
Functional SMT solving: A new interface for
programmers

A thesis submitted
in Partial Fulfillment of the Requirements

for the Degree of

Master of Technology

by

Siddharth Agarwal

to the
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR
June, 2012









v

ABSTRACT

Name of student: Siddharth Agarwal Roll no: Y7027429

Degree for which submitted: Master of Technology

Department: Computer Science & Engineering

Thesis title: Functional SMT solving: A new interface for programmers

Name of Thesis Supervisor: Prof Amey Karkare

Month and year of thesis submission: June, 2012

Satisfiability Modulo Theories (SMT) solvers are powerful tools that can quickly

solve complex constraints involving booleans, integers, first-order logic predicates,

lists, and other data types. They have a vast number of potential applications,

from constraint solving to program analysis and verification. However, they are so

complex to use that their power is inaccessible to all but experts in the field.

We present an attempt to make using SMT solvers simpler by integrating the Z3

solver into a host language, Racket. Our system defines a programmer’s interface in

Racket that makes it easy to harness the power of Z3 to discover solutions to logical

constraints. The interface, although in Racket, retains the structure and brevity of

the SMT-LIB format. We demonstrate this using a range of examples, from simple

constraint solving to verifying recursive functions, all in a few lines of code.
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Chapter 1

Introduction: Satisfiability solvers

and interfaces

The Boolean satisfiability or SAT problem asks: Given a boolean formula with a set

of variables in it, is there a way to assign each variable a value such that the formula

becomes true? The SAT problem is one of the cornerstones of computer science,

with enormous theoretical and practical implications. Indeed, it was the very first

problem to be proved NP-complete [1].

Yet, interest in efficiently solving so-called “natural” or “real-world” instances

of SAT has remained. This is at least partly because a large number of practical

problems are also NP-complete and can be reduced to SAT. Here reduced is as it

is defined in [2]: roughly, can an instance of the problem be turned into a boolean

formula decided by SAT that’s at most polynomially larger?

1.1 Solving SAT: DPLL

Solving SAT is generally restricted to boolean formulas in conjunctive normal form

(CNF), which consists of clauses of boolean literals1 joined together with the OR

operation (∨), and these clauses joined together with the AND operation (∧). It is
1The word literal has two different technical meanings: in computer science, it represents a

fixed value such as the number 1 or the string "Hello". In mathematical logic, it means either an
atom (variable: p) or its negation (¬p). We use it here in this latter sense.
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proved that the SAT problem for any boolean formula can be reduced to the SAT

problem for formulas in CNF [2].

CNF formulas have useful properties, such as that they can be represented as a

set of clauses, that at any point a clause once satisfied (shown to be true) can be

dropped from the set, and that showing even one of the clauses to be false is enough

to show that the formula cannot be satisfied.

The simplest way to solve SAT is with a basic backtracking algorithm (Fig-

ure 1.1). The algorithm’s recursive nature means it takes exponential time in the

worst case.

Figure 1.1 A naïve backtracking algorithm for SAT in Racket. substitute substi-
tutes the given value for the atom in the boolean formula, and returns an updated
formula or #f

; atoms is a list of variables to satisfy

(define (solve-sat atoms formula)

(if (empty? atoms)

#t ; no more atoms to substitute means SAT

(let*

([atom (car atoms)] ; pick the first atom

[rest-atoms (cdr atoms)]

[subst-true (substitute formula atom #t)]

[subst-false (substitute formula atom #f)])

(or (and subst-true (solve-sat rest-atoms subst-true))

(and subst-false (solve-sat rest-atoms subst-false))))))

There are two key insights that can be made here:

1. Unit propagation, or the one-literal clause rule. If a clause contains

just one literal, that literal has to be true. For example, consider the set of

clauses {a, a ∨ b,¬a ∨ ¬c, b ∨ c ∨ d}. Since all the clauses need to be true, a

must be true. Letting this happen, we see that a ∨ b is true so it is dropped,

and ¬a ∨ ¬c simply becomes ¬c, which means we are left with the clauses

{¬c, b ∨ c ∨ d}.

At this point unit propagation can be applied once again on c, setting it to

false. We are finally left with just the one clause {b ∨ d}.
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2. Pure literal elimination, or the affirmative-negative rule. If the oc-

currences of a given variable p are either all p (or all ¬p), then p can be

assigned true (or false). Consider the following set of clauses: {a ∨ b, a ∨

c, b ∨ c ∨ ¬d,¬b ∨ ¬c ∨ d}. Since a always appears in its positive form, we

can assign a true without needing to consider the case where a is false. Thus

any clause that contains a is satisfied and can be dropped. We are left with

{b ∨ c ∨ ¬d,¬b ∨ ¬c ∨ d}.

