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Abstract
GCC (GNU Compiler Collection) has been one of the most popular compiler

infrastructure for many years. It is used across languages, architectures and oper-

ating systems. The availability of GCC ports for a large number of targets stands

testimony to the success of the retargeting model of GCC. With a large number of

embedded systems now being developed and released for use across various fields, the

process of retargeting GCC assumes importance. To port GCC to a new architec-

ture, a Machine Description(MD) file that has the mapping from GCC’s intermediate

form to the target assembly code is to be written.

Constructing an MD file is a difficult task partly because of its large size, but

mainly due to the need to understand the intermediate representations of GCC,

while simultaneously having a good grasp of the target architecture. Due to these

difficulties, the process of writing machine descriptions has become an ad hoc one.

Developers retargeting GCC tend to copy MD files of machines similar to the target

machine and modify them, making the whole process a trial and error method.

In this thesis, we demonstrate that MD files of machines with similar architecture

exhibit significant amount of similarities. We have created a tool MDParser, to

extract RTL patterns from MD files of some known machines. Using this tool we

compare the similarity of patterns across machines. We have further created a

framework that can use these extracted patterns and with user intervention, can

help in the construction of new RTL templates. We also show how this framework

can be used to build a tool that can help a developer in the construction of MD files

for a new architecture, thus simplifying the retargeting process.
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Chapter 1

Introduction

We are living in a time where electronic systems are pervasive in every aspect of our

life, e.g., industrial automation, automobiles, telecommunication systems, consumer

electronics, military, agriculture, to name a few. New computing architectures are

coming into the market every day to meet this huge demand for programmable

automated devices. Writing applications for these architectures, requires that the

designer of such architectures, makes available a reliable compiler to begin with.

The ever expanding market, places a huge demand for such devices and the need

to beat competition, results in a very less turn-around time available for this task.

So manufacturers usually go for a retargetable compiler. A retargetable compiler is

one, which can be configured to produce code for a new architecture. GCC is one

of the most popular retargetable compilers.

GCC stands for GNU Compiler Collection. GCC is an integrated distribution

of compilers for several programming languages[11]. GCC is one of the most widely

used compilers for developing applications that run across several different architec-

tures and operating systems. One of the strengths of GCC is, it is highly portable.

This is because GCC was built so that it can be easily ported to any machine where

int is at least a 32-bit type[2]. GCC gets most of its information about the target

machine from the Machine Description(MD) files written for that machine[2]. GCC

does not have any machine specific code, but has parameters which depend on the

target machine’s features[2]. This is considered as an elegant way of alienating the

1
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machine specific details from the compiler design.

1.1 Motivation

GCC parses the source language, converts it to an intermediate representation GIM-

PLE. After a few internal transformations, GCC converts the GIMPLE represen-

tation to another intermediate representation, RTL(Register Transfer Language).

Finally, the RTL representation is converted to the target assembly code after per-

forming a few transformations. MD files have the mapping from GIMPLE represen-

tation to RTL notation and from RTL notation to the machine’s assembly code. So

constructing the MD file for the target architecture forms the most important step

in porting GCC. The MD file represents the machine instructions in an algebraic for-

mula notation. Writing a MD file for a new architecture needs a good understanding

of the RTL notation, and the instruction set of the target architecture, which is very

difficult. So, in general an MD file for a new architecture is constructed from an MD

file of a similar architecture by making modifications to suit the needs. Describing

instructions in this method is observed to be quite complex, verbose, repetitive and

assumed to be more of a trial-and-error method.[7, 9, 10].

The MD files for popular architectures are typically huge(running into tens of

thousands of lines). So, while writing MD files from scratch for a new architecture, a

single mistake will result in the compiler producing wrong or worse, inefficient code,

without the user realizing it quickly. The problem could be fixed if the process of

writing MD files is fully automated. But given the complexity of the architectures

and the variety of architectures available it is virtually impossible to fully automate

this process.

The MD files are huge because, they not only tell about the target machine,

they also contain details for generating the expander (GIMPLE to RTL converter,

explained later in Chapter 2) and recognizer(RTL to target instruction generator).

Apart from this, they have instructions that help in instruction scheduling, peephole

optimizations, register allocation, etc.,[3]. RTL notation is used in achieving the
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above mentioned tasks. Hence, finding RTL expressions that are common across

machines which can be reused in writing new machine descriptions will be of immense

help.

1.2 Contribution of This Thesis

Typically, the intermediate languages used by compilers are assumed to be the lan-

guage for an abstract machine. For a class of architectures serving similar purposes,

say typical general purpose processors, we expected the intermediate language to

show significant amount of similarities. So, if we can find out intermediate repre-

sentations that are common across typical machines(minimal set), and group them

logically, the process of retargeting can be made simpler and systematic. With the

minimal set in hand, we believe parts of MD files for new architectures can be gen-

erated automatically. Take for example, the scenario where we wanted to port GCC

to a new general purpose processor. If we have this minimal set for the class of

general purpose processors, we can start off by first writing MD instructions that

map this minimal set to the target architecture. Once this is done, we can deal

with those intermediate representations that are not part of the minimal set and is

unique to this architecture and map them to the target architecture.

Davidson and Fraser[6] proposed a compiler architecture that was able to pro-

duce portable, optimizing compilers that can generate good code without the need

for a machine-dependent optimizer. Like many portable compiler models, even in

Davidson Fraser model, the front end parses the source code and produces an inter-

mediate code. Machine-independent code optimizations are done on this interme-

diate code(code for abstract machine). Retargeting involves, writing the mapping

from abstract machine code to target machine code. They made an interesting ob-

servation about the abstract machine. While deciding on this abstract machine,

there are two choices. One is, letting the abstract machine support a set of features

which is almost equivalent to the union of sets of features supported by typical real

world machines. Such abstract machines are called union machines. The second
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choice is, letting the abstract machine support a set of features which is roughly

equivalent to the intersection of features offered by typical machines. Such a ma-

chine is called an intersection machine. They argued that an intersection machine

is easier to implement and more stable than a union machine. We believe our hy-

pothesis about a minimal set for a class of machines, is equivalent to Davidson and

Fraser’s idea for an intersection machine.

To verify our hypothesis we did the following,

1. Read MD files for existing architectures from the back ends of GCC’s source

tree. We looked for patterns in them (RTL templates), which can be identified

as machine-independent. A MD file parser was written for this purpose.

2. The collected patterns were classified logically, viz., arithmetic, logical, condi-

tional branches, etc.

3. We tested the possibility of instantiating these patterns with machine-specific

values to get back the RTL templates back and succeeded.

4. Rewrote MD files in terms of patterns and parameters, compiling them to get

MD files with regular RTL templates from them.

We tested the above approach on MD files from five architectures, ARM, i386,

MIPS, SPARC and VAX and the results were promising.

1.3 A Motivating Example

Let us look at two define expand expressions, the first one is from MIPS and the

next is from ARM. The examples given are modified for ease of explanation and to

avoid referring to complex concepts not yet introduced.

