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ABSTRACT

Recent technologies have brought parallel infrastructure to general users. Nowa-

days parallel infrastructure is available in PC’s and personal laptops. Now single

core machines have became history. Even multi-core technologies are replaced by

GPGPUs when it comes to high performance computing because GPGPUs are giv-

ing many cores at low cost. Sequential programs of the past are unable to efficiently

utilize this parallel architecture. An application which run parallel has lesser running

time than sequential application. Writing parallel programs manually is a difficult

task. So we can not expect domain experts to write parallel programs. We can

create an automatic parallelizing compiler to convert a sequential code to parallel

code. Domain experts can use this kind of compiler to convert their sequential code

to parallel code to utilize parallel infrastructure.

In this work, we have proposed a tool which will convert a sequential code to

parallel code. Here for sequential code we took LINQ programming language and

for parallel architecture we took CUDA. LINQ is a query language developed by

Microsoft to query data in .NET Languages and CUDA is an architecture developed

by NVIDIA to use GPUs. Our proposed parallelizing compiler will automatically

convert a LINQ code to an equivalent CUDA code. Microsoft has also developed

a compiler to parallelize LINQ operators but it is only for multi-cores and not for

GPGPUs. In our work we are parallelizing these LINQ operators in GPGPUs using

CUDA.
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Chapter 1

Introduction

Some real life applications and simulations like Physics-based simulations, Aero-

dynamic and streamlining simulation, Digital image processing, Video Processing,

Bio-informatics, Database operations which deals with huge amount of data, requires

huge amount of resources and takes lots of execution time. It is important that such

programs make efficient use of resources for better running time performance.

Modern computers are not getting faster than previous generation. Instead we

have to add more and more CPU’s to perform multiple tasks in parallel that is

called multi-core processors machine. As the number of CPU’s are increasing it is

becoming more complex to write code as it has to handle interaction of large number

of threads.

To run those applications which require heavily parallel computing, one of the

well know technique is data parallelism. In data parallel computation same compu-

tation is performed on different data sets. That means we can execute same code

on different cores or threads on different data. Some well known data parallel pro-

gramming environments are High Performance Fortran(HPF) [HPF97], NVIDIA’s

Compute Unified Device Architecture (CUDA) API for graphics processor [NVI11]

and Google map/reduce framework [MR04]. All these architecture require very

complex programming as we have to interact with threads and processors.

The aim of this thesis is to describe an environment that let user program in

1



CHAPTER 1. INTRODUCTION 2

sequential manner and produce automatically equivalent data parallel code that will

run on GPGPU [GPG12].

1.1 GPGPU

In each generation of CPU, improvement of computational power is the main area

of research. After continuously improvement CPU’s performance, the growth is not

enough to compare it with GPU. This difference in performance has drawn the inter-

est of researchers to look for GPUs as a possible solution. This high computational

requirements has led to the emergence of new term General-purpose computing on

graphics processing units(GPGPU).

Here we will present some key points to compare CPU and GPGPU.

1.1.1 High Computational Power

If we talk about computational power of GPUs and CPUs then GPU’s computa-

tional power is much more than CPUs computational power. This difference in

computational power is because of design model of CPUs and GPUs. CPU is basi-

cally a group of few cores with lots of cache memory that can handle few software

threads at a time, but GPU is group of hundreds of cores that can handle thousands

of threads at a time. Computational power of GPU can be 10 to 100 times bet-

ter than CPU because of hundreds of cores to process thousands of threads, which

depends on degree of parallelization of program.

1.1.2 Memory Bandwidth

Memory bandwidth is a term to represent rate of data transfer between processor

and memory. In other words rate of data fetch from memory or data store to memory

is called memory bandwidth. Memory bandwidth is a very important issue when

comparing CPU and GPU. Memory bandwidth of GPU is generally higher than

CPU. This is very important for GPU as it should be able to fetch data fast enough
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to meet the data need for its large number of cores and threads. Memory bandwidth

between CPU and Main memory is in order 1∼2 Gbps whereas in GPU it is in range

75∼150 GBPS.

1.1.3 Programming Model

GPGPU is a generic term used for framework which allows non graphics applications

to run on graphic processors. Various such framework are present like, CUDA

[NVI11], OpenCL [Ope12], Stream SDK for ATI GPUs. All these platforms are

popular while programming with GPGPU.

CUDA is one of the famous framework out of those. A large number of applica-

tions in different fields are running in CUDA, but still number of tools available to

code for sequential languages are more than for any GPGPU framework. Any GPG-

GPU framework requires that code should be written in data parallel format but it

is not necessary for CPU code. It is a tough task to write a code in data parallel

format than writing in sequential format. Despite this difficulty GPGPU program-

ming model is becoming popular with time due to very high computing power of

GPU which requires in many fields of engineering and scientific applications.

1.2 Motivation

Automatic conversion of sequential code to parallel code has been a topic of research

for several decade. Various tricks and techniques are used by compiler community to

achieve parallelization such as parallel design models. Many of libraries were used to

do this task like Message Passing Interface(MPI), Pthreads, OpenMP. Theses tools

and libraries made the task easier. If we have multi cores architecture in machine

then this approach is very useful. We can get better run time by this method. But if

we have installed GPU in our machine then are we utilizing our resource properly?

