeps on expanding and it would be immensely helpful if there is an automated

system which can guide the students in understanding and solving the questions. The first step

to any such system is to understand the question at hand, which will be in natural language.

Therefore, an efficient system for natural language translation would help to build intelligent

tutoring systems.

1.1.3 Program Synthesis

Text editing tasks like insertion, deletion, replacement etc. are extremely common and millions

of users need them everyday. Sometimes users may need to perform a complicated editing task

on a spreadsheet or a text file. For instance, consider the following tasks.

1. Insert a ”:” immediately after a sequence of numbers.

2. Insert ”*” at the beginning of each line containing ”P.O. BOX”.

3. Insert ”| ” after the 1st occurrence of ” ”.

CHAPTER 1. INTRODUCTION 3

Each of these tasks is complicated and cannot be performed by normal find and replace

action. Systems like Microsoft Excel provide a way to program such complex tasks (Microsoft

Excel does this in the form of macros). However, there are many users who are not proficient

in using such methods and moreover such complex tasks may not arise frequently enough to

necessitate the learning of text editing programming. If we can have a system which can take

a natural language description of a task and generate a text editing program that can perform

the task, text editing can be extremely simplified. Thus, natural language translation can be

used for program synthesis as well.

There are numerous other applications for natural language translation. However, natural

language translation, in its broadest sense, is a very hard task. Nevertheless, attempts have

been made to build efficient systems for translation.

1.2 Our Work

Our work is based on bag of words model, which is a very common approach in document

classification. In this, a sentence is considered as a collection of words and no importance is

given to their arrangement. We then generate all possible expressions using these words and

pick up the correct expression using certain methods. The challenge in this approach is that

the method to pick up the correct expression must be quick and highly efficient, because the

number of possible expressions using a given set of words can be quite high. We use machine

learning techniques to achieve this goal.

This thesis is organised as follows. Chapter 2 provides an overview of research done in natural

language translation and how our work differs from the existing work. Chapter 3 discusses the

methods to generate expressions using bag of words model and also formally defines our problem

statement. Chapter 4 discusses our approach to solve the problem of ranking a set of candidate

translations. Chapter 5 presents the results of our experiments and an analysis of the results.

Chapter 6 presents the conclusions and scope for future work.

Chapter 2

Existing Work and Contributions of

Our Work

2.1 Existing Work

Natural Language Translation is not at all a new area ([17]) and a lot of effort has gone into

building efficient systems to solve the goal. Initial systems allowed input with restricted vocabu-

lary and structure ([16], [2]), though the restrictions were not as strict as those in a programming

language. However, these were very sensitive to issues like grammatical mistakes and were not

very robust. Later, several systems were developed which were tolerant to such issues. Still,

the amount of success in natural language translation is not very impressive and there is a lot

of scope and need for new ideas.

Many attempts at tackling natural language translation ([10] [11]) use bag of words model in

one form or other. Words from the input description are mapped to certain keywords, which are

then combined in a certain way to generate possible translations. The main challenge with bag

of words model is that it results in a large number of possible translations, even after eliminating

syntactically and semantically ill formed ones. The correct translation must be picked efficiently

or else the user experience deteriorates. [10] presents a keyword based programming utility for

Java. It uses a score, based on the number of words used from the input sentence. Unused words

are penalized by some fixed amount chosen by the authors. [11] presents another keyword based

web utility which uses a score, based on the mappings of input words to keywords. Each kind of

4

CHAPTER 2. EXISTING WORK AND CONTRIBUTIONS OF OUR WORK 5

mapping has certain predetermined weight which is used to compute the score of a translation.

Both these approaches consider a translation as a function tree and attempt to build it top

down. In both these utilities, the values used for scoring are based on some heuristics.

PRECISE [15] is a system which translates natural language descriptions of database queries

into SQL queries. This also uses a bag of words model, but presents a novel way to produce

candidate translations. It models the mappings of input words to keywords as a graph and

uses max-flow algorithms to produce valid translations. It, however, does not rank/classify the

translations. In case of multiple translations, all of them are presented to the user, who then

has to choose a correct one.

All the above approaches either use adhoc (heuristic based) scoring schemes or do not score

the translations at all. Thus, there is a need to identify the characteristics of a translation

that can reflect the possibility of its correctness. Once it is done, methods to quantify such

characteristics should be developed and then the resulting scores can be used to rank the

translations. Such an approach will have a well formed theory and can provide more insights

into natural language translation. One of the contributions of this work is to define such

characteristics and propose methods to compute them.

Once we have certain quantified properties of a translation, the next question is which one

to use. If all (or some) of them are to be used, then how to combine them. In any case,

the ultimate goal is to rank a given set of translations. Ranking is a very common function

performed by many systems. Despite this, the problem of ranking has not received much

attention in machine learning community. The problem with ranking is that it almost always

is produced by sorting w.r.t. some score and the sort function is inherently non-differentiable

w.r.t. the score. Most machine learning algorithms, on the other hand, require a smooth

objective function for the purpose of training. Nevertheless, some research has been done on

ranking which use a smooth function that can approximate the behavior of ranking function.

RankNet[3] and RankingSVM[8] are among the most popular ones. Each of these presents

a smooth objective function which is defined in terms of relevance order between the pairs

of objects to be ranked. Principle motivation behind both these and most other research in

ranking, is the problem of ordering search engine results or documents. In the case of search

results, more often than not, there is a relevance order between most of the pairs of retrieved

CHAPTER 2. EXISTING WORK AND CONTRIBUTIONS OF OUR WORK 6

results. But this is not the case in our context. Although the objective of this work is to rank

translations, in reality, the relevance order between most of the pairs of candidate translations

is undefined. A user will not prefer one incorrect translation over the other. The only relevance

is between a correct and an incorrect translation. So, by using the above mentioned ranking

approaches and for that matter any approach based on pairwise relevance, we would be trying

to do a lot of irrelevant learning. More importantly, we might not be doing the required learning

at all, because the number of pairs for which the relevance order is defined is way too small.

RankBoost[6] uses an entirely different approach and addresses a problem highly relevant

to our setting. The problem it addresses is combining a set of weak rankings to produce a

single strong ranking. It is relevant to our setting because it turns out that the characteristics

we identified for the candidate translations are weak ranking functions. RankBoost uses a

variation of boosting technique, to learn the strong ranking function. However, it also uses

the same pairwise relevance orders for learning the strong ranking. In addition to this, the

score computed by the strong ranking function depends only on the relative values of the weak

scores and not on absolute values. This dependence on relative values may work well under the

assumption that the weak rankings are in fact rankings and not quantified scores. In our case,

the weak rankings are indeed quantified scores.

2.2 Our Contributions

Our work is different from the existing work in the following ways.

1. We propose certain concrete characteristics of a translation and also methods to quantify

these characteristics.

2. Each of the above characteristics reflects the possibility of correctness of the translation,

although in a weak way.

3. We propose a novel approach to rank a set of candidate translations by combining their

weak scores.

4. In a general sense, our approach can be used to learn ranking functions for objects where

the pairwise relevance orders do not exist between most of the pairs.

Chapter 3

Framework and Problem Statement

In this chapter we shall define the basic framework on which our system is built, discuss its

working and at the end, formally state the problem we attempt to solve in the remaining

chapters.

3.1 Input

The aim of our system is to translate a given English sentence into an intermediate language.

The intermediate language is defined using a context free grammar (CFG) and hence is far

easier for a computer to understand. We call the input sentence a benchmark.

Example: I would like to travel from Washington to Pittsburgh on August twentieth

For any intelligent system to work, relevant knowledge has to be represented in some form.

For our system, this translates to knowing how to construct sentences in the intermediate

language and also how to deduce the semantics of English w.r.t. the intermediate language.

The relevant knowledge for this is provided through the following.

1. Grammar

2. Dictionary

Grammar, G

Grammar is a set of rules to be followed in order to construct a meaningful sentence in the

intermediate language. Although it is a context free grammar (CFG), its format is tailored to

7

CHAPTER 3. FRAMEWORK AND PROBLEM STATEMENT 8

suit our application. The productions in the grammar can be of 3 types.

1. Passive Production

2. Active Production or Named Production

3. Nameless Production

Definition 1. Passive Production: A production of type N → T , where N is a non-terminal

in G and T is a terminal in G. Terminals like T are called Passive Terminals.

FoodType → BREAKFAST is a passive production. The terminal BREAKFAST is a com-

plete attribute in itself. It does not act on any other arguments and hence, it is a Passive

Terminal in our grammar.

Definition 2. Active/Named Production: A production of type N → T (N1, N2, .., Nk), where

N,Ni are non-terminals in G and T is a terminal in G. Terminals like T are called Active

Terminals.

