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Abstract

Shape Analysis refers to a class of techniques used to analyze heap data structures.

Several algorithms have been proposed in literature about shape analysis. These algo-

rithms differ in the trade off they have between speed and accuracy.

In this thesis we have implemented and proposed enhancements for a field sensitive

shape analysis approach. These enhancements involve modification of data flow values,

and intelligent way of storing the same which makes the analysis more precise and mem-

ory efficient. This work also proposes an analysis namely Subset Based Analysis which

infers more precise shapes depending upon which field pointers are actually accessed in

a function. To handle functions we have developed a new method for interprocedural

analysis called Shape Sensitive Analysis. This is a middle way between Context Sensitive

and Context Insensitive Interprocedural Analysis. We have implemented this analysis as

a plugin for gcc 4.5.0 and the results for the same are presented.
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Chapter 1

Introduction

1.1 Brief Introduction

Shape Analysis is a static analysis technique which works on the heap to find the possible

shape of the heap allocated objects. This is useful in many areas like garbage collection,

parallelization, compile time optimization, instruction scheduling etc.

In this report we discuss in detail the effectiveness of the work of Sandeep [DK12]

about field sensitive shape analysis. [DK12] shows its preciseness using few typical ex-

amples, but lacks deep evaluation of the approach in order to check its scalability and

preciseness on large practical benchmark programs. The present work suggests several

enhancements over [DK12], involving modifications of the data flow values and intelli-

gent ways of storing the same, which makes the analysis more precise and memory effi-

cient. This work also involves implementing the interprocedural version of the analysis

as a dynamic plugin on GCC and deep evaluation of the same using large benchmarks.

This work also proposes a refined version of analysis namely subset-based field sen-

sitive analysis (refer Chapter 4) which infers more precise shapes depending upon which

field pointers are actually accessed in a function.

The interprocedural analysis is provided with two flavors: context sensitive and con-

text insensitive; a trade-off analysis on which of these techniques would be good for this

shape analysis technique is described. Also a new method of merging contexts at function

calls is proposed whose complexity lies middle way between the above two, namely shape

sensitive interprocedural analysis, which uses the shape information of the arguments of

function to decide which context to merge with.

1.2 Organization Of Thesis

We discuss some of the prior works on shape analysis in Chapter 2. Chapter 3 dis-

cusses all the enhancements suggested to [DK12]. The Subset-based analysis is detailed

in Chapter 4. Chapter 5 elaborates on the Interprocedural analysis along with its pro-

1



CHAPTER 1. INTRODUCTION 2

posed flavours. Implementation details along with detailed evaluation using benchmark

programs are given in Chapter 6. We conclude the presentation in Chapter 7 and give

directions for future work.



Chapter 2

Background

2.1 Related Work

It was for functional languages that first shape analysis was looked at. Jones and Much-

nick [JM79] suggested a method for finding shape of unbounded data objects in LISP like

languages using regular tree grammars. They associate with each program point a set of

shape graphs and to handle termination of analysis they use k-limiting approach. So they

treat all nodes whose distance is more than k from root as a single summarized node. Due

to its large consumption of space and time the analysis is not practical.

Chase et al. [CWZ90] has used the concept of heap reference counts. They associate

each node with a reference count and then try to find that part of the heap where all nodes

have reference count as one, such portions are said to be a tree or list. They have tried

to tackle the problems with k-limiting to some extent, however their work fails obtaining

accurate results for recursive data structures.

Sagiv et al. [SRW99], [SRW02] have presented a family of abstract interpretation al-

gorithms based on three-valued logic. They use abstraction, a method for summarizing

node and to handle destructive updates they have come up with re-materialization which

refers to the process of splitting summary nodes. An exponential number of shape nodes

may arise because of abstract interpretation, so its not suitable for practical purposes. Sa-

giv and Noam [RS01] have also looked into inter procedural shape analysis for recursive

programs but they work only on linked lists.

The main idea of Brian et al. [HR05] is to decompose heap abstractions and inde-

pendently analyze different parts of the heap. They also decompose memory abstraction

horizontally and vertically. Now for the local work to propagate globally they proposed

and used a context sensitive inter procedural shape analysis algorithm.

A dynamic shape analysis technique was proposed by Jump et al. [JM09]. They

compute a class field summary graph that summarizes the dynamic object graph. This

summary graph also records the in-degree and out-degree of each object which are the

recursive degree metrics. In their analysis they keep track of those node which are of

3
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fixed degree and also those whose degree is in a particular range. Since running the anal-

ysis after each pointer statement is very costly they do it by piggybacking with garbage

collection.

Susan et al. [HRS95] have a polynomial worst case method for inter procedural anal-

ysis provided its a demand data flow analysis. It will determine whether a single given

data flow value holds at some give point. But the class of problems it can handle was

limited. Alexy [GBC06] represent heap portions independently by using the notions of

abstraction and separation logic. Their representation helps to easily separate the portion

which is reachable and which is not from a procedure. Its limitation is that it supports

only linked lists, doubly linked lists and trees.

Ghiya et al. [GH96] estimates the shapes of heap structures pointed to by pointers as a

Tree, Dag or Cycle. They use Direction, Interference matrices and shape attributes as their

data flow values which gets generated and killed after each pointer statements. As this

is very closely related to our work, we have given a detailed view of it in the Appendix

section.

Marron et al. [MKSH06] uses a graph based heap model with objects being vertices

and pointers being the labeled edges. A node is considered as a set of cells and each node

is associated with a layout saying Singleton, List, Tree, Multipath or Cycle. These layouts

honors the order Singleton < List < Tree < Multipath < Cycle. This means that suppose

a node is of layout Tree then it may have properties of Singleton, List or Tree. They

have methods by which summarized nodes are split to concrete nodes (and edges) but

its only for for the most common cases encountered, this enables them to handle strong

updates. Then they have proposed a context sensitive analysis [MHKS08] for the same

graph based heap models. For this they have come up with operations project/extend.

project removes that part of heap which is unaffected by a called procedure and extend

rejoins the unreachable portion back after return.

The work of Sandeep et al. [Das11], which is extended in the present paper, is ex-

plained in detail in the following section for a better understanding of the basis of this

work.

2.2 Analysis of Sandeep et. al. [Das11]1

Most of the definitions and technical terms used in this section are borrowed from the

aforementioned paper. As we will be using these details so throughout the report we have

mentioned this as a separate section in our report. They have presented a shape analysis

technique that uses limited field sensitivity to infer the shape. As this technique is able to

handle destructive updates, so precise shape information can be obtained. They generated

data flow values in the form of field sensitive matrices and boolean equations at each

1The contents of this section are borrowed from [Das11]
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S1. q = p;

S2. while(...) {
S3. q→g = s;

S4. q = q→f;

S5. }
p . . . q

f f f f

s

g

h
g g

(a) A code fragment (b) A possible heap graph for code in (a). Solid edges are

the direct paths, dotted edges are the indirect paths.

Figure 2.1: Paths in a heap graph

program point to obtain the shape information.

2.2.1 Definitions And Notations

At a particular program point, the heap structure is viewed as a directed graph, the nodes

of which represent the allocated objects and the edges represent the connectivity through

pointer fields. Pictorially, inside a node all the relevant pointer variables are shown that

can point to the heap object corresponding to that node. The edges are labeled by the

name of the corresponding pointer field.

Let H denotes the set of all heap directed pointers at a particular program point and F

denotes the set of all pointer fields at that program point. Given two heap-directed pointers

p, q ∈ H , a path from p to q is the sequence of pointer fields that need to be traversed in

the heap to reach from p to q. The length of a path is defined as the number of pointer

fields in the path. As the path length between two heap objects may be unbounded, only

the first field of a path is stored. To distinguish between a path of length one (direct

path) from a path of length greater than one (indirect path) that start at the same field, the

superscript D for a direct path and I for an indirect path are used. In pictures, solid edges

are used for direct paths, and dotted edges for indirect paths.

It is also possible to have multiple paths between two pointers starting at a given field

f , with at most one direct path f D. However, the number of indirect paths f I may be

unbounded. As there can only be a finite number of first fields, first fields of paths are

stored, including the count for the indirect paths, between two pointer variables in a set.

To bound the size of the set, a limit k is put on number of repetitions of a particular field.

If the number goes beyond k, the number of paths with that field is treated as ∞.

Example 1. Figure 2.1(a) shows a code fragment and Fig. 2.1(b) shows a possible heap

graph at a program point after line S5. In any execution, there is one path between p and

q, starting with field f , whose length is statically unknown. This information is stored

by as the set { f I1}. Further, there are unbounded number of paths between p and s, all

starting with field f . There is also a direct path from p to s using field g, and 3 paths

starting with field h between p and s. Assuming the limit k ≥ 3, this information can be

represented by the set {gD, f I∞,hI3}. On the other hand, if k < 3, then the set would be

{gD, f I∞,hI∞}.
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For brevity, f ∗ is used for the cases when it is irrelevant to distinguish between direct

or indirect path starting at the first field f . Next field sensitive matrices are defined.

Definition 1. Field sensitive Direction matrix DF is a matrix that stores information about

paths between two pointer variables. Given p,q ∈ H , f ∈ F :

ε ∈ DF [p, p] where ε denotes the empty path.

f D ∈ DF [p,q] if there is a direct path f from p to q.

f Im ∈ DF [p,q] if there are m indirect paths starting with field f from p to q

and m ≤ k.

f I∞ ∈ DF [p,q] if there are m indirect paths starting with field f from p to q

and m > k.

Let N denote the set of natural numbers. The following partial order are defined for

approximate paths used by the analysis. For f ∈ F , m,n ∈ N , n ≤ m:

ε ⊑ ε, f D ⊑ f D, f I∞ ⊑ f I∞, f Im ⊑ f I∞, f In ⊑ f Im .

The partial order is extended to set of paths SP1
,SP2

as2:

SP1
⊑ SP2

⇔ ∀α ∈ SP1
,∃β ∈ SP2

s.t.α ⊑ β .

For pair of paths:

(α,β)⊑ (α′,β′)⇔ (α ⊑ α′)∧ (β ⊑ β′)

For set of pairs of paths RP1
,RP2

:

RP1
⊑ RP2

⇔∀(α,β) ∈ RP1
,∃(α′,β′) ∈ RP2

s.t.(α,β)⊑ (α′,β′)

Two pointers p,q ∈ H are said to interfere if there exists s ∈ H such that both p and

q have paths reaching s. Note that s could be p (or q) itself, in which case the path from p

(from q) is ε.

Definition 2. Field sensitive Interference matrix IF between two pointers captures the

ways in which these pointers are interfering. For p,q,s ∈ H , p 6= q, the following relation

holds for DF and IF :

DF [p,s]×DF [q,s] ⊑ IF [p,q] .

The analysis computes over-approximations for the matrices DF and IF at each pro-

2Note that for the analysis, for a given field f , these sets contain at most one entry of type f D and at

most one entry of type f I
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q

p

r

s

f1

f3

f5

f2

f4

DF p q s r

p {ε} { f D
1 } { f I1

1 , f I1
2 } { f I2

1 , f I1
2 }

q /0 {ε} { f D
3 } { f I1

3 , f I1
4 }

s /0 /0 {ε} { f D
5 }

r /0 /0 /0 {ε}

(a) Heap graph (b) Direction Matrix

IF p q s r

p {ε,ε} {( f D
1 ,ε), {( f I1

1 ,ε), {( f I2
1 ,ε),

( f I1
2 , f D

3 ), ( f I1
2 ,ε), ( f I1

2 ,ε)}

( f I1
2 , f I1

4 )} ( f I1
1 , f D

5 )}

q {(ε, f D
1 ), {ε,ε} {( f D

3 ,ε), {( f I1
3 ,ε),

( f D
3 , f I1

2 ), ( f I1
4 , f D

5 )} ( f I1
4 ,ε)}

( f I1
4 , f I1

2 )}

s {(ε, f I1
1 ), {(ε, f D

3 ), {ε,ε} {( f D
5 ,ε)}

(ε, f I1
2 )} ( f D

5 , f I1
4 )}

( f D
5 , f I1

1 )}

r {(ε, f I2
1 ), {(ε, f I1

3 ), {(ε, f D
5 )} {ε,ε}

(ε, f I1
2 )} (ε, f I1

4 )}

(c) Interference Matrix

Figure 2.2: A heap graph and its field sensitive path matrices

gram point. While it is possible to compute only DF and use above equation to compute

IF , computing both explicitly results in better approximations for IF . Note that interfer-

ence relation is symmetric, i.e.,

(α,β) ∈ IF [p,q]⇔ (β,α) ∈ IF [q, p] .

While describing the analysis, the above relation is used to show the computation of only

one of the two entries.

Example 2. Figure 2.2 shows a heap graph and the corresponding field sensitive matrices

as computed by the analysis.

As mentioned earlier, for each variable p ∈ H , the analysis uses attributes pDag and

pCycle to store boolean functions telling whether p can reach a DAG or cycle respectively

in the heap. The boolean functions consist of the values from matrices DF , IF , and the

field connectivity information. For f ∈ F , p,q ∈ H , field connectivity is captured by

boolean variables of the form fpq, which is true when f field of p points directly to q. The

shape of p, p.shape, can be obtained by evaluating the functions for the attributes pCycle

and pDag, and using Table 2.1.

The following operations are used in the analysis. Let S denote the set of approximate

paths between two nodes, P denote a set of pair of paths, and k ∈ N denotes the limit on

maximum indirect paths stored for a given field. Then,
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Table 2.1: Determining shape from boolean attributes

pCycle pDag p.shape

True Don’t Care Cycle

False True DAG

False False Tree

• Projection: For f ∈ F , S ⊲f extracts the paths starting at field f .

S ⊲f ≡ S∩{ f D, f I1, . . . , f Ik, f I∞} .