The answer to this question is no, we are only using multi cores not GPUs.

In this work we are presenting data parallelization using GPGPUs, for this we
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Figure 1.1: Convert LINQ to CUDA.

need one language which deals with huge amount of data and we found query

language is a good option for this. So we started our work with query language

and then we parallelize it. For this task we choose Language integrated query

(LINQ) [LIN12b] as query language which deals with huge amount of data. And

then later we converted LINQ code to GPGPU code. For GPGPU we used Compute

Unified Device Architecture (CUDA).

1.3 Our Work and Contribution

Our work is aimed to domain specialize programmers, who knows their problems

best like physicist, aerospace engineers, database specialist, but they are not experts

in writing parallel codes. They know there are lots of opportunity for parallelization

in their problem but they don’t know how to use tools and libraries of parallel pro-

gramming. Basically, their work is a very long running simulation and calculation,

where a little bit of parallelization can reduce their running time in order of hours,

days or even months. In this work we parallelize LINQ codes in GPGPU by using

CUDA libraries so that we can save lots of time. Detailed discussion on LINQ is in

section 2.1.

As we know in many simulation we need to execute our code on huge amount

of data. We know query language is a better option when dealing with large set of

data. LINQ is one of the best choice as one of the query languages, because LINQ
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codes interact with objects as well as with data. LINQ makes a query a first-class

language construct in C# and Visual Basic.

We started our work for a real life algorithm and first implemented it in C#

then replaced loops by LINQ operators and after that we converted LINQ code to

GPGPU code for CUDA library. Fig 1.1 will help you to get a clear picture of our

work. In this processes we made some observation while converting a LINQ code to

GPGPU code and applied those observation to code each LINQ operator in CUDA.

Later those observation will be useful when writing a converter for LINQ to CUDA.

1.4 Organization of Thesis

In chapter 2, we explained background knowledge which we required for our work.

In which we explained about LINQ and LINQ operators, Similarities between LINQ

and Haskell and then a brief knowledge of execution of LINQ queries. After that we

explained about CUDA in details.

In chapter 3, we introduced data parallelism. Then we took a real life algorithm

as our example and implemented it first in C# then replaced loops by LINQ oper-

ators and finally we implemented it in CUDA. So basically this chapter represent

our implementation from starting to end for an example of our choice.

In chapter 4, we explained CUDA code for each LINQ operator. And later we

discussed issues which we faced in our work.

In chapter 5, we showed running time in CPU as well as in GPU of our CPU

version of code and GPU version of code.

In chapter 6, we explained some researches which are related to our work and

also we will see how they are different from our work.

In chapter 7, we explained the conclusion of our thesis and also we discussed

future work which can be performed based on this thesis.



Chapter 2

Background

This chapter describes the concepts which are prerequisites to understand our work.

We will start our discussion with LINQ, and explain how LINQ is different from

other programming languages. After that we will describe about CUDA library

used for GPGPU programming.

2.1 Introduction to LINQ

We present an overview in this section of LINQ operators, Query writing and query

execution. Here we will only discuss in brief which is relevant to our work.

LINQ was introduced by Microsoft in .NET Framework version 3.5 in 2007 and

runs in Visual studio 2008. LINQ reduce the gap between world of objects and world

of data. The syntax and semantics of LINQ are influenced by SQL and Haskell.

LINQ can be used with .NET Framework collections, SQL Server databases, XML

documents, and ADO.NET Datasets.

A group of functions are included in LINQ which are known as standard query

operators along with translation rule from query expression to expressions using

lambda calculus. These operators are used to insert, modify and delete data from

databases languages like SQL and functional languages like Haskell.

6



CHAPTER 2. BACKGROUND 7

2.1.1 Standard Query Operators

The query operators defined by LINQ are known to the user as Standard Query

Operators. Those operators are as following:

i. Projection Operator

Projection operator for LINQ is ’select’. It is used to project (apply) some

function in selected data elements from the list. For sample code see fig 2.1.

Figure 2.1: Sample code for Projection Operators.

ii. Restriction Operator

Restriction operator for LINQ is ’where’. It is used to restrict some elements

from a list as given in condition. For sample code see fig 2.2.

iii. Partitioning Operators

Partitioning operators are to create partition of list. It also partitions list for a

given condition. For sample code see fig 2.3.

Operators : Take(), TakeWhile(), Skip(), SkipWhile().
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Figure 2.2: Sample code for Restriction Operators.

Figure 2.3: Sample code for Partitioning Operators.

iv. Ordering Operators

This operator is used to order list. The operator is ’OrderBy’. For sample code

see fig 2.4.

v. Grouping Operators

This operator used to form group for list. Operator is ’Group var By’. For

sample code see fig 2.5.



CHAPTER 2. BACKGROUND 9

Figure 2.4: Sample code for Ordering Operators.

Figure 2.5: Sample code for Grouping Operators.

vi. Aggregate Operators

This operator is used to give a result as single value for a list. For this operator

takes a lambda that specifies what operation has to be done to combine two

elements of a list and it continues the result till the end of list. For sample code

see fig 2.6.