The backtracking algorithm, plus these two insights applied at each step, form

the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [3, 4]. The DPLL algo-

rithm, although over fifty years old, is tremendously successful and forms the core

of many modern complete SAT solvers2, including Chaff [6], GRASP [7] and Min-

iSat [8].

Of course, modern SAT solvers employ a large number of heuristic and optimi-

sation tricks to speed things up. They are highly efficient for “real-world” problems

and are used in a wide variety of computer science fields, from automated plan-

ning for robots or unmanned vehicles (via the satplan method [9]), to dependency

resolution in Linux package managers such as Zypper [10]. They have also been

heavily used in program analysis and verification, which is what brings us to the

next section.

1.2 SMT and DPLL(T): SAT with a twist

Typically, program analysis tools that used SAT solvers would have to find a way to

translate variables found in programs to boolean ones. For example, a 32-bit integer

could be encoded as a set of 32 boolean variables3.

It was soon realised that pushing this step into the SAT solver would help. Since

2A complete SAT solver is one where a definitive answer is returned, whether a formula is
satisfiable or not. There are also incomplete SAT solvers which return an answer if the formula is
satisfiable but do not return one if it is not. Examples include GSAT and WalkSat [5].

3It is also possible to represent integers as boolean variables via predicate abstraction [11],
which is more efficient but potentially loses information.
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users would still be asking whether formulas were satisfiable, except with variables

from more complex domains or theories, this approach was dubbed Satisfiability

Modulo Theories (SMT). Early SMT methods (e.g. [12, 13]) eagerly simply converted

formulas to Boolean variables before handing them over to a SAT solver.

Alternatively, one could substitute placeholder boolean variables for theory vari-

ables, supply this faux boolean formula to a modified SAT solver, and write a sep-

arate program called a T-solver that interacts on demand with the SAT solver to

deal with theory variables. The modified DPLL algorithm is called DPLL(T) [14],

and this lazy approach turns out to be far more efficient than eager methods. (For

a more detailed description of eager and lazy SMT, see [15, Section 3.2]).

State-of-the-art SMT solvers like Z3 [16], Yices [17] and CVC3 [18] are based

on DPLL(T). They allow users to specify constraints over booleans, integers, real

numbers, arrays, lists, trees, first-order predicates and other kinds of variables. They

either come up with assignments that satisfy these constraints, or, if possible, a proof

that the constraints aren’t satisfiable. SMT solvers have been used to solve problems

in planning and scheduling, program analysis [19], whitebox fuzz testing [20] and

bounded model checking [21].

1.3 Using SMT solvers

After coming to know of the power SMT solvers have, the first question the intrepid

programmer would ask is how to use one. Unfortunately, the standard way for pro-

grams to interact with SMT solvers is via powerful but relatively arcane C APIs that

require the users to know the particular solver’s internals. For example, Figure 1.2

on the next page lists a C program that asks Z3 whether the simple proposition

p ∧ ¬p is satisfiable.

Simultaneously, most SMT solvers also feature interaction via the standard input

language SMT-LIB [22]. SMT-LIB is significantly easier to use in isolation. The same

program in SMT-LIB would look something like Figure 1.3 on the facing page.
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Figure 1.2 A C program to ask Z3 whether p ∧ ¬p is satisfiable

Z3_config cfg = Z3_mk_config();

Z3_context ctx = Z3_mk_context(cfg);

Z3_del_config(cfg);

Z3_sort bool_sort = Z3_mk_bool_sort(ctx);

Z3_symbol symbol_p = Z3_mk_int_symbol(ctx, 0);

Z3_ast p = Z3_mk_const(ctx, symbol_p, bool_sort);

Z3_ast not_p = Z3_mk_not(ctx, p);

Z3_ast args[2] = {p, not_p};

Z3_ast conjecture = Z3_mk_and(ctx, 2, args);

Z3_assert_cnstr(ctx, conjecture);

Z3_lbool sat = Z3_check(ctx);

Z3_del_context(ctx);

return sat;

Figure 1.3 An SMT-LIB program to check whether p ∧ ¬p is satisfiable

; Declare a variable we don't know the value of yet

(declare-fun p () Bool)

; Try to find a value satisfying a contradiction

(assert (and p (not p)))

(check-sat)

; Prints "unsat", meaning "unsatisfiable"
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The complexity of the C interface keeps going up as we move to less trivial

assertions. Figure 1.4 on the next page is a C program that asks Z3 to solve the two

simultaneous equations 2x + 3y = 5, 4x + 5y = 7. (The solution is x = −2, y = 3.)

The SMT-LIB interface is still remarkably brief, though (Figure 1.5 on page 8).