• Counting: The count on the number of paths is defined as :

|ε|= 1, | f D|= 1, | f I∞|= ∞, | f I j|= j for j ∈ N

|S| = ∑
α∈S

|α|

Also,

|(α, f Im)| =











m if α ∈ { f D,ε}

m∗n if α = f In

∞ if α = f I∞

|( f Im,β)| =











m if β ∈ { f D,ε}

m∗n if β = f In

∞ if β = f I∞

|(α,β)| = 1 if α,β ∈ { f D,ε}

|( f I∞,β)| = ∞ where β ∈ { f D,ε, f I∞}

|(α, f I∞)| = ∞ where α ∈ { f D,ε, f I∞}

|P| = ∑
(α,β)∈P

|(α,β)|

• Path removal, intersection and union over set of approximate paths : For singleton

sets of paths {α} and {β}, path removal ({α}⊖{β}), intersection ({α}∩{β}) and

union({α}∪ {β}) operations are defined as given in Table 2.2. These definitions

can be extended to set of paths in a natural way. For example, for general sets of

paths, S1 and S2, the definition of removal can be extended as:

S1 ⊖S2 =
⋂

β∈S2

(
⋃

α∈S1

{α}⊖{β})
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Table 2.2: Path removal, intersection and union operations, where γ denotes any other

path.

(a) Path removal (b) Intersection

⊖ {β} {ε} { f D} { f I j} { f I∞} {γ}

{α}

{ε} /0 {ε} {ε} {ε} {ε}

{ f D} { f D} /0 { f D} { f D} { f D}

{ f Ii} { f Ii} /0 { f Im} /0 { f Ii}

{ f I∞} { f I∞} /0 { f I∞} { f I∞} { f I∞}

∩ {β} {ε} { f D} { f I j} { f I∞} {γ}

{α}

{ε} ε /0 /0 /0 /0

{ f D} /0 { f D} /0 /0 /0

{ f Ii} /0 /0 { f In} { f Ii} /0

{ f I∞} /0 /0 { f I j} { f I∞} /0

(c) Union

∪ {β} {ε} { f D} { f I j} { f I∞} {γ}

{α}

{ε} {ε} {ε, f D} {ε, f I j} {ε, f I∞} {ε,γ}

{ f D} { f D,ε} { f D} { f D, f I j} { f D, f I∞} { f D,γ}

{ f Ii} { f Ii,ε} { f Ii, f D} { f It} { f I∞} { f Ii,γ}

{ f I∞} { f I∞,ε} { f I∞, f D} { f I∞} { f I∞} { f I∞,γ}

i, j ∈ N , m = max(i− j,0), n = min(i, j) and t =

{

i+ j if i+ j ≤ k

∞ Otherwise
.

Table 2.3: Multiplication by a scalar

⋆ α ε f D f I j f I∞

i

i ε f Ii f Im, m =

{

i∗ j if i∗ j ≤ k

∞ Otherwise
f I∞

∞ ε f I∞ f I∞ f I∞

• Path removal, intersection and union over set of pair of paths : For singleton sets

of paths {α,β} and {γ,δ}, union({α,β}∪{γ,δ}), intersection ({α,β}∩{γ,δ}) and

path removal ({α,β}⊖{γ,δ}) operations are defined as given in Figure 2.3, 2.4 and

2.5 respectively. As before these definitions can be extended to set of pair of paths

in a natural way. For example, for general sets of paths, P1 and P2, the definition of

removal can be extended as:

P1 ⊖P2 =
⋂

(γ,δ)∈P2

(
⋃

(α,β)∈P1

{α,β}⊖{γ,δ})

• Multiplication by a scalar(⋆): Let i, j ∈ N , i ≤ k, j ≤ k. Then, for a path α, the

multiplication by a scalar i, i⋆α is defined in Table 2.3. The operation is extended
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Figure 2.3: Union operation between two singleton sets of pair of paths, where {α,β}
denote any other pair of paths and x, y, m, n can be any positive integer or ∞

∪ {( f D,gD)} {( f Im,gD)} {( f D,gIn)} {( f Im,gIn)} {(α, β)}

{(ε,ε)} {(ε,ε),( f D,gD), {(ε,ε),( f Im,gD), {(ε,ε),( f D,gIn), {(ε,ε),( f Im,gIn), {(ε,ε),

(ε,gD),( f D,ε )} (ε,gD),( f Im,ε )} (ε,gIn),( f D,ε )} (ε,gIn),( f Im,ε )} (α, β) }
{(ε,gD)} {(ε,gD),( f D,gD)} {(ε,gD),( f Im,gD)} {(ε,gD),( f D,gIn), {(ε,gD),( f Im,gIn), {(ε,gD),

(ε,gIn),( f D,gD)} (ε,gIn),( f Im,gD)} (α, β)}
{(ε,gIy)} {(ε,gIy),( f D,gD) {(ε,gIy),( f Im,gD) {(ε,gIn+y),( f D,gIn+y)} {(ε,gIn+y),( f Im,gIn+y)} {(ε,gIy),

(ε,gD),( f D,gIy)} (ε,gD),( f Im,gIy)} (α, β)}
{( f D,ε)} {( f D,ε),( f D,gD)} {( f D,ε),( f Im,gD) {( f D,ε),( f D,gIn)} {( f D,ε),( f Im,gIn) {( f D,ε),

( f Im,ε),( f D,gD)} ( f Im,ε). ( f D,gIn)} (α, β)}
{( f Ix,ε)} {( f Ix,ε),( f D,gD) {( f Ix+m,ε),( f Ix+m,gD)} {( f Ix,ε),( f D,gIn) {( f Ix+m,ε),( f Ix+m,gIn)} {( f Ix,ε),

( f Ix,gD),( f D,ε)} ( f Ix,gIn),( f D,ε)} (α, β)}
{( f D,gD)} {( f D,gD)} {( f D,gD), {( f D,gD), {( f D,gD),( f D,gIn), {( f D,gD),

( f Im,gD)} ( f D,gIn)} ( f Im,gD) , ( f Im,gIn)} (α, β)}
{( f Ix,gD)} {( f Ix,gD), {( f Ix+m,gD)} {( f Ix,gD) , ( f D,gIn), {( f Ix+m,gD), {( f Ix,gD),

( f D,gD)} ( f Ix,gIn) , ( f D,gD)} ( f Ix+m,gIn)} (α, β)}
{( f D,gIy)} {( f D,gD), {( f D,gIy) , ( f Im,gD), {( f D,gIn+y)} {( f D,gIn+y), ( f D,gIy), {( f D,gIy) ,

( f D,gIy)} ( f Im,gIy) , ( f D,gD), ( f Im,gIn+y)} (α, β)}
{( f Ix,gIy)} {( f D,gD),( f Ix,gIy), {( f Ix+m,gD), {( f D,gIn+y), {( f Im+x,gIn+y)} {( f Ix,gIy),

( f D,gIx),( f Ix,gD)} ( f Ix+m,gIy)} ( f Ix,gIn+y)} (α, β)}

∪ {(ε,ε)} {(ε,gD)} {(ε,gIn)} {( f D,ε)} {( f Im,ε)} {(α, β)}
{(ε,ε)} {(ε,ε)} {(ε,ε),(ε,gD)} {(ε,ε),(ε,gIn)} {(ε,ε),( f D,ε)} {(ε,ε),( f Ix,ε)} {(ε,ε)}

(α, β)}
{(ε,gD)} {(ε,gD),(ε,ε)} {(ε,gD)} {(ε,gD),(ε,gIn)} {(ε,gD),( f D,ε), {(ε,gD),( f Im,ε), {(ε,gD),

(ε,ε),( f D,gD)} (ε,ε),( f Im,gD)} (α, β)}
{(ε,gIy)} {(ε,gIy),(ε,ε)} {(ε,gIy),(ε,gD)} {(ε,gIy+n)} {(ε,gIy),( f D,ε), {(ε,gIy),( f Im,ε), {(ε,gIy),

(ε,ε),( f D,gIy)} (ε,ε),( f Im,gIy)} (α, β)}
{( f D,ε)} {( f D,ε),(ε,ε)} {( f D,ε),(ε,gD), {( f D,ε),(ε,gIn), {( f D,ε)} {( f D,ε),( f Ix,ε)} {( f D,ε),

( f D,gD),(ε,ε)} ( f D,gIn),(ε,ε)} (α, β)}
{( f Ix,ε)} {( f Ix,ε),(ε,ε)} {( f Ix,ε),(ε,gD), {( f Ix,ε),(ε,gIn), {( f Ix,ε),( f D,ε)} {( f Ix+m,ε)} {( f Ix,ε),

( f Ix,gD),(ε,ε)} ( f Ix,gIn),(ε,ε)} (α, β)}
{( f D,gD)} {( f D,gD),(ε,ε), {( f D,gD),(ε,gD)} {( f D,gD),(ε,gIn), {( f D,gD),( f D,ε)} {( f D,gD),( f Ix,ε), {( f D,gD),

( f D,ε),(ε,gD)} ( f D,gIn),(ε,gD)} ( f D,ε),( f Im,gD)} (α, β)}
{( f Ix,gD)} {( f Ix,gD),(ε,ε), {( f Ix,gD),(ε,gD)} {( f Ix,gD),(ε,gIn), {( f Ix,gD),( f D,ε), {( f Ix+m,gD),( f Ix+m,ε)} {( f Ix,gD),

( f Ix,ε),(ε,gD)} ( f Ix,gIn),(ε,gD)} ( f Ix,ε),( f D,gD)} (α, β)}
{( f D,gIy)} {( f D,gIy),(ε,ε), {( f D,gIy),(ε,gD), {( f D,gIy+n),(ε,gIy+n)} {( f D,gIy),( f D,ε)} {( f D,gIy),( f Im,ε), {( f D,gIy),

( f D,ε),(ε,gIy)} ( f D,gD),(ε,gIy)} ( f D,ε),( f Im,gIy)} (α, β)}
{( f Ix,gIy)} {( f Ix,gIy),(ε,ε), {( f Ix,gIy),(ε,gD), {( f Ix,gIy+n),(ε,gIy+n)} {( f Ix,gIy),( f D,ε), {( f Ix+m,gIy),( f Ix+m,ε)} {( f Ix,gIy),

( f Ix,ε),(ε,gIy)} ( f Ix,gD),(ε,gIy)} ( f Ix,ε),( f D,gIy)} (α, β)}
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Figure 2.4: Intersection operation between two singleton sets of pair of paths, where

{α,β} denote any other pair of paths and a⋆b = min(a,b).

⋂
{(ε,ε)} {(ε,gD)} {(ε,gIn)} {(ε,gI∞)} {( f D,ε)} {( f D,gD)} {( f D,gIn)} {( f D,gI∞)} {(α, β)}

{(ε,ε)} {(ε,ε)} φ φ φ φ φ φ φ φ

{(ε,gD)} φ {(ε,gD)} φ φ φ φ φ φ φ

{(ε,gIy)} φ φ {(ε,gIy⋆n)} {(ε,gIy)} φ φ φ φ φ

{(ε,gI∞)} φ φ {(ε,gIn)} {(ε,gI∞)} φ φ φ φ φ

{( f D,ε)} φ φ φ φ {( f D,ε)} φ φ φ φ

{( f D,gD)} φ φ φ φ φ {( f D,gD)} φ φ φ

{( f D,gIy)} φ φ φ φ φ φ {( f D,gIy⋆n)} {( f D,gIy)} φ

{( f D,gI∞)} φ φ φ φ φ φ {( f D,gIn)} {( f D,gI∞)} φ

{( f Ix,ε)} φ φ φ φ φ φ φ φ φ

{( f Ix,gD)} φ φ φ φ φ φ φ φ φ

{( f Ix,gIy)} φ φ φ φ φ φ φ φ φ

{( f Ix,gI∞)} φ φ φ φ φ φ φ φ φ

{( f I∞,ε)} φ φ φ φ φ φ φ φ φ

{( f I∞,gD)} φ φ φ φ φ φ φ φ φ

{( f I∞,gIy)} φ φ φ φ φ φ φ φ φ

{( f I∞,gI∞)} φ φ φ φ φ φ φ φ φ

⋂
{( f Im,ε)} {( f Im,gD)} {( f Im,gIn)} {( f Im,gI∞)} {( f I∞,ε)} {( f I∞,gD)} {( f I∞,gIn)} {( f I∞,gI∞)} {(α, β)}

{(ε,ε)} φ φ φ φ φ φ φ φ φ

{(ε,gD)} φ φ φ φ φ φ φ φ φ

{(ε,gIy)} φ φ φ φ φ φ φ φ φ

{(ε,gI∞)} φ φ φ φ φ φ φ φ φ

{( f D,ε)} φ φ φ φ φ φ φ φ φ

{( f D,gD)} φ φ φ φ φ φ φ φ φ

{( f D,gIy)} φ φ φ φ φ φ φ φ φ

{( f D,gI∞)} φ φ φ φ φ φ φ φ φ

{( f Ix,ε)} {( f Ix⋆m,ε)} φ φ φ {( f Ix,ε)} φ φ φ φ

{( f Ix,gD)} φ {( f Ix⋆m,gD)} φ φ φ {( f Ix,gD)} φ φ φ

{( f Ix,gIy)} φ φ {( f Ix⋆m,gIy⋆n)} {( f Ix⋆m,gIy)} φ φ {( f Ix,gIy⋆n)} {( f Ix,gIy)} φ

{( f Ix,gI∞)} φ φ {( f Ix⋆m,gIn)} {( f Ix⋆m,gI∞)} φ φ {( f Ix,gIn)} {( f Ix,gIn)} φ

{( f I∞,ε)} {( f Im,ε)} φ φ φ {( f I∞,ε)} φ φ φ φ

{( f I∞,gD)} φ {( f Im,gD)} φ φ φ {( f I∞,gD)} φ φ φ

{( f I∞,gIy)} φ φ {( f Im,gIy⋆n)} {( f Im,gIy)} φ φ {( f I∞,gIy⋆n)} {( f I∞,gIy)} φ

{( f I∞,gI∞)} φ φ {( f Im,gIn)} {( f Im,gI∞)} φ φ {( f I∞,gIn)} {( f I∞,gI∞)} φ
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Figure 2.5: Removal operation between two singleton sets of pair of paths, where {α,β}
denote any other pair of paths and a#b = max(a-b,0).