Active productions are required when there is a grouping of information possible and this

grouping is explicitly indicated by a word in the benchmark. For example, in flight related

queries, departure information needs to be grouped together and quite often it is indicated by

words like from, depart, leave etc. Therefore we have the following named production in the

grammar for ATIS domain (domains will be discussed shortly).

Departs → EQ DEPARTS(City, Time, Weekday, Daynum, Month)

Definition 3. Nameless Production: A production of type N → (N1, N2, .., Nk), where N,Ni

are non-terminals in G.

Nameless productions are required when there is a grouping of information possible and this

grouping is not explicitly indicated by any word in the benchmark.

AtomicRowPred → (Departs, Arrives) is a nameless production which says that departure

and arrival information, together form a predicate. One may say that having a production

which allows conjunct (AND operation) can eliminate the need for this nameless production.

But, conjunct does not prevent generation of a predicate having only departure information.

A translation with only departure information is an ill formed one. But nameless productions

CHAPTER 3. FRAMEWORK AND PROBLEM STATEMENT 9

capture the semantic grouping which is specific to the domain at hand and prevent the above

kind of ill formed translations.

Dictionary, D

Dictionary is a mapping from English words to terminals in the intermediate language. It can

be thought of as a set of ordered pairs (t,W), where t is a terminal in G and W is a set of

English words. This means that if a sentence S contains a word w ∈ W , then one possible

intention of w in S could be the role associated with t in G.

The grammar as well as the dictionary depend on the domain at hand and are to be pro-

vided by domain experts. Except for these two, rest of our system is automated and does not

require any external intervention. It however uses the knowledge provided through grammar

and dictionary.

In our experiments we considered the following 3 domains.

1. ATIS - Queries regarding flight details

2. Automata - Undergraduate level problems on finite state automata

3. Text Editing - Tasks like insertion, deletion, replacement etc. in text files

3.2 Translation Process

Once a grammar G and a dictionary D are given, the system can be set up for translation.

Broadly there are 3 steps in the process of translation.

1. Generation of initial expressions

2. Combination of expressions

3. Extracting a correct translation

3.2.1 Step 1: Generation of initial expressions

We start with an empty list and pick a word w in the sentence S. We find out all the mappings

of w in D and add the corresponding terminals to our list. We then repeat this for every other

CHAPTER 3. FRAMEWORK AND PROBLEM STATEMENT 10

word in S. Finally, we end up with a list of terminals. But, terminals as such cannot be used

for translation because they can have arguments (e.g. Active Terminals) which have to be

instantiated. Therefore at the end, we generate one expression for each of the terminals in our

list and these expressions are our initial expressions (for active terminals, the arguments are set

to null). Here we are considering the sentence as a bag of words and consequently generating a

bag of expressions.

Data: Sentence S, Dictionary D

Result: List of expressions, L

M ← EmptyList;
L← EmptyList;
for each word w in S do

for each mapping w → t in D do
Add (t, w) to L;

end
end
for each pair (t, w) in M do

e ← createExpression(t, w);
L.Add(e);

end
return L;

Algorithm 1: Generation of initial expressions

Example: I would like to travel from Washington to Pittsburgh on August twentieth

According to our dictionary, the words I, would, like, travel, on map to nothing. So, these

words do not generate any terminals. Remaining words generate the following.

Word → Terminal → Expression

to → EQ ARRIVES → EQ ARRIVES(null, null, null, null, null)

from → EQ DEPARTS → EQ DEPARTS(null, null, null, null, null)

Washington → CITY → CITY

to → EQ ARRIVES → EQ ARRIVES(null, null, null, null, null)

Pittsburgh → CITY → CITY

August → MONTH → MONTH

twentieth → DAYNUM → DAYNUM

The initial expressions may not be reachable from the start symbol of G, and they may not

CHAPTER 3. FRAMEWORK AND PROBLEM STATEMENT 11

even be complete.

Definition 4. Hole: A non-terminal position in an expression, which is not yet instantiated.

The non-terminal is said to be the type of the hole.

Definition 5. a) Partial Expression: An expression with at least one hole or one partial sub-

expression.

b) Complete Expression: An expression with no holes and no partial sub-expressions.

• In the above example, none of the expressions is reachable from the start symbol of G.

• The expression EQ DEPARTS(null, null, null, null, null) is a partial expression because

the non-terminals City, T ime,Weekday,Daynum,Month are not yet filled. These are the

holes. The first hole is of type City, the second is of type Time and so on.

• The expression CITY is a complete expression.

Each initial expression is annotated with the word that generated it and this annotation is

retained throughout. Therefore, one instance of CITY is clearly distinguishable from another

instance. Moreover, the words are annotated with their position in the sentence and hence two

instances of the same word are also distinguishable.

3.2.2 Step 2: Combination of expressions

We just saw that the first step generates a bag of expressions. In the second step, the initial

expressions are combined with each other to generate new expressions (partial/complete). The

updated expression set is combined repeatedly until a fixed point is reached. At this point,

all the complete expressions which are reachable from the start symbol of G are reported as

candidate translations for S.

The combinations, however, are not arbitrary. They are dependent on the grammar G.

There are two types of combinations.

Definition 6. Type 1 combination: Given a partial expression e1 and another expression e2, e2

can combine with e1 if e1 has a hole which can be filled with e2 without violating the type safety.

In other words, e2 must be reachable from the non-terminal present at the concerned hole.

CHAPTER 3. FRAMEWORK AND PROBLEM STATEMENT 12

Example: CITY(Pittsburgh) can combine with EQ DEPARTS(null, null, null, null, null)

because as per the grammar for ATIS domain, the non-terminal City can generate the terminal

CITY. Consequently, CITY(Pittsburgh) can also combine with EQ ARRIVES(null, null, null,

null, null).

Definition 7. Type 2 combination: Given two expressions e1, e2, they both can combine, if

there is a Nameless Production whose right hand side contains two non-terminals, one of which

can generate e1 and the other e2.

Example: Please tell me the flights between Boston and Philadelphia next Thursday.

In this benchmark, Boston and Thursday are departure details, but there is no word which

maps to EQ DEPARTS. Still, Boston and Thursday have to be grouped. To handle this situa-

tion, the grammar for ATIS domain contains the following Nameless production.

Eq Departs IMP → (City, Time, Weekday, Daynum, Month)

This production allows Boston and Thursday to combine via type 2 combination.

Step 2 is formally expressed in the following algorithm. The function combine(e1, e2) is

assumed to return a set of expressions which is the result of combining e1 and e2 via combinations

of both types.

This algorithm is only an overview of the combination process. The actual procedure for

combination is much more complex and can be found in [7]. However, for understanding this

document, this algorithm is sufficient.

CHAPTER 3. FRAMEWORK AND PROBLEM STATEMENT 13

Data: Set of initial expressions, E

Result: Set of complete expressions, C

E′ ← Φ;
while E′ 6= E do

E′ = E;
for each pair of expressions e1, e2 in E′ do

if e1, e2 can be combined then
E ← E ∪ combine(e1, e2);

end
end

end
C ← Φ;
for each expression e ∈ E do

if e is complete then
C ← C ∪ {e};

end
end
return C;

Algorithm 2: Combination of Expressions

3.2.3 Step 3: Extracting a correct Translation

At the end of step 2, we will have a set of candidate translations for the given benchmark S.

The next task is to pick up a correct translation from this set of translations. This thesis focuses

on this aspect of translation, i.e, step 3. We propose an efficient way of identifying a correct

translation. It is important to note that the method to pick up a correct translation has to be

very efficient, because the number of candidate translations can be very large given that we are

using bag of words model for translation. The next section formally states the problem.

3.3 Problem Statement: Ranking a set of translations

Given an English sentence S, grammar G, dictionary D and a bag B of candidate translations

for S w.r.t. (G,D), rank the translations in B w.r.t. their probabilities of being correct.

To summarise, we consider a sentence as a bag of words, generate all possible translations

and from the resultant translations, pick up a correct translation. In the further chapters, we

shall describe the approach taken to identify a correct translation and also the results of our

experiments on different domains.

Chapter 4

Machine Learning for Ranking

We take a machine learning approach to rank a given set of candidate translations. For this, we

collect a large number of benchmarks, produce their candidate translations (using the methods

in [7]) and identify the correct translation for each benchmark. This constitutes our training

data, using which we build models which can rank a set of candidate translations.

4.1 Two levels of Machine Learning

In our approach, we apply machine learning at two levels. In the first level, a set of component

scores is computed for each candidate translation. In the second level, the component scores of

each candidate translation are combined to produce a single final score. This final score will be

a measure of our confidence in the corresponding translation. So, after the second level, sorting

the candidate translations w.r.t. their final scores produces a ranked list, which is the objective

of this work.