Operators : Count(), Sum(), Min(), Max(), Average(), Aggregate().
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Figure 2.6: Sample code for Aggregate Operators.

2.1.2 Similarity Between LINQ and Haskell

As mentioned earlier LINQ is influenced by Haskell therefore both the languages

share a lot common among themselves. Haskell [Has12] is a purely functional pro-

gramming language which supports higher order functions. A high order function is

a type of function which can take a function as an argument or can return a function

as a result.

Higher order functions example:

def f(x):

return x + x

def g(function, x):

return function(x) * function(x)

print g(f, 5)

Ans: ( g (f , 5 ) = ( 5 + 5 ) * ( 5 + 5 ) ) = 100

Similarity between Haskell and LINQ is given in table 2.1
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LINQ: Haskell:
Standard Query Operators Higher Order Function

Restriction Operators filter
Where

Projection Operators map
Select

Partitioning Operators takeWhile, dropWhile
Take, Takewhile, Skip, SkipWhile

Ordering Operators OrdereBy
OrderBy

Grouping Operators Group By
Group By

Aggregate Operators foldl, foldr
Count, Sum, Min, Max, Average, Aggregate

Table 2.1: Similarity Between LINQ: Standard Query Operators and Haskell: Higher
Order Function

2.1.3 LINQ Queries

Queries are used to get data from database. Queries are represented by query

languages. Various query languages has been developed to access data from different

type of data source, like SQL for relational databases and XQuery for XML. So the

developer has to learn a new query language every time he encounters a new kind of

data source. LINQ provides solution to this problem by giving a consistent model

for programming with query language for different types of data sources. In LINQ

we are supposed to perform three steps to run a program:

1. Obtain the data source.

2. Create the query.

3. Execute the query.

Working of above written steps is given in an example below. In this example we

have taken an integer array as data source for our convenience. We can use the same

logic for other data sources. In LINQ, query creation and query execution are two

different steps. Only by creating query variable we wont be getting any data from

the data source until we wont execute query.
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class LINQcode

{

static void Main()

{

// The Three Parts of a LINQ Query:

// 1. Data source.

// Basically here we are using integer array as a data

// source for data source logic is same.

int[ ] numbers = new { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

// 2. Query creation.

// numQuery is an IEnumerable <int >

// this will only create query we are not getting any

data

// after execution of this line.

var numQuery =

from num in numbers

where (num % 2) == 0

select num;

// 3. Query execution.

//After execution of this line we will get data

// here ’num’ will contain data each time we will

//get one item from data source

foreach (int num in numQuery)

{

Console.WriteLine(num);

}

}

}

Program 2.1: Example: To copy data from one array to another array in

multiprocessor environment with two processors.

2.2 Introduction to CUDA

Here in this section we will discuss about CUDA. To program and execute kernel

in NVIDIA GPUs we need to use CUDA libraries. By using CUDA libraries, GPU

are represented as highly multi threaded architecture to the CPU, and it is used to

execute parallel programs.
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Figure 2.7: LINQ programming model with three part of query operation.

2.2.1 Execution Model

As we know CUDA executes program in multi-thread and multi-processor, which

gives it highly parallel environment. In fig 2.8 parallel environment of CUDA and

control flow of execution from CPU to GPU is also shown. When CPU calls a device

function or GPU function then control flow goes from CPU to GPU.

GPU architecture is divided into three levels grids, blocks and threads. Thread-

processors run threads, multiprocessors run blocks, and device runs grids. Each grid

contains many blocks either in one dimension and in two dimensions. Each block

contains lot of threads in one dimension, two dimensions and in three dimensions.

Maximum number of blocks in one grid should not exceed 65,535 and maximum

number of threads in one block should not exceed 512. Fig 2.8 contains a two

dimensional architecture of CUDA.

By looking architecture of CUDA it is clear that it runs their code in Single In-

struction Multiple Threads(SIMT) fashion. SIMT is very useful in data parallelism,
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Figure 2.8: Code execution model in CPU and CUDA. [NVI11]

as instruction is same for all data set which runs in different threads for different

set of data.

2.2.2 Programming Model

To use GPU as a general purpose we need to code in C/C++ programming language

by using NVIDIA CUDA library. A GPU code contains two parts, first part is run

in CPU which is called host program, another part contains set of device functions

which is used to invoke CUDA kernel, is called device code. that are generated from
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the host code to GPU or device. Device functions are called from host to move

control from CPU to GPU. These functions start with a keyword global .

Set of threads and blocks are created by invoking device kernel, these threads

and blocks are accessed by keyword threadIdx and blockIdx. keyword.

For one dimension threads a thread index with ’x’ will have threadID x.

For two dimensional threads a thread index with (x,y) will have threadID (x+y*Dx)

if block size is (Dx,Dy).

For a three dimension threads a thread index with (x,y,z ) will have

threadID (x+y*Dx+z*Dx*Dy) if block size is (Dx,Dy,Dz).