⊖ {(ε,ε)} {(ε,gD)} {(ε,gIn)} {(ε,gI∞)} {( f D,ε)} {( f D,gD)} {( f D,gIn)} {( f D,gI∞)} {(α, β)}
{(ε,ε)} φ {(ε,ε)} {(ε,ε)} {(ε,ε)} {(ε,ε)} {(ε,ε)} {(ε,ε)} {(ε,ε)} {(ε,ε)}
{(ε,gD)} φ φ {(ε,gD)} {(ε,gD)} {(ε,gD)} {(ε,gD)} {(ε,gD)} {(ε,gD)} {(ε,gD)}

{(ε,gIy)} φ φ {(ε,gIy)} {(ε,gIy)} {(ε,gIy)} φ {(ε,gIy)} {(ε,gIy#n)} {(ε,gIy)}
{(ε,gI∞)} φ φ {(ε,gI∞)} {(ε,gI∞)} {(ε,gI∞)} φ {(ε,gI∞)} {(ε,gI∞)} {(ε,gI∞)}
{( f D,ε)} φ {( f D,ε)} {( f D,ε)} {( f D,ε)} φ φ φ φ {( f D,ε)}
{( f D,gD)} {( f D,gD)} φ {( f D,gD)} {( f D,gD)} φ φ φ φ {( f D,gD)}

{( f D,gIy)} {( f D,gIy)} φ {( f D,gIy#n)} φ φ φ φ φ {( f D,gIy)}
{( f D,gI∞)} {( f D,gI∞)} φ {( f D,gI∞)} {( f D,gI∞)} φ φ φ φ {( f D,gI∞)}
{( f Ix,ε)} φ {( f Ix,ε)} {( f Ix,ε)} {( f Ix,ε)} φ φ φ φ {( f Ix,ε)}
{( f Ix,gD)} {( f Ix,gD)} φ {( f Ix,gD)} {( f Ix,gD)} φ φ φ φ {( f Ix,gD)}

{( f Ix,gIy)} {( f Ix,gIy)} φ {( f Ix,gIy#n)} φ φ φ φ φ {( f Ix,gIy) }

{( f Ix,gI∞)} {( f Ix,gI∞)} φ {( f Ix,gI∞)} {( f Ix,gI∞)} φ φ φ φ {( f Ix,gI∞)

{( f I∞,ε)} φ {( f I∞,ε)} {( f I∞,ε)} {( f I∞,ε)} φ φ φ φ {( f I∞,ε)}
{( f I∞,gD)} {( f I∞,gD)} φ {( f I∞,gD)} {( f I∞,gD)} φ φ φ φ {( f I∞,gD)}

{( f I∞,gIy)} {( f I∞,gIy)} φ {( f I∞,gIy#n)} φ φ φ φ φ {( f I∞,gIy)}
{( f I∞,gI∞)} {( f I∞,gI∞)} φ {( f I∞,gI∞)} {( f I∞,gI∞)} φ φ φ φ {( f I∞,gI∞)}

⊖ {( f Im,ε)} {( f Im,gD)} {( f Im,gIn)} {( f Im,gI∞)} {( f I∞,ε)} {( f I∞,gD)} {( f I∞,gIn)} {( f I∞,gI∞)} {(α,β)}
{(ε,ε)} φ {(ε,ε)} {(ε,ε)} {(ε,ε)} {(ε,ε)} {(ε,ε)} {(ε,ε)} {(ε,ε)} {(ε,ε)}
{(ε,gD)} {(ε,gD)} φ {(ε,gD)} {(ε,gD)} {(ε,gD)} φ {(ε,gD)} {(ε,gD)} {(ε,gD)}

{(ε,gIy)} {(ε,gIy)} φ {(ε,gIy#n)} φ {(ε,gIy)} φ {(ε,gIy)} φ {(ε,gIy)}
{(ε,gI∞)} {(ε,gI∞)} φ {(ε,gI∞)} {(ε,gI∞)} {(ε,gI∞)} φ {(ε,gI∞)} {(ε,gI∞)} {(ε,gI∞)}

{( f D,ε)} φ {( f D,ε)} {( f D,ε)} {( f D,ε)} φ {( f D,ε)} {( f D,ε)} {( f D,ε)} {( f D,ε)}
{( f D,gD)} {( f D,gD)} φ {( f D,gD)} {( f D,gD)} {( f D,gD)} φ {( f D,gD)} {( f D,gD)} {( f D,gD)}

{( f D,gIy)} {( f D,gIy)} φ {( f D,gIy#n)} φ {( f D,gIy)} φ {( f D,gIy#n)} φ {( f D,gIy)}
{( f D,gI∞)} {( f D,gI∞)} φ {( f D,gI∞)} {( f D,gI∞)} {( f D,gI∞)} φ {( f D,gI∞)} {( f D,gI∞)} {( f D,gI∞)}

{( f Ix,ε)} {( f Ix,ε)} {( f Ix#m,ε)} {( f Ix#m,ε)} {( f Ix#m,ε)} {( f Ix,ε)} φ φ φ {( f Ix,ε)}

{( f Ix,gD)} {( f Ix#m,gD)} φ {( f Ix#m,gD)} {( f Ix#m,gD)} φ φ φ φ {( f Ix,gD)}

{( f Ix,gIy)} {( f Ix#m,gIy)} φ {( f Ix#m,gIy#n)} φ φ φ φ φ {( f Ix,gIy)}

{( f Ix,gI∞)} {( f Ix#m,gI∞)} φ {( f Ix#m,gI∞)} {( f Ix#m,gI∞)} φ φ φ φ {( f Ix,gI∞)}
{( f I∞,ε)} φ {( f I∞,ε)} {( f I∞,ε)} {( f I∞,ε)} φ {( f I∞,ε)} {( f I∞,ε)} {( f I∞,ε)} {( f I∞,ε)}
{( f I∞,gD)} {( f I∞,gD)} φ {( f I∞,gD)} {( f I∞,gD)} {( f I∞,gD)} φ {( f I∞,gD)} {( f I∞,gD)} {( f I∞,gD)}

{( f I∞,gIy)} {( f I∞,gIy)} φ {( f I∞,gIy#n)} {( f I∞,gIy)} {( f I∞,gIy)} φ {( f I∞,gIy#n)} {( f I∞,gIy)} {( f I∞,gIy)}
{( f I∞,gI∞)} {( f I∞,gI∞)} φ {( f I∞,gI∞)} {( f I∞,gI∞)} {( f I∞,gI∞)} φ {( f I∞,gI∞)} {( f I∞,gI∞)} {( f I∞,gI∞)}
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to set of paths as:

i⋆S =

{

/0 i = 0

{i⋆α | α ∈ S} i ∈ N ∪{∞}

2.2.2 Analysis

For {p,q} ⊆ H , f ∈ F , n ∈ N and op ∈ {+,−}, the following eight basic statements

are identified that can access or modify the heap structures.

1. Allocations

(a) p = malloc();

2. Pointer Assignments

(a) p = NULL;

(b) p = q;

(c) p = q → f;

(d) p = &(q → f);

(e) p = q op n;

3. Structure Updates

(a) p → f = q;

(b) p → f = NULL;

They intend to determine, at each program point, the field sensitive matrices DF and

IF , and the boolean variables capturing field connectivity. The problem is formulated as

an instance of forward data flow analysis, where the data flow values are the matrices

and the boolean variables as mentioned above. For simplicity sake the basic blocks are

constructed with single statements each The definition of the confluence operator (merge)

for various data flow values as used by the analysis is given below. The superscripts x and

y are used to denote the values coming along two paths,

merge( f x
pq, f y

pq) = f x
pq ∨ f y

pq, f ∈ F , p,q ∈ H

merge(px
Cycle, p

y
Cycle) = px

Cycle∨ p
y
Cycle, p ∈ H

merge(px
Dag, py

Dag) = px
Dag∨ py

Dag, p ∈ H

merge(Dx
F ,D

y
F) = DF where DF [p,q] = Dx

F [p,q]∪D
y
F [p,q],∀p,q ∈ H

merge(Ix
F , I

y
F) = IF where IF [p,q] = Ix

F [p,q]∪ I
y
F [p,q],∀p,q ∈ H
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The transformation of data flow values due to a statement st is captured by the following

set of equations:

Dout
F [p,q] = (Din

F [p,q]⊖Dkill
F [p,q])∪D

gen
F [p,q]

Iout
F [p,q] = (Iin

F [p,q]⊖ Ikill
F [p,q])∪ I

gen
F [p,q]

pout
Cycle = (pin

Cycle∧¬pkill
Cycle)∨ p

gen
Cycle

pout
Dag = (pin

Dag∧¬pkill
Dag )∨ p

gen
Dag

Field connectivity information is updated directly by the statement.

Few details about each of this basic statements are given below. The data flow values

for each of these statements are shown in Figure 2.6.

• p = malloc: After this statement all the existing relationships of p get killed and

it will point to a newly allocated object.It is considered that p can have an empty

path to itself and it can interfere with itself using empty paths (or ε paths).

• p = NULL: This statement only kills the existing relations of p.

• p=q, p=&(q→f), p=q op n: All these three pointer assignment statements are

considered equivalent. After this statement all the existing relationships of p gets

killed and it will point to same heap object as pointed to by q. In case q currently

points to null, p will also points to null after the statement. So p will have the

same field sensitive Direction and Interference relationships as q. The kill effect

of this statement is same as that of the previous statement. The generated boolean

functions for heap object p corresponding to DAG or Cycle attribute will be same

as that of q, with all occurrences of q replaced by p.

• p → f = NULL: This statement breaks the existing link f emanating from p, thus

killing relations of p, that are due to the link f . The statement does not generate

any new relations.

• p → f = q: This statement first breaks the existing link f and then re-links the

the heap object pointed to by p to the heap object pointed to by q. The kill effects

are exactly same as described in the case of p→f = null. Only the generated

relationships are described in Figure 2.6.

• p = q → f: The relations killed by the statement are same as that in case of p

= NULL. The relations created by this statement are heavily approximated as not

much information is available about the heap node pointed by q → f before the

statement. After this statement p points to the heap object which is accessible from

pointer q through f link.
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p = malloc()

pkill
Cycle = pin

Cycle pkill
Dag = pin

Dag

p
gen
Cycle = False p

gen
Dag = False

∀s ∈ H , s 6= p,

Dkill
F [p,s] = Din

F [p,s] Dkill
F [s, p] = Din

F [s, p] Dkill
F [p, p] = Din

F [p, p]

D
gen
F [p,s] = /0 D

gen
F [s, p] = /0 D

gen
F [p, p] = {ε}

Ikill
F [p,s] = Iin

F [p,s] Ikill
F [p, p] = Iin

F [p, p]

I
gen
F [p,s] = /0 I

gen
F [p, p] = {ε,ε}

p = NULL

pkill
Cycle = pin

Cycle pkill
Dag = pin

Dag

p
gen
Cycle = False p

gen
Dag = False

∀s ∈ H ,

Dkill
F [p,s] = Din

F [p,s] Dkill
F [s, p] = Din

F [s, p]

D
gen
F [p,s] = /0 D

gen
F [s, p] = /0

Ikill
F [p,s] = Iin

F [p,s] I
gen
F [p,s] = /0

p = q

p = &(q→f)

p = q op n

pkill
Cycle = pin

Cycle pkill
Dag = pin

Dag

p
gen
Cycle = qin

Cycle[q/p] p
gen
Dag = qin

Dag[q/p]

where X [q/p] creates a copy of X with all occurrences of q replaced by p.

∀s ∈ H ,s 6= p,∀ f ∈ F ,

fps = fqs fsp = fsq

Dkill
F [p,s] = Din

F [p,s] Dkill
F [s, p] = Din

F [s, p] Dkill
F [p, p] = Din

F [p, p]

D
gen
F [p,s] = Din

F [q,s] D
gen
F [s, p] = Din

F [s,q] D
gen
F [p, p] = Din

F [q,q]

Ikill
F [p,s] = Iin

F [p,s] I
gen
F [p,s] = Iin

F [q,s]

Ikill
F [p, p] = Iin

F [p, p] I
gen
F [p, p] = Iin

F [q,q]

p→f = null

pkill
Cycle = False, pkill

Dag = False

p
gen
Cycle = False, p

gen
Dag = False

∀q,s ∈ H ,s 6= p,

fpq = False

Dkill
F [p,q] = Din

F [p,q]⊲f Dkill
F [s,q] = /0

Ikill
F [p,s] = {(α,β) | (α,β) ∈ Iin

F [p,q], α ≡ f ∗}

Ikill
F [q,s] = /0 if q 6= p Ikill

F [p, p] = /0
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p→f = q

The KILL relations are same as that of p→f = null

p
gen
Cycle = ( fpq ∧qin

Cycle)∨ ( fpq ∧ (|DF [q, p]| ≥ 1)) p
gen
Dag = fpq ∧ (|IF [p,q]|> 1)

q
gen
Cycle = fpq ∧ (|DF [q, p]| ≥ 1) q

gen
Dag = False

fpq = True

s
gen
Cycle = ((|DF [s, p]| ≥ 1)∧ fpq ∧qin

Cycle) ∨ ((|DF [s, p]| ≥ 1)∧ fpq ∧ (|DF [q, p]| ≥ 1))

∨ ((|DF [s,q]| ≥ 1)∧ fpq ∧ (|DF [q, p]| ≥ 1)), ∀s ∈ H ,s 6= p,s 6= q

s
gen
Dag = (|DF [s, p]| ≥ 1)∧ fpq ∧ (|IF [s,q]|> 1), ∀s ∈ H ,s 6= p,s 6= q

D
gen
F [r,s] = |Din

F [q,s]|⋆Din
F [r, p], s 6= p, r 6∈ {p,q}

D
gen
F [r, p] = |Din

F [q, p]|⋆Din
F [r, p], r 6= p

D
gen
F [p,r] = |Din

F [q,r]|⋆ (Din
F [p, p]⊖{ε}∪{ f I1}), r 6= q

D
gen
F [p,q] = { f D} ∪ (|Din

F [q,q]−{ε}|⋆{ f I1}) ∪ (|Din
F [q,q]|⋆ (Din

F [p, p]⊖{ε}))

D
gen
F [q,q] = 1⋆Din

F [q, p]

