
QuickEval: An Interactive Tool for Coverage

Based Testing of Haskell Programs

A Thesis Submitted

in Partial Fulfillment of the Requirements

for the Degree of

Master of Technology (M.Tech)

by

Subhash P. Kale

Supervised By

Dr. Amey Karkare

Department of Computer Science and Engineering

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

June, 2012

ABSTRACT

We present QuickEval, a tool for Haskell programs that can be used to evaluate

and test the programs based on the coverage. QuickEval combines random testing

and program coverage. QuickEval can be used to execute a function with random or

user given input and finds out the unevaluated or unexecuted expressions of function.

This information can be used to generate new tests to cover unexecuted/uncovered

expressions until all the subexpressions of the function are covered. Thus, QuickEval

can be used to perform the unit testing and to achieve the desired coverage of pro-

gram. QuickEval can also be used effectively to perform the assignment evaluation

process as it can create the test suite automatically and also helps to evaluate the

function with all possible test cases which guarantees the proper evaluation of as-

signments. Coverage based testing also helps the developers to debug the programs

easily.

iii

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor Dr. Amey Karkare for his support

and encouragement. I thank him for providing an opportunity to work under his

guidance. Thanks for all technical discussions which added value to my technical

knowledge.

I thank all professors of CSE department for their insightful courses and giving

me wonderful learning environment. I thank all my friends for their encouragement

and support.

I am grateful to my parents for their enormous support and love. I want to thank

my brother Sachin, who encouraged me a lot over the years and always helped me

in taking the right decision.

Finally, I would like to thank IIT Kanpur, which provides such a magical envi-

ronment of friendship and great platform for research.

Subhash P. Kale

iv

Dedicated to

my parents and my brother.

v

Contents

1 Introduction 1

1.1 Why QuickEval? . 1

1.1.1 Need of a testing tool for Haskell 1

1.1.2 Need of a tool for assignment evaluation 2

1.2 Use of QuickEval . 2

1.3 Outline of the this report . 4

2 Background and Related Work 5

2.1 Programming Language Paradigms 5

2.2 Haskell . 6

2.3 Code Coverage . 7

2.4 Automated Tools for Imperative Languages 8

2.4.1 Unit Testing Tools . 9

2.4.2 Random Testing Tools . 9

2.5 Haskell Tools . 10

2.5.1 QuickCheck . 10

2.5.2 HPC . 12

2.5.3 HUnit . 15

2.5.4 Hood . 15

2.5.5 Freja . 16

3 A Tour of QuickEval 17

3.1 QuickEval for assignment evaluation 17

vi

3.1.1 Correcting the first solution 17

3.1.2 Correcting the subsequent solutions 21

3.2 QuickEval as a testing tool for Developers 23

4 Internals of QuickEval 25

4.1 Random test generator . 25

4.2 Coverage generator . 25

5 Our Experiments with QuickEval 28

5.1 Function BelongsTo . 28

5.2 Function setDifference . 29

5.3 Function isSublist . 30

5.4 Function errno . 31

6 Comparing QuickEval with Other Haskell Tools 33

6.1 Comparison between QuickCheck and QuickEval 33

6.2 QuickCheck with Hat . 35

6.3 Comparison between QuickEval and HPC 35

7 Conclusion and Future Work 36

7.1 Conclusions and Future Work . 36

7.2 Acknowledgments . 37

Bibliography 37

A QuickCheck Implementaion 40

A.1 Generation of Arbitrary data . 40

A.2 Data generation of User-Defined Types 41

A.3 Implementation of QuickCheck . 41

B QuickEval Implementation 43

B.1 Generation of annoted source code of function 43

B.2 Compilation and sequence of execution 46

vii

List of Figures

2.1 hpc-markup output . 15

3.1 isSublist function with random input from QuickEval 19

3.2 isSublist function with input supplied by user 20

3.3 isSublist function with input supplied from the test suit . 22

3.4 isSublist function with input supplied by the user 23

4.1 Data types used by HPC and QuickEval (definitions borrowed

from HPC [11]) . 26

6.1 ac contr function, adapted from Godefroid et. al. [12] . . 34

6.2 The function ac contr tested with random input 34

viii

List of Tables

5.1 Evaluation of belongsTo with QuickEval 29

5.2 Evaluation of setDifference with QuickEval 30

5.3 Evaluation of isSublist with QuickEval 31

5.4 Evaluation of errno with QuickEval 32

ix

Chapter 1

Introduction

1.1 Why QuickEval?

1.1.1 Need of a testing tool for Haskell

In the process of learning and using programming languages, software tools like

debuggers, testing tools and profilers play important role. Lack of such tools for

Haskell language is one of the main reasons that very few people use Haskell [26].

Lack of debuggers forces the programmers to use alternative means to verify and

debug programs. Two popular tools for Haskell are QuickCheck and Haskell Pro-

gram Coverage (HPC). QuickCheck is used to generate random inputs for a function

to verify user defined properties of the function. HPC, on the other hand, is used

to find the program coverage for a particular input to the program. QuickCheck is

useful because it allows user to test a function with large number of tests without

much effort. HPC is useful as it allows programmer to find expressions in a pro-

gram that are not evaluated for the inputs supplied. The programmer can use this

information to devise new inputs that can force the evaluation of these unevaluated

expressions, and analyze the output to catch any bugs in the program.

1

CHAPTER 1. INTRODUCTION 2

1.1.2 Need of a tool for assignment evaluation

The process of student assessment is one of the key issues in education and assign-

ment evaluation is one of the Teachers’ important tasks in this process. It is always

desirable that evaluation process should (a) be consistent for all the solutions sub-

mitted (b) be less time consuming. Consistency here means that, for programming

assignments, the same test-suite should be used for the evaluation of all assignments.

For the programming assignments, it is also preferable that teacher should try to

evaluate all expressions/paths of the program including the corner cases. This helps

to find out all the bugs present in the program and also the full coverage ensures

the proper evaluation of the assignments.

As the number of students is increasing in higher education, such type of as-

signment evaluation process has become very challenging and time consuming [8].

If done manually, the evaluation process may become inconsistent and it may also

fail to cover all the expressions/paths of the program. It is laborious task for the

teachers to generate the test cases for each programming assignment solution such

that all the paths of the program will be covered and tested. To avoid such painful

and time consuming process, teachers may try to set easier, shorter, or MCQ type

assignments. Such type of assignments are not always good choice to assess the

students’ knowledge.

1.2 Use of QuickEval

In this report, we present a tool named QuickEval that combines the features of

QuickCheck and HPC. QuickEval can be useful to teachers for performing consis-

tent assignment evaluation within less period of time and also to the developers

for performing coverage based unit testing. QuickEval enables the teachers to com-

plete assignment evaluation in shorter time or to evaluate more assignments in the

available period of time. With QuickEval user can

1. generate random input or use user supplied input for a function and create

CHAPTER 1. INTRODUCTION 3

the test suite for that particular function

2. get the executed and unexecuted portions of a function for a set of random/user-

supplied inputs, and

3. based on the observed coverage, generate new inputs in order to cover uneval-

uated portions of the function.