Example 1. (define_expand "addsi3"

[(set (match_operand:SI 0 "register_operand")

(plus:GPR (match_operand:SI 1 "register_operand")

(match_operand:SI 2 "arith_operand")))]
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"")

(define_expand "addsi3"

[(set (match_operand:SI 0 "s_register_operand" "")

(plus:SI (match_operand:SI 1 "s_register_operand" "")

(match_operand:SI 2 "reg_or_int_operand" "")))]

"TARGET_EITHER"

"

if (TARGET_32BIT && GET_CODE (operands[2]) == CONST_INT)

{

arm_split_constant (PLUS, SImode, NULL_RTX,

INTVAL (operands[2]), operands[0], operands[1],

optimize && can_create_pseudo_p ());

DONE;

}

"

)

The RTL template of addsi3 expression from MIPS is depicted in figure 1.1. The

table 1.1, splits this RTL template into RTL pattern and parameters.

match_operand:SI 0 "register_operand" plus:SI

match_operand:SI 1 "register_operand" match_operand:SI 2 "ari th_operand"

s e t

Figure 1.1: MIPS addsi3 Template

addsi3-Pattern Parameter

            p l u s : < < M O D E > >

                              

s e t (match operand:SI 0 ”register operand”)

SI

(match operand:SI 1 ”register operand”)

(match operand:SI 2 ”arith operand”)

Table 1.1: MIPS Patterns and Parameters

Similarly, figure 1.2 depicts the RTL template of addsi3 expression from ARM,

while table 1.2 shows the RTL pattern and parameters for the same. We can observe
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from the tables that both these expressions, share the same pattern. They differ

only in the parameters.

match_operand:SI 0 "s_register_operand" plus:SI

match_operand:SI 1 "s_register_operand" match_operand:SI 2 "reg_or_int_operand"

s e t

Figure 1.2: ARM addsi3 Template

addsi3-Pattern Parameter

            p l u s : < < M O D E > >

                              

s e t (match operand:SI 0 ”s register operand”)

SI

(match operand:SI 1 ”s register operand” ””)

(match operand:SI 2 ”reg or int operand” ””)

Table 1.2: ARM Patterns and Parameters

We can see that, the pattern extracted in both the cases are the same. The

pattern, extracted thus can go as part of the minimal set, more specifically to the

list of arithmetic patterns. So while writing a new port, this is one of the arithmetic

patterns that needs to be filled with machine-specific values.

Another possibility arises from the above method of splitting the RTL templates

into patterns and parameters. The MD file’s RTL templates exhibit significant

amount of redundancies[9]. Patterns that repeats itself across several RTL templates

can be declared once and used/instantiated with parameters every time it reoccurs.

This can reduce the redundancies found in MD files. We’ll look at this possibility

in more detail in chapter 3.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2, reviews the compilation

model of GCC and also the back-end organization of GCC. Chapter 3, presents the

methodology we have adopted. Chapter 4, presents the results and an analysis of
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the same. Chapter 5, gives a brief description of the related work. The conclusion

is provided in Chapter 6.



Chapter 2

Background

This chapter explains about the traditional compilation model, the Davidson Fraser

model and how GCC differs from the traditional model and the effect of this on

the retargeting process of GCC. This also introduces some basic concepts needed to

understand GCC’s machine description files and the RTL expressions used in them.

2.1 Aho Ullman Model

The Traditional Aho Ullman Model of compilation[4] advocates grouping the various

phases of compilation into three logical units, the front end, the optimizer and the

back end as seen in figure 2.1

Source Program

Front  end

Optimizer

IR

Back end

IR

Target Code

Figure 2.1: Aho Ullman Model of Compilation

8
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The front end, converts the source language into an intermediate representation

which is both machine-independent and language independent. The intermediate

language, can be considered as a language for an abstract machine. The optimizer,

works on the intermediate language and improves on it. The back end, also known

as the code generation phase, does the work of instruction selection, instruction

scheduling, register allocation. The front end isolates the source language specific

issues while the back end isolates the machine dependent features from the rest of the

compiler. This is supposed to make the process of retargeting such a compiler rel-

atively easy. The optimizer which works on the language and machine-independent

intermediate representation can be reused across any combinations of source lan-

guage and target machine.

In this model, to retarget the compiler to a new machine, only the back end

has to be rewritten. To be more specific, the instruction selection part of the back

end has to be rewritten. The instruction selector does a pattern matching over the

compiler’s intermediate representation and executes a code fragment associated with

this pattern, which produces the assembly code. So a knowledge of the compiler’s

intermediate representation and the target machine’s instruction set is needed to

write this new instruction selector. In this model, the back end has to be written

very carefully, since the target code generated by it, determines the efficiency of the

source program as no further optimizations are done over it.

2.2 Davidson Fraser Model

The Davidson Fraser Model[6], pitched for a compiler that optimizes the code gen-

erated by the code generator.

As seen from figure 2.2, the front end here converts the source code into an

abstract machine code. The abstract machine code is machine independent. The

expander converts the abstract machine code to a set of register transfers. The

expander is so named because it takes a single input instruction and converts it into

a sequence of register transfers. Register transfer is an intermediate representation
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Source Program

Front  end

Code expander

abst ract  machine  code

Cacher

regis ter  t ransfers

Combiner

regis ter  t ransfers

Assigner

regis ter  t ransfers

Target Code

Figure 2.2: Davidson Fraser Model of Compilation[6]

that is machine dependent. It gets its machine dependent parameters from machine

description files. Since the expander is followed by the Cacher, which is an optimizer

that acts on register transfers, the expander can be written in a simple way so that

it outputs a naive sequence of instructions. The combiner’s work is to combine a

sequence of register transfer instructions and produce a single instruction wherever

possible. The assigner finally produces the assembly code.

Here the cacher is machine independent, though it works on register transfers

which is a machine dependent code. This is because of the fact that the register

transfers are machine specific but their form is machine independent[6]. The cacher

takes advantage of this fact and works on the form of the register transfers. This

object code optimizer makes it possible to write a simple expander, which need not

produce an efficient code and only has to produce the correct code. Retargeting

involves rewriting the expander and the assigner, which are easy tasks since both

use simple algorithms.
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2.3 GCC’s Model

GCC’s compilation model is a modified version of the Davidson Fraser compilation

model. The various phases in its compilation process can be split into three phases[1],

• Front end

• Target independent code transformations

• Code generation

Source Program

Front  end

GIMPLE Optimizer

GIMPLE

RTL Optimizer

non-strict RTL

Code Genera tor

non-strict RTL

Target Code

Figure 2.3: GCC’s Model of Compilation

Like in the Davidson Fraser Model, the front end here transforms the source code

to a machine independent representation, GIMPLE. The second phase, performs

several SSA based optimizations on the GIMPLE code, then performs expansion,

i.e., conversion of GIMPLE code to what is called the non-strict Register Transfer

Language(RTL). The non-strict RTLs are so named because, in the second phase

of compilation, the RTL patterns matched from constructs like define insns are

matched without their corresponding operand constraints being satisfied. Finally

optimizations are performed over this RTL and given to the next phase. The code

generation phase converts the non-strict RTL to strict RTL (unlike non-strict RTL,
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in strict RTL it is made sure that the patterns that match also satisfies all the

operand constraints), schedules instructions , performs peephole optimizations and

finally generates assembly code.

The machine description files are used in expansion and code generation oper-

ations. In the phase where the expand operation is done, the RTL templates from

the named define insns and define expands are used. In the code generation phase,

where the strict RTLs are converted to assembly code, the names are ignored and

the define insn which contains the current RTL pattern as its template is matched

and the corresponding assembly code is emitted.