D
gen
F [q,r] = |Din

F [q,r]|⋆Din
F [q, p], r 6∈ {p,q}

I
gen
F [p,q] = {( f D,ε)}∪ ((1⋆ (Din

F [p, p]⊖{ε}))×{ε})

I
gen
F [p,r] = (1⋆ (Din

F [p, p]⊖{ε}))×{β | (α,β) ∈ Iin
F [q,r]} ∪ { f D}×{β | (ε,β) ∈ Iin

F [q,r]}

∪ { f I1}×{β | (α,β) ∈ Iin
F [q,r],α 6= ε}, r 6∈ {p,q}

I
gen
F [s,q] = (1⋆Din

F [s, p])×{ε}, s 6∈ {p,q}

I
gen
F [s,r] = (1⋆Din

F [s, p])×{β | (α,β) ∈ Iin
F [q,r]}, s 6∈ {p,q}, r 6∈ {p,q}, s 6= r

p = q→f

The KILL relations are same as that of p = NULL

p
gen
Cycle = qin

Cycle p
gen
Dag = qin

Dag

fqp = True hpr = |Din
F [q,r]⊲f | ≥ 1 ∀h ∈ F ,∀r ∈ H

U = {ε}∪
⋃

f∈F { f D, f I∞}

D1[p,s] = U ∀s ∈ H ,s 6= p∧Din
F [q,s]⊲f 6= /0

D1[p, p] =















U q.shape evaluates to Cycle

{ε} Otherwise

. I1[p, p] = U ×U

D2[s, p] = ∞⋆Din
F [s,q] ∀s ∈ H ,s 6= q

D2[q, p] = { f D}∪ (∞⋆ (Din
F [q,q]⊖{ε}))∪U

I2[s, p] = D2[s, p]×{ε} ∀s ∈ H

D3[s, p] = {α | ( f D,α) ∈ Iin
F [q,s]}

I3[s, p] = {α | ( f ∗,α) ∈ Iin
F [q,s]}×U

Finally IF and DF relations are:

D
gen
F [r,s] = D1[r,s]∪D2[r,s]∪D3[r,s] ∀r,s ∈ H

I
gen
F [r,s] = I1[r,s]∪ I2[r,s]∪ I3[r,s] ∀r,s ∈ H

Figure 2.6: Data flow values corresponding to each statement.



Chapter 3

Enhancements to Field Sensitive

Analysis

3.1 Enhancements

In this section we will discuss about all the necessary enhancements and amendments

done to the data flow values (refer Fig 2.6). Those mainly involve corrections, tackling

unhandled cases and augmentations to make the analysis more precise.

Correctness: Lets discuss a scenario which involve correctness issue.

S1. l→f = m;

S2. m→f = l;

S3. l = null;

Example 3. Consider the sample code given above. After statement S1 there is a path

from l to m via field f and after S2 there is a path from m to l also via field f hence creating

a cycle. When S3 is done there is still a cycle at m. The relevant Direction matrix entries

after S2 are:

After S1 : DF [l,m] = f D, fl,m = 1

After S2 : DF [l,m] = f D,DF [m, l] = f D, fl,m = 1, fm,l = 1

The boolean equation of lCycle after S2 is

{ fl,m∧ (|DF [m, l]|>= 1)}∨{( fm,l ∧ (|DF [l,m]|>= 1))}

which evaluates to true assuring that there is a cycle at l after S2. After statement S3 all

the Direction and Interference information corresponding to l are killed, i.e. DF [l,m] =

/0,DF [m, l] = /0, fl,m = 0, fm,l = 0.

As a result lCycle gets evaluated to 0 inferring it is not a CYCLE, which is not true.

17
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Solution: The problem is, after statement S3 we are killing all the information related

to pointer variable l even though the graph structure still contains the corresponding heap

object. We need to somehow preserve the information about the node which is labeled

with name l before S3 and unlabeled afterwards.

For this we create a new dummy pointer variable (say δ) pointing to the same node

pointed by l before S3. This is done by adding a statement δ = l before S3 such that this

particular statement will not be having any kill information. The GEN information will

be same as the pointer statement p = q. Also we replace any information about the term

l by δ, i.e. in the DF , IF matrices and in all the boolean equations corresponding to all the

heap pointers, we replace the occurrences of l by δ. So the solution can be generalized as:

Whenever any statement of type Allocations or Pointer Assignments are encountered,

we add a new statement δ = p before it where δ is a dummy variable of same type as p.

For this new statement we have the following gen and kill relations.

δ
gen
Cycle = pin

Cycle[p/δ] δ
gen
Dag = pin

Dag[p/δ]

∀s ∈ H ,s 6= p,∀ f ∈ F

skill
Cycle = sin

Cycle skill
Dag = sin

Dag

s
gen
Cycle = sin

Cycle[p/δ] s
gen
Dag = sin

Dag[p/δ]

where X [q/p] creates a copy of X with all occurrences of q replaced by p.

∀s ∈ H ,s 6= p,∀ f ∈ F

fδs = fps fsδ = fsp

D
gen
F [δ,s] = Din

F [p,s] D
gen
F [s,δ] = Din

F [s, p]

D
gen
F [δ,δ] = Din

F [p, p] I
gen
F [δ,s] = Iin

F [p,s]

I
gen
F [δ,δ] = Iin

F [p, p]

We have two options in adding the new statement δ = p: Use the same dummy δ

variable every time or use different dummy variables for each new statement added. Now

if we use the same variable then at some point different unlabeled nodes will be using

the same name δ causing less precise results. We can also use new variable every time

for more precise results, but this will increase memory consumption. So usage of a sin-

gle variable or multiple variables is a matter of trade off between accuracy and memory

consumption. As this statement doesn’t have any kill information, it may happen at some

point that this pointer is referring to a summarized node which indeed contains distinct

nodes. This can have an effect on preciseness, details about its effect are given in the

Results Chapter.

Unhandled Dataflow Information: Before we go into this we need to understand what

does ε ∈ Din
F [p,q] convey. It means that we can reach q from p through the path Epsilon,

which simply says p and q are pointing to the same heap object, i.e. they both are aliases.
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Some of the data flow information present in Fig: 2.6 (shaded with blue) didn’t consider

the effect on aliases, and so we considered those as well.

• p → f = NULL :

We can see that the equation Dkill
F [s,q] = /0 doesn’t consider the case when s and

p are aliases, in that case Dkill
F [s,q] should be equal to Din

F [s,q] ⊲ f , which is sim-

ilar what Dkill
F [p,q] is assigned. A similar modification is also required for the

equation Ikill
F [q,s] = /0 when p and q are aliases. In that case we have Ikill

F [q,s] =

{(α,β) | (α,β)∈ Iin
F [q,s], α ≡ f ∗ }, otherwise the original equation holds good. We

fine tune all the data flow values so as to incorporate the such effects of aliases in

our analysis (refer Fig: 3.4 ). Now consider a scenario that there is a self loop at p so

that the entry Ikill
F [p, p] will contain something like { f D,ε} which indeed should be

killed once this statement is encountered. So we write Ikill
F [p, p] = {(α,β) | (α,β)∈

Iin
F [p, p], α ≡ f ∗ }.

• p → f = q:

P Q

S

Figure 3.1: Heap graphs

Consider the heap graph in Fig: 3.1, you can notice that the heap nodes pointed by

p and q interfere at q as well as at s. The latter part is not captured by I
gen
F [p,q] i.e

I
gen
F [p,q] = {( f D,ε)}∪ ((1⋆ (Din

F [p, p]⊖{Din
F [p, p]⊲f ∪{ε}}))×{ε})

This equation is not considering the effect when both p and q reach some node

pointed by s at which they interfere. To handle this case we look at the set of all

heap pointer’s s which is not equal to p or q but has paths to it from p and q. Going

by the definition of Interference matrix we find the fields through which these two

pointers interfere, which is nothing but Din
F [p,s]×Din

F [q,s]. The Union of all such

elements for each s constitute our final information. Thus

{( f D,ε)}∪ ((1⋆ (Din
F [p, p]⊖{Din

F [p, p]⊲f ∪{ε}}))×{ε})∪ I

where I =
⋃

s∈H ,s6=p,q{Din
F [p,s]×Din

F [q,s] | |Din
F [p,s]|> 1, |Din

F [q,s]|> 1}

• p = q → f:

Let up consider the sample code given below. After statement S2 both p and q will

be pointing to the same heap structure.
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S1. y→f = x;

S2. y = y→f;

At the end of statement S1, D[y,x] would contain the entry f D. Hence at statement

S2, D1[y,x] is assigned U, but if we could somehow find that x and y are aliases

after this statement we could escape this approximation and assign ε to D1[y,x].

After any statement p = q → f , p will be pointing to that node which is directly

reachable from q through field f . If there is any pointer s which is reachable from q

directly or indirectly through field f that node would be reachable from p also. But

as we don’t know through which field p can reach s, U is assigned to D1[p,s].

D1[p,s] = U ∀s ∈ H ,s 6= p∧Din
F [q,s]⊲f 6= /0

But if we consider only those s which can be directly reachable from q, it would

simply be an alias for p and in that case we could just assign ε to D1[p,s]. For this

we need to check whether Din
F [q,s]⊲f = f D, if true then s and p are aliases after the

statement. This change for D1[p,s]is reflected below

∀s ∈ H ,s 6= p

D1[p,s] =

{

U {Din
F [q,s]⊲f − f D} 6= /0

{ε} Din
F [q,s]⊲f = f D

After p = q → f there will be a path from q to p through field f . This is reflected

in the equation D2[q, p] = { f D}∪ (∞ ⋆ (Din
F [q,q]⊖{ε}))∪U. We can also see U

appended at the end, this was added because we were not sure if there was another

path by which q → f can be reached from q . One observation here is that, if there

was a path other than through f that the heap node pointed by q → f is reachable

from heap node pointed by q then shape at q would have been a DAG or a CYCLE.

So when the shape at q is a TREE initially there would be just one path from node

pointed by q to node pointed by q → f and that is through f only. Writing the same

thing according to our data flow values

i f q 6= p

D2[q, p] =

{

f D q
dag
in = False,q

cycle
in = False

{ f D}∪ (∞⋆ (Din
F [q,q]⊖{ε}))∪U Otherwise

Information Passed to successors: Here we will discuss about the less precise

results that we are obtaining while passing the boolean equations to its successorss ac-

cording to [DK12]. Also we will discuss ways to fix this. Let us look at the Fig: 3.2(a), it

contains a single statement in the if and else blocks. The Direction matrices at the OUT

of bb1 and bb2 are shown in Fig: 3.2(b).
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  S1:p->f=q   S2:q->f=p

S

S’

bb0

bb2bb1

bb3

(a)Control flow graph

Basic DF IF

block

OUT (bb1)

p q

p ε { f D}
q /0 ε

p q

p {(ε,ε)} {( f D,ε)}
q {(ε, f D))} {(ε,ε)}

OUT (bb2)

p q

p ε /0

q { f D} ε

p q

p {(ε,ε)} {(ε), f D)}
q {( f D,ε)} {(ε,ε)}

IN(bb3)

p q

p ε { f D}

q { f D} ε

p q

p {(ε,ε)} {( f D,ε),(ε, f D)}

q {( f D,ε),(ε, f D)} {(ε,ε)}

(b)Direction and Interference Matrices

Basic Block Boolean Equations

OUT(bb1) ( fpq ∧qin
Cycle)∨ ( fpq ∧ (|DF [q, p]| ≥ 1))

OUT(bb2) ( fqp ∧ (|DF [q, p]| ≥ 1))

IN(bb3) (( fpq∧qin
Cycle)∨ ( fpq ∧ (|DF [q, p]| ≥ 1))∪ ( fqp ∧ (|DF [q, p]| ≥ 1)))

(c)Boolean equation of pcycle

Figure 3.2: DataFlow values and CFG

fpq and fqp are TRUE from basic blocks bb1 and bb2 respectively. Now if we look

at the equation of pcycle at IN(bb3) from Fig: 3.2(c) and substitute the data flow values at

IN(bb3) from Fig: 3.2(b) we can see that it evaluates to TRUE, inferring that the shape of

p as CYCLE even though its a TREE in reality. The problem here is we are not taking

into consideration that only one of the basic blocks among bb1, bb2 will be executed.

Merging of these boolean equations does not capture that effect.

Solution: For this problem we propose a simple and effective solution which even re-

duces the memory consumption by a good amount. What we propose is, at any statement

when we evaluate a boolean equation and pass it to its successor only if that equation

evaluates to 1 otherwise we do not pass it to the successor at all. This solution works

because at those basic statements which can change the heap shape, such as p → f = q,

whatever boolean equations are generated they alone are sufficient to determine the shape
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of each pointer at that program point.

S1 : q → g = p

S2 : p → f = q

Lets take a simple example of just two statements. As equations at S1 evaluates to false

and hence no boolean equation is passed to S2. It means the value of pin
Cycle for S2 is

FALSE and pout
Cycle of S2 is same as p

gen
Cycle of S2. The equation for p

gen
Cycle, which is the same

given in Fig: 3.2(c) first row evaluates to TRUE hence detecting the shape correctly as a

CYCLE.

There is one case where boolean equation is to be changed to get correct results which

is for p
gen
Dag of statement p → f = q.

p
gen
Dag = ( fpq ∧ (|IF [p,q]|> 1))

Consider the set of statements

S1 : x → f = y

S2 : x → g = y

S3 : w → f = x

After the first two statements a DAG is formed at x. After the third statement a link is

created from w to x via field f , that means w also points to a DAG. As the shape of

w before this statement was a TREE, win
Dag is empty according to the above mentioned

change. We know that wkill
Dag is also False for this statement, hence wout

Dag is nothing but

w
gen
Dag . Now consider the equation of w

gen
Dag , it is equal to ( fwx ∧ (|IF [w,x]| > 1)). The

value of boolean variable fwx is True but value of (|IF [w,x]| > 1)) is False as the entry

IF [w,x] would just contain { f D,ε} . Finally evaluating the value of wout
Dag to False, which

is incorrect.

If at all we have used the old approach of passing information to successors then

win
Dag would not have been empty, and would have successfully identified the shape at w

as a DAG. Now to overcome this problem we have to change to the equation of p
gen
Dag .