However, the SMT-LIB interfaces are generally hard to use directly from C pro-

grams and often not as full-featured4 or extensible. Importantly, it is difficult to

write programs that interact with the solver in some way, for example by adding as-

sertions based on generated models. This makes it difficult to build new abstractions

to enhance functionality.

Summary

In this chapter, we saw what SAT and SMT solvers are, how they work, and the

power that they have. We also saw why few programmers use SMT solvers now,

instead preferring to hand-code cumbersome search and backtracking algorithms.

4Z3, for instance, supports plugging in external theories via the C API, but not via the textual
SMT-LIB interface.
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Figure 1.4 A C program to ask Z3 to solve two simultaneous linear equations

Z3_config cfg = Z3_mk_config();

Z3_set_param_value(cfg, "MODEL", "true");

Z3_context ctx = Z3_mk_context(cfg);

Z3_del_config(cfg);

Z3_sort int_sort = Z3_mk_int_sort(ctx);

Z3_symbol symbol_x = Z3_mk_int_symbol(ctx, 0);

Z3_symbol symbol_y = Z3_mk_int_symbol(ctx, 1);

Z3_ast x = Z3_mk_const(ctx, symbol_x, int_sort);

Z3_ast y = Z3_mk_const(ctx, symbol_x, int_sort);

Z3_ast num2 = Z3_mk_int(ctx, 2, int_sort);

Z3_ast num3 = Z3_mk_int(ctx, 3, int_sort);

Z3_ast num4 = Z3_mk_int(ctx, 4, int_sort);

Z3_ast num5 = Z3_mk_int(ctx, 5, int_sort);

Z3_ast num7 = Z3_mk_int(ctx, 7, int_sort);

Z3_ast eq1 = Z3_mk_eq(ctx, Z3_mk_add(ctx, Z3_mk_mul(ctx, num2, x),

Z3_mk_mul(ctx, num3, y)),

num5);

Z3_ast eq2 = Z3_mk_eq(ctx, Z3_mk_add(ctx, Z3_mk_mul(ctx, num4, x),

Z3_mk_mul(ctx, num5, y)),

num7);

Z3_assert_cnstr(ctx, eq1);

Z3_assert_cnstr(ctx, eq2);

Z3_model m;

Z3_lbool sat = Z3_check_and_get_model(ctx, &m);

// Z3_L_TRUE means satisfied

if (sat == Z3_L_TRUE) {

Z3_ast xsolved, ysolved;

// Omitting some error checking

Z3_eval(ctx, m, x, &xsolved);

Z3_eval(ctx, m, x, &ysolved);

int xval, yval;

Z3_get_numeral_int(ctx, xsolved, &xval);

Z3_get_numeral_int(ctx, xsolved, &yval);

printf("x = %d, y = %d", xval, yval);

}

else {

printf("No solution to equations");

}
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Figure 1.5 SMT-LIB code to solve two simultaneous linear equations

(declare-fun x () Int)

(declare-fun y () Int)

(assert (= (+ (* 2 x) (* 3 y)) 5))

(assert (= (+ (* 4 x) (* 5 y)) 7))

(check-sat)

(eval x)

(eval y)



Chapter 2

A new interface: z3.rkt

In Chapter 1, we demonstrated how cumbersome SMT solvers are to use. Indeed, we

faced the same issues while exploring novel methods to verify, debug and test func-

tional programs. It felt like the C interface was hamstringing us, and the SMT-LIB

interface was good for basic explorations but not anything more complicated.

We decided to attempt to solve this: our goal was to implement an SMT-LIB-like

interface in a way that allowed for the same power as the C interface while appearing

naturally integrated into a host language. Since SMT-LIB is s-expression-based, for

the host language a Lisp dialect was a natural choice. We chose Microsoft Research’s

Z3 [16] as our SMT solver, and Racket [23], a popular dialect of Scheme [24, 25],

for our implementation. We call our implementation z3.rkt. Racket has extensive

facilities for implementing new languages [26], not just for the interface to the solver,

but also for the resulting tools that the solver would make possible.

Using this system, the program to check whether a contradiction is satisfiable

(Figure 2.1 on the next page) becomes almost as brief as the SMT-LIB version. The

program to solve two simultaneous linear equations (Figure 2.2 on the following

page) is similarly brief.
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Figure 2.1 Using z3.rkt to determine whether p ∧ ¬p is satisfiable

(smt:with-context

(smt:new-context)

(smt:declare-fun p () Bool)

(smt:assert (and/s p (not/s p)))

(smt:check-sat))

Figure 2.2 Solving simultaneous linear equations with z3.rkt

(smt:with-context

(smt:new-context)

(smt:declare-fun x () Int)

(smt:declare-fun y () Int)

(smt:assert (=/s (+/s (*/s 2 x) (*/s 3 y)) 5))

(smt:assert (=/s (+/s (*/s 4 x) (*/s 5 y)) 7))

(smt:check-sat)

(values (smt:eval x) (smt:eval y)))

2.1 Interactive SMT solving: two examples

To demonstrate the value in integrating a language with an SMT solver, we turn

our attention to a pair of classic logical puzzles.