For one dimensional architecture:

__global__ ArrayAdd(int A[N], int B[N], int C[N])

{

int i = threadIdx.x;

C[i] = A[i] +B[i];

}

For two dimensional architecture:

__global__ MatAdd(int A[N][N], int B[N][N], int C[N][N], )

{

int i = threadIdx.x;

int j = threadIdx.y;

C[i][j] = A[i][j] +B[i][j];

}

2.2.3 Memory Model

CUDA Memory model is distributed in multilevel memory as shown in fig 2.9. For

each thread CUDA has a local memory called register which is the fastest memory

available in CUDA memory. Register of one thread is not accessible by the another
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Figure 2.9: CUDA Memory Model. [NVI11]

threads even if they belong from same block. Next level of memory is called shared

memory, for each thread block there is a separate shared memory. All threads of a

block can access shared memory of their block but threads from different blocks can

not access it. Next level of memory is called global memory, which is accessible by

all the threads from all the blocks. Bandwidth of global memory is very high.

To allocate memory in any device we use cudamalloc() function. This function

creates memory in global memory space in device which is accessible by all the

threads of all the blocks. To allocate memory for threads within a block or to allocate

memory in shared memory space we need to declare it using prefix shared .

2.2.4 Thread Scheduling Mechanism

In CUDA, whenever a kernel function is executed it actually executes one grid in

device. Each grid is a set of parallel blocks and threads. Whenever all threads

complete their execution, the grid gets terminated. After that control goes to host

until next kernel is invoked. To utilize full hardware of GPU we need to create large

number of threads. Applications with high data parallelism gives better results on

GPU.
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Each grid is divided into blocks and then each block is divided into threads. All

blocks must contain equal number of threads organized in the same manner. To run

blocks there are Streaming Processors(SMs). Each block in grid is executed in one

SM through out its lifetime. One SM can not run two blocks parallel. If number

of blocks are more than number of SMs in device then extra blocks are queued for

SMs in uniform fashion. If two blocks are running in same SM that means SM will

finish execution of first block and then start execution of second block, this is more

likely that two blocks are running sequentially without any parallelization.

After completion of blocks to SMs mapping, each block is divided into group

of threads in the next level. This group of threads is called WARPs. A group

of 32 threads create one WARP. this is a standard size but it also depends on

implementation. Scheduling in GPU is done according to WARP. Threads from

same block are arranged in WARP in a sequential manner like thread ID 0 to thread

ID 31 will be in first WARP, thread ID 32 to thread ID 63 will be in second WARP

and so on. At a time one SM can execute only one WARP, but here WARP of the

same block can be scheduled in same SM. If one WARP is busy with IO work then

other WARP which is in ready state can be scheduled in that SM. If there are more

than one WARP in ready condition then one of them is selected on some priority

basis.



Chapter 3

An Overview of Our Work

In this chapter we will describe data parallel in LINQ using CUDA. For this we

have selected one real time application rather than series of small examples, namely

the Barnes-Hut algorithm for N-body simulation [BH86]. In this application there

is lot of opportunities for parallelization that’s why this application could be a

good example to show our work. We started our work with coding in C# then we

converted all loops by LINQ operators and then we wrote equivalent CUDA code.

By this we got a parallel LINQ code in CUDA for this algorithm. Here we will

discuss coding in details.

3.1 Data Parallelism

Parallelization of code enables code to run simultaneously on different computing

units or processors. Main advantage of parallelization is on execution of a large

program because large codes are divided into many small codes and then it run on

all processors simultaneously. Data parallelism is a method of parallelization of code

in which data is divided into small groups and then execution is done on each group

simultaneously. In data parallelism generally code is same for all data so that it is

easy to run it parallel for different groups of data. Data parallelism is generally used

when there is huge amount of data. To implement data parallelism lots of threads

are created and executed on different processors simultaneously.

18
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1 void DoThisTask(int a[], int b[], int N)

2 {

3 if (CPU = 0) //For CPU number 0

4 {

5 min = 0;

6 max = N/2;

7 }

8 else //For CPU number 1

9 {

10 min = N/2;

11 max = N;

12 }

13 for(i = min; i < max; i++)

14 b[i] = a[i]+1;

15 }

Program 3.1: Example: Copy data parallelly from one array to another array in

multiprocessor environment with two processors.

3.2 N -Body Barnus-Hut Simulation Algorithm

Now we will discuss algorithm of application which we used in our work i.e. N-Body

Barnes-Hut simulation algorithm [BH86]. We will describe this algorithm in details,

will make some observations and in chapter 4 we generalize those observation so

that they are applicable for parallelization of any sequential program.

In our work we will restrict this algorithm for two dimensions to get more clarity.

We will not discuss three dimensional examples here and we will also avoid the

complications because of bodies that are very near to each other.

An n-body simulation algorithm is used to calculate the motion of ’n’ bodies or

’n’ particles under the gravitational force. In brute force solution we calculate force

between each pair of particles which takes O(n2) time to compute result.

The Barnes-Hut algorithm used to reduce time complexity to O(nlogn) by group-

ing some particles which are close enough to each other and using those particles as

a single body, that single body is represented as center of mass of all the particles

of group.