QuickEval is useful for Haskell users in different ways:

1. developers can use the coverage information along with random test generation

of QuickEval to generate large number of effective inputs for a function to

discover bugs.

2. Novice users can use it to understand the behavior of the programs by looking

at and reasoning about the evaluated and unevaluated portions of the program

for a given input.

3. Teachers of Haskell programming language can use it for the evaluation of

programming assignments as it requires much less effort to generate a test-

suite that can achieve the full coverage of the programs submitted by the

students. Tool also allows the teachers to dynamically update the test-suite

so that all the assignments can be tested with full coverage and also within

less period of time.

The QuickEval tool has a very simple user interface, and is easy to use. Unlike

QuickCheck, user does not need to generate any properties of the function. However,

this also means that user has to verify outputs manually (or through scripts) to find

any bugs. The detailed comparison of QuickEval with other tools is discussed in

Chapter 6. Our initial experiments of QuickEval on different assignments are very

exciting. The detailed discussion of results is given in Chapter 5.

CHAPTER 1. INTRODUCTION 4

1.3 Outline of the this report

Chapter[2] discusses the Haskell language, Code coverage and different tools avail-

able for Haskell language. Chapter[3] explains the use of QuickEval to evaluate the

programming assignments in Haskell. Chapter [4] gives the implementation details

of QuickEval and Chapter[5] discusses the experimental results. QuickEval is com-

pared with different Haskell tools in Chapter [6]. Conclusion and future work are

explained in Chapter[7].

Chapter 2

Background and Related Work

2.1 Programming Language Paradigms

Programming languages are generally classified as imperative and declarative lan-

guages. The programs in imperative languages have an implicit state. These pro-

grams manipulate the stored values using different commands provided by source

language. To allow this manipulation (side effects), programs use explicit notion

of sequencing. For example, assignment command is used in most imperative lan-

guages to alter the values of variables. C, C++, Java, Fortran, Algol are some of

the popular imperative languages.

Programs in declarative languages have no implicit state. These programs mainly

constitute expressions and not commands. Declarative languages are divided into

functional and relational languages.

In a functional language, the basic method of computation is based upon the

application of function to arguments. Some examples of functional languages are as

follows.

Purely Functional languages : Haskell, FP, Miranda

Hybrid languages : Lisp, Scheme, SML

In the relational languages, the basic method of computation is based upon the

mathematical concept of relation. Prolog, Parlog, KL1 are some of the relational

5

CHAPTER 2. BACKGROUND AND RELATED WORK 6

languages.

2.2 Haskell

Haskell is a pure functional programming language. This section describes different

features of Haskell language.

• Referential Transparency: Referential Transparency means that anexpression

(or function) in a functional program always represents the same value. Since

Haskell does not support the side effects, the value of expression always re-

mains same when used at two different places in the program. This may not be

possible with programs in imperative languages. The functions in imperative

languages may alter the values of variables and return the different values,

when called at two different places in same program. Referential transparency

help us to construct and reason about the functional programs in the same

way as mathematical expressions [3].

• Higher Order Functions: A higher order function is a function which can

take function as an argument or return function as result value. In Haskell

language, functions are treated as first class objects. Functions can be stored

in data structures (like lists), passed as an argument to other functions and

returned as result value. [13].

• Lazy Evaluation: Haskell supports Lazy evaluation strategy. In this strat-

egy, expression is not evaluated as long as it’s actual values is not needed in

computation. This is in contrast with eager evaluation. Consider a function f

as shown below.

f (x) = 3

In eager evaluation, if we call the function f with argument value 1/0 , it will

generate an error. However, the value of an argument x is not needed in body

CHAPTER 2. BACKGROUND AND RELATED WORK 7

of function f, so in lazy evaluation, no error will be generated and function

will return value 3. Lazy evaluation allows to use the infinite data structures

(like list of natural numbers) in the programs. Referential transparency helps

to achieve the lazy evaluation. In order to postpone the evaluation of some

expression, we need to get the same result later as we would get them before

and that is where referential transparency is used.

• List Comprehension: In Haskell, list is a primary data structure used to

store and manipulate the data in computation [17]. Haskell provides the list

comprehension technique which allows the generation of new lists by manipu-

lating and filtering elements of one or more existing lists.

• Powerful type system: Type system is useful to detect the forbidden errors

such as attempting to add a number and a character [17]. Haskell is strongly

typed language as it checks and prevents all forbidden errors. It also does error

checking statically (at compile time). The powerful type system of Haskell

language allows the functions to be overloaded and polymorphic [17].

2.3 Code Coverage

In the software testing, it is always desirable to test all the paths or statements of

the program. Code coverage is the term used in software testing to give information

about various executed parts of the program(such as statements, functions, blocks

etc.)when executed with some particular input values. Using this information pro-

grammer can generate a test-suite which makes sure that all the parts of the program

will be executed. Code coverage can be classified as white box testing technique.

In the code coverage technique of testing, the internal structure of the program is

tested rather than functionality of the program [18].

There are different ways to measure the code coverage for a particular program.

Below is the summary of some fundamental types of code coverage [23].

CHAPTER 2. BACKGROUND AND RELATED WORK 8

• Statement Coverage: This is also known as Line Coverage. This type

of coverage describes the executed statements of the program when tested

with some input values. As there is direct association between statements

and source code lines, this type of code coverage information is helpful to the

developers [18]. In Basic Block Coverage, unit of code measured is not a

single statement but a sequence of non-branching statements.

• Decision Coverage: This type of coverage describes whether boolean expres-

sions tested in different structures (like if-else or while statements) evaluated

to true and false values. In Decision coverage, the whole boolean expression

may be evaluated as true or false without executing all the parts of the ex-

pression. If short-circuit technique is used while evaluating the expression then

some part of the expression may be unexecuted.

• Condition Coverage: In this coverage type, each conditional subexpression

is evaluated as true or false. In Multiple Condition Coverage, the en-

tire boolean expression as well as subexpressions are considered for coverage

information.

• Path Coverage: There can be number of paths in a function from the start

of the function to it’s exit(return statement). For different input values to the

function, different paths can be executed. Path coverage describes whether

each path was evaluated during the execution of a program.

• Function Coverage: This type of coverage gives the information about the

functions which are evaluated during the execution of program.

2.4 Automated Tools for Imperative Languages

There are numerous automated testing tools available for different imperative lan-

guages. There are also some online judging softwares(codechef, sphere online judge

etc) which take programs written in different languages and execute them with large

CHAPTER 2. BACKGROUND AND RELATED WORK 9

number of predefined test cases. Such judging softwares only produce the results as

pass or fail based on the output values and the execution time of the program.

These tools do not provide any information about coverage of the function.