4.2 Significance of two level approach

The importance of two level approach is the following. In the first level, we identify some simple

characteristics of a candidate translation and come up with a method to quantify each of the

characteristics. These characteristics must be easy to define and compute and must be useful1

1Usefulness of a component score for ranking means, a correct translation must highly likely have a high value
for this score. In other words, there must be a positive correlation between the score and the correctness of
a candidate translation. A negatively correlated component can also be used with appropriate changes in the
second level.

14

CHAPTER 4. MACHINE LEARNING FOR RANKING 15

for ranking the candidate translations. However, individually they may not be strong enough

to be used as final score for ranking. In short, the first level generates a set of weak scores. We

call these as component scores.

In the second level, we come up with a way of combining the weak scores which can result

in a strong final score. The two levels can be operated independently. New components can be

added to the first level and different methods of combining can be applied at the second level,

without affecting one another. The following two sections provide a detailed discussion of these

two levels.

4.3 Level 1: Computing Component Scores

We propose to use the following 3 component scores.

1. Fraction of Used Words

2. Word to Terminal Probability

3. Connections Probability

4.3.1 Component 1: Fraction of Used words

For a benchmark S and a candidate translation F , we can define the following.

1. Non-usable words

2. Usable words

3. Used words

Definition 8. Non-usable words(S): All the words in S that do not map to any terminal in the

grammar G.

For a word w, if map(w) represents the set of all terminals that w maps to in the dictionary

D, then

NonUsableWords(S) = {w | w ∈ S, map(w) = Φ}

CHAPTER 4. MACHINE LEARNING FOR RANKING 16

Example: I would like to travel from Washington to Pittsburgh on August twentieth

In this example, according to our dictionary, the words I, would, like, travel and on do not

map to any terminal in G. Consequently, they can never be used in the translation of this

benchmark. Hence the set of non-usable words for this benchmarks is,

{I, would, like, travel, on}

Definition 9. Usable words(S): All the words in S that map to at least one terminal in the

grammar G.

In contrast to non-usable words, usable words are those words in S which map to a non-empty

set of terminals.

UsableWords(S) = {w | w ∈ S, map(w) 6= Φ}

Alternately, any word w in S which is not a non-usable word is a usable word. Thus the set of

usable words and the set of non-usable words are mutually exclusive and exhaustive.

In the above example, the set2 of usable words is,

{to, from, Washington, to, Pittsburgh, August, twentieth}

Definition 10. UsedWords(F, S): The set of words in S that have actually been used to generate

F .

UsedWords(F, S) is always a subset of UsableWords(S). A correct translation Fc for our

running example uses the words from, Washington, to, Pittsburgh, August and twentieth. So,

the set of used words for Fc is,

{from, Washington, to, Pittsburgh, August, twentieth}

Definition 11. Fraction of Used Words (F, S): The ratio of the number of used words to the

number of usable words is defined as the fraction of used words.

Score1(F) = fused(F, S) = number of words used in F
number of usable words in S

For the correct translation Fc of our running example,

fused(Fc) = 6
7

2One may feel that technically the sets of usable words and used words are multi-sets, because a word can
appear more than once in the same sentence. But, as mentioned at the end of section 3.2.1, every word is
uniquely identifiable using its position.

CHAPTER 4. MACHINE LEARNING FOR RANKING 17

Why Fraction of Used words ?

Clearly, the fraction of used words is very simple and easy to compute. But, how can it help in

ranking?

The set, UsableWords(S), can be thought of as the total useful information (useful for

translation) available in S. Similarly, the set, UsedWords(F, S), can be thought of as the

total information which has actually been used in the process of translation. Consequently,

the quantity fraction of used words of F denotes the fraction of available information that has

been used for translation. A correct translation should utilise maximum amount of information

presented in S, or rather, a translation which uses very less information from S is more likely

to be incomplete (it can still be correct). One can note that the previous statement makes an

implicit assumption that there is very little redundancy in S.

Consider the following translations for our running example.

F1 AtomicRowPredSet(AtomicRowPred(EQ DEPARTS(CITY(Washington), ANY(), ANY(),

DAYNUM (twentieth), MONTH(August)), EQ ARRIVES(CITY(Pittsburgh), ANY(), ANY(),

ANY(), ANY())))

F2 AtomicRowPredSet(AtomicRowPred(EQ DEPARTS(CITY(Washington), ANY(), ANY(),

ANY(), ANY()), EQ ARRIVES(CITY(Pittsburgh), ANY(), ANY(), ANY(), ANY())))

The corresponding sets of used words are,

U1 {from, Washington, to, Pittsburgh, August, twentieth}

fused(F1) = 6
7

U2 {from, Washington, to, Pittsburgh}

fused(F2) = 4
7

One can verify that F1 is the correct translation. Although F2 is also correct, it is not

complete. For almost every benchmark in our training data, the correct translation is found

to have a higher value for the quantity fused, which supports our assumption of very little

redundancy in S. So, a higher value for fused is an indicator of completeness and hence can be

used to identify correct translations. However, fused alone cannot be used to rank the candidate

translations. The following section discusses the reasons for this.

CHAPTER 4. MACHINE LEARNING FOR RANKING 18

Weakness of Fraction of Used Words

It is easy to see that fused can have a maximum value of 1. However, it need not always be

1. Our running example is one such case, although in this case the correct translation has

the highest value of fused among all the candidate translations. Use of two EQ ARRIVE s

(generated by two instances of the word to) is not allowed by the grammar itself. Hence there

is no translation with fused = 1. However, F1 is not the only translation with the highest fused.

The following translation also has the same fused(= 6
7).

F3 AtomicRowPredSet(AtomicRowPred(EQ DEPARTS(CITY(Pittsburgh), ANY(), ANY(),

DAYNUM (twentieth), MONTH(August)), EQ ARRIVES(CITY(Washington), ANY(), ANY(),

ANY(), ANY())))

Unlike F2 which is correct (although not complete), F3 is not correct. It considers departure

city as arrival city and vice-a-versa. However, there is no way to distinguish between F1 and

F3 using only fused. Such ties among candidate translations (w.r.t. fused) are present in most

of the benchmarks which is one reason why fused alone cannot be used as final score for ranking.

Moreover, there are benchmarks in which an incorrect translation has a higher value for

fused than the correct translation. Consider the following example.

Example: I need information on flights leaving Dallas arriving in Boston leaving Dallas

early in the morning.

In this benchmark, the word Dallas has been used twice and the second use is actually

redundant. So, the correct translation for this benchmark will have fused < 1. However, the

grammar allows for a translation which uses the second Dallas also, in addition to all other

words used by the correct translation. Consequently, the correct translation will not occur in

the first position if the ranking is done based on fused alone.

Redundancy in the benchmark causes the correct translation to have a low value for fused.

Since we are dealing with natural language, some amount of redundancy is expected and this

is another reason for fused being a weak score.

CHAPTER 4. MACHINE LEARNING FOR RANKING 19

4.3.2 Component 2: Word to Terminal Probability

For any candidate translation F , there is an implicit set of terminals, ST , associated with it.

This is the set of all terminals and only those that occur in F . Each of these terminals is due

to a word from the corresponding sentence S. Consequently, there is an implicit set of words,

SW , associated with F . The set SW is nothing but the set of used words. Every word w in SW

can be associated with exactly one terminal in ST (the one that is due to w) and vice-a-versa.

This defines a mapping from the set of used words, to the set of terminals in F . One should

notice that it is this mapping that is generated first and the translation, F , is a result of the

combination of the terminals in ST . In fact, combination of the terminals in ST results in a list

of candidate translations and F is only one of them.

Now consider the set of terminals STc associated with the correct translation Tc. For the

translation T to be the correct translation, ST must be same as STc . So, for a candidate

translation to be correct, it is absolutely necessary (although not sufficient) that the associated

word to terminal mapping be correct.

Example: I am looking for a flight leaving Denver traveling to Atlanta with a stop at

Pittsburgh.

Consider the following mappings for the above example.

Word Mapping 1 Mapping 2

leaving EQ DEPARTS EQ DEPARTS

Denver CITY CITY

to EQ ARRIVES EQ ARRIVES

Atlanta CITY CITY

stop EQ STOPS COL STOPS

Pittsburgh CITY CITY

The only difference between the two sets of mappings is the mapping of the word stop. The

intent of this word in the sentence is that there must be a stop at Pittsburgh. The terminal

EQ STOPS in our grammar is a function that takes a CITY as an argument and returns

whether a particular flight stops at the particular CITY or not. On the other hand, the terminal

COL STOPS is a flag which projects all the stops of a particular flight. Clearly, mapping 1 is

the correct mapping. Moreover, mapping 2 can never produce a correct translation, or rather,

CHAPTER 4. MACHINE LEARNING FOR RANKING 20

any translation whose set of terminals does not include the terminals under mapping 1 cannot

be a correct translation.