2.4 GCC’s Back End Organization

A back end for a target machine in GCC must contain the following files and direc-

tories apart from other files which are not of interest now,

1. A directory named machine under gcc/config and the following files under this

directory machine.

2. A file named machine.md.

3. A file named machine.c.

4. A header file machine.h and machine-protos.h.

The file machine.md contains a list of instruction patterns that the machine sup-

ports. The header file machine.h, contains macros which describes the machine’s

properties and which could not be included in the machine.md file. The source file

machine.c contains a variable targetm, which is a structure with pointers to datas-

tructures and functions that are related to the target machine. Also it must contain

definitions of the datastructures and functions that are not defined elsewhere.

The machine description file contains a set of expressions of the form define ∗.

They are define insn, define peephole, define split, define insn and split,

define peephole2, define expand, define delay, define asm attributes,
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define cond exec, define predicate, define special predicate,

define register constraint, define constraint, define memory constraint,

define address constraint, define cpu unit, define query cpu unit,

define bypass, define automaton, define reservation,

define insn reservation, define attr and define enum attr.

Here we are interested in those expressions which as part of their format have

RTL templates to match with. So the list above shrinks to

• define insn

• define peephole

• define split

• define insn and split

• define peephole2

• define expand

2.4.1 RTL Expression Codes

The RTL templates in these expressions tell which instructions match these patterns

and also how the operands can be found[2]. The current work involves parsing this

RTL template and extracting out patterns from them, which can be instantiated

with parameters. RTL uses five different types of objects, viz., expressions, integers,

wide integers, strings and vectors. Among the five listed above, expressions are

of interest to us. The gcc internals documentation provides a good description of

RTL expressions and also the file rtl.def from the GCC source lists all the possible

expressions. Each RTL expression has an expression code(RTX code) associated

with it. The RTX code is machine independent. The RTX code gives information

like, how many operands the expression contains and what are the types of each

operand.



14

The RTX codes are grouped into classes based on the type of operation, operands.

For example, the class RTX COMM ARITH, contains all the RTX codes which per-

form commutative binary operations like PLUS, AND, etc. The file rtl.def contains

a series of DEF RTL EXPR() macro statements, each of which defines an RTL

expression. The macro has four operands,

1. The internal name of the RTX.

2. The name of the RTX in ASCII format.

3. The print format of the RTX.

4. The class of the RTX.

The third operand is a sequence of characters called the format. This format

enumerates the number of objects that the RTL expression contains and the type

of each of the objects. For example, the format for define insn is sEsTV. Each

character in a format has a particular meaning. The meaning of some of the most

used format characters are listed below,

s - A string.

e - An RTL expression.

i - An integer.

E - A vector of RTL expressions.

V - This is same as E, but this object is optional.

T - This is like strings, but treated speacially by rtl reader used internally by gcc.

The format of the define insn expression can be listed as below.

(define insn string

[RTL Expression Vector]

string
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string

[Optional RTL Expression Vector]

)

From the above list, it is understood that, define insn(format is sESTV, as stated

above) has a string, followed by an RTL expression vector, then two strings and

finally an optional RTL expression vector. This is explained in more detail in the

subsequent section. In summary, the file rtl.def, gives the syntax of each RTL

expression while the semantics can be understood from the comments in rtl.def and

GCC’s documentation[2].

2.5 Standard Pattern Names

Names are given to patterns defined by define expand expressions and optionally

to define insn expressions also. Two different patterns can not use the same names

i.e., the names are unique. GCC provides a set of standard pattern names, whose

semantics are well defined and is used in the RTL generation phase. If the name

matches a standard pattern name, gcc calls the function gen name implicitly that

generates the RTL pattern for that name. Names can start with a *, so that they

can be traced in debugging operations, as such names can be easily traced in RTL

dumps while debugging. Such names won’t be used in RTL generation phase.

2.6 RTL Templates

An RTL template is a vector of incomplete rtl expressions, as it contains a number of

unresolved operands which have to be resolved by expressions like match operand,

match dup, etc. If the vector has only one RTL expression, then that expression

is the template of the instruction pattern. If the vector has multiple expressions,

then it is as though there is a parallel construct that executes all the expressions

in parallel. An RTL template tells which instructions match the particular pattern
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and how to find its operands. For a named pattern, it also tells how to construct

the instruction from the operands. To construct an instruction, the operands must

be substituted into a copy of the template. An RTL template uses rtl expressions

like match operand, match dup, match operator,etc. Let us look at the format of a

match operand expressions

(match_operand:m n predicate constraint)

This expression acts as a placeholder for the operand number ’n’ of the in-

struction. If an instruction is being constructed, the operand number ’n’ will be

substituted here. If an instruction is being matched, the operand appearing at this

position must satisfy the predicate mentioned, else the instruction won’t be matched.

Predicate is a string that is a name of a function that accepts two arguments, an

expression and the machine mode ’m’. If the predicate is empty, then no tests need

to be done. Constraints allows a more detailed selection after the operand satisfies

the predicate condition. Constraints can be used to decide on reloading and the

register class choices. The operand numbers are numbered from zero. For example,

let us look at the following match operand expression,

Example 2. (match_operand:SI 0 ‘‘register_operand’’ ’’r’’)

This expression will try to match operand zero with machine mode Single Integer

mode(SI). The predicate function to be used is register operand and the constraint

to be tested is r. The constraint here means that the operand must be a register

and it must be one of the general registers.

Now let us look at the define ∗ expressions which have RTL expressions in them

and see how they are used.

2.6.1 define insn Expression

The define insn expression is very important because this describes an instruction

pattern. Let us look at what constitutes a define insn expression and the meaning

of each of its constituents. A define insn expression contains,
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1. An optional name. If the name is present, and if this matches one of the

standard names that the compiler is aware of, this define insn will be used in

the RTL generation phase. If the name is not present or if the name is not

a known name, then this define insn will not be used in the RTL generation

phase, but can be used in other phases.

2. An RTL template. This is same as the RTL template that was discussed in

the previous section.

3. A condition. This is a C expression, which is the final test to be performed to

decide whether the instruction body matches this pattern.

4. The output template. This is a string that says how to output the assembly

code for the matching instructions.

5. An optional vector of attributes.

A sample define insn expression is listed below.

Example 3. (define_insn "add<mode>3"

[(set (match_operand:ANYF 0 "register_operand" "=f")

(plus:ANYF (match_operand:ANYF 1 "register_operand" "f")

(match_operand:ANYF 2 "register_operand" "f")))]

""

"add.<fmt>\t%0,%1,%2"

[(set_attr "type" "fadd")

(set_attr "mode" "<UNITMODE>")])

2.6.2 define expand Expression

A define expand expression looks similar to a define insn expression, but the former

is used only in the RTL generation phase and it can produce more than one RTL

instruction. The RTL instruction generated by a define expand expression must

match the RTL template of some define insn expression. Otherwise, the compiler

will crash when trying to generate code or during optimization. A define expand

expression contains,
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1. A name. In a define expand expression, the name is not optional, as in the

case of a define insn expression.

2. An RTL Template. The RTL template here has one different meaning. If the

RTL template has more than one RTL expression, then it is not assumed that

there is an implicit PARALLEL surrounding them.