2.4.1 Unit Testing Tools

In unit testing, individual modules of the program are tested with different test cases.

For procedural languages module can be procedure or function. In Objected oriented

languages module can be class or individual method. Unit testing is considered one

of the important phases of software testing as large number of defects are identified

during this phase.

There are various unit testing frameworks which are collectively called as xUnit.

For example FUnit for Fortran, NUnit for .NET languages, AceUnit, CUnit, CTest

for C language, C++test for C++ language, COBOLUnit for Cobol, EUnit for

Erlang, JUnit for Java, JSUnit for JavaScript. Using these frameworks developers

can easily generate the test cases, execute the test cases as part of build process and

capture the output [2]. Some of theses frameworks provide the rich set of assertions

for testing common data types [9].

Check is one more unit testing tool for C language which provides the interface

for defining unit tests [4]. Jtest is unit testing, code review and runtime error

detection tool for Java language. It generates and executes the test cases for Java

and also provide the static code analysis and data flow analysis [22].

2.4.2 Random Testing Tools

Random testing is generally easy to implement and it can also generate very large

number of test cases. There are numerous random testing tools available for differ-

ent languages. DART is random testing tool for C language [12]. It can randomly

generate the test values for the function which is to be tested. It also directs the

values of test cases such that uncovered expressions will be executed in the next

iteration. Jartege is a random testing tool for Java language which can randomly

CHAPTER 2. BACKGROUND AND RELATED WORK 10

generate the test cases for Java classes. These test cases can contain various se-

quences of constructor and method calls for the classes which are to be tested with

Jartege [20]. Eclat is a one another random testing technique which randomly gen-

erates the large number of test cases and then selects a small subset which likely to

be find the bugs in program under test [21].

2.5 Haskell Tools

2.5.1 QuickCheck

As mentioned earlier, QuickCheck [6] is used for random testing of programs writ-

ten in Haskell programming language. For testing a function with QuickCheck, user

needs to create properties for the function. Typically these properties are boolean

predicates. QuickCheck then generates large number of random inputs for the func-

tion, and checks if the property is satisfied for each of the input.

For example, consider a standard function reverse. This function reverses a

list. Function reverse satisfies the following properties.

reverse[x] = [x]

reverse (xs ++ ys) = reverse ys ++ reverse xs

reverse (reverse xs) = xs

To check these properties with QuickCheck, we need to represent them using

Haskell functions. Below code shows the Haskell functions corresponding to above

properties.

prop1_rev x =

reverse [x] == [x]

prop2_rev xs ys =

reverse (xs ++ ys) == reverse ys ++ reverse xs

CHAPTER 2. BACKGROUND AND RELATED WORK 11

prop3_rev xs =

reverse (reverse xs) == xs

The QuickCheck automatically generates the random values for these functions

and if function returns True for each possible value then the properties are satisfied.

The interaction of quickCheck with theses functions is shown below.

*Main> quickCheck prop1_rev

+++ OK, passed 100 tests.

*Main> quickCheck prop2_rev

+++ OK, passed 100 tests.

*Main> quickCheck prop3_rev

+++ OK, passed 100 tests.

If function returns False value for some test cases, then QuickCheck reports

these input values to the user. For example, function prop2 rev mistakenly defined

as

prop2_rev :: [Int] -> [Int] -> Bool

prop2_rev xs ys =

reverse (xs ++ ys) == reverse xs ++ reverse ys

QuickCheck has produced following output

*Main> quickCheck prop2_rev

*** Failed! Falsifiable (after 3 tests and 1 shrink) :

[0]

[1]

where [0] is input value for xs while [1] is for ys. Function verboseCheck is similar

to quickCheck. In addition to the boolean result of properties, verboseCheck also

displays the randomly generated test cases.

CHAPTER 2. BACKGROUND AND RELATED WORK 12

2.5.2 HPC

HPC is a tool used to record and display Haskell Program Coverage. HPC works in

three phases [11].

1. generate the instrumented program to gather the coverage information of the

program

2. run the instrumented program

3. display the coverage information in different formats

Two types of coverage information is gathered by HPC: source coverage and

boolean-control coverage. Source coverage describes the coverage information about

every part of the program and it is measured at three different levels: declara-

tion(both top-level and local), alternatives or patterns(among several equations or

case branches) and expression. Boolean coverage describes the degree to which val-

ues True and False are evaluated in every boolean context (i.e. guard, condition,

qualifier).

Coverage information obtained by HPC is displayed in two different ways: in

the form of summary statistics using textual reports and source-code with color

markup [11]

2.5.2.1 A Small example: Intersection of Lists

Consider the following piece of code to calculate and display the intersection of two

integer lists.

--belongsTo x xs = x ‘elem‘ xs

belongsTo :: Integer -> [Integer] -> Bool

belongsTo x [] = False

belongsTo x (y:ys) = if x == y then True

else belongsTo x ys

CHAPTER 2. BACKGROUND AND RELATED WORK 13

--Sort the elements of list

sort [] = []

sort (x:xs) = sort (filter (<=x) xs) ++ [x] ++ sort (filter (>x) xs)

--Remove consecutive duplicate elements from list

uniqify :: [Integer] -> [Integer]

uniqify [] = []

uniqify [x] = [x]

uniqify (x:y:rest)

| x==y = uniqify (y:rest)

| otherwise = x : uniqify (y : rest)

intersection :: [Integer] -> [Integer] -> [Integer]

intersection [] ys = []

intersection (x:xs) ys = if x ‘belongsTo‘ ys

then uniqify (sort (x : intersection xs ys))

else [] ++ intersection xs ys

main = do

list1 <- readLn

list2 <- readLn

putStrLn (show $ (intersection list1 list2))

~

HPC first generates the instrumented version of the above program (Intersec-

tion.hs) using hpc-build script.

$ hpc-build Intersection

transforming Intersection.hs into ./.hpc/Intersection.hs

ghc -w -package base -package hpc-0.4 -I./.hpc

-i./.hpc -c -o Intersection.o Intersection.hs

CHAPTER 2. BACKGROUND AND RELATED WORK 14

ghc -w -package base -package hpc-0.4 -I./.hpc

-i./.hpc -o Intersection Intersection.o

Program can be executed with some input values as follows.

$./Intersection

[4,6,1,8,9]

[1,2,3,4,5]

[1,4]

$:~/hprogs$

The textual summary of the coverage information can be obtained as follows.

$:~/hprogs$ hpc-report Intersection

91% expressions used (73/80)

50% boolean coverage (2/4)

0% guards (0/2), 1 always True, 1 always False

100% ’if’ conditions (2/2)

100% qualifiers (0/0)

85% alternatives used (12/14)

100% local declarations used (0/0)

100% top-level declarations used (5/5)

Finally, the mark up version of coverage can be generated as follows.