2.1.1 Sudoku

A Sudoku puzzle asks the player to complete a partially pre-filled 9×9 grid with the

numbers 1 through 9 such that no row, column, or 3×3 box has two instances of a

number. This is a classic constraint satisfaction problem, and any constraint solver

can handle it with ease.

Figure 2.3 on the next page lists a Racket program using z3.rkt to solve Sudoku.

Here we omit a couple of function definitions: add-sudoku-grid-rules asserts

the standard Sudoku grid rules, and add-grid reads a partially filled grid in a

particular format and creates assertions based on it. We note that the function

(select/s arr x) retrieves the value at x from the array arr, and that this can be

used to add constraints on the array (for instance, (smt:assert (=/s (select/s
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Figure 2.3 Racket code using z3.rkt to solve Sudoku

(define (solve-sudoku grid)

(smt:with-context

(smt:new-context)

; Declare a scalar datatype (finite domain type) with 9 entries

(smt:declare-datatypes ()

((Sudoku S1 S2 S3 S4 S5 S6 S7 S8 S9)))

; Represent the grid as an array from integers to this type

(smt:declare-fun sudoku-grid () (Array Int Sudoku))

; Assert the standard grid rules (row, column, box)

(add-sudoku-grid-rules)

; Add pre-filled entries

(add-grid grid)

(define sat (smt:check-sat))

; 'sat means we found a solution, 'unsat means we didn't

(if (eq? sat 'sat)

; Retrieve the values from the model

(for/list ([x (in-range 0 81)])

(smt:eval (select/s sudoku-grid x)))

#f)))

arr x) y))). We also note that if a set of constraints is satisfiable, Z3 can generate

a model showing this; values can be extracted out of this model using the smt:eval

command.

However, simply finding a solution isn’t enough for a good Sudoku solver: it

must also verify that there aren’t any other solutions. The usual way to do that

for a constraint solver is by retrieving a generated model, adding assertions such

that this model cannot be generated again, and then asking the solver whether the

system of assertions is still satisfiable. If it is, a second solution exists and the puzzle

is considered invalid.

In such situations, the interactivity offered by z3.rkt becomes useful: it lets the

programmer add dynamically discovered constraints on the fly. The last part of the

solution might then become something like Figure 2.4 on the following page.

This part can even be abstracted out into a function that returns a lazily-

generated sequence of satisfying assignments for any given set of constraints.
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Figure 2.4 Ensuring that a Sudoku grid has exactly one solution

...

(if (eq? sat 'sat)

; Make sure no other solution exists

(let ([result-grid

(for/list ([x (in-range 0 81)])

(smt:eval (select/s sudoku-grid x)))])

; Assert that we want a brand new solution by

; asserting (not <current solution>)

(smt:assert

(not/s (apply and/s

(for/list ([(x i) (in-indexed result-grid)])

(=/s (select/s sudoku-grid i) x)))))

(if (eq? (smt:check-sat) 'sat)

#f ; Multiple solutions

result-grid))

#f)))

2.1.2 Number Mind

The deductive game Bulls and Cows, commercialised as Master Mind [27], is popular

all around the world. The rules may vary slightly, but their essence stays the same:

Two players play the game. One player (we’ll call her Alice) thinks of a 4-digit

number, and the other (Bob) tries to find it. Bob guesses a number, and Alice tells

him how many digits he has correct and in the correct position (bulls) and how

many he has correct but in the wrong position (cows). Through repeated guessing

Bob tries to arrive at the answer.

The game is deceptively simple: while even the standard 4-digit variant is chal-

lenging for humans, the general problem for n digits is NP-complete [28]. As such,

it becomes an interesting problem for constraint solvers.

For simplicity, we tackle a variant of the game: Number Mind [29], where Bob

only tells Alice how many digits are correct and in the correct place (bulls). The

user is Alice and the computer Bob, which means that the game is interactive. An

API to solve Number Mind would have

(a) a way to tell the computer how many digits the number has
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(b) a way for the computer to guess a number

(c) a way for the user to tell the computer how many digits it got correct in the

last guess.

The constraint solver would have an important role in not just (a) and (c) but

also (b), since we would like the computer to make “reasonable” guesses and not

just wild ones. We do this by never guessing a number that would be impossible

because of the answers already given.

Our system makes all three tasks simple. Figure 2.5 on the next page defines

three functions, each corresponding to one of the tasks above.