The center of mass of a group of particles is the average of positions of particles
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in that group, weighted by mass. If there are two particles, location of first particle

is (x1, y1) and location of second particle is (x2, y2) and mass of first particle is m1

and mass of second particle is m2, then there total mass m and center of mass (x,y)

will be:

m = m1 + m2

x = (x1*m1 + x2*m2) / m

y = (y1*m1 + y2*m2) / m

Force exerted by the group of particles on a body is approximated by the force

exerted by center of mass of those particles, if those particles are sufficiently far

away from body. The word sufficiently far away depends on the accuracy of the

final result which can be maintained accordingly.

Figure 3.1: Example: Particles in Area and division of Area.

In Barnes-Hut algorithm the particles are divided into groups according to their

location and stored in a quad tree data structure. A quad tree contains at most

4 children for each node. Each node represents an area. In other words the area

is split into four regions of equal size and each region is represented by one node
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of quad tree. After that particles are divided into four groups according to their

location. Each group of particles is collection of all particles for one sub area. Then

center of mass is calculated for each group. We recursively repeat this step for each

sub group of particles until a group has only one particle or zero particle.

Figure 3.1 shows the working of this algorithm for some particles. Let p0, p1....p9

are the particles for which we have to run this algorithm.Initially we divide area into

4 sub areas. Then we divide all particles in four groups according to their location.

For the given particles lower right quadrant has only one particle so this quadrant

will not be divided further. In upper left quadrant there are two particles so we

need to divide it more. But after one more division both particles are in different

quadrant so we need to stop here for this quadrant. For upper right and lower left

quadrant there are more particles and after one more iteration some of quadrant

have more than one particles so we need to divide these quadrant again till all the

particles are in a single quadrant.

c1

p0 p2

c2

p1 c4

c3

p5 p7 c5

p6

p3 p4 p8 p9

c0

Figure 3.2: Example: Quadtree representation of fig 3.1.

Figure 3.2 shows the quadtree structure of particles p0, p1....p9. Root node c0

is the center of mass of all the particles. Root node of each subtree is center of

mass of all the particles of that subtree or all the particles which are inside sub-area

represented by that root node. If it is a single node then that is particle itself.
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Creating quadtree and calculating center of mass for each sub-area is first phase of

Barnes-Hut algorithm.

In second phase of algorithm forces on each particle are calculated. This is done

by traversing the tree from the root to downwards. Let p be a particle for which

we have to calculate force, then for each subtree from root if the center of mass is

sufficiently far away from particle p then calculate force using center of mass and

do not look down in that subtree and if center of mass is not sufficiently far away

then do this step recursively for each subtree of that center of mass.

3.3 Encoding Barnes-Hut Algorithm in C# and

LINQ

As mentioned earlier we are implementing Barnes-Hut algorithm in C# by using

LINQ operators and then will convert it in CUDA. The goal of our work is to

identify the opportunities of parallelism in a sequential LINQ program. therefore we

developed our program in 3 steps. The first step is to code Barnes-Hut algorithm

in C# without using any LINQ operator. Then in next step we will use LINQ

operators to replace simple C# loops, and in last step we will write equivalent code

in CUDA. Now we will see each step in detail.

3.3.1 Coding in C#

Recall that Barnes-Hut is used to find out forces exerted by particles on other par-

ticles. The input of each particle contains three values mass, location and velocity.

We used data type Particles to represent a particle in code. Data type Particles is

using a data type Location to store the location of particle in (x,y) format. Fig 3.2

is segment of code to show all data types which is used to implement Barnes-Hut

algorithm.
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1 Location

2 {

3 double x; // x co-ordinate of Loaction.

4 double y; // y co-ordinate of Loaction.

5 }

6

7 Particles

8 {

9 Location loc; //Data Type Location:

10 //(x,y) co -ordinates.

11 double m; //mass of Particles.

12 double vel; // velocity of Particles

13 double force; // Forces exerted on Particles

14 }

15 Area // Square shape area

16 {

17 Location min; // Left -Below Point

18 Location max; // Right -Upper Point

19 }

20

21 TreeNode //Node of QuadTree

22 {

23 List <TreeNode > child; //To store subtree

24 Particle centerofmass; // Centerofmass of subtree

25 bool Ispoint; // Is contains point or not?

26 }

Program 3.2: Data type used in implementation of Barnes-Hut algorithm.

Area and Division of Area

Area data type is used to represent area in which particles are present. Initially all

the particles are present in InitialArea. The root of quadtree represents the region

InitialArea. Data type Area has two data members of type location which contains

left-below point and right-above point of an area. As initial area is a square and in

each iteration we are dividing it into 4 squares that means it will be always a square

after any iteration, so we can represent this square by two points. In each iteration

area is divided into four parts, as shown in fig 3.3.

Class Area contains a function SplitArea() that is used to split area into 4 parts.

Function SplitArea() returns an array of type Area with size four which contains 4

sub-areas of input area.
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Figure 3.3: Area Data type with two data memebers and division of area.