$:~/hprogs$ hpc-markup Intersection

Writing: Intersection.hs.html

Writing: hpc_index.html

Writing: hpc_index_fun.html

Writing: hpc_index_alt.html

Writing: hpc_index_exp.html

Using the HTML browser we can see the mark-up version of the coverage and it

looks like as shown in figure 2.1

CHAPTER 2. BACKGROUND AND RELATED WORK 15

Figure 2.1: hpc-markup output

2.5.3 HUnit

HUnit [16] is one another testing tool for Haskell. In HUnit, user needs to create

the test cases, combine them into groups and then execute them. In the test cases,

user needs to provide the input values and corresponding expected output values.

The drawback of HUnit over QuickEval is that it can not generate the input values

randomly, but relies on the user to provide them. HUnit also does not provide the

coverage information of function. Generation of user test cases is an overhead for

user that QuickEval tries to minimize.

2.5.4 Hood

Hood [10] is a tool used for debugging Haskell programs by observing intermediate

data structures. Hood provides a library with various combinators that can be used

by a user to mark different parts of a function. In the below example ’observe’ is

used to mark the expression.

value = use_result . observe "Result" . generate_result

Here observe is inserted between generation of result and use of result. observe

stores the result and then returns it. After the program termination, user can use

the browser to view the stored values. Any object stored by observe is viewed by

browser. It takes the name of object and then displays it’s value. User explicitly

needs to mark the expressions and this tool does not provide information about

coverage of program but can only provide the output of marked expressions.

2.5.5 Freja

Freja [19] is an interactive debugger for Haskell. To debug a program, Freja inter-

actively asks the questions to user about the validity of the evaluation of various

expressions. Each function concerns a function application and user has to answer

the questions by a yes or a no. This is useful to find discrepancy in output to locate

buggy expressions. The limitations of Freja are that it works only for a subset of

Haskell and only on SPARC machines.

Chapter 3

A Tour of QuickEval

3.1 QuickEval for assignment evaluation

This section describes how to use the QuickEval to evaluate the assignments.

Consider that a teacher has given a programming assignment in Haskell to stu-

dents, and she wants to evaluate the assignments. There are different Haskell func-

tions defined in each assignment solution for different problem statements and these

functions can be independent of each other. The problem statement for one of such

functions in assignment is given below.

Problem Statement(1): Write a function isSublist which takes two (finite)

lists, and returns true if the first list is a sublist of the second, false otherwise.

A list lsub is a sublist of a list lsuper if there exists lbefore and lafter, such that

lsuper = lbefore ++ lsub ++ lafter.

3.1.1 Correcting the first solution

Teacher can randomly pick up any assignment solution and start to evaluate it

using QuickEval. Further, if a model solution is available(created by TA or teacher

herself), it can be taken as first solution as it will probably be the most complete

17

CHAPTER 3. A TOUR OF QUICKEVAL 18

solution coming from the experienced programmer. Below code shows the Haskell

function isSublist for problem statement (1) from the first assignment solution

that teacher has picked up randomly to evaluate.

isSublist :: [Int] -> [Int] -> Bool

isSublist subList superList

| length superList < length subList = False

| subList == [x | (x,y)<- (zip superList subList)] = True

| otherwise = isSublist subList (tail superList)

Using QuickEval, teacher can generate the test cases for each function in assign-

ment solution. QuickEval allows the user to either supply an input (command ’i’) or

generate a random input (command ’r’). If test-suite is available for some function,

then instead of generating input values randomly or manually, teacher can directly

use the input values from test-suite (command ’f’).

Since this is the first assignment solution teacher is evaluating, the test-suite

for function isSublist would be empty. In such a situation, teacher would prefer

to randomly generate input values for function isSublist using command ’r’. Fig-

ure 3.1 shows the interaction of teacher with QuickEval when she chooses a command

’r’ with count 4, so that 4 random input values are generated1. The correspond-

ing output values for the random inputs and the coverage information of function

isSublist is shown in the same Figure.

These randomly generated input values are saved in a test-suite for function

isSublist for later use. The saved test cases of function isSublist can be displayed

using command ’d’ as shown below.

Enter the command : (h for help)

1Note that, we are not generating large number of random test cases, though it is not impossible.
Our main emphasis is not only on the coverage of function but also on the output of the function.
Teacher should be able to check the output of function with generated input values. If we generate
large number of test cases, then also QuickEval will show the accumulated coverage, but it will be
laborious task to check the output values manually.

CHAPTER 3. A TOUR OF QUICKEVAL 19

Figure 3.1: isSublist function with random input from QuickEval

d isSublist

isSublist ([-2,-9,8,9,0,2,-3]) ([2])

isSublist ([9,-9,9,4,0]) ([2,7,-1,3,-4,-8,-8,8])

isSublist ([-9,-4,3,10,0,8,-5]) ([7,1,6,4])

isSublist ([9,10,10,-9,-4]) ([0,7,7,-1,-6])

The coverage information displayed by QuickEval is annoted source code of all

the functions which are invoked in the particular iteration. The annotation is

in forms of colors over different parts of codes. The color scheme is inspired by

HPC [11]:green color indicates the part of code that was always evaluated as True,

red color means that part of code was always evaluated as False and yellow color

indicates that the part of code was not evaluated for the provided input values.

From Figure 3.1, we can see that all the parts of the function isSublist are

not covered. In such a case, teacher can repeat the process and QuickEval will

CHAPTER 3. A TOUR OF QUICKEVAL 20

Figure 3.2: isSublist function with input supplied by user

execute the function isSublist again, with different set of random values. In case

teacher decides that it is unlikely that unevaluated expressions will be evaluated

using random tests, she can provide the input manually. Figure 3.2 shows the case

where user has specified the input values.

After second interaction of teacher with QuickEval, test-suite for function isSublist

is modified as below.

Enter the command : (h for help)

d isSublist

isSublist ([-2,-9,8,9,0,2,-3]) ([2])

isSublist ([9,-9,9,4,0]) ([2,7,-1,3,-4,-8,-8,8])

isSublist ([-9,-4,3,10,0,8,-5]) ([7,1,6,4])

isSublist ([9,10,10,-9,-4]) ([0,7,7,-1,-6])

isSublist [3,4] [1,2,3,4]

The inputs (random or user-supplied) can be saved automatically to create a

test-suite for later testing. This process makes sure that the tests added to the

test-suite cover new expressions in the program, and do not only cover parts that

are already covered by other existing tests.

CHAPTER 3. A TOUR OF QUICKEVAL 21

Thus, QuickEval enables teacher to perform random testing as long as she wishes

and then if there are any unexecuted expressions, user can provide the inputs to cover

such expressions. After testing one function, user can focus on another function from

the same assignment solution and test it in the same way. With QuickEval, testing

can be performed in a systematic way. Now since, all the expressions of the function

isSublist are covered and output values of function for various input values are

checked, teacher can take another assignment solution for evaluation.

3.1.2 Correcting the subsequent solutions

Below code shows the solution submitted by another student for the problem state-

ment(1).