From the above discussion we can conclude that the correctness of word to terminal mapping

is a necessary condition for the correctness of a candidate translation. However, in reality, we

do not know the list of terminals associated with the correct translation. So, instead of labeling

a set of mappings as correct or incorrect, we propose to predict the probability of it being

correct. This can be further simplified by looking at individual mappings instead of the set in

an entirety. We extend our notion of correct set of mappings to correct mapping, by saying that

each word in the input sentence must map to the correct terminal. Strictly speaking, this is

not necessary, because exchanging the mappings3 of two words can still result in the correct

translation. However, in this case, the intent of the words will have been wrongly identified and

more importantly, translations with such mappings may have lower value for component 3 (to

be discussed later in section 4.3.3).

Once we compute the probabilities of individual mappings, the probability score of the

mappings associated with a candidate translation, F , is taken to be the product of probabilities

of individual mappings in F .

Score2(F) =
∏

M∈F
probability(M)

where F is a translation and M is a word to terminal mapping.

In the example discussed above, we have seen that a correct translation should use 6 words

from the input sentence. Consequently, there will be 6 terms in the product of its Score2. Now

consider a translation which uses only 4 words and hence has only 4 terms in the product of

its Score2. Directly comparing the Score2 of these two translations may not be the right thing

to do, because they involve different number of terms. However, all through our discussion we

have been missing a latent mapping present in many translations. If a translation F does not

use a usable word w, then it means that F considers w to be of not being informative and so

is ignoring it. Alternately, we can say that F maps w to a stop word. So, in reality, the overall

word to terminal mapping should consist of the mapping of unused usable words to stopwords,

in addition to the mappings of used words. With this modified definition of word to terminal

3The exchange of mappings is possible only if both the words map to both the terminals in the given dictionary
D

CHAPTER 4. MACHINE LEARNING FOR RANKING 21

mappings, any candidate translation (for a given sentence) will contain same number of terms

in the product of score2.

Computation of Score 2

Given a grammar G and dictionary D, let T be the set of all the terminals in G. In order to

consider words mapping to stop words, we shall use a dummy terminal tstop. For the grammar

G and dictionary D, our task is the following.

Given a sentence S, a word w in S and a terminal t in T ∪ {tstop}, predict the probability

that w maps to t in the correct translation of S, w.r.t. G and D.

In our approach, we consider the word w and its part of speech, POS(w) as the features

and the corresponding terminal t as a class label. In this set up, our task can be framed as,

Given a feature vector ~f and a class label c, predict the probability of ~f belonging to c.

Algorithms for training and testing are presented below. Part of speech of a word is extracted

using Stanford NLP parser[13].

Data: Sentence S, Translation F

Result: Training data extracted from S and F

D ← Φ;
for each usable word w ∈ S do

Feature Vector ~f ← 〈w,POS(w)〉;
Class c← tstop;
if w has been used in F then

Let w map to a terminal t in F ;
c← t;

end
D ← D ∪ {(~f, c)};

end
return D;

Algorithm 3: getTrainingData(Sentence S, Translation F)

CHAPTER 4. MACHINE LEARNING FOR RANKING 22

Data: TrainingSet B

Result: A classifier to predict the probability of a word to terminal mapping

D ← Φ;
for each training instance b ∈ B do

D ← D ∪ getTrainingData(b.Sentence, b.correctTranslation);
end
C = Classifier.Train(D);
return C;

Algorithm 4: Train a classifier for Component 2

Data: Sentence S, Translation F , Classifier C

Result: Score2 of F
score ← 1;
for each usable word w ∈ S do

Feature Vector ~f ← 〈w,POS(w)〉;
Class c← tstop;
if w has been used in F then

Let w map to a terminal t in F ;
c← t;

end
score ← score * C.predict((~f, c));

end
return score;

Algorithm 5: Compute the Score2 of a translation of the given sentence

Weakness of word to terminal probability score

We mentioned earlier that for a candidate translation to be correct, the correctness of word to

terminal mapping is necessary but not sufficient. To see why it is not sufficient, let us reconsider

the example discussed earlier.

Example: I am looking for a flight leaving Denver traveling to Atlanta with a stop at

Pittsburgh.

We already discussed that for a candidate translation to be correct, it should have the

following mapping.

CHAPTER 4. MACHINE LEARNING FOR RANKING 23

Word Correct Mapping

leaving EQ DEPARTS

Denver CITY

to EQ ARRIVES

Atlanta CITY

stop EQ STOPS

Pittsburgh CITY

Now consider the following two translations for the above sentence.

F1 AtomicRowPredSet(AtomicRowPred(EQ DEPARTS(CITY(Denver), ANY(), ANY(), ANY(),

ANY()), EQ ARRIVES(CITY(Atlanta), ANY(), ANY(), ANY(), ANY())),

EQ STOPS(CITY(Pittsburgh)))

F2 AtomicRowPredSet(AtomicRowPred(EQ DEPARTS(CITY(Atlanta), ANY(), ANY(), ANY(),

ANY()), EQ ARRIVES(CITY(Denver), ANY(), ANY(), ANY(), ANY())),

EQ STOPS(CITY(Pittsburgh)))

F2 is same as F1 except that the arrival and departing cities have been interchanged. Clearly,

F1 is a correct translation and F2 is an incorrect translation. However, both have the same

word to terminal mapping. Thus, a correct translation not only has the correct word to terminal

mapping, but also the correct placement of terminals. Our score2 captures only the correctness

of mappings and is blind to the placement of terminals. Therefore, score2 alone cannot be used

to distinguish among the translations having the same word to terminal mappings, which makes

it a weak score.

4.3.3 Component 3: Connections Probability

We have just seen that in addition to having a correct word to terminal mapping, the placement

of terminals is also important to decide whether a candidate translation is correct or not. The

third component captures this notion of placement of terminals.

Definition 12. Connection: For any production p in the grammar G, where p : N → a1a2..ai..aj ..an,

the tuple (p, i, j) is called a connection. For a named production (section 3.1), a1 will be the

terminal T.

CHAPTER 4. MACHINE LEARNING FOR RANKING 24

As discussed in section 3.2.2, translation starts and proceeds by combining different expres-

sions. Any combination of two expressions is an instantiation of a connection in the grammar.

Definition 13. Combination: Given two expressions e1, e2 and a connection C : (p, i, j), if e1

and e2 are used to fill the ith and jth holes of p respectively, then e1 and e2 are said to combine

via C and the combination is expressed as C(e1, e2).

The definitions of connection and combination formally express the notion of the placement

of terminals (note that terminals generate initial expressions, see section 3.2.2). Using the

definition of connection, we can say that the translations F1 and F2 in the previous section are

equal in every respect, except for connections among the following words (strictly speaking, the

connections are among the expressions generated by these words).

leaving, Denver, to, Atlanta

In F1, leaving is connected with Denver and to is connected with Atlanta whereas in F2,

leaving is connected with Atlanta and to is connected with Denver. Clearly, in F2, the connec-

tions are wrong. So, for a translation to be correct, in addition to having the correct word to

terminal mappings, the connections among the terminals must also be correct.

Like in the case of component 2, instead of labelling the connections as correct/incorrect, we

shall compute the probability of a connection being correct and take the product of individual

connections as score3.

Score3(F) =
∏

C∈F
probability(C)

where F is a translation and C is a connection. However, different translations can have different

number of connections and consequently, different number of terms in the above product. In

order to have a common ground for comparison, we take the geometric mean of the above

product as our score3. So, the modified definition for score3 is,

Score3(F) = GeometricMean(
∏

C∈F
probability(C))

Feature Selection for Component 3

The discussion that follows is in the context of an input sentence S, grammar G, dictionary D,

a candidate translation T and a correct translation Tc. Our task is the following.

CHAPTER 4. MACHINE LEARNING FOR RANKING 25

Figure 4.1: A parse tree from Stanford Parser

Given two expressions e1, e2 and a connection C, predict the probability that Tc contains the

combination C(e1, e2).

Now the question is, what features of e1 and e2 can help us learn and predict their connection

probability?

A translation can also be viewed as an expression tree where the leaf nodes are initial ex-

pressions generated from the words in input sentence and any internal node is also an expression

which is the combination of the expressions at its child nodes. In a natural language, it is the

parse structure of a sentence that helps to interpret its meaning. For a translation, it is the

expression tree that helps to interpret the translation. So, expression tree of a translation is

the counterpart of the parse tree of the input sentence S. Therefore, for constructing a correct

expression tree, we can use the properties of the parse tree of S and hence we define most of

the properties for component 3 in terms of the parse tree of S. We use Stanford NLP parser

[13] to obtain the parse tree. An example parse tree is shown in figure 4.1.

First we shall define certain properties [5] of an expression e and then proceed to define our

features. In the following definitions, e represents an expression (rather a sub-expression) in

the translation T . Any reference to subtree means a subtree in the parse tree of S.