As a demonstration of z3.rkt, we have written a small web application around

the code. The web application is available at

http://numbermind.less-broken.com

The source is also available:

https://github.com/sid0/numbermind

2.2 Design and implementation

z3.rkt is currently implemented as a few hundred lines of Racket code that interface

with the Z3 engine via the provided library. Since the system is still a work in

progress, some of these details might change in the future.

The Z3 wrapper.

We use Racket’s foreign interface [30] to map the Z3 library’s C functions into

Racket. The programmer interface communicates with Z3 by calling the Racket

functions defined by the wrapper. While it is possible to use the Z3 wrapper directly,

we highly recommend using the programmer interface instead.

http://numbermind.less-broken.com
https://github.com/sid0/numbermind


14

Figure 2.5 Solving Number Mind using z3.rkt

; (a) Create variables for each digit

(define (make-variables num-digits)

(define vars (smt:make-fun/list num-digits () Int))

; Every variable is between 0 and 9

(for ([var vars]) (smt:assert (and/s (>=/s var 0) (<=/s var 9))))

vars)

; (b) Guess a number. Returns the guess as a list of digits,

; or #f meaning no number can satisfy all the constraints.

(define (get-new-guess vars)

(define sat (smt:check-sat))

(if (eq? sat 'sat)

; Get a guess from the SMT solver

(map smt:eval vars)

#f))

; (c) How many digits the computer got correct. If a digit is

; correct then we assign it the value 1, otherwise 0. We sum up

; the values and assert that that's equal to the number of correct

; digits.

(define (add-guess vars guess correct-digits)

(define correct-lhs

(apply +/s

(for/list ([x guess]

[var vars])

(ite/s (=/s var x)

1 ; Correct guess

0)))) ; Wrong guess

(smt:assert (=/s correct-lhs correct-digits)))
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Built-in functions.

Z3 comes with a number of built-in functions that operate on booleans, numbers,

and more complex values. We expose these functions directly but add a /s suffix

to their usual names in the SMT-LIB standard, because most SMT-LIB names are

already defined as functions by Racket and we want to avoid colliding with them.

The core commands.

This is a small set of Racket macros and functions layered on top of the Z3 wrap-

per. The aim here is to hide the complexities of the C wrapper (as discussed in

Section 1.3) and stay as close to SMT-LIB version 2 commands [22] as possible. We

prefix commands with smt: to avoid collisions with Racket functions.

2.2.1 Derived abstractions

Since the full power of Racket is available to us, we can define abstractions that

allow users to simplify their code. For example, SMT-LIB allows users to define

macros via the define-fun command, as demonstrated by Figure 2.6.

Figure 2.6 An SMT-LIB macro, defined with define-fun

(define-fun max ((a Int) (b Int)) Int

(ite (> a b) a b)) ; ite is short for if-then-else

...

(assert (= (max 4 7) 7))

However, Z3’s API exposes no such command. Our first attempt was to define

a Racket function to do the same thing, as in Figure 2.7.

Figure 2.7 A first attempt at “macros” in z3.rkt

(define (smt-max a b)

(ite/s (>/s a b) a b))

...

(smt:assert (=/s (smt-max 4 7) 7))
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This works for smaller macros like max, but in our experience this sort of naïve

substitution can result in final expressions for deeply nested functions becoming too

large for Z3 to handle1.

We note, however, that any macro can also be written as a universally quantified

formula. For example, max can be rewritten as shown in Figure 2.8.

Figure 2.8 Macros as universally quantified formulas

(declare-fun max (Int Int) Int)

(assert (forall ((a Int) (b Int))

(= (max a b)

(ite (> a b) a b))))

Indeed, Z3 has a macro finder component that identifies and eliminates universal

quantifiers that are macros in disguise. We finally solved the problem by provid-

ing a Racket macro, smt:define-fun, that has the same syntax as the SMT-LIB

command and that performs precisely this transformation.

The definition of smt:define-fun is listed in Figure 2.9 on the next page. We

use Scheme’s syntax-rules macro system [24, Section 4.3.2] to its fullest extent.

syntax-rules accepts pairs of input and output patterns and goes with the output

pattern for the first input that can be matched, somewhat like the cond construct

found in many Lisps. We handle two separate cases: (a) we’re defining a plain

identifier, in which case we have no need for the forall, and (b) we’re defining a

macro as above, in which case we do. The ... as part of the macro definition is

a special form recognized by syntax-rules: wherever it sees them in the output

pattern, it substitutes for them a list of whatever was present in the input pattern.

An example of this substitution is listed in Figure 2.10 on the facing page.