-- check whether a list is a sublist of second list

isSublist:: [Int]->[Int]-> Bool

isSublist [] _ = True

isSublist _ [] = False

isSublist x (y:ys) | check x (y:ys) = True

| otherwise = isSublist x (ys)

-- comparisons are done by check function

check [] [] =True

check _ [] =False

check [] _ = True

check (x:xs) (y:ys) | x==y = check xs ys

| otherwise = False

Since the test-suite for function isSublist is available , teacher does not need

to generate the values randomly or manually. Here teacher can use command ’f’

CHAPTER 3. A TOUR OF QUICKEVAL 22

Figure 3.3: isSublist function with input supplied from the test suit

to use the test cases available in test-suite. Figure 3.3 shows interaction of teacher

with QuickEval using command ’f’.

From Figure 3.3, we can see that most of the part of the function isSublist is

covered by the already generated test cases in test-suite. Such type of automatically

generated test-suites considerably reduces assignment evaluation time. To cover

the remaining part of function, teacher can generate the input value manually as

shown in Figure 3.4. Our experimental results have shown that only for first few

assignments, teacher needs to add input values to test suite. Experimental results

are discussed in section 5.

After manually generating input value for function isSublist test-suite is mod-

ified as shown below.

Enter the command : (h for help)

d isSublist

Figure 3.4: isSublist function with input supplied by the user

isSublist ([-2,-9,8,9,0,2,-3]) ([2])

isSublist ([9,-9,9,4,0]) ([2,7,-1,3,-4,-8,-8,8])

isSublist ([-9,-4,3,10,0,8,-5]) ([7,1,6,4])

isSublist ([9,10,10,-9,-4]) ([0,7,7,-1,-6])

isSublist [3,4] [1,2,3,4]

isSublist [] [1,2,3,4]

3.2 QuickEval as a testing tool for Developers

Developers of Haskell programs can use the QuickEval as coverage based testing

tool. Starting with random inputs, user can locate the unexecuted expressions.

User can then manually generate the input values such that unexecuted expressions

will be evaluated. Beside the coverage information of function, user can also check

the output of function for that particular input and find the bugs in output value

if there are any. With the help of QuickEval, user can generate the input values

randomly or manually, such that full coverage can be achieved. Since, QuickEval is

interactive tool, user can perform unit testing of different functions present in the

CHAPTER 3. A TOUR OF QUICKEVAL 24

same program with less efforts and in less time.

Chapter 4

Internals of QuickEval

We now describe various parts of QuickEval implementation.

4.1 Random test generator

The front-end of our tool is based on the QuickCheck [6]. The main task of the

front-end is to generate random input values for the function to be tested and find

the corresponding output. We can not use QuickCheck directly because it does

not work directly on the function which is to be tested, but on the user-defined

properties of the function.

We have made some changes in the source code of QuickCheck so that actual

function is executed with randomly generated input values. Further, the output of

the function is displayed to the user. To do so, we have changed the type Result

as follows:

data Result = Result { arguments::[String], ans :: String }

deriving Show

4.2 Coverage generator

The back-end of our tool is based on HPC [11]. The main task of the back-end is

to find out the unevaluated or unexecuted subexpressions of a function based on

25

CHAPTER 4. INTERNALS OF QUICKEVAL 26

data Mix data Tix = Tix [TixModule]

= Mix deriving (Read, Show)

FilePath -- location of

-- original file data TixModule

Integer -- time (in seconds) = TixModule

-- of original file String --module name

Hash Hash

Int Int -- length of tix list

[MixEntry] -- entries [Integer] -- actual tics

deriving (Read,Show, Eq)

type MixEntry = (SourcePosition, BoxLabel)

data BoxLabel = ExpBox Bool data BoolCxt = GuardBinBox

| TopLevelBox [String] | CondBinBox

| LocalBox [String] | QualBinBox

| BinBox BoolCxt Bool

Figure 4.1: Data types used by HPC and QuickEval (definitions borrowed

from HPC [11])

random or user-supplied input values. To understand the working of QuickEval, we

need to understand the working of HPC. We present a simplified view of working of

HPC next. The exact details differ in minor ways and are described elsewhere [11].

HPC translates the original program into an instrumented program. The instru-

mented program associates a unique number called tickBox with each expression of

original program. Initially the tickBox value is zero for each expression. At the run-

time, if an expression is evaluated then the corresponding tickBox value is increased.

Thus, tickBox value can be used to decide whether an expression is evaluated by an

execution of the program.

Along with the instrumented program, HPC also generates Mix (Module Index)

file. The Mix file is used to record the location of source code associated with each

tickBox introduced in the instrumented program. Figure 4.1 shows the important

data types used by HPC, such as Tix and Mix.

The TopLevelBox values can be used to find out the start and end locations of the

functions in a program. These locations are required to display the exact source

code of functions as output of QuickEval.

QuickEval differs from HPC in that we support user-supplied inputs as well as

random generation of inputs. To do so, QuickEval creates two versions of instru-

mented program and mix file for a given program. Each of the generated instru-

mented program contains an automatically generated main function, which in turn

calls a pilot function. Pilot function is a dummy function that is replaced by the

function to be tested during the testing phase.

The two versions of instrumented program differ in the way main function calls

the pilot function. For random testing, main calls the pilot function under the control

of random input generator (described in Section 4.1). For testing with user-supplied

input, main function calls the pilot function directly, with user-supplied input. In

each case the main is appended at the end of the instrumented file. Therefore, in

the generated Mix files, the locations corresponding to the start and end of all the

functions in the instrumented program remain same as those in original program.

Since QuickEval does not apply tickBoxes to the main function, its location is not

of interest.

The combination of Tix and Mix files gives us the information about locations of

expressions and their evaluation status. Since the source locations of all functions

except main function are same in both versions of Mix file, we get the correct location

and evaluation status of the expressions.

Chapter 5

Our Experiments with QuickEval

In this section we present the results of several experiments performed with Quick-

Eval on different assignments. We used QuickEval to evaluate the few assignments

written by students. While evaluating the assignments, we randomly picked up any

assignment to evaluate using QuickEval. Our experimental results show that, com-

plete test-suite can be generated by evaluating first few assignments only and this

test-suite can be used to evaluate later assignments without user generating input

values randomly or manually.

5.1 Function BelongsTo

Problem Statement

Write a function belongsTo which takes an element and

a list of elements and returns True if element

is member of a list and False otherwise.

Below table shows the different input values generated to test the belongsTo func-

tion for different assignment solutions and comments about the output of function.