Definition 14. Words(e) = set of all the words used in e

CHAPTER 4. MACHINE LEARNING FOR RANKING 26

This is similar to the set SW defined in section 4.3.2. SW is defined for a translation,

whereas Words(e) is defined for any expression e (a translation is also an expression).

Definition 15. a) minSubTree(e) = smallest subtree in parsetree that contains all the words

from Words(e)

b) SubTree(e)

=


minSubTree(e), if minSubTree(e) contains any word ∈ Words(T) - Words(e)

largest subtree containing minSubTree(e) and no word ∈ Words(T) - Words(e)

Definition 16. Window(e) = [start, end], where

start = min {pos | pos = position of w in S, w ∈ Words(e)}

end = max {pos | pos = position of w in S, w ∈ Words(e)}

Definition 17. a) LCA(R1, R2) = Least Common Ancestor of r1 and r2

b) Order(R1, R2) =


1 if R1 lies to the left of R2

−1 otherwise

where R1, R2 are two subtrees and r1, r2 are the respective root nodes

Definition 18. Overlap(e1, e2) =


1 if w1.end < w2.start

−1 if w2.end < w1.start

0 otherwise

where, w1=Window(e1) and w2=Window(e2)

Definition 19. Distance(e1, e2) =


w2.start− w1.end if Overlap(e1, e2)==1

w1.start− w2.end if Overlap(e1, e2)==-1

⊥ otherwise

where, w1=Window(e1) and w2=Window(e2)

The above definitions capture the properties required to define our features. Given two

sub-expressions e1, e2, let

• R1 = SubTree(e1)

• R2 = SubTree(e2)

• r1 = root(R1)

CHAPTER 4. MACHINE LEARNING FOR RANKING 27

• r2 = root(R2)

We define the following 7 features, of which first 5 are parse tree based and the last 2 are

sentence based.

f1 Part of Speech of (r1)

f2 Part of Speech of (r2)

f3 distance(LCA(R1, R2), r1)

f4 distance(LCA(R1, R2), r2)

f5 Order(R1, R2)

f6 Overlap(e1, e2)

f7 Distance(e1, e2)

The idea behind features f1 and f2 is to learn which kind of phrases can combine using a

particular connection. For example, in the ATIS domain, when phrases related to departure and

arrival combine to give a predicate, sometimes departure phrase happens to be a prepositional

phrase (PP) while arrival phrase happens to be a verb phrase (VP). Although this does not

hold always, the idea is that such properties can be learnt using f1 and f2.

Features f3, f4 and f5 are motivated from the fact that we want to maintain the structure

of translation as much similar to the parse tree as possible. The distance and order quantities

can help us do that. However, one must remember that the structure of the translation depends

on the structure of the grammar G and hence one should try to make it as close to the natural

language as possible.

Features f6 and f7 are based on the belief that closely related information often occurs

together in the input sentence.

Computation of Score 3

Given a grammar G, the number of possible connections is fixed. We learn one classifier for

each connection. The task of each of the classifiers is to predict the probability that a correct

CHAPTER 4. MACHINE LEARNING FOR RANKING 28

translation contains the combination of the given two expressions. The algorithms are presented

below.

Data: Sentence S, CandidateTranslations T , CorrectTranslation tc, TrainingData[] D

Result: Training data extracted from S, T and tc
Ccorr ← All combinations in tc;
for each translation t ∈ T do

for each combination comb ∈ t do
Feature Vector ~f ← features of comb w.r.t. S;
occurs← False;
if comb ∈ Ccorr then

occurs← True;
end
D[comb.connection] ← D[comb.connection] ∪ {〈~f, occurs〉};

end
end

Algorithm 6: getTrainingData(Sentence S, CandidateTranslations T , CorrectTranslation tc,
TrainingData[] D)

Data: TrainingSet B, Grammar G

Result: A list of classifiers which can be used to compute Score3

D[G.numConnections];
C[G.numConnections];
for each connection c ∈ G do

D[c]← Φ;
C[c]← null;

end
for each training instance b ∈ B do

getTrainingData(b.Sentence, b.candidateTranslations, b.correctTranslation, D);
end
for each connection c ∈ G do

C[c]← Classifier.T rain(D[c]) ;
end
return C;

Algorithm 7: Train classifiers for Component 3

CHAPTER 4. MACHINE LEARNING FOR RANKING 29

Data: Sentence S, Translation F , Classifier[] C

Result: Score3 of F
score ← 1;
for each combination comb ∈ F do

Feature Vector ~f ← features of comb w.r.t. S;
score ← score * C[comb.connection].predict(~f);

end
return GeometricMean(score);

Algorithm 8: Compute the score 3 of a translation of the given sentence

Weakness of connections probability score

The weakness of Score3 stems from the fact that it is blind to word to terminal mappings. A

translation which uses less number of words, but uses them correctly will have a high value for

Score3, because everything that is used has been connected correctly.

Example: I am looking for a flight leaving Denver traveling to Atlanta with a stop at

Pittsburgh.

Consider the following two translations for the above sentence.

F1 AtomicRowPredSet(AtomicRowPred(EQ DEPARTS(CITY(Denver), ANY(), ANY(), ANY(),

ANY()), EQ ARRIVES(CITY(Atlanta), ANY(), ANY(), ANY(), ANY())),

EQ STOPS(CITY(Pittsburgh)))

F2 AtomicRowPredSet(AtomicRowPred(EQ DEPARTS(CITY(Denver), ANY(), ANY(), ANY(),

ANY()), EQ ARRIVES(CITY(Atlanta), ANY(), ANY(), ANY(), ANY())))

F1 is the correct translation. F2 is also correct, but not complete. However, F2 gets a

higher value for Score3 than F1. Using only Score3, in this case, will rank F2 as better than F1

whereas the combined score ranks F1 at rank 1.

CHAPTER 4. MACHINE LEARNING FOR RANKING 30

4.4 Level 2: Combining Component scores

Once we compute the component scores, the next task is to combine them into a single final

score. A simple way to combine the component scores is to take their sum or product. In either

case, all the component scores get equal weight. But, in reality, all the component scores may

not be equally important. So, a more general combination would be to take a weighted sum.

Final score, s =
k∑

i=1
wi.ci

where ci is the ith component score, wi is the corresponding weight and k is the number of

components (k = 3 in our case). The weights have to be chosen systematically and preferably

in an automated way.

4.4.1 Setup for Combining Component Scores

Our aim is to learn a weight vector for combining component scores. The weight vector is not

any arbitrary vector but should combine the component scores in such a way that, ideally for

any benchmark, the correct translation should get the highest final score. So, we want to find a

weight vector which optimizes some metric. The metric we shall be using is the number of test

benchmarks for which the correct translation is assigned rank 1. Optimization is a very common

machine learning approach and several optimization techniques exist. Almost every technique

requires a loss function (or alternately a gain function) defined whose minimum (alternately

maximum) point corresponds to the optimal point of the underlying metric. Here we want to

learn a weight vector and hence the domain for the loss function is a k−dimensional vector

space, where k is the number of component scores (k = 3 in our case).

Before we can define a loss function, we should understand what does loss mean in our

setting. The task at hand is to rank a set of candidate translations and ideally we wish the

correct translation to be ranked at the top of the ranked list (i.e. to get rank 1). So, we fail

(or lose) if the translation at rank 1 is incorrect. Given a weight vector ~w, let us define the

following quantities for any benchmark S.

scorr = final score of the correct translation for S

swrong = max{final scores of the remaining translations for S}

Let Fc and Fw be the corresponding translations. For Fc to be ranked first, we need

CHAPTER 4. MACHINE LEARNING FOR RANKING 31

scorr > swrong ⇒ scorr
swrong

> 1

Thus, our failure depends on the quantity scorr
swrong

and hence we shall define our loss function

in terms of scorr
swrong

. scorr and swrong themselves are defined in terms of a weight vector ~w. So,

effectively f is a function of the weight vector ~w.

One can notice that the above loss function is concerned with one benchmark only. But for

training, we want a loss function defined for the entire training data. This part is easy. We

define a loss function for each benchmark and the overall loss function for training will be the

sum of the individual loss functions. Therefore, it suffices to characterise the individual loss

function. So, the next question is what characteristics do we want the loss function to exhibit?