3. A condition. This is same as in the define insn expression, but the condition

here depends more on the machine specific flags.

4. Preparatory statements. This is a string containing a set of C statements,

which has to executed before the RTL code is emitted.

A sample define expand expression is listed below.

Example 4. (define_expand "mul<mode>3"

[(set (match_operand:GPR 0 "register_operand")

(mult:GPR (match_operand:GPR 1 "register_operand")

(match_operand:GPR 2 "register_operand")))]

""

{

if (TARGET_LOONGSON_2EF || TARGET_LOONGSON_3A)

emit_insn (gen_mul<mode>3_mul3_loongson (operands[0],

operands[1], operands[2]));

else if (ISA_HAS_<D>MUL3)

emit_insn (gen_mul<mode>3_mul3 (operands[0],

operands[1], operands[2]));

else if (TARGET_FIX_R4000)

emit_insn (gen_mul<mode>3_r4000 (operands[0],

operands[1], operands[2]));

else

emit_insn

(gen_mul<mode>3_internal (operands[0],

operands[1], operands[2]));

DONE;

})
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2.6.3 define split Expression

A define split expression tells the compiler how to split a complex instruction into

two or more simpler instructions. This splitting is necessiated under two circum-

stances. One is the case, where the machine may have instructions that require

delay slots in between. The second case is, the output of some instructions won’t

be available for multiple cycles. In both these cases, the optimization phase of the

compiler needs the ability to place instructions in slots that are empty. This is

supported by the define split expression. A define split expression contains,

1. An instruction pattern(RTL Template). This is the pattern that is to be split.

2. A condition. The condition here is same as in a define insn expresion.

3. Output instructions. This is a list of instruction patterns that will be gener-

ated. That is the input instruction pattern is split into a list of instructions

given by this output instructions.

4. Preparatory statements. This is similar to those in a define expand expression.

A sample define split expression is listed below.

Example 5. (define_split

[(set (match_operand:GPR 0 "d_operand")

(const:GPR (unspec:GPR [(const_int 0)] UNSPEC_GP)))]

"TARGET_MIPS16 && TARGET_USE_GOT && reload_completed"

[(set (match_dup 0) (match_dup 1))]

{ operands[1] = pic_offset_table_rtx; })

2.6.4 define insn and split Expression

This is used, when the instruction pattern of a define split expression matches ex-

actly with that of a define insn expression. So this expression contains all the fields

from the define insn expression and define split expression. This will have two sep-

arate conditions, one for instruction splitting and another for instruction matching

(used in define insn).
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A sample define insn and split expression is listed below.

Example 6. (define_insn_and_split "loadgp_newabi_<mode>"

[(set (match_operand:P 0 "register_operand" "=d")

(unspec:P [(match_operand:P 1)

(match_operand:P 2 "register_operand" "d")]

UNSPEC_LOADGP))]

"mips_current_loadgp_style () == LOADGP_NEWABI"

{ return mips_must_initialize_gp_p () ? "#" : ""; }

"&& mips_must_initialize_gp_p ()"

[(set (match_dup 0) (match_dup 3))

(set (match_dup 0) (match_dup 4))

(set (match_dup 0) (match_dup 5))]

{

operands[3] = gen_rtx_HIGH (Pmode, operands[1]);

operands[4] = gen_rtx_PLUS (Pmode, operands[0], operands[2]);

operands[5] = gen_rtx_LO_SUM (Pmode, operands[0], operands[1]);

}

[(set_attr "type" "ghost")])

2.6.5 define peephole Expression

The use of this expression is deprecated.

2.6.6 define peephole2 Expression

Peephole optimizations are done after the register allocation phase but before the

instruction scheduling phase. The format of this expression is almost similar to the

define split expression except that the instruction pattern to be matched in this case

is a sequence of instructions instead of a single instruction. This also tells, what

additional scratch registers are required(if any) and their lifetimes.

A sample define peephole2 expression is listed below.

Example 7. (define_peephole2

[(parallel

[(set (match_operand:SI 0 "lo_operand")

(match_operand:SI 1 "macc_msac_operand"))

(clobber (scratch:SI))])
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(set (match_operand:SI 2 "d_operand")

(match_dup 0))]

""

[(parallel [(set (match_dup 0)

(match_dup 1))

(set (match_dup 2)

(match_dup 1))])])



Chapter 3

Methodology

In this chapter we look at what is the form(pattern) of an RTL expression and

how this could be separated from an RTL template. Then we see how MD files

were tested for similarities. Finally we see, how a pattern can be instantiated with

machine-specific parameters to construct a new RTL template.

3.1 Extracting the Form of an RTL Expression

Even though the Register Transfer Expressions in an MD file represents machine

instructions for a specific machine, their form is machine-independent[6]. This sec-

tion explains what is the form and how this form can be extracted from an RTL

expression.

Let us take for example, a define insn expression from mips.md file

Example 8. (define_insn "add<mode>3"

[(set (match_operand:ANYF 0 "register_operand" "=f")

(plus:ANYF (match_operand:ANYF 1 "register_operand" "f")

(match_operand:ANYF 2 "register_operand" "f")))]

""

"add.<fmt>\t%0,%1,%2"

[(set_attr "type" "fadd")

(set_attr "mode" "<UNITMODE>")])

Here the RTL template is

22
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[(set (match_operand:ANYF 0 "register_operand" "=f")

(plus:ANYF (match_operand:ANYF 1 "register_operand" "f")

(match_operand:ANYF 2 "register_operand" "f")))]

This can be represented in a tree form as,

match_operand:ANYF 0 "register_operand" "=f" plus:ANYF

match_operand:ANYF 1 "register_operand" "f" match_operand:ANYF 2 "register_operand" "f"

s e t

Figure 3.1: Add Template

The form of the above RTL template can be represented as,

   arg0   p l u s : < < M O D E > >

   arg1      arg2   

s e t

Figure 3.2: Add - Form of the template

The nodes that are labeled arg0, arg1, arg2, etc., can be termed as holes which

can be filled by suitable parameters. The mode of the operator plus is also not

part of the form, because, the modes supported are machine specific. Similarly,

the match operand expressions are machine-specific because, they have fields like

predicate, constraint and mode. These fields tells how the operand should be chosen

in a machine-specific way. We can see that the form depicted in figure 3.2, can be

used by any machine, as it has no machine-specific parameters. Any machine can

use this form after filling in details about the arguments for the operators set and

plus and the mode supported by the operator plus.

Definition 1. An RTL template stripped off its machine-specific parameters, con-

taining only the form of the template is called its RTL pattern or simply pattern.
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The patterns when filled(instantiated) with suitable machine-specific parameters

like modes or match operand expressions can give the original RTL template.

S.No Pattern No. of Occurrence

1

s e t

< < r e > > p l u s : < <mod e>>

< < r e > > < < r e > >

17

2

s e t

< < r e > > s i gn_ex t e nd :<<mode>>

p l u s : < <mod e>>

< < r e > > < < r e > >

2

3

s e t

< < r e > > z e r o _ e x t e n d : <<mode>>

s u b r e g : < <mod e>>

p l u s : < <mod e>> < < o f f s e t > >

< < r e > > < < r e > >

2

4

s e t

< < r e > > z e r o _ e x t e n d : <<mode>>

t r u n c a t e : < <mod e>>

p l u s : < <mod e>>

< < r e > > < < r e > >

1

Table 3.1: Summary of Patterns in Add instructions from mips.md

A look at the list of MD file instructions of MIPS, that deal exclusively with
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addition tells that, there are 7 define insn instructions, 4 define split instructions and

one each of define expand and define insn and split instructions. These instructions

together have 22 RTL templates. But when we extract the patterns from each of

these 22 RTL templates, there are only 4 unique RTL patterns in total.