28

CHAPTER 5. OUR EXPERIMENTS WITH QUICKEVAL 29

Assignment Function (belongsTo) Comments
Assn1

Newly generated input :

10 [],

2 [-7,-8],

-5 [-2,-5,-8,-9,-10,-1,-2],

-8 [10,-10,-7,0,8,8],

10 [-8,8,9,-5,7,-9,-3,9,5],

Assn2 No new input generated
Assn3 No new input generate

Error with input

belongsTo 10 []

Assn4 No new input generated
Assn5 No new input generated
Assn6 No new input generated
Assn7 No new input generated
Assn8 No new input generated
Assn9 No new input generated
Assn10 No new input generated
Assn11 No new input generated
Assn12 No new input generated

Table 5.1: Evaluation of belongsTo with QuickEval

The above results show that, after evaluating the first assignment, there were

five input values in test-suite for belongsTo function. This test-suite was sufficient

to evaluate same function from other assignment solutions without generating new

input values. While evaluating one assignment user could also detect the wrong

output value for some particular input values.

5.2 Function setDifference

Problem statement:

Write a function setDifference which takes two lists and return

a list with elements from first list which are not

in the second list.

CHAPTER 5. OUR EXPERIMENTS WITH QUICKEVAL 30

Assignment Function (SetDifference) Comments
Assn1

Newly generated input :

[-4,0,3,0,-1,-4,5] [-9,1],

[10,-2] [],

[-9,-1,2,6] [-6,-5,5,9,4],

[1,2,3] [1,3],

Assn2 No new input generated
Assn3

Newly generated input

[] []

Assn4 No new input generated
Assn5 No new input generated
Assn6 No new input generated
Assn7 No new input generated
Assn8 No new input generated
Assn9 No new input generated
Assn10 No new input generated
Assn11 No new input generated
Assn12 No new input generated

Table 5.2: Evaluation of setDifference with

QuickEval

For this function user generated input values for two assignment solutions and

other assignment solutions were evaluated using test-suite only.

5.3 Function isSublist

Problem statement:

Write a function isSublist which takes two (finite) lists,

and returns true if the first list is a sublist of the second,

false otherwise.

A list lsub is a sublist of a list lsuper if there exists lbefore and lafter,

such that lsuper = lbefore ++ lsub ++ lafter.

CHAPTER 5. OUR EXPERIMENTS WITH QUICKEVAL 31

Assignment Function (isSublist) Comments
Assn1

Newly generated input :

[-4,-10,-5,10,8,-3,5,-3]

[2,-8,6,-9,-5],

[-10,9,6] [-1,4,7,4,-5,-7],

[3,4,5] [1,2,3,4,5,6]

Assn2

Newly generated input

[] [1]

Assn3

Newly generated input

[] []

[1] []

[1,2] [1,2]

Assn4 No new input generated
Assn5 No new input generated

Error on inputs

isSublist [1] []

Assn6 No new input generated
Assn7 No new input generated
Assn8 No new input generated
Assn9 No new input generated
Assn10 No new input generated
Assn11 No new input generated

Table 5.3: Evaluation of isSublist with QuickEval

5.4 Function errno

Problem Statement:

A well balanced parenthesis string (WBPS)

is defined by the grammar S → (S) S |ε

As examples, the string (), (()), and (())() are WBPS and

the strings)(and (() are not. A string which is not WBPS

CHAPTER 5. OUR EXPERIMENTS WITH QUICKEVAL 32

can be converted to a WBPS by removing some characters from it.

e.g. ((() gets converted to (). Of course, by removing all

characters from ((() we can also get a WBPS, but we want

to remove a minimum number of characters.

Define a function errno, which when given a parenthesized string,

would return minimum number of characters, removal of which would

give a WBPS. As example, errno ")(" returns 2, errno "())()))"

returns 3, and errno "(())()" is, of course 0.

Assignment Function (errno) Comments
Assn1

Newly generated input :

"((()()"

"))()()"

"()()"

Assn2 No new input generated
Assn3 No new input generated
Assn4 No new input generated
Assn5 No new input generated
Assn6 No new input generated
Assn7 No new input generated
Assn8 No new input generated
Assn9 No new input generated
Assn10 No new input generated
Assn11 No new input generated

Table 5.4: Evaluation of errno with QuickEval

Chapter 6

Comparing QuickEval with Other

Haskell Tools

6.1 Comparison between QuickCheck and Quick-

Eval

There are two drawbacks of QuickCheck. First, with random testing it is easy to

catch bugs that are highly likely to occur, but it is very difficult to catch bugs

that occur very infrequently. QuickCheck suffers from the same problem. Secondly,

many times it is difficult and sometimes even impossible to generate properties of a

function that can guarantee its correctness. Because QuickCheck works on boolean

properties, it does not provide the output of the function which is being tested, but

only success and failure message. However, in case the property fails to hold for a

random input generated by QuickCheck, it is possible to get the (failing) input.

QuickEval differs from QuickCheck in that it does not require any property to

test a function and that it reports the output of the function corresponding to the

input provided (randomly or by user). This feature is useful for the novice users

as they can quickly learn the behavior of the program using the tool and get help

in understanding the Haskell programming language. For expert users, it helps in

observing the inputs and corresponding outputs as applied to the function to be

33

CHAPTER 6. COMPARING QUICKEVAL WITH OTHER HASKELL TOOLS34

ac_contr :: Bool->Bool->Bool->String

ac_contr room_hot door_closed ac

| room_hot && door_closed && not ac = "AC ON"

| (not room_hot || not room_closed) && ac = "AC OFF"

| otherwise = "OK"

Figure 6.1: ac contr function, adapted from Godefroid et. al. [12]

Figure 6.2: The function ac contr tested with random input

tested. However, this also means that the verification of the output has to be done

externally.

To see how QuickEval is different from QuickCheck, consider the Haskell function

ac contr defined in Figure 6.1 (this function is adapted from a C function given by

Godefroid et. al. [12]). The function checks different conditions for an AC controller

and gives the output in the form of a status message. It is difficult to test this

function with QuickCheck for the following 2 reasons: 1) It is not easily clear what

properties describe the correct behavior of the controller, and 2) without looking at

the inputs and the corresponding outputs, it is difficult to ascertain the correctness

of the behavior of the function. With QuickEval, the user will get the actual output

of the function i.e. the message corresponding to AC condition, for any given input

conditions. One such interaction is shown in Figure 6.2.

CHAPTER 6. COMPARING QUICKEVAL WITH OTHER HASKELL TOOLS35

6.2 QuickCheck with Hat

Hat is a tracing tool that can be used to generate traces of evaluation of Haskell

program. QuickCheck and Hat together can be used to find out errors in a program

more effectively [7]. This combination is very practical as testing with QuickCheck

can find out one (or more) failing cases and then Hat can be used to find the cause

of those errors. The combination is limited by the same issues as discussed for

QuickCheck (Section 6.1). We believe that QuickEval can be integrated with Hat

easily, and the integration will enable the user to discover hard to find bugs and

their causes.

6.3 Comparison between QuickEval and HPC

HPC is not an interactive tool. HPC does not provide the feature of the random

generation of input. With HPC, user always have to provide the input. With

QuickEval, the user can either supply the inputs or randomly generate them. Thus,

QuickEval is more interactive than HPC. Note that QuickEval borrows a lot from

the implementation of HPC, and can be used in a mode that mimics HPC.