Whenever a statement p → f = q is encountered and shape of q before this statement is a

DAG, then we can simply say that p also points to a DAG. This is formalized as

p
gen
Dag = ( fpq ∧qin

Dag)∨ ( fpq ∧ (|IF [p,q]|> 1))

Limitation: This change in p
gen
Dag will cause loss of accuracy in one scenario (also

exhibited by Ghiya et al. [GH96]), but as a whole it has a lot of advantages in accuracy

and memory consumption, so we have adopted this change. Lets look at that particular

scenario.
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f

g

f

w

y,tx S1: x → f = y

S2: x → g = y

S3: t = x → g

S4: w → f = t

(a)Heap Graph (b)Set of statements

Figure 3.3: Example with Heap graph and Set of statements

Refer to Fig: 3.3, the effect of the set of statements are shown in the heap graph. After

the second statement a DAG is formed at x and when the third statement is encountered the

equation of x is copied to the equation of t. And at statement S4 the shape at w is reported

as a DAG. When this change in p
gen
Dag was not incorporated, the shape was reported as a

TREE. The details about how this change is making the shape vary is shown below.

(According to the original equation of p
gen
Dag )

After S1:

xout
Dag = False

After S2:

xout
Dag = ( fxy ∧ (|IF [x,y]|> 1)) (which evaluates to TRUE)

After S3:

tout
Dag = ( fxy ∧ (|IF [x,y]|> 1)) (which evaluates to TRUE)

After S4:

wout
Dag = ( fwt ∧ (|IF [w, t]|> 1)) (which evaluates to FALSE)

(According to the new equation of p
gen
Dag )

After S4:

wout
Dag = ( fwt ∧ t in

Dag)∨ ( fwt ∧ (|IF [w, t]|> 1)) (which evaluates to TRUE)

The new version of equation of wout
Dag evaluates to TRUE because of the term t in

Dag which

is also TRUE. As this part was not present in the previous version of p
gen
Dag it correctly

infers the shape of w as Tree.

3.2 Final Data Flow Equations

All the modifications that were proposed are shown in Fig: 3.4. It contains the final set of

data flow values for each of the statements.

Let us first introduce some notations which will be used frequently in the following

analysis.
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∀p ∈ H ,we introduce two notations P† and p†as

P† = {r|r = p∨ ε ∈ Din
F [r, p]∨ ε ∈ Din

F [p,r]} and

p† ∈ P†
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p = malloc()

pkill
Cycle = pin

Cycle pkill
Dag = pin

Dag

p
gen
Cycle = False p

gen
Dag = False

∀s ∈ H , s 6= p,

Dkill
F [p,s] = Din

F [p,s] Dkill
F [s, p] = Din

F [s, p] Dkill
F [p, p] = Din

F [p, p]

D
gen
F [p,s] = /0 D

gen
F [s, p] = /0 D

gen
F [p, p] = {ε}

Ikill
F [p,s] = Iin

F [p,s] Ikill
F [p, p] = Iin

F [p, p]

I
gen
F [p,s] = /0 I

gen
F [p, p] = {ε,ε}

p = NULL

pkill
Cycle = pin

Cycle pkill
Dag = pin

Dag

p
gen
Cycle = False p

gen
Dag = False

∀s ∈ H ,

Dkill
F [p,s] = Din

F [p,s] Dkill
F [s, p] = Din

F [s, p]

D
gen
F [p,s] = /0 D

gen
F [s, p] = /0

Ikill
F [p,s] = Iin

F [p,s] I
gen
F [p,s] = /0

p = q

p =&(q→f)

p = q op n

pkill
Cycle = pin

Cycle pkill
Dag = pin

Dag

p
gen
Cycle = qin

Cycle[q/p] p
gen
Dag = qin

Dag[q/p]

where X [q/p] creates a copy of X with all occurrences of q replaced by p.

∀s ∈ H ,s 6= p,∀ f ∈ F ,

fps = fqs fsp = fsq

Dkill
F [p,s] = Din

F [p,s] Dkill
F [s, p] = Din

F [s, p] Dkill
F [p, p] = Din

F [p, p]

D
gen
F [p,s] = Din

F [q,s] D
gen
F [s, p] = Din

F [s,q] D
gen
F [p, p] = Din

F [q,q]

Ikill
F [p,s] = Iin

F [p,s] I
gen
F [p,s] = Iin

F [q,s]

Ikill
F [p, p] = Iin

F [p, p] I
gen
F [p, p] = Iin

F [q,q]

δ = p

δ
gen
Cycle = pin

Cycle[p/δ] δ
gen
Dag = pin

Dag[p/δ]

∀s ∈ H ,s 6= p,∀ f ∈ F

skill
Cycle = sin

Cycle skill
Cycle = sin

Dag

s
gen
Cycle = sin

Cycle[p/δ] s
gen
Dag = sin

Dag[p/δ]

where X [q/p] creates a copy of X with all occurrences of q replaced by p.

∀s ∈ H ,s 6= p,∀ f ∈ F

fδs = fps fsδ = fsp

D
gen
F [δ,s] = Din

F [p,s] D
gen
F [s,δ] = Din

F [s, p] D
gen
F [δ,δ] = Din

F [p, p]

I
gen
F [δ,s] = Iin

F [p,s] I
gen
F [δ,δ] = Iin

F [p, p]
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p→f=null

pkill
Cycle = False, pkill

Dag = False

p
gen
Cycle = False, p

gen
Dag = False

∀q,s ∈ H ,s /∈ P†

fp†q = False

Dkill
F [p†,q] = Din

F [p,q]⊲f Dkill
F [s,q] = /0

Ikill
F [p†,s] = {(α,β) | (α,β) ∈ Iin

F [p,q], α ≡ f ∗}

Ikill
F [q,s] = /0 if q /∈ P† Ikill

F [p†, p†] = {(α,β) | (α,β) ∈ Iin
F [p, p], α ≡ f ∗}

p→f = q

The KILL relations are same as that of p→f = null

p
gen
Cycle = ( fpq ∧qin

Cycle)∨ ( fpq ∧ (|DF [q, p]| ≥ 1)) p
gen
Dag = ( fpq ∧qin

Dag)∨ ( fpq ∧ (|IF [p,q]|> 1))

q
gen
Cycle = fpq ∧ (|DF [q, p]| ≥ 1) q

gen
Dag = False

fp†q† = True

s
gen
Cycle = ((|DF [s, p]| ≥ 1)∧ fpq ∧qin

Cycle) ∨ ((|DF [s, p]| ≥ 1)∧ fpq ∧ (|DF [q, p]| ≥ 1))

∨ ((|DF [s,q]| ≥ 1)∧ fpq ∧ (|DF [q, p]| ≥ 1)), ∀s ∈ H ,s 6= p,q

s
gen
Dag = (|DF [s, p]| ≥ 1)∧ fpq ∧ (|IF [s,q]|> 1), ∀s ∈ H ,s 6= p,q

D
gen
F [r,s] = |Din

F [q,s]|⋆Din
F [r, p], s /∈ P†, r /∈ P†, r /∈ Q†

D
gen
F [r, p†] = |Din

F [q, p]|⋆Din
F [r, p], r /∈ P†

D
gen
F [p†,r] = |Din

F [q,r]|⋆ (Din
F [p, p]⊖{ε}∪{ f I1}), r /∈ Q†

D
gen
F [p†,q†] = { f D} ∪ (|Din

F [q,q]−{ε}|⋆{ f I1}) ∪ (|Din
F [q,q]|⋆ (Din

F [p, p]⊖{Din
F [p, p]⊲f ∪{ε}}))

D
gen
F [q†,q†] = 1⋆Din

F [q, p]

D
gen
F [q†,r] = |Din

F [q,r]|⋆Din
F [q, p], r /∈ P†, r /∈ Q†

I
gen
F [p†,q†] = {( f D,ε)}∪ ((1⋆ (Din

F [p, p]⊖{Din
F [p, p]⊲f ∪{ε}}))×{ε})∪ I

where I =
⋃

x∈H ,x/∈P†,Q†{Din
F [p,x]×Din

F [q,x] | |Din
F [p,x]|> 1, |Din

F [q,x]|> 1}

I
gen
F [p†,r] = (1⋆ (Din

F [p, p]⊖{ε}))×{β | (α,β) ∈ Iin
F [q,r]} ∪ { f D}×{β | (ε,β) ∈ Iin

F [q,r]}

∪ { f I1}×{β | (α,β) ∈ Iin
F [q,r],α 6= ε}, r /∈ P†,Q†

I
gen
F [s,q†] = (1⋆Din

F [s, p])×{ε}, s /∈ P†, Q†

I
gen
F [s,r] = (1⋆Din

F [s, p])×{β | (α,β) ∈ Iin
F [q,r]}, s 6∈ P†,Q†, r 6∈ P†,Q†, s 6= r
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p = q→f

The KILL relations are same as that of p = NULL

p
gen
Cycle = qin

Cycle p
gen
Dag = qin

Dag

fq† p = True hpr = |Din
F [q,r]⊲f | ≥ 1 ∀h ∈ F ,∀r ∈ H

U = {ε}∪
⋃

f∈F { f D, f I∞}

∀s ∈ H ,s 6= p

D1[p,s] =















U {Din
F [q,s]⊲f − f D} 6= /0

{ε} Din
F [q,s]⊲f = f D

D1[p, p] =















U q.shape evaluates to Cycle

{ε} Otherwise

.

I1[p, p] = U ×U

D2[q
†, p] =















f D qtree
in = True

{ f D}∪ (∞⋆ (Din
F [q,q]⊖{ε}))∪U Otherwise

i f q 6= p

D2[s, p] = ∞⋆Din
F [s,q] ∀s ∈ H ,s /∈ Q†, s 6= p

I2[s, p] = D2[s, p]×{ε} ∀s ∈ H

D3[s, p] = {α | ( f D,α) ∈ Iin
F [q,s]}

I3[s, p] = {α | ( f ∗,α) ∈ Iin
F [q,s]}×U

Final IF and DF relations are:

D
gen
F [r,s] = D1[r,s]∪D2[r,s]∪D3[r,s] ∀r,s ∈ H

I
gen
F [r,s] = I1[r,s]∪ I2[r,s]∪ I3[r,s] ∀r,s ∈ H

Figure 3.4: Modified Data Flow Equations



Chapter 4

Subset Based Analysis

Sometimes data structures include auxiliary fields that are useful for traversing the data

structure for debugging or diagnostic purposes. The presence of such fields, however can

result in the more conservative shape. To illustrate this we present the following example

.

4.1 Motivating Example

Example 4. Consider the code segment in Program. 4.1 which has functions for searching

data in a binary tree and inserting node into the same. The fields of structure Node, which

is used to realize the functions, are also shown. The structure Node has three field pointers

Left, Right and Parent. In the insert function we can see a cycle getting created due

to the lines S5 and S6. Take a look at Fig: 4.1 to see how the field sensitive analysis also

gets the shape of p and s as a cycle at that point.

Now in the search function, the Parent pointer is not at all used, so ideally the shape

that is actually traversed inside the search function is a Tree. But as the function is called

with the root of the tree, whose shape gets evaluated to Cycle in the insert function, we

infer that the shape of the root as Cycle in the search function as well even though the

parent link is never been traversed.

For the above case, unlike the Field Sensitive Analysis, Subset Based Analysis can

identify the shape as Tree by considering the fields used by a function and using only

those fields to infer the shape. Subset based analysis is a way in which only a subset of

field pointers accessed in a function are used to get more precise shape information. We

now present the details of the analysis.

4.2 Analysis

The Field Sensitive Analysis needs to be modified slightly for the subset based analysis

to occur. During pre-processing of code, we parse each function separately and create a

28
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Program 4.1: Motivating Example

Struct Node {

Struct Node *Left,*Right,*Parent;

int key;

};

typedef Struct Node Node;

bool search(Node *root,int key){

if(root)

return (key==root->key)||search(root->Left,key)||search(root->Right,key);

return 0;

}

void insert(Node *root,int key){

Node *s=root; //This pointer is used for traversing the Tree

..

//New node is inserted as a child of s(s can be any node of the tree)

Node *p;

S1. p=(Node *)malloc(sizeof(Node));

S2. p->Left=NULL;

S3. p->Right=NULL;

S4. p->key=key;

S5. s->Left=p;

S6. p->Parent = s;

..

}

set of fields associated with each of them. This set will contain all the field pointers that

are used at least once in the function. We use SF to denote the subset of fields used by

function F . For the functions present in Program. 4.1

Sinsert = { Left , Right , Parent }

Ssearch = { Left , Right }

During the evaluation of the boolean equations for function F , we restrict our analysis

to the fields that are present in SF . In this modified analysis when we reach a statement in

F we have to modify the evaluation of equations according to the following rules.

Any boolean equation would generally contain the terms like fpq, DF [p,q], IF [p,q].

We replace each of the these terms by f #
pq,D

#[p,q], I#[p,q] respectively. Now lets under-

stand what each of these terms mean.

• f #
p,q : This term will have a value as False if f is not accessed at any point in function

F , i.e f 6∈ SF If its present then the value is same as that of fp,q

f #
p,q =

{

fp,q f ∈ SF

False Otherwise
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After Le f tp,t Parentt,p

S1 false false

S2 false false

S3 false false

S5 true false

S6 true true

(a) Boolean Variables

After DF IF

Stmt

S1

p s

p ε /0

s /0 /0

p s

p {(ε,ε)} /0

s /0 /0

S2

p s

p ε /0

s /0 /0

p s

p {(ε,ε)} /0

s /0 /0

S3

p s

p ε /0

s /0 /0

p s

p {(ε,ε)} /0

s /0 /0

S5

p s

p ε /0

s {Le f tD} /0

p s

p {(ε,ε)} {(ε,Le f tD)}

s {(Le f tD,ε)} /0

S6

p s

p ε {ParentD}

s {Le f tD} /0

p s

p {(ε,ε)} {(ε,Le f tD),(ParentD,ε)}

s {(Le f tD,ε),(ε,ParentD)} /0

(b) Direction (DF ) and Interference (IF ) matrices

Heap Pointer Boolean Equations

pcycle { (Parentp,s∧False) ∨ (Parentp,s∧ (|D[s, p]|>= 1)) } ∨ { Le f ts,p ∨ (|D[p,s]|>= 1) }
pdag { (Parentp,s∧ (|I[p,s]|> 1)) }
scycle { Parentp,s∧ (|D[s, p]|>= 1) } ∨ { (Le f ts,p ∧False) ∨ (Le f ts,p ∧ (|D[p,s]|>= 1)) }
sdag { (Le f ts,p ∧ (|I[s, p]|> 1)) }

(c) Boolean Equations after S6

Figure 4.1: Data Flow Values at each statement for Program. 4.1

• D#[p,q] : It contains the first field of all the paths that start from p and end at q

except those whose first fields are not present in SF . In other way this is nothing but

the difference of the contents of D[p,q] and the set of all first fields for the paths

from p to q whose first fields are not present in SF .