We see from table 3.1, that pattern1 repeats itself 17 times, with varying machine-

specific mode and operand constraints. Extracting patterns from the addition in-

structions of the mips machine description was relatively simple. It was enough to

extract the operators set, plus, zero extend, sign extend and truncate and excluding

the modes and match operand and match dup expressions. But to extract patterns

from the whole of machine description files, we need to classify what forms part of

the pattern and what should be ignored.

The RTL expressions in rtl.def are classified into several classes. The classifica-

tion is based on the type of their operation and their operands. Below is a list of

RTL classes along with a brief description about each of them[2].

• RTX OBJ: An RTX code that represents an actual object, such as a register

(reg) or a memory location (mem, symbol ref).

• RTX CONST OBJ: An RTX code that represents a constant object.

• RTX COMPARE: An RTX code for a non-symmetric comparison, such as geu

and lt.

• RTX COMM COMPARE: An RTX code for a symmetric (commutative) com-

parison, such as eq, ordered, etc.

• RTX UNARY: An RTX code for a unary arithmetic operation, such as neg,

not, abs, etc. This category also includes value extension (sign or zero) and

conversions between integer and floating point.

• RTX COMM ARITH: An RTX code for a commutative binary operation, such

as plus, and, ne, eq, etc.
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• RTX BIN ARITH: An RTX code for a non-commutative binary operation,

such as minus, div, ashiftrt, etc.

• RTX BITFIELD OPS: An RTX code for a bit-field operation. Currently only

zero extract and sign extract are part of it.

• RTX TERNARY: An RTX code for other three input operations. Currently

only if then els, vec merge, sign extract, zero extract, and fma are included.

• RTX INSN: An RTX code for an entire instruction.

• RTX MATCH: An RTX code for something that matches in insns, such as

match dup. These only occur in machine descriptions.

• RTX AUTOINC: An RTX code for an auto-increment addressing mode, such

as post inc.

• RTX EXTRA: All other RTX codes. This category includes the remaining

codes used only in machine descriptions (define *, etc.). It also includes all

the codes describing side effects (set, use, clobber, etc.) and the non-insns that

may appear on an insn chain, such as note, barrier, and code label. subreg is

also part of this class.

From the above list, the obvious choices for classes of RTL expressions which

will be part of the patterns are,

• RTX COMPARE

• RTX COM COMPARE

• RTX UNARY

• RTX COMM ARITH

• RTX BITFIELDS OPS

• RTX TERNARY
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• RTX AUTOINC

Apart from this, the form of an RTL expression contains a few RTL expressions

from the class RTX EXTRA. They are called Side Effect Expressions. They are so

named, because they change the state of the machine. Side effect expressions in-

clude operators set, return, call, clobber, use, parallel, cond exec, sequence,

asm input, unspec, unspec volatile, addr vec and addr diff vec.

An internal node of a tree is that node that has child nodes. We have seen

quite a few examples where the RTL expressions and templates where represented

as trees. The RTL expressions that are part of the pattern are those that appear

as internal nodes in the tree form of the RTL expressions. The RTL expressions

which are leaves in an RTL tree form, are constants, registers or memory locations

which are chosen in a machine specific way. In summary, the RTL expressions which

are part of the pattern, tells what operation is being done, and this has the same

meaning across machines.

So, to extract the pattern from an RTL template, we must traverse the tree form

of it and retain all nodes which form part of the pattern and create holes in place

of nodes which are machine specific.

The list of unique patterns encountered in a MD file are listed in a file, along

with the following details.

• The code iterators used in the machine. This is important, because the code

iterators acts as aliases to operators and this alias is specific to a particular

machine. So reading the patterns back won’t make much sense without the

code iterators listed.

• The height of the pattern. The height here is height of the tree that represents

this pattern.

• The number of times this particular pattern is encountered in the files that

are parsed.

• The total number of RTL templates considered for parsing.
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A function, AddToPatternList, is used to get the list of unique patterns found in

the machine description files of a machine. This function(refer Algorithm1) main-

tains a list of patterns, sorted in the increasing order of their heights. When a new

pattern is encountered, it is compared with patterns of same height for equality

and added to the list, if it is not already present. The patterns are sorted by their

heights, so that unwanted comparison between patterns of dissimilar heights are

avoided.

Algorithm 1 AddToPatternList (p)

height := get height(p)
if plist is empty then

Add p to plist. {plist, is a global variable and points to a list of patterns.}
else

Skip over all patterns,pat, such that get height(pat) < height.
if There are patterns pat, such that get height(pat) ≥ height then

while As long as plist has more patterns and current pattern, pat →
height = height do

Compare the input pattern p and pat for equality.
if p = pat then

Break out of loop.
end if

end while
if plist has more patterns then

if pat→ height = height then
The input pattern, p, is already added to the list.So just increase the
count for this pattern.

else
The input pattern p, is not in the list. Insert this pattern to the list.

end if
else

None of the patterns in the list matches the input pattern and it is safe to
add this pattern to the end of the list.

end if
else

All the patterns in the plist are of height less than the input pattern. So
insert this pattern to the end of the list.

end if
end if

The input to the above function is a pattern p. To get the pattern p, from an

RTL Template of an instruction, say a define insn expression, the RTL template is

passed to a function extractPattern, which accepts an RTL template and returns the
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corresponding pattern. The pattern thus returned is passed to the above function.

3.2 Output Format

After parsing the machine description files of a machine, the output is written on to

a file. Initially, the code iterators found in the machine are listed down. Then the

patterns are listed one by one in the increasing order of their heights. Along with

the patterns, their height and the number of times that pattern occurs in the MD

file are also listed.

Pattern_format : code_iterators patterns

;

code_iterators : //Empty pattern

|

code_iterators code_iterator

;

code_iterator : [SNO] code_iterator_expression

;

patterns ://Empty Pattern

|

patterns pattern

;

pattern :[SNO][HEIGHT][COUNT] pattern_expression

;

A grammar is written to read code iterator expression and also the pattern expression,

so that they can be read back from file and represented as trees in memory for further

use.