Chapter 7

Conclusion and Future Work

7.1 Conclusions and Future Work

In this report we presented QuickEval, a tool for testing Haskell programs based

on coverage. The tool helps user in understanding the behavior of a program us-

ing random test generation along with user-specified tests. The proposed usage of

QuickEval includes use by novice users to understand programs, by expert users to

test programs and to generate test-suites automatically , and by teachers of Haskell

language to evaluate assignments by creating and dynamically updating just enough

test cases to test all submissions.

QuickEval is still a work in progress. To make it more effective, we plan to add

direct automated random testing (DART [12]) technique to our tool. DART is a

testing technique (and also a tool of the same name) used for directed automatic

testing of the programs written in imperative languages. It works in three phases

1. Identification of types of arguments of function which is to be tested;

2. Automatic generation of random values for these arguments to perform the

random testing; and

3. Automatic generation of new test input values to direct the execution of pro-

gram to unexecuted paths.

36

QuickEval already implements the first two phases of DART: it can identify the

types of arguments of function and automatically generate the random values for

these arguments to perform the random testing. QuickEval also stores the unevalu-

ated expressions or expressions with False values in one file for further processing.

Third phase of QuickEval differs from DART as the user can not direct the in-

put automatically but has to generate it manually. Improving this part, will make

QuickEval completely automatic and will require less user interaction to generate

test suite. This will make it more effective for large programs with many functions.

QuickEval can also be improved to check the output of the assignment solutions

automatically. This task can be performed in following phases.

1. Teacher would create the master solution for assignment problems

2. QuickEval will generate the input values (randomly or manually) to test the

function from student’s assignment solution such that all the paths in function

will be covered. The output values will be stored in one file.

3. QuickEval will use the same set of input values to test the same function from

master solution and store the output values in one file

4. QuickEval will compare these two output files and produce the result as pass

or fail.

Such type of improvement in QuickEval will minimize the manual checking of output

and will further reduce the assignment evaluation time.

7.2 Acknowledgments

We are grateful to Andy Gill and Colin Runciman for sharing source code of HPC-0.4

with us.

Bibliography

[1] John W. Backus. Can programming be liberated from the von neumann style?

a functional style and its algebra of programs. Commun. ACM, 21(8):613–641,

1978.

[2] Kent Beck. Extreme Programming Explained.

[3] Richard S. Bird and Philip Wadler. Introduction to functional programming.

Prentice Hall International series in computer science. Prentice Hall, 1988.

[4] Check. A Unit Testing Framework for C. http://check.sourceforge.net/,

June 2012 (last accessed).

[5] Olaf Chitil, Colin Runciman, and Malcolm Wallace. Freja, hat and hood - a

comparative evaluation of three systems for tracing and debugging lazy func-

tional programs. In Implementation of Functional Languages, pages 176–193,

2000.

[6] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random

testing of haskell programs. In ICFP, pages 268–279, 2000.

[7] Koen Claessen, Colin Runciman, Olaf Chitil, John Hughes, and Malcolm Wal-

lace. Testing and tracing lazy functional programs using quickcheck and hat.

In Advanced Functional Programming, pages 59–99, 2002.

[8] Computer-Assisted Assessment. Implementing Learning Technology. www.

icbl.hw.ac.uk/ltdi/implementing-it/using.html, May 2012 (last ac-

cessed).

[9] CUnit. A Unit Testing Framework for C. http://cunit.sourceforge.net/,

June 2012 (last accessed).

[10] Andy Gill. Debugging haskell by observing intermediate data structures. Electr.

Notes Theor. Comput. Sci., 41(1):1, 2000.

[11] Andy Gill and Colin Runciman. Haskell program coverage. In Haskell 2007,

pages 1–12, 2007.

[12] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed automated

random testing. In PLDI 2005, pages 213–223, 2005.

38

http://check.sourceforge.net/
www.icbl.hw.ac.uk/ltdi/implementing-it/using.html
www.icbl.hw.ac.uk/ltdi/implementing-it/using.html
http://cunit.sourceforge.net/

BIBLIOGRAPHY 39

[13] Paul Hudak. Conception, evolution, and application of functional programming

languages. ACM Comput. Surv., 21(3):359–411, 1989.

[14] Paul Hudak and Joseph H. Fasel. A gentle introduction to haskell. SIGPLAN

Notices, 27(5):1–, 1992.

[15] John Hughes. Why functional programming matters. Comput. J., 32(2):98–107,

1989.

[16] HUnit. Haskell Unit Testing. http://hunit.sourceforge.net, March 2012

(last accessed).

[17] Graham Hutton. Programming in Haskell. Cambridge University Press, 2007.

[18] Lasse Koskela. Introduction to Code Coverage. http://www.javaranch.com/

journal/2004/01/IntroToCodeCoverage.html, May 2012 (last accessed).

[19] Henrik Nilsson. How to look busy while being as lazy as ever: the implemen-

tation of a lazy functional debugger. J. Funct. Program., 11(6):629–671, 2001.

[20] Catherine Oriat. Jartege: A tool for random generation of unit tests for java

classes. In QoSA/SOQUA, pages 242–256, 2005.

[21] Carlos Pacheco and Michael D. Ernst. Eclat: Automatic generation and clas-

sification of test inputs. In ECOOP, pages 504–527, 2005.

[22] Parasoft. Jtest. http://www.parasoft.com/jsp/products/jtest.jsp, June

2012 (last accessed).

[23] Steve Cornett. Coden Coverage Analysis. http://www.bullseye.com/

coverage.html#morell1990, May 2012 (last accessed).

[24] Tutorial. Learn You a Haskell for Great Good. learnyouahaskell.com, May

2012 (last accessed).

[25] Kartick Vaddadi. Improving haskell debuggers. MTech Thesis Dissertation.

[26] Philip Wadler. Why no one uses functional languages. SIGPLAN Notices,

33(8):23–27, 1998.

http://hunit.sourceforge.net
http://www.javaranch.com/journal/2004/01/IntroToCodeCoverage.html
http://www.javaranch.com/journal/2004/01/IntroToCodeCoverage.html
http://www.parasoft.com/jsp/products/jtest.jsp
http://www.bullseye.com/coverage.html#morell1990
http://www.bullseye.com/coverage.html#morell1990
learnyouahaskell.com

Appendix A

QuickCheck Implementaion

This chapter discusses the implementation of QuickCheck and material here is heav-

ily borrowed from [6].

A.1 Generation of Arbitrary data

In QuickCheck random test data is generated depending on the type. If type is an

instance of Arbitrary class, then only it is possible to generate random test values

of that type.

class Arbitrary a where

arbitrary :: Gen a

For those types which are instances of this class, data generators are provided

by QuickCheck. Here Gen a is an abstract type and it represents the data generator

for type a.

newtype Gen a = Gen (Rand -> a)

rand is random number seed.