1In theory, we could merge common parts of expressions to reduce the number of AST nodes
generated. In our experiments, this proved to be effective, yet still significantly slower than the
solution we finally adopted.
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Figure 2.9 A routine for defining macros in z3.rkt

(define-syntax smt:define-fun

(syntax-rules ()

[(_ id () type body) ; Plain identifiers don't need a forall

(begin

(smt:declare-fun id () type)

(smt:assert (=/s id body)))]

[(_ id ((argname argtype) ...) type body)

(begin

(smt:declare-fun id (argtype ...) type)

(smt:assert (forall/s ((argname argtype) ...)

(=/s (id argname ...) body))))]))

Figure 2.10 smt:define-fun in action

(smt:define-fun foo ((x Int) (y Bool)) Int

(+/s x (ite/s y 20 0)))

↓ expands to

(smt:declare-fun foo (Int Bool) Int)

(smt:assert (forall/s ((x Int) (y Bool))

(=/s (foo x y) (+/s x (ite/s y 20 0)))))
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2.2.2 Porting existing SMT-LIB code

One of our explicit goals is to enable existing SMT-LIB version 2 code to be ported

with a small number of systematic changes. Table 2.1 lists the minimal set of

changes that needs to be made to port existing SMT-LIB code to z3.rkt. We

expect many SMT-LIB programs to become shorter as authors use Racket features

wherever appropriate.

Table 2.1: Differences between SMT-LIB and z3.rkt

SMT-LIB code z3.rkt code

Options: (set-option :foo true) Keyword arguments:
(smt:new-context #:foo #t)

Logics: (set-logic QF_UF) The #:logic keyword:
(smt:new-context #:logic

"QF_UF")

Commands: declare-fun, assert, … Prefixed with smt:

Functions: and, or, +, distinct … Suffixed with /s

Boolean literals: true and false #t and #f

Summary

In this chapter, we introduced our attempt to make a simple and accessible SMT

solver interface. We demonstrated its power with simple programs to solve logical

puzzles, including a web application for an NP-complete logical game. We saw how

the Racket language provides facilities that make the jobs of both the interface’s

designer and its users easier.



Chapter 3

Experiences and applications

We have successfully used z3.rkt in a number of applications, from constraint-

solving puzzles as illustrated in Section 2.1, to verification and counterexample gen-

eration for functional programs. Along the way, we have been pleasantly surprised

by how well the power of Z3 and the expressiveness of Racket combine. In this

chapter we discuss the lessons we have learnt and a few ideas we have explored.

3.1 Handling quantified formulas

Z3 and other SMT solvers support lists and other recursive types. Z3 provides only

basic support for lists: insert (cons), head, and tail. Further, Z3’s macros are

substitutions and do not support recursion. This makes it challenging to define

functions that operate over the entirety of an arbitrary-length list.

Our first thought was to use a universal quantifier, as in Section 2.2.1. Figure 3.1

lists an example of a function that calculates the length of an integer list.

Figure 3.1 Calculating the length of a list with a quantified formula

(declare-fun len ((List Int)) Int)

(assert (forall ((xs (List Int)))

(ite (= xs nil)

(= (len xs) 0)

(= (len xs) (+ 1 (len (tail xs)))))))
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There is a drawback with this approach: solving quantified assertions in Z3

requires model-based quantifier instantiation (MBQI) [31]. MBQI, while powerful,

can also be very slow. In our experience, it is very easy to write a quantified formula

that Z3’s MBQI engine fails to solve in reasonable time1.

So avoiding quantified formulas altogether seems like a good idea, but how do

we do that? The easiest way is to unroll and bound the recursion to a desired

depth [34]. One way to do this is to define macros len-0, len-1, len-2, …len-N,

where each len-k returns the length of the list if it is less than or equal to k, and k

otherwise (Figure 3.2).

Figure 3.2 A series of SMT-LIB macros to calculate the length of a list

(define-fun len-0 ((xs (List Int)))

0)

(define-fun len-1 ((xs (List Int)))

(ite (= xs nil)

0

(+ 1 (len-0 (tail xs)))))

(define-fun len-2 ((xs (List Int)))

(ite (= xs nil)

0

(+ 1 (len-1 (tail xs)))))

...

Our system makes defining a series of macros like this very easy, as shown in

Figure 3.3 on the facing page.

(make-length 5) returns an SMT function that works for lists of up to length 5,

and returns 5 for anything bigger than that. Note how freely the Racket if and let

forms are mixed into the SMT body. These constructs are evaluated at definition

time, meaning that this definition reduces to the series of macros defined above up

to length n.
1In general, it is hard to deal with quantified formulas containing even linear arithmetic, because

there is no sound and complete decision procedure for them [32].
Z3 has another way to solve quantified assertions, called E-matching [33]. E-matching uses

patterns based on ground terms to instantiate quantifiers. We have not yet explored this approach.
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Figure 3.3 z3.rkt code to generate a bounded recursive function to calculate the
length of a list

(define (make-length n)

(smt:define-fun len ((xs (List Int))) Int

(if (zero? n)

0 ; len-0 always returns 0

(ite/s (=/s xs nil/s)

0

(let ([sublen (make-length (sub1 n))])

(+/s 1 (sublen (tail/s xs)))))))

len)

It is easy to define other bounded recursive functions along the same lines that

reverse lists, concatenate them, filter them on a predicate and much more. For

example, Figure 3.4 defines a function that creates bounded recursive functions that

reverse a list (using an accumulator).