For the addition instructions of the machine MIPS, the patterns extracted and

printed will look like this

[1][2][17] (set <<:m>> (<<re>>)(plus <<:m>> (<<re>>)(<<re>>)))
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[2][3][2] (set <<:m>> (<<re>>)(sign_extend <<:m>>

(plus <<:m>> (<<re>>)(<<re>>))))

[3][4][2] (set <<:m>> (<<re>>)(zero_extend <<:m>>

(subreg <<:m>>

(plus <<:m>> (<<re>>)(<<re>>))

<<offset>>)))

[4][4][1] (set <<:m>> (<<re>>)(zero_extend <<:m>>

(truncate <<:m>>

(plus <<:m>> (<<re>>)(<<re>>)))))

The instructions defining addition operation don’t use code iterators. So the code

iterators are not listed above. In the first line, the value [1] represents the index,

the value [2] represents the height of the pattern and the value [17] represents the

number of times this pattern occurs in the input file that was parsed. Followed by

this, the pattern is listed. Any text within the two angle brackets represents machine

specific values which are to be filled to get the RTL template. The textual form of

the patterns is similar to the textual form of the RTL expressions found in machine

description files. They are written in similar fashion, with the parentheses used in

the same way as in a regular RTL expression. In the textual form of RTL, any RTL

expression is written within a pair of parenthesis. An RTL vector, which is a vector

of RTL expressions, is enclosed within a pair of square brackets. The only difference

in the pattern’s representation is that any machine-specific value is removed, and

is replaced by a meaningful text enclosed within two angled brackets. So anyone

familiar with RTL expression’s textual form can easily read and understand the

pattern files.
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3.3 Finding Common Patterns between two ma-

chines

One interesting application of the parsing discussed above is, given two machines, we

can get an idea about the number of patterns that are common between them. Note

that, with each pattern pi, we associate a count. This count, tells us the number

of actual templates that have this pattern as its form, or conversely, the number

of templates that can be formed on this machine by supplying machine-specific

parameters to this pattern.

Given two files, each containing the pattern list of a machine, a list of common

patterns is output into a file with the following details,

• The list of code iterators common between the two machines.

• The list of patterns that are common between the two machines.

The above listing has the same syntax as the pattern list file discussed in the

previous section. The count associate with each pattern in this case means the

number of templates that are common in both the machines.

3.4 Instantiating Patterns with Parameters

This section describes how to instantiate a pattern with machine-specific parameters

to generate a complete RTL template. For this we need the list of patterns which

was output from the parse option or the intersect option. We refer to the pattern

to be instantiated with a number which indicates the index at which the pattern is

listed in the pattern file. The first pattern listed gets the number 1, the second 2

and so on. To instantiate a pattern we use the notation,

[$$INDEX ARGUMENTS]

The INDEX above represents the index of the pattern in the pattern list. The

ARGUMENTS, is list of machine-specific values that are to be used by the pattern
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indicated by index to complete the pattern to get the complete RTL Template.

The arguments are listed in an in-order fashion. The use of parenthesis and square

brackets is similar to the RTL’s textual representation. The arguments for an RTL

expression are listed within a pair of parenthesis, while that of an RTL vector are

enclosed within square brackets.

Let us illustrate this with an example. The addition specific instructions from

the MD file of the MIPS machine is parsed and we get the below list of patterns.

[1][2][17] (set <<:m>> (<<re>>)(plus <<:m>> (<<re>>)(<<re>>)))

[2][3][2] (set <<:m>> (<<re>>)(sign_extend <<:m>>

(plus <<:m>> (<<re>>)(<<re>>))))

[3][4][2] (set <<:m>> (<<re>>)(zero_extend <<:m>> (subreg <<:m>>

(plus <<:m>> (<<re>>)(<<re>>))<<offset>>)))

[4][4][1] (set <<:m>> (<<re>>)(zero_extend <<:m>>

(truncate <<:m>>

(plus <<:m>> (<<re>>)(<<re>>)))))

To instantiate one of the patterns above, say pattern 3, with operands, we can

use the below construct,

[$$3(null (match_operand:SI 0 "register_operand" "=d")

(SI (QI

(SI (match_operand:SI 1 "register_operand" "d")

(match_operand:SI 2 "register_operand" "d"))

3)))]

In the above statement, $$3 corresponds to the pattern 3 in the pattern list,

listed above. On reading the pattern, a tree, say T1 as shown in Figure3.3, of the

pattern is created internally. Followed by this, the arguments to this pattern are

listed. A grammar has been written to parse the arguments. This grammar reads

the arguments and creates a tree say T2 as shown in Figure3.4, for this argument.

The next step will be to merge these two trees T1 and T2, the pattern and the
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argument to get the actual template with the complete machine-specific values as

shown in Figure3.5.

s e t

< < r e > > z e r o _ e x t e n d : <<mode>>

s u b r e g : < <mod e>>

p l u s : < <mod e>> < < o f f s e t > >

< < r e > > < < r e > >

Figure 3.3: Pattern-Tree T1

null

match_operand:SI 0 "register_operand" "=d" SI

QI

SI 3

match_operand:SI 1 "register_operand" "d" match_operand:SI 2 "register_operand" "d"

Figure 3.4: Argument-Tree T2

3.5 Merging Pattern Files

This section describes how a set union of patterns is performed given a list of files

with pattern lists. Previously we saw that a grammar was written to read pattern

files using which common patterns between two machines were listed. The same

grammar is used to find the union of patterns given two pattern files. If we have

the pattern-list files for a set of architectures, with our capability to perform union

and intersection operation on patterns, we can create a basis set of patterns that

are common to a majority of the architectures.
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s e t

match_operand:SI 0 "register_operand" "=d" zero_extend:SI

subreg:QI

plus:SI 3

match_operand:SI 1 "register_operand" "d" match_operand:SI 2 "register_operand" "d"

Figure 3.5: Merged Tree

A naive approach for getting the minimal set is suggested below. Say, there

are pattern-list files f1, f2, f3,..,fn for machines m1, m2, m3,...,mn. We can modify

the count associated with each pattern as 1. Then we can perform an union of all

the pattern files and then output only those patterns which occurs in at least in a

specific number(threshold), say half the number of machines. This threshold can

be made configurable by the user. With this in place, we can get the basis set of

patterns needed to build new MD files.

3.6 Separating Machine-specific parameters from

Templates

We developed a method to split an RTL template into patterns and parameters i.e.,

given an RTL template in its input, it splits the RTL template into the index value

of its corresponding pattern and the machine-specific values as operands. The RTL

templates in this format is written to an output file.

Developing this method served two purposes. The first one was to test our

strategy to instantiate RTL patterns with parameters as discussed in the previous

section, using real MD files. The MD files of existing machines were first split into

pattern-index and machine-specific operands using this method and written to an

output file. Then we tested creating RTL templates back from the output file created



35

in the previous step.

The second purpose was in removing redundancies in MD files. Later in the

next chapter, we’ll show through experimental results that, patterns are repeated

across RTL templates even within MD files of a single machine. Since, patterns are

extracted and listed only once, this method helps removing redundancies.

3.7 Summary

In summary, we looked at what is a pattern of an RTL expression and how this could

be separated from an RTL template. Then we saw how MD files were tested for sim-

ilarities and how the patterns can be instantiated with machine-specific parameters

to construct new RTL templates.



Chapter 4

Experimental Results

This section describes the results that we obtained using the tool MDParser, we

developed to extract RTL patterns from MD files. Recall that patterns are obtained

by extracting the form of the RTL templates.

The Machine description files of five machines

1. ARM

2. i386

3. MIPS

4. SPARC

5. VAX

were considered for the results enumerated below. These files are taken from the

back-end of GCC version 4.6.1.

4.1 Extracting Patterns From MD Files

Table 4.1 lists the number of RTL templates considered in each of the machine’s

machine description file and the number of patterns that form the basis of it.

From table4.1 it is observed that in general, the number of patterns are around

one fourth of the number of templates within a given machine description. This tells

36
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Machine No. of Templates No. of Patterns
ARM 1581 362
i386 2238 547

MIPS 736 209
SPARC 701 187

VAX 125 64

Table 4.1: Summary of Patterns and RTL Templates

us about the level of redundancy that is present within machine description files.