D#[p,q] = D[p,q]−
⋃

f∈F , f 6∈SF

{D[p,q]⊲f}

• I#[p,q] : Very similar to the way how D#[p,q] was defined this term is also defined.

I#[p,q] = I[p,q]−
⋃

f∈F , f 6∈SF

{I[p,q]⊲f}
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After making all these replacements we evaluate the equation to get the shape. Now

that we have all the details about the analysis, lets look at how it works for the above

mentioned motivating example.

Example 5. The function search would be called with the root of the Tree as the param-

eter. In Program. 4.1 that the variable root is assigned to s in the insert function. So at

the end of the insert function whatever boolean equation s would have, root also would

have the same except replacing every s by root in the equation. Actually the insert func-

tion may be recursive or iterative, if we consider the equation of s at the end of complete

insert function it would be very large and explaining would be a lot difficult. So we have

considered the equation only at the end of statement S6. From Fig: 4.1(c). the the boolean

equation of root is derived as

rootcycle = {Parentp,root ∧ (|D[root, p]|>= 1)}∨{(Le f troot,p ∧False)∨

(Le f troot,p ∧ (|D[p,root]|>= 1))}

rootdag = {(Le f troot,p ∧ (|I[root, p]|> 1))}

Even with the dataflow values concerning the Boolean variables, Direction and Inter-

ference matrices, root would have the same values corresponding to that of s at the end of

statement S6. Hence at the start of search function Le f troot,p = True,Parentp,root = True

while the matrices are as given below.

D p root

p ε {ParentD}

root {Le f tD} /0

I p root

p {(ε,ε)} {(ε,Le f tD),(ParentD,ε)}

root {(Le f tD,ε),(ε,ParentD)} /0

Before going into the search function we need to know the small change this function

undergoes when represented in intermediate form(GIMPLE) on which the analysis takes

place. The function would transform to

bool search(Node *root,int key){

Node *temp1,*temp2;

int tempInt;

St1: temp1=root->left;

St2: temp2=root->right;

tempInt=root->key

if(root)

return (key==tempInt)||search(tmep1,key)||search(temp2,key);

return 0;

}

At the statement St1 first time the boolean equation will be evaluated for this function.

We are not considering the evaluation after St2 because it would be done in the same way

as that of St1. As temp1
gen
Cycle = rootin

Cycle and temp1kill
Cycle = temp1in

Cycle, temp1out
Cycle is same

as rootin
Cycle. Now lets look at each term in rootin

Cycle and find what it evaluates to in the
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subset based analysis.

Parent#
p,root = False (Parent 6∈ SSearch)

Le f t#
root,p = Le f troot,p (Le f t ∈ SSearch)

D#[root, p] = D[root, p]−D[root, p]⊲Parent

= D[root, p]−φ

= {Le f tD}

D#[p,root] = D[p,root]−D[p,root]⊲Parent

= D[p,root]−{ParentD}

= φ

Substituting these above values in the equation of rootin
Cycle would result in False. In the

similar way when we try to evaluate rootin
Dag it would give us False, thus rightly detecting

the shape of data structure traversed as Tree.

Note that the subset based analysis increases the precision at the cost of extra compu-

tation required to compute D#, I# and f #. Due to the lack of sufficient benchmarks its not

very clear to us if and when this overhead can be threat by the gain in precision. More

work is required to evaluate this trade off.



Chapter 5

Inter Procedural Analysis

Every programmer knows the importance of procedures and how vastly they are used in

programs, so for any analysis to be effective handling procedures is very important. Just

going by intra procedural analysis causes lot of information loss because we have to make

worst case assumptions at the time of function calls. In Inter procedural analysis we have

to take care of call-return, parameter passing local variables, recursion etc. apart from the

work done in intra procedural analysis.

There are two variants of Interprocedural analysis, Context Sensitive and Context In-

sensitive. In Context Sensitive only interprocedural valid paths are considered during the

data flow unlike Context insensitive in which some invalid paths also may be considered.

Lets look at a small example.

Example 6. Consider a program in which main function has 2 call statements for the

function p1. Fig: 5.1(a) is a global control flow graph containing control flow graph of

both procedures and considering each call statement as a goto from that statement to the

start of the called procedure, similarly treating each return statement as goto from that

statement to the instruction following the call statement by which this function was called.

Just for the sake of clarity we have introduced return blocks after each call statement.

Let the data flow values available just before the call statement c1 is df1 and that

before c2 be df2. So df1 and df2 would be entering the function p1 when called at c1,

c2 respectively. Similarly let the corresponding data flow values released out of function

be df1’ and df2’ respectively. If we notice the edges between the functions main and p1,

there is a path c1, Enter p1, Exit p1, return p1 (i.e. the block below callblock c2);

which is not followed in any execution sequence and hence it is not an inter procedurally

valid path. When such paths are considered during data flow imprecise data is obtained

leading to imprecise results. Such an analysis called Context Insensitive, and the analysis

becomes Context Sensitive when we don’t consider such invalid paths.

Fig: 5.1 is a global control graph of small program, but in real life applications the size

of this graph may become very large, so scalability and efficiency get more importance

in Inter Procedural Analysis. Hence for some problems a compromise may be required

33
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between precision and efficiency. We also discuss how our analysis goes about these

compromises. In the next few sections we discuss in detail about one of the context sen-

sitive approach, Callstring method and a newly proposed method called shape sensitive

approach.

Enter main

c1 : CALL  p1( )

return   p1( )

c2 : CALL  p1( )

Exit main

set of stmts

Enter p1

set of stmts

return 

Exit p1

return   p1( )

Enter main

c1 : CALL  p1( )

return   p1( )

c2 : CALL  p1( )

Exit main

set of stmts

Enter p1

set of stmts

return 

Exit p1

return   p1( )

c1:df1 , c2:df2

df1

df2

c1:df1’ , c2:df2’

df1’

df2’

(a) (b)

Figure 5.1: Global control flow graph

5.1 Callstrings Based Approach

Callstring Method is one of variants of Context Sensitive Interprocedural Analysis in

which along with the data flow values a callstring is also propagated. This method of

analysis was proposed by Sharir et .al [MS76]. Callstring at any program point means

the sequence of unfinished procedure calls reaching that point starting form the main

functions entry. This new tagged information will make the inter procedural analysis

explicit, so at return statements information can be validly propagated. The data flow

information at any program point looks like

< Call String cs: Data Flow value d >

We can notice this representation in Fig. 5.1(b). Since we know to which call site df1

and df2 belongs to, during the exit from function p1, we can be sure of sending a data

flow value to its correct call site. As seen in the figure, df1’, df2’ are sent to c1,c2

respectively. In this approach only inter procedurally valid paths are used for data flow
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transfer hence giving more precise results. But the problem with this approach is that we

have to keep the dataflow values for each callstring in the memory, leading to increased

memory consumption.

Lets discuss an overview of the implementation of call string based interprocedural

Field Sensitive analysis. First we process the Control flow graph. We create separate

basic blocks for call statements and also add a new basic block just below call block,

i.e. the return block. Then we initialize the global and local worklist’s; global worklist

contains functions and separate local worklist’s are present for each function which holds

basic blocks. For handling termination of call string construction we use the method

proposed in [KMR11].

[KMR11] use value based termination of call strings. In order to adopt that approach

we used a call string map, that is present at the start block of each function and maps those

data flow tuples whose call string’s are different but data flow values are same . In a way

what we are doing is discarding redundant call strings at start of a function. Consider two

call strings σ1 and σ2 with same data flow values at the start of some function, both of

them need not be propagated inside because both of them will anyway undergo the same

transitions and generate the same output data flow values at the end of function. So we

pass only, say the data flow value associated with σ1, it undergoes some transitions inside

the function and some dataflow is output at the end of the function. This dataflow value is

directly copied into the dataflow value associated with σ2 at the end of function and this

saves us from processing the same dataflow value associated with σ2 again.

As mentioned above the memory consumption is more because we have to maintain

separate set of data flow values for each callstring. This problem with memory is quite an

issue in the field sensitive analysis because when we ran the analysis even on a program

like merging of linked list recursively [Pav10] the analysis couldn’t complete because of

large memory consumption. Hence we have moved from Context sensitive to Context

insensitive. Though Context insensitive approach takes less memory the accuracy will

decrease which is a trade off we have to make. Further study has to be made about how

to design a memory efficient context sensitive analysis for this shape analysis technique.

5.2 Shape Sensitive Approach

In Context Insensitive analysis we have to compromise on accuracy and in Context Sen-

sitive analysis we have to compromise on memory consumption, so if we could find some

sort of a middle way approach of both of these, that would be a good gain where both ac-

curacy and memory are optimized. Keeping that in mind we proposed the Shape Sensitive

approach.

Lets consider the following scenario in Context Insensitive Analysis. Let we have a

function with parameter as a heap pointer. The data flow values present at the start of

the function when it was called the first time be DF1. At that point shape of that heap
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pointer is a cycle. After a few statements again this function is called and the incoming

dataflow values is DF2, let the shape of the same heap pointer now be a tree. Since

its a context insensitive approach the data entering the function would be DF1 ∪ DF2.

This also contains DF1 which was responsible for cycle being detected at the first time

the function was called. So there is a good probability that now also the shape may be

inferred as a cycle even though it’s not.

So one natural thought that emerges is keep a separate set of data flow values for each

shape at the start of functions. This is what we call shape sensitive method of context

merging. Here what we do is, based on the shape of those heap pointer arguments at that

point of function call, merging of call contexts happen. Lets look at this concept by using

a small piece of code and later we will show the comparison of this approach with context

insensitive approach.

Example 7. Consider a function with one parameter which is a heap pointer, the shape

of the node pointed to by this can be a TREE, DAG or a CYCLE. For such a function we

associate an array of data flow values of size three. Let that array be denoted by IN[3].

IN[0] denotes that data flow values incoming when the shape at that heap pointer is a

TREE, IN[1] when shape is a DAG and IN[2] when shape is CYCLE. So in the similar

way if the number of heap pointer parameters are n then size of its corresponding IN

would be 3n . This size can be adjusted accordingly depending on compromise between

precision and memory.

We also maintain an OUT of the same size as IN which has the data flow values at

the end of that function for its corresponding IN. Now if we look at the sample code given

below, the number of parameters is one so size of IN is three. At c1 the shape of the

parameter p is a cycle so the incoming values into that function are fed to IN[2] and

when the function is returned OUT[2] is updated. Now at c2 the shape of p is a TREE so

this time IN[0] and OUT[0] are updated.

struct Node

{

struct Node *f,*g;

};

void foo(struct Node *s)

{

struct Node *t;

S: t=s;

....

}

int main()

{

struct Node *p,*q;

p=(struct Node *)malloc(sizeof(struct Node));

q=(struct Node *)malloc(sizeof(struct Node));

S1: p->f=q;

S2: q->f=p;

c1: foo(p);

S3: q->f=NULL;

c2: foo(p);

}

Comparison with Context Insensitive: In Context Insensitive analysis, we maintain

an INmap and OUTmap foreach function, and if the incoming data flow values to the
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DF p q s

p {ε} { f D} {ε}

q { f D} {ε} { f D}

s {ε} { f D} {ε}

IF p q s

p {(ε,ε)} {( f D,ε),(ε, f D)} {(ε,ε)}

q {( f D,ε),(ε, f D)} {(ε,ε)} {( f D,ε),(ε, f D)}

s {(ε,ε)} {( f D,ε),(ε, f D)} {(ε,ε)}

(a) C1:IN[2]

DF p q s

p {ε} { f D} {ε}

q { f D} {ε} { f D}

s {ε} { f D} {ε}

IF p q s

p {(ε,ε)} {( f D,ε),(ε, f D)} {(ε,ε)}

q {( f D,ε),(ε, f D)} {(ε,ε)} {( f D,ε),(ε, f D)}

s {(ε,ε)} {( f D,ε),(ε, f D)} {(ε,ε)}

(b) C1:INmap

DF p q s

p {ε} {ε}

q {ε}

s {ε} {ε}

IF p q s

p {(ε,ε)} {(ε,ε)}

q {(ε,ε)}

s {(ε,ε)} {(ε,ε)}

(c) C2:IN[0]

Figure 5.2: Data Flow Values at Function Calls

function is a subset of present INmap we just pass the OUTmap without processing the

function. Otherwise we update the INmap by merging incoming dataflow values with

previous INmap and process the function. We will now compare the INmap and IN array

of both context insensitive and context sensitive approaches and see how the shape is

effected at statement S.

At c1 the data flow values at the start of function foo are those in Fig. 5.2(a), since

shape of p at that call statement is a cycle, so it is assigned to IN[2]. Even if we go by

context insensitive it would be the same as shape sensitive given in Fig: 5.2(b) denoted

by INmap. At statement S3 cycle gets killed, hence at c2, during shape sensitive analysis,

IN[2] will remain the same as that for c1, but now IN[0] is newly created. Just by seeing

Fig. 5.2(c) we can see that it correctly shows the shape at statement S as a TREE. Now

if we come to context insensitive, the new INmap during processing of c2 is the union of

previous INmap i.e what’s present in Fig. 5.2(b) and current incoming data flow values,

which same as that present in Fig. 5.2(c). So even after merging the INmap would same

as earlier. Now just compare Fig. 5.2(b) and Fig. 5.2(c). According to Fig. 5.2(b) there is

a path from p to q via field f and also from q top via f but not according to Fig. 5.2(c)

This clearly shows that inside the function foo after c2 shape of p,q and s are identified

as cycle for context insensitive approach, but shape sensitive conveys the correct shape i.e

TREE.