Figure 3.4 A bounded recursive function to reverse lists up to length n

(define (make-reverse n)

; We're using an accumulator so create an internal function

(define (make-reverse-internal n)

(smt:define-fun reversen ((xs (List Int)) (accum (List Int)))

(List Int)

(if (zero? n)

accum ; reverse-0 always returns the accumulated list

; Recursive step: generate function for n-1

(let ([subreverse (make-reverse-internal (sub1 n))])

(ite/s (=/s xs nil/s)

accum

(subreverse (tail/s xs) (insert/s (head/s xs)

accum))))))

reversen)

(define reverse (make-reverse-internal n))

(lambda (xs) (reverse xs nil/s)))

Using these building blocks we can now verify properties of recursive functions.
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3.2 Verifying recursive functions

For this section we will work with a simple but non-trivial example: quicksort. A

simple functional implementation of quicksort might look like Figure 3.5.

Figure 3.5 A functional quicksort implementation

(define (qsort lst)

(if (null? lst)

null

(let*

([pivot (car lst)]

[rest (cdr lst)]

[left (qsort (filter (lambda (x) (<= x pivot)) rest))]

[right (qsort (filter (lambda (x) (> x pivot)) rest))])

(append left (cons pivot right)))))

This definition is correct, but what if the programmer mistakenly types in <

instead of <=, or perhaps uses >= instead of >? We note that (a) for a correct

implementation, the length of the output will always be the same as that of the

input, and that (b) in either buggy case, the length of the output will be different

whenever a pivot is repeated in the rest of the list. So comparing the two lengths is

a good property to verify.

Using the method discussed in Section 3.1, we can write make-qsort that gen-

erates bounded recursive versions of qsort. We believe that both automatic and

manual methods would be feasible (Figure 3.6 on the next page is a manual trans-

lation).

With make-qsort we can now verify the length property for all input lists up to

a certain length n.

Proving a property is done by checking that its negation is unsatisfiable. A

quicksort works correctly2 for lists up to length n iff the above code returns 'unsat.

For quicksorts that are buggy ('sat), we can find a counterexample using (smt:eval

2Here correctness is in the context of the property we are considering, i.e. the length of the
output.
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Figure 3.6 A bounded recursive version of quicksort (cf Figure 3.5 on the preceding
page). make-le and make-gt create functions to filter lists based on their relation
to pivot, respectively <= and >. make-append creates functions to append lists

(define (make-qsort n lessop-fn greaterop-fn)

(smt:define-fun qsort ((xs (List Int))) (List Int)

(if (zero? n)

nil/s

; From here on is the usual definition of quicksort.

(ite/s (=/s xs nil/s)

nil/s

(let*

([subqsort (make-qsort (sub1 n))]

[pivot (head/s xs)]

[rest (tail/s xs)]

[left

(subqsort ((make-le (sub1 n)) pivot rest))]

[right

(subqsort ((make-gt (sub1 n)) pivot rest))])

((make-append (sub1 n)) left

(insert/s pivot right))))))

qsort)

Figure 3.7 Verifying length for quicksort

(smt:with-context

(smt:new-context)

(define qsort (make-qsort n))

; adding 1 to the maximum length is enough to show inequality

(define len (make-length (add1 n)))

(smt:declare-fun xs () (List Int))

; set a bound on the length

(smt:assert (<=/s (len xs) n))

; prove the length property by asserting its negation

(smt:assert (not/s (=/s (len xs) (len (qsort xs)))))

(smt:check-sat))
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xs) and (smt:eval (qsort xs)). For n = 4 on a buggy quicksort with filters <=

and >=, Z3 returned us the counterexample with input '(-3 -2 -1 -2), which as

expected contains a repeated element.

Summary

In this chapter, we discussed our experiences using our interface for advanced ap-

plications. We described methods to overcome fundamental SMT limitations, and

successfully verified or found bugs in non-trivial functional programs with the help

of these methods.

In our approach, there is nothing specific to quicksort: this can easily be gen-

eralised to other functions that operate on lists and other data structures. The

properties to prove can be more complex, such as whether a given sorting algorithm

is stable. The only limits are computational constraints and the user’s imagination.