For example, ARM has 1581 RTL templates, but only 362 patterns.

4.2 Common Patterns Between Machines

Table 4.2 lists the number of patterns that are common between the machines. This

was obtained by performing an intersection of the pattern files extracted from each

machines after parsing.

Arm I386 Mips Sparc Vax
Arm 101 75 79 35
I386 101 73 63 34
Mips 75 73 48 29
Sparc 79 63 48 30
Vax 35 34 29 30

Table 4.2: Common Patterns

Suppose we have a pattern p from machine m1 which matches with pattern p

from machine m2. Let ci be the count associated with p of m1 and cj be the count

associated with p of m2. There are a total ci + cj templates in the machines m1

and m2 sharing the same pattern pi(or pj). This is listed in table 4.3.

From the table 4.3, it is observed that on an average 50% of the templates share

common patterns. We can note that the results of VAX are not as good as others. We

believe the reason for that is, VAX is the smallest machine considered in terms of the

number of RTL templates parsed. VAX has just 125 RTL templates and 64 patterns.

In comparison, i386 has 2238 templates and 547 patterns. When comparing such

a large machine with a small machine, the number of common patterns, there by,

the number of templates that match them will be reduced significantly. We can see
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(n1+n2) Arm I386 Mips Sparc Vax
Arm (2281/3819)

=59.72%
(1486/2317)
=64.13%

(1475/2282)
=64.63%

(799/1706)
=46.83%

I386 (2281/3819)
=59.72%

(1584/2974)
=53.26%

(1441/2939)
=49.03%

(719/2363)
=30.42%

Mips (1486/2317)
=64.13%

(1584/2974)
=53.26%

(838/1437)
=58.31%

(355/861)
=41.23%

Sparc (1475/2282)
=64.63%

(1441/2939)
=49.03%

(838/1437)
=58.31%

(410/826)
=49.63%

Vax (799/1706)
=46.83%

(719/2363)
=30.42%

(355/861)
=41.23%

(410/826)
=49.63%

Table 4.3: Actual Templates Matched Based on Common Patterns

that i386 and VAX share a mere 34 patterns in common, which is the reason for

only 30% of the templates to share common patterns. But if we look at machines

of relatively similar size(in terms of RTL templates count), the pairs MIPS-SPARC

and i386-ARM have about 60% of the total templates that can be instantiated from

their common patterns.

4.2.1 Code Iterator Equivalence

If two code iterators are found to be equivalent between two pattern files being

compared, their names were made the same. For example

i386 has

(define code iterator any extend [zero extend sign extend ]) and

ARM has

(define code iterator SE [zero extend sign extend ])

both these are made equal. While comparing, a find and replace all is done for

SE to any extend. Similarly, other equivalent code iterators are handled.

The above tables, list results based on strict code-iterator equivalence. For ex-

ample,

(define code iterator vqhs ops [smax smin plus ]) in arm.mi and

(define code iterator smaxmin [smin smax ]) in i386.mi

are considered different, i.e., not equivalent, so rtl-patterns that have these code-

iterators are considered as patterns that are not common even though the difference
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in very minor(a plus )in this case. So that the figures above gives the minimum

number of patterns that are same, i.e., a safe figure.

4.3 Implications

From the above tables, we observe that machines of similar size have common RTL

patterns which can instantiate at the least (due to strict code-iterator equivalence)

around 60% of RTL templates. So based on this observation, we can collect a basis

set of common RTL patterns from known machines and manage them in logical

groups, like the set of patterns for arithmetic operations, function calls, conditional

branches ,etc. This basis set can act as a starting point for writing new machine

description for machines of similar class and functionality. The tool developed,

supports printing the patterns in ’dot’ format(graphviz), which will help in eas-

ily visualizing the patterns. Hence, classifying the patterns and filling them with

machine-specific operand will be easier.

From table 4.1, we observed that there is a significant amount of redundancy

within MD files of the same machine, with the number of unique RTL patterns being

usually in the range of one fourth of the RTL templates. So, even while writing new

MD files, these redundant patterns can be factored out and listed once, and these

patterns can be instantiated with parameters. Since a converter is available that

converts this format to existing MD file format, this is non-disruptive and new MD

files can be written in a concise way.



Chapter 5

Related Work

Research has been carried out for many years to improve the process of retargeting

GCC. Some of the topics of interest are, coming up with a methodology that can

systematically build MD files, improving the way machine descriptions are written,

and automating the process of writing machine description files.

Khedker et al., proposed a new language specRTL[9] to eliminate the redundan-

cies found in GCC’s machine description files. Our work is largely inspired by this

work.

• specRTL is a simplified language to allow users to write MD files easily with

fewer redundancies.

• specRTL is not suitable to discover redundancies in existing MD files.

Our tool on the other hand is intended to be used by users to discover and

minimize redundancies in MD files which in turn can be helpful in retargeting.

Sameera et al.[7] proposed a systematic way to build GCC machine descriptions.

They have split the process of building machine descriptions into five steps. As the

first step, handling simple assignment statements. Further steps successively handle

arithmetic operations, function calls, conditional control transfers and other data

type handling respectively in that order. The motivation for this work is to develop

a working compiler at every step that can handle a restricted subset of the input

language. This subset grows with successive steps.
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Kai-Wei Lin et al.[10] work discusses about a systematic methodology, to port

GCC to a new architecture. This work is very similar in nature to the work by

Sameera et al. [7]. They have split the process of writing Machine Description

files into seven steps. The first step involves modifying the configuration files of

the target machine. Further steps involve adding functionalities to handle integer

assignment, function call support, conditional branches and handling other data

types. The final step involves adding optional optimization routines. Based on this

methodology, they have built a tool that assists in porting. They have implemented

a web based tool, that acts as a wizard and guides the user in each of the steps by

providing templates relevant for the current step.

Both the above cited works suggested a systematic way to build MD files. But

no attempt was made to simplify it by using existing MD files. Our work, unlike

the above works, gives the flexibility to choose the architectures that we feel that

the new architecture is similar to. Then we can use the tool developed to extract

the patterns from them. So, the minimal set provided is not fixed and it can be

changed by choosing the machines of interest and restrict it only to them, thereby

the minimal set allows the user to focus only on those patterns that matters and

not a universal set.This helps in making the decision process simpler.

The final goal of our work is to generate MD files using MD files of existing MD

files. This thesis is the first step in our long term goal. Here we have studied existing

MD files and developed tools to understand similarities between architectures. In

particular, our work allows reuse of patterns from existing MD files in new MD files.

The user is benefited, as patterns are shared between machines, by modifying few

patterns, new MD files can be constructed.

In summary, our work is a starting point to convert existing MD files to a

specRTL like specification. This specification can be modified by the user to gener-

ate MD files for new architecture. We expect the size of new MD files written using

this specification to be much smaller and therefore easier to modify these files than

the current MD files with full specification.
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C.Colberg’s [5] work makes understanding the architectural features of a new

architecture easier by using the native C compiler. A prototype tool, Architecture

Discovery Tool(ADT) was created, which generates a formal machine description,

which can be used by a back end generator to get a native code generator. The

ADT, runs simple C or FORTRAN programs on the target machine, and discovers

instruction set, addressing modes, calling conventions, etc. The method used by

ADT to do this is called Self-Retargeting Code Generation. One important con-

straint this work places is that the target architecture should have a native compiler

already available, which is not always possible.