As discussed earlier, we fail if scorr
swrong

≤ 1, i.e., we suffer loss if scorr
swrong

≤ 1 and no loss

otherwise.

scorr
swrong

> 1⇒ Loss must be small

scorr
swrong

≤ 1⇒ Loss must be large

Alternately,

swrong

scorr
< 1⇒ Loss must be small

swrong

scorr
≥ 1⇒ Loss must be large

At this point, one can think of many loss functions with the above characteristics. For e.g.,

1.
swrong

scorr

2. − scorr
swrong

3. swrong − scorr

4. (
swrong

scorr
)p, p ∈ {1, 2, 3, ...}

5. e
swrong
scorr and so on

However, there is something more to the nature of the loss function in our setting. Remember

that our overall loss function is the sum of individual loss functions. Suppose that we have a

benchmark S which has scorr
swrong

> 1 and every other benchmark has scorr
swrong

≤ 1. Consider the

following two ways (among others) to decrease the loss.

CHAPTER 4. MACHINE LEARNING FOR RANKING 32

1. Increase the ratio scorr
swrong

of S much beyond 1, with little focus on the remaining benchmarks

2. Increase the ratio scorr
swrong

of other benchmarks to move just beyond 1

Although our aim is to minimise loss, the value of loss is not really our success metric. Our

success metric is the number of benchmarks for which we can rank the correct translation at

rank 1. So, we really never want to follow the first way to minimise loss.

For any benchmark, all that we want is scorr
swrong

> 1. We are not interested in exactly by

how much scorr is greater than swrong, i.e., it does not matter if scorr is 2 times or 20 times

or only 1.1 times larger than swrong. So we want the loss to saturate in the region scorr
swrong

> 1.

This is important because, otherwise optimization process might proceed to minimise loss by

increasing the ratio scorr
swrong

much beyond the value of 1 rather than improving those benchmarks

which have scorr
swrong

< 1. Therefore, another desirable characteristic of the loss function is,

swrong

scorr
<< 1⇒ Gradient should quickly fall to 0

In addition to this, we also want the loss function to saturate for very small values of scorr
swrong

.

To see why, suppose that one benchmark, S, has scorr
swrong

<< 1 and every other benchmark has

scorr
swrong

> 1. If the loss function does not saturate for small values of scorr
swrong

and if gradient due

to S is very large (for e.g. e
swrong
scorr), then it can disturb the status of other benchmarks because

the resultant change in the weight vector ~w can be very large. Moreover, a very small value for

scorr
swrong

might mean that the benchmark S is inherently difficult to rank. For example, if there

is an incorrect translation Fi, which has a higher value for every component score than that of

the correct translation, Fc, then there is no way for Fc to get a higher final score than that of

Fi
4. This situation is possible if there a lot of redundancy in the benchmark text. In any case,

we want the loss to saturate for very small values of scorr
swrong

.

swrong

scorr
>> 1⇒ Gradient should quickly fall to 0

Following is a complete characterisation of the loss function.

4In principle, negative weights can result in Fc being ranked higher than Fi, but in our experiments the weight
vector has always ended up being positive. Also, using negative weights for any of the 3 components contradicts
the definition of the component itself.

CHAPTER 4. MACHINE LEARNING FOR RANKING 33

Figure 4.2: Nature of loss function

swrong

scorr
< 1 ⇒ Loss must be small

swrong

scorr
≥ 1 ⇒ Loss must be large

swrong

scorr
<< 1 ⇒ Gradient should quickly fall to 0

swrong

scorr
>> 1 ⇒ Gradient should quickly fall to 0

A function with these characteristics looks like the plot in figure 4.2. This plot is similar

to a shifted S-curve. So, we can use a shifted form of logistic function as our loss function. In

short, for a benchmark B, we shall use the following as our loss function.

fB(~w) = 1
1+e−c(x−1) , where

x =
swrong(B)
scorr(B) and c is some positive constant

Consequently, the overall loss function will be,

f(~w) =
∑

∀benchmark B

fB(~w)

A careful observation will reveal that the loss function defined this way is not really differen-

tiable. The reason is that max function (which defines swrong) itself is not smooth in our setting.

The incorrect translation with maximum score, i.e. Fw, may not remain constant over the entire

domain and whenever Fw changes, the corresponding change in fB is abrupt, rendering the loss

function non-differentiable at the point of change. However, fB remains differentiable as long as

Fw does not change. In other words, our loss function is continuous and piecewise differentiable.

CHAPTER 4. MACHINE LEARNING FOR RANKING 34

But almost every optimization technique requires a smooth loss function. Nevertheless, we tried

using our loss function by using an adhoc modification. At the points of non-differentiability,

we define the gradient to be one of the gradients in its neighborhood (the choice is made arbi-

trarily). Surprisingly, the optimization worked remarkably well and that too across domains.

We shall discuss more about this in the results section.

We propose to use gradient descent technique for choosing the weights.

4.4.2 Gradient Descent

Gradient Descent is a very simple and well known machine learning technique that is used to

optimize a given function. It is an iterative technique. Given a smooth multivariate function f

and a starting point ~x0, the update rule is the following.

~xn+1 = ~xn − γ ~5f(~xn) n = 0, 1, 2, ..

where ~5 denotes the gradient and γ is a positive constant. At each step, ~x moves in the opposite

direction of the gradient, i.e. in the direction in which the value of f decreases. The process is

stopped when the change in the function value in successive steps is not significant, i.e.,

|f(~xn+1)− f(~xn)| ≤ ε

where ε is a small positive constant. The function f is referred to as loss function. Effectively,

gradient descent attempts to reach a minimum value of the loss function.

4.5 Summary

In this chapter, we proposed to follow a two level approach for ranking. We defined 3 component

scores which are computed at level 1. In level 2, we discussed how the problem of combining

the component scores can be cast as an optimization problem. We analysed the nature of loss

function which suits our needs and finally decided to use a shifted form of logistic function as

the loss function. Once training is completed at both the levels, the system will be ready for

translating a given sentence. The next chapter discusses the experiments we performed and

their results.

Chapter 5

Experiments and Results

5.1 Experimental Setup

5.1.1 Machine Learning

In the implementation of the first level of our approach, we used NaiveBayes classifier for learning

the components 2 and 3. We used MATLAB implementation of the NaiveBayes classifier for

our experiments.

5.1.2 Benchmarks

We chose the following 3 domains for evaluating our system.

1. ATIS - Queries regarding flight details

2. Automata - Undergraduate level problems on finite state automata

3. Text Editing - Tasks like insertion, deletion, replacement etc. in text files

A large number of benchmarks have been collected for each domain and candidate translations

for each benchmarks have been generated. Benchmarks for all the domains were collected

through various means which are described in [7].

5.1.3 Ranking Scheme

Recall that the input to our system is a set of candidate translations for a benchmark and the

output is a ranked list of these translations. The ranking is done based on the final scores

35

CHAPTER 5. EXPERIMENTS AND RESULTS 36

(defined in section 4.4) of the candidate translations. Several ranking schemes exist and we

use two different ranking schemes.

1. 1334 ranking

2. 1224 ranking

1334 ranking

Suppose there are 4 candidate translations T1, T2, T3 and T4, whose final scores are 2, 9, 15 and

9 respectively. As per 1334 ranking, T3 gets rank 1, T2 and T4 each gets rank 3 and T1 gets

rank 4. In general, under this ranking scheme, if a translation T , with final score f , gets rank

r, then there are exactly r translations, including T , with final score greater than or equal to f .

1224 ranking

Under this ranking scheme, T3 gets rank 1, T2 and T4 each gets rank 2 and T1 gets rank 4. In

general, under this ranking scheme, if a translation T , with final score f , gets rank r, then there

are exactly r − 1 translations with final score strictly greater than f .

Each ranking scheme helps to evaluate certain specific aspects of our system. To see what

these aspects are, imagine our system as providing the user with a series of translations, one

at a time. Our system first suggests its most confident translation and waits for the userś

response. If it is rejected, our system then suggests the next most confident translation and

the process continues until either the user accepts a translation or the candidate translations

get exhausted. Therefore, the success of our system depends on the number of rejections faced

before suggesting a correct translation and consequently on the rank of the correct translation.

If every candidate translation has a unique final score, then the ranking is unambiguous.

But, in reality, this may not always be the case. Among the translations with same final score,

the order of their suggestion is not clear. However, the maximum and minimum number of

rejections is well defined. The maximum number of rejections corresponds to the worst case

whereas the minimum number corresponds to the best case. It is easy to notice that 1334 ranking

helps to compute the worst case number of rejections and 1224 ranking helps to compute the

best case number of rejections.

CHAPTER 5. EXPERIMENTS AND RESULTS 37

Total
Domain benchmarks Top % of top Top 3 % of top 3

ATIS 535 473 88.41 499 93.27

Automata 245 208 84.89 223 91.02

Text editing 492 405 82.31 467 94.91

Table 5.1: Overall Performance

We mostly talk about the worst case scenario in our experiments and hence unless otherwise

stated, the ranking scheme remains 1334, by default.

5.1.4 Cross Validation

We do a 10 fold cross validation using a random permutation of the benchmarks. The training

and test sets are disjoint in all the experiments.