It was told earlier that size of the IN array for each function should be 3n when the

number of heap parameters are n for a function, but that is not a compulsion. We can

vary the size depending on the preciseness and memory handoff. For example even for

a function with 3 parameters (all of them are heap pointers) we can keep the size of the
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array as 3, where IN[0] is used when any of the parameter is cycle, IN[1] when none

of the parameter is a cycle and at least one is a dag and IN[2] when all of them points

to a tree. If we go by 3n then the size of the array would be 9, but now its 3. Though

the memory required now is less, information would be accurate in the former case than

latter. So the way we choose this depends on the constraints we have in terms of memory

and preciseness.



Chapter 6

Implementation And Results

The Interprocedural Field Sensitive Shape Analysis is implemented as a plugin which

adds this analysis as one of the passes in GCC. In the first section a few details about

GCC internals are given. Then in the last three sections testing strategy, optimizations

and results are discussed.

6.1 GCC Internals

PLUGINS: Plugin’s make the developer add new features to the compiler without mod-

ifying the compiler itself. It is a way of adding, removing and maintaining modules

independently. This feature is available from gcc 4.5 and later versions only. Before we

discuss plugins, we present some basic information about GCC architecture.

The GCC architecture has many passes in it each being either a GIMPLE, IPA (In-

terprocedural Analysis) or RTL(Register Transfer Language) pass. So whenever we want

to add a pass in GCC we need to talk to the pass manager which is located in three files

’passes.c’, ’tree-optimize.c’ and ’tree-pass.h’ and in some way these files need to be mod-

ified. And once modified we need to build the entire GCC so as to get the pass included

in GCC.

But as GCC code base is a very large so it would take lot of time to build each time we

change our pass source code. At this point plugins make our life easy. Using plugins we

will be able to write a shared object (.so) file that can be loaded into GCC and attached to

various stages of compilation without touching the GCC source code, hence no need of

compiling gcc source every time.

TREE: Tree is the central data structure used by GCC in its internal representation. It

can point to a lot of types and to know the particular type we need to refer TREE CODE

macro. Each Tree usually have two fields named TREE CHAIN and TREE TYPE. While

TREE CHAIN contains the pointer to next tree (where all the Tree’s are arranged in a

singly linked list fashion), TREE TYPE has information about Type or declaration.

39
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Program 6.1: Code to identify pointer statement p = NULL

if(is_gimple_assign(stmt))

{

tree lhsop=gimple_tree_lhs(stmt)

tree rhsop1=gimple_tree_rhs1(stmt);

tree rhsop1 = gimple_assign_rhs1 (stmt);

int lhsCode=TREE_CODE(lhsop);

int rhsCode=TREE_CODE(rhsop1);

if((lhsCode==VAR_DECL || lhsCode==PARM_DECL) && rhsCode1==INTEGER_CST)

{

if(POINTER_TYPE_P(TREE_TYPE(lhsop)) &&

(TREE_CODE(TREE_TYPE(TREE_TYPE(lhsop))) == RECORD_TYPE))

return TRUE;

return FALSE;

}

}

GIMPLE: Our analysis is performed on the GIMPLE statements which are generated

by gcc in its compilation process. Whenever GCC receives a source file say C source

code, the GCC frontend invokes the gimplifier for each function which converts the source

code to GIMPLE, which is understood by language independent parts of the compiler. Its

actually a 3-address representation with at max one load/store per statement, with memory

loads only in RHS and store in LHS of assignment statements.

All the GIMPLE statements that are present in a basic block are in the form of a

doubly linked list. Any manipulation to be done on them require iterators provided by

GCC. Our analysis is written as an Inter procedural gcc plugin which operates on the

callgraph. In our analysis we need to identify whether a particular statement is one among

the basic pointer statements. The example code in Program 6.1 gives us the details about

identifying heap manipulation statement p = NULL;. Similarly the other types of pointer

statements are also identified.

6.2 Implementation

Lets have an overview of the plugin that inserts this analysis as a pass in GCC. First it

finds out what are the heap pointers present in the input program and then accumulates

information about its properties like its type, to which struct or union its pointing, fields

present in that data type etc. Along with heap pointers, field pointers are also identified

whose properties are stored. Field pointers are pointers to some struct or union but is

also a member variable of some struct or union. After this we parse all the GIMPLE

statements one by one and check if it is one of the basic statements. If the identified

statement is a pointer assignment statement a new dummy statement (as discussed in
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Chapter 3) is inserted before it. Also we modify the Control flow graph by inserting

callblocks and return blocks if necessary. Since the data flow values may change for any

of those statements, whenever any of those is encountered GEN and KILL are evaluated,

followed by calculation of OUT from IN, GEN and KILL in the usual way.i.e

OUT = GEN ∪ (IN−KILL)

All the equations for GEN and KILL of each statement are mentioned in Fig. 3.4. As

we have modified the Control flow graph initially before returning we restore the CFG to

its original form. The below pseudo code gives the flow of the implementation. In the

begin

gatherHeapandFieldPointers();

preprocess_CFG();

shapeAnalysis();

restore_CFG();

end

function shapeAnalysis the actual identification of shape is done. This is implemented

as a worklist based interprocedural analysis, so whenever the worklist goes empty the

analysis is stopped.

Now we will discuss the data structures used to contain the data flow values. The

Direction Matrix and Interference Matrix are represented as an adjacency matrix with

each cell being a pointer to nested structures. These were designed in such a way to

handle all the possible values that can be present in each cell. The boolean equations are

represented as character strings. This representation leads to huge memory consumption

as we need to store them at each program point. Also the size of equation grows with the

program, thus taking more time to evaluate. We have tried to resolve these problems to

some extent by performing some memory and time optimizations.Next we discuss some

memory and time optimizations performed.
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6.2.1 Storing of boolean equations

Consider the control flow graph in Fig: 6.1(a) which represents a program containing

if-else statements.

INeq(S1) = OUT eq(bb0)

INeq(S2) = OUT eq(bb0)

OUT eq(S1) = GENeq(S1)∪ (INeq(S1)−KILLeq(S1))

OUT eq(S2) = GENeq(S2)∪ (INeq(S2)−KILLeq(S2))

OUT eq(bb1) = OUT eq(S1)

OUT eq(bb2) = OUT eq(S2)

INeq(bb3) = OUT eq(bb1)∪OUTeq(bb2)

Both OUT eq(bb1) and OUT eq(bb2) have a copy of OUT eq(bb0) in them, so INeq(bb3)

also has two copies of it. This may seem very little amount of redundancy but actually for

a large program this would become a very big problem.

Instead of storing two copies of the same equation we can save memory by storing the

equation at some place and just store pointers to that equation. So now both OUT eq(S1)

and OUT eq(S2) will not have the copies of OUT eq(bb0) in it but just the pointers to them.

For this optimization to occur we should keep all the data flow boolean equations at each

statement. But just doing this change isn’t enough. Lets look at Fig: 6.1(b) for the issue

with this. This figure shows us a small part of CFG of a program containing while loop.

First time we process S1, S2,as discussed just above, we will be keeping their cor-

responding boolean equations. There is a very good chance that boolean equation at S2

has a pointer to the boolean equation at S1. Now this information is passed to bb1 which

gets passed to S1 itself. As we are storing the equation again we will be overwriting the

already present boolean equations with the current incoming equations, causing loss of

information. The similar case can occur in recursive programs too. In order to avoid this

we have to keep versions of this equations, and keep track of the version number when

pointing to boolean equations. This change significantly reduces the amount of memory

consumption.

6.2.2 Time optimization

Initially when we just stored the boolean equation as it is and for that the time taken for

the analysis of merge recur to complete was 4 hrs. But later we realized that, during

the evaluation of boolean equation we are converting it to postfix, it is effective to store

the postfix equation itself instead of infix. After this change the time for the analysis of

merge recur reduced to 2 hrs.

We have just seen in the above subsection that there may be repetitions of terms in the
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  S1:p->f=q   S2:q->f=p

S

S’

bb0

bb2bb1

bb3

bb1

bb2

bb3

S1
S2

(a) (b)

Figure 6.1: CFG example

boolean equations when conditional, looping or recursion is present in programs. Careful

analysis of the equation for some sample programs made us notice that the time taken to

evaluate these repeated terms can be cut down if we store their results in some hash table

and reuse whenever repetition occurs. This has reduced the time taken drastically, and the

analysis of merge recur comes down to 35 seconds.

6.3 Testing Strategy

We all know how important testing is in order to determine whether we are meeting our

required results. In our analysis with the source code spanning close to 12000 LOC and a

vast range of possible testcases, an efficient testing strategy is a must.

We have written a script that could generate us many unit testcases depending on the

number of statements that we want to have in our test case. A sample template of how our

testcase looks is presented in Program 6.2

It is at those dotted lines that our pointer statements will be inserted. You could see

in the template that the number of heap pointers are 2 and number of field pointer are 2.

With these properties the number of possibilities for each statement is 42, some of the

possible statements are p → f = q,p → g = q → f , p → f = malloc(), p = NULL and so

on. If we increase the number of heap pointers or field pointers the possibilities for each

statement would further increase. The number of test cases generated for different num-

ber of statements is given in the Table. 6.3 Once we have generated the testcases we run

GHIYA’s analysis and our analysis and compare the results for each. By comparison we

mean comparing the shape of each pointer after each GIMPLE statement. Based on the

comparison we put the test case in one of the three categories: PASS, SAFE, FAIL/AC-

CURATE.
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Program 6.2: Unit Testcase Template

#include <stdlib.h>

int main()

{

typedef struct _node node;

struct _node {

node* f;

node* g;

};

node* p = (node*)malloc(sizeof(node));

node* q = (node*)malloc(sizeof(node));

/* HEAP MANIPULATION STARTS */

.......

.......

/* HEAP MANIPULATION ENDS */

}

No Of Stmts TestCases Generated

1 42

2 1764

3 74088

Table 6.1: No Of TestCases

• PASS : GHIYA’s analysis and our analysis gives the shape information at all state-

ments

• SAFE : GHIYA’s analysis is more accurate than us, .i.e for example if our analysis

infers the shape as CYCLE, then Ghiya will infer more precise shapes like DAG or

Tree.

• FAIL/ACCURATE : Our analysis gives less conservative shapes than GHIYA. If

this happens then there could be two scenarios: either we are giving accurate results

or we are giving incorrect results. All the testcases present in this case are checked

manually we ensure that we are not getting any fail cases.

6.4 Results

This section contains details about how would the Field sensitive analysis performs in

terms of accuracy and performance when run on different benchmarks. We also give

results when this analysis is run on unit test cases. Every time we compare the results

with Ghiya method [GH96]. Ghiya’s shape analysis is also implemented as a GCC plugin
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TestCases Pass Safe Accurate

Before

ml-1

ml-2

ml-2-if

ml-2-while

ml-3

42

1572

1764

1108

51854

0

24

0

452

6864

0

168

0

204

15370

After

ml-1

ml-2

ml-2-if

ml-2-while

ml-3

42

1612

1764

1452

58444

0

0

0

0

0

0

152

0

312

16202

Table 6.2: Unit test cases results

which does context insensitive shape analysis. First we will look at how the analysis per-

forms on the unit test cases (about which we explained in earlier section) and later we will

show its performance on List benchmarks followed by one of the olden benchmark. The

configuration of the machine used for the generation of results are 2 GB RAM, Pentium

Dual Core, 2.10Ghz.

Unit Test cases: The details about these Unit Test cases are already given in the previous

section. All these test cases are compared with Ghiya’s analysis. Here a comparison is

done on how the results have varied before and after all the enhancements mentioned in

Chapter 3 were included. They are given in the Table 6.2.

We have already mentioned about the script used to generate these unit test cases,

these test cases can have any number of heap manipulation statements as we desire. All

those test cases with one heap manipulation are said to be ml-1, those with two as ml-2 etc.

Referring to template Program 6.2, in the area where the heap manipulation statements are

to be inserted, for ml-while and ml-if type test cases, while and if conditional statements

are put. The template for these two are given below. The statement p = null was added

just to find the shape after these conditionals are executed.

statement 1

while (condition){
statement 2

}
p = null;

if (condition)

statement 1

else

statement 2

p = null;

(a)ml-2-while (b)ml-2-if

The meaning of terms Safe,Pass,Accurate are already explained in the previous

section,but still just to reiterate.

• Safe : The shape inferred by Ghiya’s analysis is more precise than that inferred by

Sandeep’s
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• Accurate: The shape inferred by Sandeep’s analysis is more precise than that in-

ferred by Ghiya’s

• Pass : The shape inferred is same by both the analysis.

When we look at the ml-2 results the number of Accurate cases were more initially

than there were after the enhancements. Though this was the case here we were able to

reduce the Safe cases to 0 sacrificing some of the Accurate cases. One such case is

already mentioned in the Chapter 3’s last part about Information passed to successors. In

ml-2-while there is a significant improvement in how the results turned out, the same can

be noticed in ml-3.

Now with all these changes we can say that in all these cases Sandeep’s analysis

is better than Ghiya’s as there is not even a single safe case among all of them. You can

clearly understand this by seeing the entries of column Safe which contains 0 throughout.

List benchmarks: We have also ran the analysis on Linked List benchmarks, source

of which is [Pav10]. These benchmarks contains all the important operations that could

be performed on linked list. We find the shape of each heap pointer at each basic state-

ment, then we sum the number of times Tree’s are detected, similarly number of times

Dag’s and Cycle’s are detected. This triple (Tree,Dag,Cycle) is used for comparison of

results.

The results are present in Table 6.3. The last column tells whether the field sensitive

performs better than Ghiya’s analysis or not in the particular benchmark. A blank entry

means that both gave the same results. Also the meaning of $ and # are explained in the

table.