1 public Area[] SplitArea(Area input)

2 {

3 Area[] subarea = new Area [4];

4 Particles division = new Particles ();

5 division.x = (min.x + max.x)/2;

6 division.y = (min.y + max.y)/2;

7

8 subarea [0]. min.x = min.x;

9 subarea [0]. min.y = division.y;

10 subarea [0]. max.x = division.x;

11 subarea [0]. max.y = max.y;

12

13 subarea [1]. min.x = division.x;

14 subarea [1]. min.y = division.y;

15 subarea [1]. max.x = max.x;

16 subarea [1]. max.y = max.y;

17

18 subarea [2]. min.x = min.x;

19 subarea [2]. min.y = min.y;

20 subarea [2]. max.x = division.x;

21 subarea [2]. max.y = division.y;

22

23 subarea [3]. min.x = division.x;

24 subarea [3]. min.y = min.y;

25 subarea [3]. max.x = max.x;

26 subarea [3]. max.y = division.y;

27

28 return subarea;

29 }

Program 3.3: Function SplitArea.



CHAPTER 3. AN OVERVIEW OF OUR WORK 25

This class also contains a function inArea() that used to tell a given particle

is inside a given area or not. This function takes Particle as input and returns a

boolean value; if Particle is inside the given area then it returns True else it returns

False.

1 public bool inArea(Particles point)

2 {

3 return ((point.x >= min.x)&&( point.x<max.x)

4 &&( point.y >= min.y)&&( point.y<max.y));

5 }

Program 3.4: Function InArea.

Creation of Quadtree

As discussed in section 3.2, for all particles we need to create a quadtree according

to their locations by using function SplitArea() and inArea(). To create quadtree

we use a data type TreeNode that is used as a node of tree details of data type

TreeNode is given in figure 3.2. In our code we used function CreateTree() to make

quadtree. CreateTree() takes two arguments as input, one is area and other is a list

of particles. The input area is the region that is represented by current node of tree

and the list of particles contains all input particles that belong to this area. Now we

have to calculate center of mass of all the particles. Calculation of center of mass is

shown in program 3.5.
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1 //’input’ is List of all the particles

2 for (int i = 0; i < LengthofInput; i++)

3 mass += input[i].m;

4 centerofmass.m = mass;

5 for (int i = 0; i < LengthofInput; i++)

6 {

7 centerofmass.x += (input[i].x * input[i].m);

8 centerofmass.y += (input[i].y * input[i].m);

9 }

10 centerofmass.x /= mass;

11 centerofmass.y /= mass;

Program 3.5: Calculation of Center of Mass.

After calculating center of mass we need to divide inputs particles in four part

according to there location by using four subareas which we will get by using

SplitArea() function.

1 //’NextInput ’ is a list of list where each list will

2 // contain list of particles for four subareas:

3 subarea = SplitArea(inputarea);

4 for(i=0; i<4; i++)

5 {

6 for(j=0; j<LengthofInput; j++)

7 {

8 if (subarea[i]. InArea(input[j]))

9 List[i] = input[j];

10 }

11 }

Program 3.6: Dividing particles in four lists.

After getting four different lists of particles for four different areas we will call

same CreateTree() function recursively for each list. The recursion terminates when

the list has a single element or is empty.
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1 void CreateTree(Particles [] input , Area inputarea)

2 {

3 .... // code for centerofmass

4 if(input.Size == 1)

5 {

6 ispoiunt = True;

7 return;

8 }

9 .... // code to divide area

10 .... // code to create 4 lists of particles

11 for(i=0; i<4; i++)

12 {

13 if(list[i].Size >0)

14 child[i]. CreateTree(list[i], subare[i]);

15 }

16

17 }

Program 3.7: Function call CreateTree recursively.

Force Calculation on Particles

To calculate force on a particle we traverse quadtree from top to bottom. In each

step we find if center of mass is sufficiently far away from particle then we calcu-

late force exerted by center of mass else we call same function recursively for their

children untill we reach a leaf node. After reaching a leaf node we calculate force

exerted by leaf node. Here we need to use a threshold distance which will decide

approximation of result. In this function we use a variable theta which decides par-

ticle is sufficiently far away from center of mass or not.
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1

2 public double ForceCal(Particles onpoint , double theta)

3 {

4 if (Ispoint) /* Current Node is a point or not. */

5 {

6 if (!(( point.x== onpoint.x)&&( point.y== onpoint.y)))

7 return centerofmass.m;

8 else

9 return 0; /* This is the point itself */

10 }

11 double d, force =0;;

12 d=Math.Sqrt(( onpoint.x-centerofmass.x)*

13 (onpoint.x-centerofmass.x)+

14 (onpoint.y-centerofmass.y)*

15 (onpoint.y-centerofmass.y));

16 if (length / d > theta)

17 {

18 for(i=0;i<4;i++)

19 force += child[i]. ForceCal(Particles onpoint ,

20 double theta);

21 return force;

22 else

23 return centerofmass.m;

24 }

Program 3.8: Force Calculation.

3.3.2 Coding in LINQ

As discussed in section 2.1 LINQ queries are used to manipulate data from data set

by using LINQ operators. LINQ operators execute query in each data element of

data set one by one. LINQ operators work on arrays or lists, so while writing LINQ

code we need to use mainly arrays or lists.