Chapter 4

Related work

4.1 SMT integration

Integrating an SMT solver with a language enables programmers in that language

to solve whatever logical constraints arise in a program, without needing to resort to

hand-coding a backtracking algorithm or other cumbersome methods. The solutions

thus obtained can be used in the rest of the program. Thus, it isn’t surprising that

several such projects exist, most of them available freely on the Internet. These

projects differ mainly in the host language, the interface, and the constructs they

support.

As most languages support some form of interaction with C functions, they can

be said to be already integrated with Z3 (or other SMT solvers) through the C API.

However, we do not consider this to be true integration because it doesn’t simplify

the job of the programmer and, as noted in Section 1.3, it requires her to deal with

the internals of the solver.

The integration of Z3 with Scala [35] is one of the most complete implementations

available right now. It provides support for adding new theories and procedural

abstractions, and also takes advantage of Scala’s type system to deal with some

type related errors at compile time. The system has been used to solve several

challenging problems within and outside the group that developed it. The main

disadvantage of this system is that the syntax is quite different from SMT-LIB, and
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is sometimes almost as verbose as using the C bindings.

Z3Py [36] is a new Python interface bundled with Z3 4.0: it has its own domain-

specific language that is different from SMT-LIB; however, it is much more pleasant

to use than the C interface and supports virtually all of Z3’s features.

SMT Based Verification (SBV) [37] is a Haskell package that can be used to

prove properties about bit-precise Haskell programs. Given a constraint in a Haskell

program, SBV generates SMT-LIB code that can be run against either Yices or Z3.

SBV supports bit-vectors, integers, reals, and arrays, but not lists or other recursive

datatypes.

Yices-Painless [38] integrates Haskell with Yices via its C API. This project

does not support arrays, tuples, lists and user defined data types yet. Further, the

development of the tool seems to be stalled for some time now (last change to the

repository was in January 2011).

The Z3 documentation page lists bindings to other languages like OCaml. These

bindings correspond almost one-to-one with the C API, and thus they suffer from

the same disadvantages.

4.2 Logic programming and constraint program-

ming

Many of the problems SMT solvers can tackle can also be solved within the logic

programming paradigm, where programs are written as first-order logic predicates.

However, logic programming languages like Prolog typically have well-defined and

transparent search strategies, preventing the sorts of automatic heuristics that allow

SMT solvers to be fast. Instead, programmers need to manually bound the search

space with goals and cuts in the appropriate places.

Racket supports logic programming via Racklog [39], which works in much the

same way as Prolog.

Many languages, including most Prolog variants, have access to libraries that al-
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low some form of constraint solving. Advanced toolkits include Gecode [40] for C++

and JaCoP [41] for Java and Scala. Typically, these are limited to problems tradi-

tionally associated with constraint programming: booleans, finite domains, integers

and perhaps real numbers. However, they also have built-in support for optimisa-

tion problems, something that is lacking in SMT solvers but can be emulated with

a binary search on the cost function.

A classic example deserves a mention here: SICP [42, Section 4.3] describes an

amb macro for Scheme, which can choose for a variable one out of a set of values

given ambiguously, so as to satisfy given constraints. amb is a simple, lightweight

form of logic programming.

4.3 Bounded verification

Our work is inspired by the Leon verifier [34], which goes further and alternately

considers underapproximations and overapproximations. Where in Section 3.1 we

simply return a default value if we’ve reached the limit of our recursion, the Leon

verifier alternately always satisfies or always rejects once it gets to that point. We

chose to simplify our implementation to avoid being mired in mechanics, since that

wasn’t the main focus of this paper. In the future, we plan to extend our method

with ideas from the Leon verifier.





Chapter 5

Conclusions

In this thesis, we have presented a new SMT interface called z3.rkt, which lets

Racket programmers interact with an SMT solver programmatically. We have

demonstrated through examples the simplicity and usefulness of such an interac-

tion. The power of z3.rkt comes from the facilities provided by Racket to build

abstractions on top of the SMT-solving capabilities of Z3. From the user’s perspec-

tive, the integration is seamless and fully transparent.

Our implementation is open source and freely available at

http://www.cse.iitk.ac.in/users/karkare/code/z3.rkt/

5.1 Scope for further work

z3.rkt, like all large projects, is a work in progress. What has been implemented

as of the writing of this thesis is a useful subset of Z3 functionality, but there are

several gaps still to be filled:

• Supporting more Z3 constructs, including bit-vectors and external theories

• Deriving new abstractions guided by practical use cases

• Possibly integrating with other SMT solvers

http://www.cse.iitk.ac.in/users/karkare/code/z3.rkt/
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In the long term, we hope the community will find this system useful and will

contribute to the project to solve large practical problems.
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