Primitive generator function is defined as

choose :: (Int, Int) -> Gen Int

40

APPENDIX A. QUICKCHECK IMPLEMENTAION 41

choose function picks up a random number in an interval. Data generators of

different types are defined in terms of choose. For example, generators for integers

and pairs are defined as follows.

instance Arbitrary Int where

arbitrary = choose (-20, 20)

instance (Arbitrary a, Arbitrary b) => Arbitrary (a,b) where

arbitrary = liftM2 (,) arbitrary arbitrary

For most of the Haskell primitive types, QuickCheck has declared such instances.

A.2 Data generation of User-Defined Types

QuickCheck can not generate test cases for user defined data types. To generate test

values for such data types user has to create the instance of Arbitrary class for that

particular data type. QuickCheck also provides the combinators for programmers

to define data generators for user-defined data types.

The following example shows the use of combinator oneof to define the data

generator.

data Fruits = Apple | Orange | Mango

instance Arbitrary Fruits where

arbitrary = oneof

[return Apple, return Orange, return Mango]

A.3 Implementation of QuickCheck

To handle the functions with varying number of arguments and different result types,

QuickCheck defines new type Property and class Testable.

APPENDIX A. QUICKCHECK IMPLEMENTAION 42

newtype Property = Prop (Gen Result)

data Result =

Result {ok :: Maybe Bool, stamp :: [String], arguments :: [String]}

class Testable a where

property :: a -> Property

Here Property plays the multiple roles. It handles boolean results of the prop-

erties of the function, the classification of test data and the arguments used in the

generated test cases. Following examples show the role of Property. In the first ex-

ample type Bool is tested and in second example the function for which arguments

are to be generated is tested.

instance Testable Bool where

property b = Prop (return (resultBool b))

instance (Arbitrary a, Show a, Testable b) =>

Testable (a->b) where

property f = forall arbitrary f

Using the function property, the type of quickCheck becomes as follows.

quickCheck :: Testable a => a -> IO ()

Appendix B

QuickEval Implementation

This chapters discusses the implementation of QuickEval. To test the function with

QuickEval and to display the coverage information we have modified some part of

the source code of HPC. Generation of instrumented program, generation of tix and

mix files are similar to that of HPC. Other changes are discussed in the following

sections.

B.1 Generation of annoted source code of func-

tion

As a output QuickEval displays the source code of a function under test in different

color patterns. This has been achieved by making some changes in main program

for the hpc-markup tool of the original HPC package. In QuickEval package this

program is renamed as Main text.hs

The original program of hpc-markup, generates a list called as info by combining

the data from tix and mix files. The entries in list info contains the positions of

the expressions in Haskell program and also their evaluation status.

Using this list info , we created another list called findModPos which contains

the positions of all functions in program and their evaluation status as (IsTicked or

NotTicked).

43

APPENDIX B. QUICKEVAL IMPLEMENTATION 44

findModPos [] = []

findModPos ((pos, theMark , TopLevelBox mods) : xs)

| not ((head mods) ‘elem‘ ["strRes", "exec_func"])

= (pos , theMark) : findModPos xs

| otherwise = findModPos xs

findModPos (_ : xs) = findModPos xs

To display the source code of function, it is necessary to find the starting and end-

ing position of a function. Function firstLastPos finds the start and end positions

of only those functions which were evaluated during the program execution(marked

as Isticked).

firstLastPos [] = []

firstLastPos [x] = []

firstLastPos ((a_pos,IsTicked):(b_pos,_): xs)

= (a_pos, new_pos) : firstLastPos xs

where (w, x, y, z) = fromHpcPos b_pos

new_pos = toHpcPos (w -1, x, y, z)

firstLastPos (_ : b : xs) = firstLastPos (b:xs)

Now, every position of expression in list info is checked against the starting and

ending positions of the functions which were evaluated during the program execution

and theses expressions with their evaluation status are saved in another list. This

newly created list is used to mark the expressions with different colors according to

their evaluation status.

APPENDIX B. QUICKEVAL IMPLEMENTATION 45

positions [] = []

positions ((pos, TickedOnlyFalse, _) : xs)

| isPart (first_ele $ fromHpcPos $ pos) modPos

= (pos, TickedOnlyFalse) : positions xs

| otherwise = positions xs

positions ((pos, NotTicked, _) : xs)

| isPart (first_ele $ fromHpcPos $ pos) modPos

= (pos, NotTicked) : positions xs

| otherwise = positions xs

positions ((pos, TickedOnlyTrue, _) : xs)

| isPart (first_ele $ fromHpcPos $ pos) modPos

= (pos, TickedOnlyTrue) : positions xs

| otherwise = positions xs

positions ((pos, _, _) : info) = positions info

QuickEval displays the coverage information in the accumulated form. If any

expression is showed as unevaluated (marked in yellow) color, it means that this ex-

pression is not evaluated in any previous iteration. To achieve this feature, QuickE-

val stores the last output of function in a file. This output is compared with current

output of function. If any expression is not evaluated in current output and it is also

not evaluated in last output, in that case only it is marked as unevaluated. Oth-

erwise if expression is unevaluated in current output, but evaluated in last output

then the expression is displayed as evaluated. Same scenario is used to mark the

expressions as always false. Program Output.hs defines various functions and data

types to achieve this feature.

The expressions which are evaluated as False are saved in separate file.

APPENDIX B. QUICKEVAL IMPLEMENTATION 46

grabReqText [] = []

grabReqText ((pos, TickedOnlyFalse) : as)

= (grabHpcPos hsMap pos) : grabReqText as

grabReqText ((pos, _) : as) = grabReqText as

getText = unlines . grabReqText

--store the expressions with False boolen value

--in a file for further processing

writeFile (".auto/" ++ "result_" ++ head modNames) $

"\n" ++ getText accum_info ++ "\n"

B.2 Compilation and sequence of execution

quickeval script handles the compilation and execution of different modules related

to QuickEval. QuickEval creates two copies of the program under test. Original

program is appended with two different main functions. Depending upon the type

of input generation (random or manual) one of the two copies of original program

are used for execution. Both main functions (appended to original program) call the

pilot function (function name) which is replaced by the actual function which

is to be tested with QuickEval. For the random generation of input values main

function also calls the quickC function.

Each copy of the original program is converted to instrumented program using

tool HpcTrans. Along with the instrumented programs mix files are also generated

for both copies. These instrumented programs are then compiled and executed to

display the output of function and also to generate the tix file. When function is

called with bulk of input values (using command ’r’ and count or using command

APPENDIX B. QUICKEVAL IMPLEMENTATION 47

’f’) then it is necessary to display all the functions which are called for these input

values. To achieve this feature tix file for last input values is saved and it is merged

with current tix file. This is done by the program tixMerge

Finally this tix file and function name is provided to the Main text script, which

gives the output in the form of annoted source code of all the functions which were

called during that particular iteration.