In C# code which discussed in previous section having most of the data type in

form of arrays or lists. Here in LINQ code we replaced loops of previous code by

LINQ operators. As we used most of the data type in arrays or lists form so we did

not need to change definition of data type. In this section we basically focused on

loops and replaced those loops by LINQ operators. Now we will discuss the changes

that we made.
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Area and Division of Area

In class Area there are two functions SplitArea() and inArea(), for these two function

we don’t need to use any loops as in function inArea() we are comparing two points

and in function SplitArea()we are dividing given area in four sub-area. So we did

not change anything in this part.

Creation of QuadTree

At time of creating quadtree we need to calculate center of mass of all the particles.

To calculate center of mass we used loops in simple C# coding. Now here in this

part we replaced this loop by LINQ operators. While calculating center of mass we

operated some function in all the elements of list one by one and got one value as

a result. In other words we can say we reduced given array to one element. LINQ

operator Aggregate is used to reduce an array to one element. Modified code after

replacing loops by Aggregate operator is shown below in Program 3.9.

1 //’input’ is List of all the particles

2 centerofmass.m = input.Aggregate (0.0 ,(ans ,next)

3 => ans + next.m);

4

5 centerofmass.x = input.Aggregate (0.0 ,(ans ,next)

6 => ans + (next.m * next.x));

7

8 centerofmass.y = input.Aggregate (0.0 ,(ans ,next)

9 => ans + (next.m * next.y));

10

11 centerofmass.x /= centerofmass.m;

12 centerofmass.y /= centerofmass.m;

Program 3.9: Calculation of Center of Mass using LINQ operators.

After calculating center of mass next step is to divide input particles in four lists

according to their location in 4 sub-areas, Where sub-areas can get by using function

SplitArea() by dividing given area into four parts. Here we are using three different

arrays; first is to store four sub-areas, second is to store four lists of particles, and

third is to store four children nodes of current node. We need to use LINQ operator



CHAPTER 3. AN OVERVIEW OF OUR WORK 30

on these three arrays at same time, that will be very complex. To reduce complexity

we took a wrapper class which will contain all these three data types. Size is same

for those three arrays so it is easy to use wrapper class. Program 3.10 shows the

definition of wrapper class. We create array of objects of this wrapper class and

apply LINQ operator on this array.

1 class wrapper

2 {

3 Area divide;

4 List <Particles > InputNext;

5 TreeNode NextChild;

6 }

Program 3.10: Wrapper Class to contain three object in one place for LINQ

operators.

Now we need to divide input particles in four lists according to their location in

area. For this we divided area int four sub-areas by using function SplitArea() and

then by using function inArea() we divided input particles in four lists. Here we are

restricting some particles in final result by looking their return values of function call

inArea(). To restrict some elements we used restriction operator ’where’of LINQ.

Code for dividing input particles by using ’where’ operator is given below in Pro-

gram 3.11.

1 //’Next’ is array of object of class wrapper.

2

3 for(int i=0; i<4; i++)

4 {

5 var item = from current in input where

6 Next[i]. divide.inArea(current)

7 select current;

8

9 foreach(var N in item)

10 Next[i]. InputNext.Add(N);

11 }

Program 3.11: Dividing particles in four lists using LINQ operators.

We have four different lists of input particles along with four sub-areas respec-

tively. To create subtree for four child previously we used loop and made tree for

each child recursively, but now we replaced this loop by LINQ operator. This loop
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is basically projecting CreateTree() function into four children so we can use projec-

tion operator in place of loop. We know ’select’ is projection operator so we used

’select’ operator in our code.

Modified code to create tree by using ’select’ operator is in Pragram 3.12.

1 void CreateTree(Particles [] input , Area inputarea)

2 {

3 .... // code for centerofmass

4 if(input.Size == 1)

5 {

6 Ispoiunt = True;

7 return;

8 }

9 .... // code to divide area

10 .... // code to create 4 lists of particles

11

12 var NextChild = from variable in Next select

13 variable.NextChild.createTree

14 (variable.InputNext ,variable.divide);

15

16 int j=0;

17 foreach (var ChildN in NextChild)

18 {

19 child[j] = ChildN;

20 j++;

21 }

22 }

Program 3.12: Function call CreateTree recursively by using LINQ operators.

Force Calculation on Particles

As discussed above to calculate force on particles we need to traverse whole quadtree

from top to bottom. Previously in simple C# coding we used loops but here we will

replace loop by LINQ operator. In force calculation we are adding four forces that

is result of four subtrees, so Aggregate operator can do our work easily.

Modified version of force calculation by using Aggregate operator is shown in Pro-

gram 3.13.
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1 public double ForceCal(Particles onpoint , double theta)

2 {

3 if (Ispoint)

4 {

5 if (!(( point.x== onpoint.x)&&( point.y== onpoint.y)))

6 return point.m;

7 }

8 double d;

9 d = Math.Sqrt(( onpoint.x-centerofmass.x)*

10 (onpoint.x-centerofmass.x)+

11 (onpoint.y-centerofmass.y)*

12 (onpoint.y-centerofmass.y));

13 if (length / d > theta)

14 return child.Aggregate (0.0 ,( current , next)

15 =>current+next.ForceCal(onpoint , theta));

16

17 return centerofmass.m;

18 }

Program 3.13: Force Calculation using LINQ operators.