Chapter 6

Conclusion and Future Work

Retargeting compilers to a new architecture is a challenging job. But we can make

this process simpler by using information from existing architectures. Through

empirical studies we were able to show the similarities between architectures which

is in line with Davidson and Fraser’s observation[6].

As part of our work, we have implemented a parser to read MD files. We chose

to concentrate on RTL templates in MD files, which are used to build expander,

describe instructions, instruction scheduling, peephole optimization, etc. We devised

a method to extract RTL patterns from the RTL templates. With this framework in

hand, we measured similarities between machine description files based on their RTL

patterns and showed that similarities that exist are promising. We also proposed

that the RTL patterns which are common between machines can be grouped and

we can come up with a minimal set of RTL patterns which can be used in building

machine description files for new machines of similar class. These RTL patterns

can be filled with the new machine’s parameters to generate parts of the machine

description file for the new machine. As part of that, we showed how to instantiate

a RTL pattern with parameters to get the RTL template. We also found that this

technique can be used to remove redundancies within machine description files of a

particular machine by listing RTL patterns separately and instantiating them with

parameters.

One of the immediate future works is to create a Graphical User Interface(GUI)
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that can help the user to visualize RTL patterns and fill it. The long term goal

of this work is to build a tool which can automatically generate parts of MD files

from existing MD files with user assistance. While it seems impossible to generate

a complete MD file automatically, even a partially generated MD file will help the

user in retargeting.



Appendix A

MDParser User’s Manual

MDParser is the tool that implements the techniques to extract RTL patterns from

MD files as explained in our thesis. This section describes the system requirements

and some examples to show the usage of the tool.

A.1 System Requirements

The tool has been successfully tested under the following conditions. The tool is

expected to work in any compatible systems.

• Processor: Intel Core i3.

• OS: Ubuntu 10.04 LTS.

• Compiler: gcc version 4.4.3 (Ubuntu 4.4.3-4ubuntu5.1), used for building the

tool.

• MD Files Used: MD files are taken from the back-end of GCC version 4.6.1.

• Compiler Tools: flex 2.5.35, bison (GNU Bison) 2.4.1., GNU Make 3.81.

A.2 Installation

A make file is provided along with the source of MDParser. The tool can be built

using this make file by giving the following command at the root of the source tree,

45



46

make

The tool will be built and stored as a binary executable file bin/md parser. The

compiled binary can be moved to any directory.

A.3 Options

The following are the options supported by the tool.

1. parse

2. output

3. graph

4. include

5. param

6. expand

7. split

8. dir

9. intersect

A.3.1 parse

This option parses the MD files and generate patterns.

The argument is a directory name. For example, to parse mips.md, mips.md

should be in directory mips. As argument, give the full path to mips without any

trailing ’/’ character.

Example :

bin/md parser -parse test/mips

the above command starts parsing mips.md in ./test/mips/mips.md
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Use the option output along with it to specify the file to which it has to be

output

bin/md parse -parse test/mips -output mips.mi

will write output to file mips.mi. If output is not set, default option is to print

it to stdout.

A.4 Patterns in dot Format

We added the functionality to print each of the patterns in the pattern list in the

dot format, which can be used by the tool graphviz[8]. This tool helps in visually

representing graphs. By writing patterns this way, the output file can be compiled

using the dot tool to get a graphical representation of each of the patterns in the

patterns list as seen in the examples above. This helps understanding the patterns

easier.

Use the option graph to print the patterns in dot format.

bin/md parser - parse test/mips -output mips.mi -graph mips.dot

The above command will list the patterns in dot notation in the file mips.dot

apart from writing patterns to mips.mi. The mips.dot file can be further compiled

using the dot tool to get the graphical representation of the patterns, with each

pattern listed in one page.

A.4.1 intersect

This option, given two pattern files, lists the patterns that are common to both the

files.

• This option expects two mi files which are list of patterns generated by parse

command separated by commas(no spaces).

• Copy the code iterators listed in first file to second file and remove code iter-

ators from first file.



48

• If two code iterators are found to be equivalent, but have different names, use

“find and replace” to make both the code iterators have the same name and

the same name is used in patterns.

A sample usage scenario is,

bin/md parse -intersect mips.mi,arm.mi -output mips-arm.mi

A.4.2 split

This option splits an MD file into two files, one containing pattern index in place

of RTL templates and another containing the corresponding parameters for the

template. This option can also be made to output a single file containing the pattern

index and its parameter together.

Example : bin/md parse -split test/mips -include mips.mi -dir mips-output

• split expects a directory as in the case of parse command as an argument.

This command will start parsing from test/mips/mips.md.

• -include tells the pattern file(mips.mi) to look up. This has to be generated

by the parse command.

• -dir command tells the directory in which the output files will be generated.

Say, for a file mips.md, mips.com and mips.par will be generated. mips.com

contains instructions in compressed form, templates will be given by index of

pattern in mi file. mips.par will contain parameters.

A.4.3 expand

This option, combines the pattern index and parameters and produces the RTL

templates back to get the MD files in the format supported by GCC. This option

was tested by generating first splitting MD files to patterns and parameters using

the split command and then regenerating the MD files back.

bin/md parse -expand mips-output/mips.com -include mips.mi -param mips-

output/mips.par -dir mips-output1
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• expand option expects the base .com file which includes all other .com files.

for mips machine it will be mips.com.

• include must be used with -expand as is the case with split option.

• param tells the base file which includes parameters for all .com files.

• dir tells the directory in which the output files has to be written.

All corresponding com and par files will be merged to get the .md files back.

Example, mips.com and mips.par will be merged to get mips.md in mips-output1

directory.



Appendix B

Additional Results

Let us say, there are two machines m1 and m2 whose individual patterns lists are

available with us. We did an intersection of these patterns and got the common

patterns list. We calculated the number of templates that can be instantiated in

each of these machines, using this common patterns list as the source. This is listed

in table B.1. This gives the number of templates that can be instantiated in one

machine using another machine as the source.

Source→
Destination↓

Arm I386 Mips Sparc Vax

Arm (1196/2238)
=53.44%

(504/736)
=68.48%

(483/701)
=68.91%

(88/125)
=70.4%

I386 (1085/1581)
=68.63%

(509/736)
=69.16%

(447/701)
=63.76%

(87/125)
=69.6%

Mips (982/1581)
=62.11%

(1075/2238)
=48.03%

(391/701)
=55.77%

(80/125)
=64%

Sparc (992/1581)
=62.75%

(994/2238)
=44.41%

(447/736)
=60.73%

(74/125)
=59.2%

Vax (711/1581)
=44.97%

(632/2238)
=28.23%

(275/736)
=37.36%

(336/701)
=47.93%

Table B.1: Templates Matched on Target Machine Based on Common Patterns

It can be seen from the above table that, when using Vax as the source, the

percentage of templates that can be filled in a target is significantly reduced. We

believe that the reason for this anomaly is the small size of Vax.

We can repeat the above experiment by taking patterns from two or more ma-
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chines as the source machines and try generating templates for a new machine. The

number of possibilities are overwhelming. So such possibilities were not tried owing

to the lack of time.
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