Following sections describe the overall performance of our system, experimental demonstra-

tion of our theory (described in chapter 4) and also the effectiveness and generality of our

approach. Our major metric for evaluation is the number of benchmarks for which the correct

translation gets placed at the top of the ranked list (i.e., rank = 1). In addition to this, we also

present the number of benchmarks for which the correct translation gets placed in top 3 (i.e.,

rank ≤ 3).

5.2 Overall Result

Statistics of overall performance of our system have been presented in table 5.1. The results

show that the performance of our system is more or less uniform across domains and the

uniformity is more pronounced in top 3 ranks, with maximum difference being less than 4%.

State-of-the-art results for ATIS domain have been reported as 85%[19], 84%[14] and 83%[9].

However, these results are over a set of more than 5000 benchmarks as opposed to 535 in our

case. But, we do believe that our approach will work well on the larger set as well, the only

hurdle is to go through a large number of benchmarks, expand the grammar and dictionary files

and prepare the training data. Since the datasets for Automata and Text Editing domains have

been collected by us, there is no state-of-the-art work to compare the results in these domains.

CHAPTER 5. EXPERIMENTS AND RESULTS 38

Total 1334 ranking 1224 ranking
Domain benchmarks Top % of top Top % of top

ATIS 535 30 5.60 487 91.02

Automata 245 44 17.95 214 87.34

Text editing 492 40 8.13 425 86.38

Using only Component 1 (Fraction of Used Words)

Total 1334 ranking 1224 ranking
Domain benchmarks Top % of top Top % of top

ATIS 535 10 1.86 287 53.64

Automata 245 76 31.02 130 53.06

Text editing 492 44 8.94 303 61.58

Using only Component 2 (Word to Terminal probability)

Total 1334 ranking 1224 ranking
Domain benchmarks Top % of top Top % of top

ATIS 535 108 20.18 109 20.37

Automata 245 126 51.42 131 53.46

Text editing 492 169 34.34 172 34.95

Using only Component 3 (Connections probability)

Table 5.2: Weakness V/s Goodness of Component Scores: Top ranks

However, the authors of [10] report a success rate of 73% for keyword programming in web

domain and the authors of [11] report a success rate of 59% for keyword programming in Java.

5.3 Strength of the component scores

In section 4.3, we defined various component scores and also gave arguments as to why each

of these is a good score but a weak one. We conducted experiments to verify our arguments.

In these experiments, we evaluated our metrics by using only individual component scores. We

present the results using both the ranking schemes. 1334 ranking helps to project the weakness

of a component, whereas 1224 ranking helps to project the goodness of a component. Weakness

refers to several translations having same value for a component score, while goodness refers to

the correct translation having a high value for a component score. The results are presented in

tables 5.2 and 5.3.

First let us look at the results of 1334 ranking. For the number of top ranked benchmarks,

the best performance using only component 1 is 17.95%, that of component 2 is 31.02% and

CHAPTER 5. EXPERIMENTS AND RESULTS 39

Total 1334 ranking 1224 ranking
Domain benchmarks Top 3 % of top 3 Top 3 % of top 3

ATIS 535 153 28.59 496 92.71

Automata 245 129 52.65 218 88.97

Text editing 492 220 44.71 454 92.27

Using only Component 1 (Fraction of Used Words)

Total 1334 ranking 1224 ranking
Domain benchmarks Top 3 % of top 3 Top 3 % of top 3

ATIS 535 149 27.85 321 60.00

Automata 245 129 52.65 164 66.93

Text editing 492 214 43.49 353 71.74

Using only Component 2 (Word to Terminal probability)

Total 1334 ranking 1224 ranking
Domain benchmarks Top 3 % of top 3 Top 3 % of top 3

ATIS 535 267 49.90 267 49.90

Automata 245 205 83.67 208 84.89

Text editing 492 301 61.17 311 63.21

Using only Component 3 (Connections probability)

Table 5.3: Weakness V/s Goodness of Component Scores: Top 3 ranks

CHAPTER 5. EXPERIMENTS AND RESULTS 40

that of component 3 is 51.42% all for Automata domain, whereas their combination resulted in

a performance of 84.89% for the same domain (the best being 88.41% for ATIS). Similar results

hold for top 3 benchmarks also. These show that our component scores are indeed very weak

and hence cannot be used as final scores.

1224 ranking, on the other hand, projects a different nature of the component scores. For

e.g., for component 1, the performance is as good as the one we got by combining the scores

(table 5.1) and in fact slightly better. This shows that the correct translation indeed has a

high value for this component, indicating that this is a good score for ranking. However, this

alone is not powerful enough to distinguish the correct translation from the incorrect ones.

Similar result holds for component 2 also. The performance of component 3, on the other hand,

is practically same in both the ranking schemes. However, from 1334 ranking, it is clear that

component 3 is the strongest of all the components (though far weaker than the combined score).

We have just seen that our component scores are too weak to be used as final scores, but

when combined, produce a very strong final score. The next question is, how significant is the

contribution of each component score to the final score? Is it worth, the effort of computing

a particular component score? In other words, can we drop a component score and still get

comparable results? To this end, we evaluated our metrics after dropping one component at a

time and the results are presented in table 5.4.

Dropping component 3 resulted in a huge decrease in the performance, as high as 81.86%

in the worst case. Even in the best case, the decrease is still very large (47.75%). Dropping

component 1 also resulted in heavy degradation of the performance, although not as high as

that in dropping component 3. These show that components 1 and 3 (fraction of used words

and connections probability respectively) are highly significant contributors to the final score.

Component 2, on the other hand, seems not so heavily contributing to the final score as

the maximum drop in performance is only 4.67%. However, one must note that component 2

when combined with component 1 (or 3) resulted in much better performance than their in-

dividual performances. For example using only component 3 resulted in 108, 126 and 169 top

ranked benchmarks in each of the domains (table 5.2), whereas, using component 3 along with

component 2 resulted in 309, 153 and 308 top ranked benchmarks respectively (5.4). Thus,

CHAPTER 5. EXPERIMENTS AND RESULTS 41

Drop
All Component 1 Component 2 Component 3

Domain Total comp. Top % change Top % change Top % change

ATIS 535 473 309 -30.65 448 -4.67 35 -81.86

Automata 245 208 153 -22.44 203 -2.04 91 -47.75

Text Editing 492 405 308 -19.71 382 -4.67 81 -65.85

Top ranks

Drop
All Component 1 Component 2 Component 3

Domain Total comp. Top % change Top % change Top % change

ATIS 535 499 420 -14.76 492 -1.3 223 -51.58

Automata 245 223 202 -8.57 224 0.4 147 -31.02

Text Editing 492 467 396 -14.43 464 -0.6 287 -36.58

Top 3 ranks

Table 5.4: Significance of Component Scores

any combination of the components results in much better performance than their individual

performances.

On the whole, these experiments show that our two level approach is very effective and

works as intended.

5.4 Behavior of loss function

In order to optimise our success metric, we analysed the nature of loss function required in

our setting, considered different loss functions and finally chose a shifted variant of logistic

function as our loss function. Section 4.4.1 describes this analysis in detail. In this section we

demonstrate the practical behavior of our loss function.

Figure 5.1 shows how the value of loss changes with iteration index and the corresponding

number of top ranked benchmarks. It can be seen that whenever loss decreases, the number of

top ranked benchmarks increases and vice-a-versa. Clearly, the number of top ranked bench-

marks and the loss are negatively correlated which is what is required in an ideal setting for

optimization.

CHAPTER 5. EXPERIMENTS AND RESULTS 42

(a) Loss V/s Iterations (b) # of top ranked benchmarks V/s Iterations

Figure 5.1: Loss Function in action

Total Equal Using
Domain benchmarks weightage gradient descent % change

ATIS 535 392 473 15.14

Automata 245 182 208 10.61

Text Editing 492 364 405 8.33

Top ranks

Total Equal Using
Domain benchmarks weightage gradient descent % change

ATIS 535 486 499 2.42

Automata 245 224 223 -0.40

Text Editing 492 448 467 3.86

Top 3 ranks

Table 5.5: Effect of gradient descent

5.4.1 Effect of Gradient Descent

We used gradient descent to learn a weight vector which is then used to combine the component

scores. In this section we present the results of experiments conducted to see whether the use

of gradient descent resulted in significant enhancement of results over using equal weightage to

all the components. Table 5.5 shows the results.

From the results it is clear that using gradient descent has improved the number of top ranked

benchmarks significantly (as large as 15%). However the number of top 3 ranked benchmarks

did not improve much. Clearly, learning the weight vector has improved the quality of ranking

because several benchmarks which were previously (i.e. using equal weightage) ranked at 2 or

CHAPTER 5. EXPERIMENTS AND RESULTS 43

3 (or perhaps even lower) have now (i.e. after gradient descent) moved to rank 1.