Olden Benchmarks [Car95]: We ran the analysis on the benchmark TreeAdd, there

are several other benchmarks which belong to this set, but due to the problem of large

memory consumption we were not able to run those benchmarks. Results on this bench-

mark are given in Table 6.4.

As you can see there are eight of List benchmarks where the results are better than Ghiya’s

analysis. Also there are seven List benchmarks and the TreeAdd benchmark for which the

results are not as good as Ghiya. The main reason for the reduction in the preciseness is

the dummy statement. As this statement doesn’t kill any information, summarization

of nodes takes place. It means that a pointer will be having having data flow values

about more than one node. Some of the recursive benchmarks like create recur and re-

move recur when ran on context sensitive interprocedural analysis, gave results same as

that of Ghiya, but we were not able to run it on all of the benchmarks because of exces-

sive memory consumption. If we could come up with a memory efficient context sensitive

analysis the results would surely improve.
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Benchmark Ghiya’s Analysis Field Sensitive Result

Shape Time(Sec) Shape Time(Sec)

100 create iter.cpp (30,0,0) 0 (30,0,0) 0.179

100 create recur.cpp (36,0,0) 0 (22,0,14) 0.147 #

200 delall iter create fixed.cpp (168,0,0) 0 (168,0,0) 1.385

200 delall iter create iter.cpp (63,0,0) 0 (63,0,0) 0.644

200 delall recur create fixed.cpp (12,0,0) 0 (12,0,0) 0.093

200 delall recur create iter.cpp (56,0,0) 0 (56,0,0) 0.502

300 insert iter create fixed.cpp (341,19,0) 0.002 (343,17,0) 8.945 $

300 insert iter create iter.cpp (161,19,0) 0.002 (163,17,0) 5.018 $

300 insert recur create fixed.cpp (225,0,27) 0.001 (225,0,27) 3.147

300 insert recur create iter.cpp (113,0,27) 0.001 (113,0,27) 2.266

400 remove iter create fixed.cpp (314,0,26) 0.001 (318,22,0) 3.787 $

400 remove iter create iter.cpp (154,0,26) 0.001 (177,3,0) 3.363 $

400 remove recur create fixed.cpp (243,0,18) 0.001 (234,0,27) 2.932 #

400 remove recur create iter.cpp (108,0,18) 0.001 (99,0,27) 1.766 #

500 search iter create fixed.cpp (168,0,0) 0 (168,0,0) 1.225

500 search iter create iter.cpp (63,0,0) 0 (63,0,0) 0.596

500 search recur create fixed.cpp (208,0,0) 0 (208,0,0) 2.123

500 search recur create iter.cpp (88,0,0) 0 (88,0,0) 1.229

600 append iter create fixed.cpp (358,6,0) 0.002 (349,15,0) 4.462 #

600 append iter create iter.cpp (163,6,0) 0.001 (154,15,0) 3.239 #

600 append recur create fixed.cpp (354,0,38) 0.002 (342,0,50) 5.641 #

600 append recur create iter.cpp (144,0,38) 0.002 (132,0,50) 3.886 #

700 merge iter create fixed.cpp (311,0,109) 0.005 (311,0,109) 670.033

700 merge iter create iter.cpp (242,0,142) 0.007 (242,0,142) 318.464

700 merge recur create fixed.cpp (498,0,114) 0.006 (498,0,114) 33.446

700 merge recur create iter.cpp (228,0,114) 0.006 (228,0,114) 22.446

800 reverse iter create fixed.cpp (233,0,47) 0.001 (241,0,39) 7.179 $

800 reverse iter create iter.cpp (83,0,47) 0.001 (91,0,39) 3.707 $

800 reverse recur create fixed.cpp (499,0,62) 0.004 (489,0,72) 13.408 $

800 reverse recur create iter.cpp (244,0,62) 0.003 (234,0,72) 8.285 $

$-Field sensitive analysis is more precise #- Ghiya’s analysis is more precise

Table 6.3: Comparison On List Benchmark
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Benchmark Ghiya’s Analysis Field Sensitive Result

Shape Time(Sec) Shape Time(Sec)

TreeAdd (63,0,0) 0.001 (30,0,24) 1.2 #

Table 6.4: Olden: TreeAdd benchmark

Coming to the time taken, we evaluate the boolean equation of each heap pointer

and each basic statement; and as the size of the boolean equations also can be large, the

time it takes is much more compared to other analysis. Still effort is needed to reduce

this by finding any optimizations possible or change the way the boolean equations are

represented.



Chapter 7

Conclusion and Future Work

In this report we have suggested several enhancements to Sandeep’s work on Field Sensi-

tive analysis which ensure the correctness and increase the accuracy of the analysis. Now

after these changes the analysis is better than Ghiya’s work in all those unit test cases

described. We have also introduced a new analysis called subset based analysis which

infers shape based on the subset of fields actually accessed inside a function. This helps

us inferring information like a function is traversing/accessing a tree substructure of a

cyclic data structure. We also proposed a shape sensitive inter procedural analysis which

is in mid way of context sensitive and context insensitive analysis and could possibly bal-

ance the memory consumption and preciseness at the same time. We have also performed

various optimizations with the aim of decreasing the memory consumption and time for

completion. The testing strategy used is exhaustive and has helped a lot in identifying the

cases of safe and incorrect results.

There are some benchmarks where the results are not as good as Ghiya’s, these are

due to the summarization of heap nodes due to the dummy statement. In the future we

plan to work on this issue. The analysis has concerns over the amount of memory it takes

even after the optimizations performed. We want to address this concern by representing

boolean equations in much efficient way.
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Appendix A

Analysis of Ghiya [GH96]1

A large part of the definitions and terms used in this chapter are borrowed from aforemen-

tioned paper.At each program point they compute three abstractions that work together to

find shape information.For each heap pointer they approximate the attribute shape and di-

rection,interference relationships are approximated for each pair of heap directed pointers.

Those three abstractions are given below

Definition 3. Given any heap-directed pointer p, the shape attribute p.shape is Tree,

if in the data structure accessible from p there is a unique (possibly empty) access path

between any two nodes (heap objects) belonging to it. It is considered to be DAG (directed

acyclic graph), if there can be more than one path between any two nodes in this data

structure, but there is no path from a node to itself (i. e, it is acyclic). If the data structure

contains a node having a path to itself, p.shape is considered to be Cycle. Note that as

lists are special case of tree data structures, their shape is also considered as Tree.

Definition 4. Given two heap directed pointers p and q, the direction matrix D captures

the following relationships between them:

• D[p,q] = 1 : An access path possibly exists in the heap, from the heap object pointed

to by p, to the heap object pointed to by q. In this case we simply say that the pointer

p has a path to pointer q.

• D[p,q] = 0 : No access path exists from the heap object pointed to by p to the heap

object pointed to by q.

Definition 5. Given two heap directed pointers p and q, the direction matrix I captures

the following relationships between them:

• I[p,q] = 1 : A common heap object can be possibly accessed starting from pointers

p and q. In this case we state that pointers p and q can interfere.

1The contents of this section are borrowed from [GH96]
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(a) Heap Structure

D p q r s t u

p 1 1 0 0 0 0

q 0 1 0 0 0 0

r 0 0 1 0 0 0

s 0 0 1 1 1 0

t 0 0 0 0 1 0

u 0 0 1 0 0 1

I p q r s t u

p 1 1 0 0 0 0

q 1 1 0 0 0 0

r 0 0 1 1 0 1

s 0 0 1 1 1 1

t 0 0 0 1 1 0

u 0 0 1 1 0 1

(b) Direction Matrix (c) Interference Matrix

Figure A.1: Example Direction and Interference Matrices

• I[p,q] = 0 : No common heap object can be accessed starting from pointers p and

q. In this case we state that pointers p and q do not interfere.

Direction relationships are used to actually estimate the shape attributes, where the

interference relationships are used for safely calculating direction relationships.

Illustrative Example

The direction and interference matrices are illustrated in Fig. A.1. Part (a) represents a

heap structures at a program point, while parts (b) and (c) show the direction and interfer-

ence matrices for it.

We now demonstrate how direction relationships help estimate the shape of the data

structures. In Fig. A.2, initially we have both p.shape and q.shape as Tree. Further

D[q, p] == 1, as there exists a path from q to p through next link. The statement p→prev

= q, sets up a path from p to q through the prev link. From direction matrix information

we already know that a path exists from q to p, and now a path is being set from p to q.

Thus after the statement, D[p,q] = 1, D[q, p] = 1, p.shape = Cycle and q.shape = Cycle.
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q

p

next

q

p

next

D[q,p] = 1 D[p,q] = 0

p.shape = Tree

q.shape =Tree

D[q,p] = 1 D[p,q] = 1

p.shape = Cycle

q.shape = Cycle

p−>prev = q
prev

Figure A.2: Example Demonstrating Shape Estimation

Analysis of Basic Statements

They have considered eight basic statements that can access or modify heap data struc-

tures as listed in Fig. A.3(a). Variables p and qand the field f are of pointer type, variable

k is of integer type, and op denotes the + and − operations. The overall structure of the

analysis is shown in Fig. A.3(b). Given the direction and the interference matrices D and

I at a program point x, before the given statement, they compute the matrices Dn and In

at a program point y. Additionally, we have the attribute matrix A, where for a pointer p,

A[p] gives its shape attribute. The attribute matrix after the statement is presented as An.

For each statement they compute the set of direction and interference relationships it

kills and generates. Using these sets, the new matrices Dn and In are computed as shown

in Fig. A.3(c). Note that the elements in the gen and kill sets are denoted as D[p,q]

for direction relationships, and I[p,q] for interference relationships. Thus a gen set of

the form {D[x,y],D[y,z]}, indicates that the corresponding entries in the output direction

matrix Dn[x,y] and Dn[y,z] should be set to one. We also compute the set of pointers Hs,

whose shape attribute can be modified by the given statement. Another attribute matrix

Ac is used to store the changed attribute of pointers belonging to the set Hs. The attribute

matrix An is then computed using the matrices A and Ac as shown in Fig. A.3(c).

Let H be the set of pointers whose relationships/attributes are abstracted by the matri-

ces D. I and A. Further assume that updating an interference matrix entry I[q, p], implies

identically updating the entry I[p,q].

The actual analysis rules can be divided into three groups: (1) allocations, (2) pointer

assignments, and (3) structure updates. Figure A.4 shows the gen and kill sets correspond-

ing to each statement.
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Allocation

1. p = malloc();

Pointer Assignments

2. p = q;

3. p = &(q→f);

4. p = q op k;

5. p = NULL;

6. p = q→f;

Structure Updates

7. p→f = q;

8. p→f = NULL;

x

y

D   I   A

Statement

D   I   An n n

Build the new matrices

∀r,s ∈ H, Dn[r,s] = D[r,s], In[r,s] = I[r,s]
∀s ∈ H, An[s] = A[s]

Delete Killed relationships

∀entries D[r,s] ∈ D kill set, Dn[r,s] = 0

∀entries I[r,s] ∈ I kill set, In[r,s] = 0

Add generated relationships

∀entries D[r,s] ∈ D gen set, Dn[r,s] = 1

∀entries I[r,s] ∈ I gen set, In[r,s] = 1

Update shape attributes of affected pointers

Compute Hs and As

∀s ∈ Hs, An[s] = A[s]
(a) Basic statements (b) Analysis Structure (c) General Form of Analysis Rules

Figure A.3: The Overall Struture of the Analysis
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1. p = malloc();

D kill set = {D[p,s]|s ∈ H ∧D[p,s]} ∪
{D[s, p]|s ∈ H ∧D[s, p]}

I kill set = {I[p,s]|s ∈ H ∧ I[p,s]}
D gen set = {D[p, p]} I gen set = {I[p, p]}
Hs = {p} Ac[p] = Tree

2. p = q;

3. p = &(q→f);

4. p = q op k;

Kill set same as that of p = malloc();

D gen set f rom = {D[s, p]|s ∈ H ∧ s 6= p∧D[s,q]}
D gen set to = {D[p,s]|s ∈ H ∧ s 6= p∧D[q,s]}
I gen set = {I[p,s]|s ∈ H ∧ s 6= p∧ I[q,s]} ∪

{I[p, p]|I[q,q]}
D gen set = D gen set f rom ∪D gen set to

Hs = {p} Ac[p] = A[q]

5. p = NULL;

Kill set same as that of p = malloc();

D gen set = {} I gen set = {}
Hs = {p} Ac[p] = Tree

6. p = q→f;

Kill set same as that of p = malloc();

D gen set f rom = {D[s, p]|s ∈ H ∧ s 6= p∧ I[s,q]}
D gen set to = {D[p,s]|s ∈ H ∧ s 6= p∧ s 6= q ∧

D[q,s]} ∪{D[p,q]|A[q] =Cycle} ∪
{D[p, p]|D[q,q]}

D gen set = D gen set f rom ∪D gen set to

I gen set = {I[p,s]|s ∈ H ∧ s 6= p∧ I[q,s]} ∪
{I[p, p]|I[q,q]}

Ac[p] = A[q]

7. p→f = NULL;

D kill set = {} I kill set = {}
D gen set = {} I gen set = {}
Ac[p] = A[p] ∀p ∈ H

7. p→f = q;

Kill set same as that of p→f = NULL;

D gen set = {D[r,s]|r,s ∈ H ∧D[r, p]∧D[q,s]}
I gen set = {I[r,s]|r,s ∈ H ∧D[r, p]∧ I[q,s]}

Pointer q already has a path to p, D[q,p] = 1

Hs = {s|s ∈ H ∧ (D[s, p]∨D[s,q])}
D[q, p] ⇒ Ac[s] =Cycle ∀s ∈ Hs

A[q] = Tree

Hs = {s|s ∈ H ∧ (D[s, p]∨ I[s,q])}
(¬D[q, p]∧ (A[q] = Tree)) ⇒ Ac[s] = A[s]✶ Dag ∀s ∈ Hs

A[q] 6= Tree

Hs = {s|s ∈ H ∧D[s, p]}
(¬D[q, p]∧ (A[q] 6= Tree)) ⇒ Ac[s] = A[s]✶ A[q] ∀s ∈ Hs

Figure A.4: Analysis Rules
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