As mentioned at the end of 4.4.1, our loss function is non-differentiable. Still, practically it

worked very well. From figure 5.1, it can also be noticed that as the gradient descent proceeds,

the value of loss decreases and the number of top ranked benchmarks increases, i.e. showing

that gradient descent is leading the function in appropriate direction.

5.5 Generality of our learning

By the term generality of learning we mean how well do the models learnt for one domain apply

for other domains. This is important because if the models are applicable across domains, then

the time and effort required for the learning in new domains can be avoided. Moreover, the

models learnt for the existing domains can serve as starting points and also as baselines for

comparing the performance in new domains.

We have seen that there are two levels of learning (section 4.1) in our approach. Level 1

involves computing component scores whereas level 2 involves combining them. Let us consider

these levels one after the other.

Generality of Level 1

Level 1 computes 3 component scores. Component 1 is fraction of used words and its computa-

tion does not involve any learning. Computing components 2 (word to terminal probability) and

3 (connections probability) involves learning. However, this learning is heavily domain specific

because the features themselves depend on the grammar G and dictionary D. Consequently, the

question of applicability of learning across domains does not make sense as different domains

have completely different and unrelated grammars and dictionaries.

Generality of Level 2

Level 2 involves learning a weight vector for combining the component scores and is domain

independent. So, here the question of generality is applicable and translates to can the weight

vector learnt for one domain be used for other domains while getting comparable performances

in all the domains. We performed experiments to answer this question and the results are pre-

sented in table 5.6.

CHAPTER 5. EXPERIMENTS AND RESULTS 44

Using weights learnt for
ATIS Automata Text Editing

Best % % %
Domain Total result Top change Top change Top change

ATIS 535 473 473 0.00 465 -1.49 446 -5.04

Automata 245 208 203 -2.04 208 0.00 205 -1.22

Text Editing 492 405 402 -0.60 401 -0.81 405 0.00

Top Ranks

Using weights learnt for
ATIS Automata Text Editing

Best % % %
Domain Total result Top change Top change Top change

ATIS 535 499 499 0.00 498 -0.18 497 -0.37

Automata 245 223 222 -0.40 223 0.00 224 0.40

Text Editing 492 467 465 -0.40 468 0.20 467 0.00

Top 3 Ranks

Table 5.6: Generality of learning

The results show that the weight vector learnt for one domain performs remarkably well

with other domains as well. The average decrease in the number of top ranked benchmarks is

only 1.87% (maximum decrease being 5.04%). As for the number of top 3 ranked benchmarks,

the change is practically insignificant (maximum decrease is less than 0.5%). From this, we can

say that the learning performed at level 2 for one domain can be successfully employed for new

domains.

Chapter 6

Conclusion and Future Work

We addressed the problem of efficiently choosing the correct translation of an English sentence

from among a set of candidate translations by proposing a two level approach. We defined 3

component scores of a translation, which help to quantify the possibility of its correctness. We

proposed a novel loss function for learning the combination function for the component scores.

We experimented on 3 different domains and the results showed that our approach works really

well across the domains. We also tried to validate our features and the results showed that 2 of

the 3 component scores are extremely crucial for extracting a correct translation. We showed

through experiments that the loss function we defined indeed captures the trend in ranking.

Experiments also showed that the gradient descent technique we used, helped in enhancing the

results very significantly and more importantly, the learning from one domain can be carried

over to other domains.

Experiments show that component 2 (word to terminal probability) is not a very significant

contributor to the ranking. We believe that the component in itself is a crucial one, but the

way we are learning it is not effective. More specifically, the features are not powerful enough

to learn the actual essence of component 2. Investigation into what features would help better

learning of component 2 would be an interesting avenue for further work.

Also, we have seen that the loss function we defined is non-differentiable, but still works

remarkably well with gradient descent. Future work can focus on designing differentiable func-

tions which approximate our loss function. This may cause further improvement in performance

because of the better interplay of the underlying theories.

45

CHAPTER 6. CONCLUSION AND FUTURE WORK 46

Another interesting avenue for further work is to validate the features of component 3. We

proposed a total of 7 features to learn component 3. Validating experiments can be done on the

lines of our experiments on the strength of the component scores. By dropping one feature at

a time and also using only one feature at a time, one can experimentally find the contribution

of each of the features. This can provide more and new insights into the characteristics of the

candidate translations in particular and natural language translation in general.

Bibliography

[1] Khan Academy. https://www.khanacademy.org/.

[2] Bruce W. Ballard and Alan W. Biermann. Programming in natural language: Nlc as a

prototype. In Proceedings of the 1979 annual conference, ACM ’79, pages 228–237, New

York, NY, USA, 1979. ACM.

[3] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and

Greg Hullender. Learning to rank using gradient descent. In Proceedings of the 22nd

international conference on Machine learning, ICML ’05, pages 89–96, New York, NY,

USA, 2005. ACM.

[4] ClearTrip. http://www.cleartrip.com/.

[5] Aditya Desai. Translating Natural Language to Formulas using Machine Learning. B.Tech

Project Report. He is a co-member of this project, 2013.

[6] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boosting

algorithm for combining preferences. J. Mach. Learn. Res., 4:933–969, December 2003.

[7] Nidhi Jain. A Generic Framework for Translating Natural Language Descriptions into

Domain-Specific Logical Expressions. M.Tech Project Report. She is a co-member of this

project, May 2013.

[8] Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings

of the eighth ACM SIGKDD international conference on Knowledge discovery and data

mining, KDD ’02, pages 133–142, New York, NY, USA, 2002. ACM.

[9] Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman. Lexical

generalization in ccg grammar induction for semantic parsing. In Proceedings of the Confer-

47

 https://www.khanacademy.org/
 http://www.cleartrip.com/

BIBLIOGRAPHY 48

ence on Empirical Methods in Natural Language Processing, EMNLP ’11, pages 1512–1523,

Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.

[10] Greg Little and Robert C. Miller. Translating keyword commands into executable code. In

Proceedings of the 19th annual ACM symposium on User interface software and technology,

UIST ’06, pages 135–144, New York, NY, USA, 2006. ACM.

[11] Greg Little and Robert C. Miller. Keyword programming in java. In Proceedings of the

twenty-second IEEE/ACM international conference on Automated software engineering,

ASE ’07, pages 84–93, New York, NY, USA, 2007. ACM.

[12] MakeMyTrip. http://www.makemytrip.com/.

[13] Stanford NLP Parser. http://nlp.stanford.edu:8080/corenlp/.

[14] Hoifung Poon. Grounded unsupervised semantic parsing. In ACL. 2013.

[15] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. Towards a theory of natural language

interfaces to databases. In Proceedings of the 8th international conference on Intelligent

user interfaces, IUI ’03, pages 149–157, New York, NY, USA, 2003. ACM.

[16] David Price, Ellen Rilofff, Joseph Zachary, and Brandon Harvey. Naturaljava: a natural

language interface for programming in java. In Proceedings of the 5th international con-

ference on Intelligent user interfaces, IUI ’00, pages 207–211, New York, NY, USA, 2000.

ACM.

[17] Jean E. Sammet. The use of english as a programming language. Commun. ACM, 9(3):228–

230, March 1966.

[18] Yatra. http://www.yatra.com/.

[19] Luke S. Zettlemoyer and Michael Collins. Online learning of relaxed ccg grammars for

parsing to logical form. In In Proceedings of the 2007 Joint Conference on Empirical

Methods in Natural Language Processing and Computational Natural Language Learning

(EMNLP-CoNLL-2007, pages 678–687, 2007.

 http://www.makemytrip.com/
 http://nlp.stanford.edu:8080/corenlp/
 http://www.yatra.com/

	Introduction
	Applications of Natural Language Translation Systems
	Querying Systems
	Intelligent Tutoring Systems
	Program Synthesis

	Our Work

	Existing Work and Contributions of Our Work
	Existing Work
	Our Contributions

	Framework and Problem Statement
	Input
	Translation Process
	Step 1: Generation of initial expressions
	Step 2: Combination of expressions
	Step 3: Extracting a correct Translation

	Problem Statement: Ranking a set of translations

	Machine Learning for Ranking
	Two levels of Machine Learning
	Significance of two level approach
	Level 1: Computing Component Scores
	Component 1: Fraction of Used words
	Component 2: Word to Terminal Probability
	Component 3: Connections Probability

	Level 2: Combining Component scores
	Setup for Combining Component Scores
	Gradient Descent

	Summary

	Experiments and Results
	Experimental Setup
	Machine Learning
	Benchmarks
	Ranking Scheme
	Cross Validation

	Overall Result
	Strength of the component scores
	Behavior of loss function
	Effect of Gradient Descent

	Generality of our learning

	Conclusion and Future Work