3.4 Barnes-Hut Algorithm in CUDA

As discussed above, we are converting a LINQ code into CUDA code, for which

initially we described structure of LINQ code. Now we will explain coding of Barnes-

Hut algorithm in CUDA. As we know in CUDA we have lot of threads and processors,

to use those threads and processor effectively we need to divide our code into those

threads and processors. In this algorithm we have lot of opportunities to divide

code into threads and processors. The structure we used to parallelize our code is

described in details below.

3.4.1 Parallelization in Tree Creation

In section 3.3.2 we discussed tree creation in LINQ. We know each node of tree

contains four children equivalent to four subareas. At the time of tree creation in

function CreateTree() for all children code is same and they are totally independent

to each other. So basic idea for parallelization is in first level create four threads for

each child of root and run code of one child in one thread as shown in fig 3.4.

Till now we used only four threads to run this code parallel but we know in
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Figure 3.4: Running code on 4 Threads and one block.

CUDA we have lot of threads and processors. To use resources more effectively we

need to parallelize this code with more threads. To use more threads in this code we

modified this method for 16 threads. In quad tree root has 4 children and each child

of root has also 4 children so in 2nd level there are 16 children. Now we can run each

subtree rooted on these 16 children on 1 thread. By this method we are using 16

threads and running on 16 threads instead of 4 threads. Graphically representation

of this method is in fig 3.5.

Figure 3.5: Running code on 16 Threads and 1 block.

In method discussed above we are using 16 threads but we are using only one

block of GPU. For more efficient use of GPU we need to use more blocks. Now

we will describe our next modification in code for better utilization of resources by
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dividing code into more blocks. In this modification we took 16 children at depth

level 2 and run each child into one block, by this we used 16 blocks. Now for each

subtree rooted at those 16 children we took another 16 children at depth level 4 and

run those 16 children in 16 threads. Total we run 16 blocks and each block runs 16

threads that means we run total 16 blocks and 256 threads as shown in fig 3.6.

Figure 3.6: Running code on 256 Threads and 16 blokcs.

By running code on 256 threads and 16 blocks we used GPU resources effectively

and parallelize most of the part of this code for tree creation.

3.4.2 Parallelization of Force Calculation on Particles

When we calculate force on each particle then we need to call function ForceCal()

for each particle. Calculating force on one particle is totally independent to calcu-
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lating force on other particles. So we can use this in-dependency for parallelization.

While calculating force on particles in CUDA we can calculate force on each particle

parallel.

If we have ’n’ number of particles then we created
√
n blocks and

√
n threads and

calculated force on each particle parallel. It is equivalent to calculate force on one

particle sequentially and calculate force on every particles parallel. In this method

we calculated force parallel by using more blocks and threads and utilized resources

of GPU.

3.5 Summary

As mentioned earlier, our goal is to create a compiler which will convert a LINQ

code in CUDA code. For this we took an example in this chapter and implemented

it in LINQ and then manually wrote code in CUDA for same example. By this

we made some observation to convert LINQ operators in CUDA. We will use those

observations in next chapter when we will discuss equivalent CUDA code of LINQ

operators.
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Technical Details

In this chapter we will show conversion of LINQ code to CUDA code. Previously

we took Barnes-Hut algorithm as our example and developed this algorithm first

in LINQ and then in CUDA, to show the requirement of a LINQ code in CUDA.

Now we will take some small pieces of code for LINQ operators and will show the

equivalent code in CUDA.

4.1 CUDA Code for LINQ Operators

Now we will explain in details that how to write a equivalent CUDA code for LINQ

operators. It contains basically two parts, first part is same for all operators but

second part is dependent on feature of operators.

4.1.1 CUDA Kernel Initialization

In first part we will allocate memory in device by using function cudaMalloc() to

store array in which we applied operator, and then we will copy data from CPU to

GPU by using function cudaMemcpy(), and then we will launch kernel. For kernel

launch we need to specify the number of threads and blocks that we want to create.

As discussed previously in section 2.2.4 CUDA has WARP which contains a group

of 32 threads, so better to create 32 threads in each block and if data array size is

36
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n then we will create n/32 blocks.

4.1.2 LINQ Operators on CUDA

Till launching the kernel, CUDA code is independent of feature of LINQ operators.

After that we will code for second part which is dependent on feature of LINQ

operators. Now we will explain this coding in details for each operator.

Projection Operator

Program 4.1 shows an example code for projection operator select. In this code a

function func() is changing each element of array numbers. This function take a

element from array and return another element of same type. Then We will replace

select operator by a device function select cu() to convert LINQ operator code in

CUDA code.

/* some code */

int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 };

var Nums = from n in numbers select func(n);

foreach (var x in Nums)

Console.WriteLine(x);

/* some code */

Program 4.1: Code for select operator.

Now we will see equivalent CUDA code for select operator, for this we will create

threads equal to size of array. Each thread will call the same function func() for

one element of array. Here in CUDA each thread will run parallel so run time for

function call of all elements will be equal to run time for function call of one element.

In program 4.2 we used a variable tid, which denotes index of threads. We will map

one thread to one element by using this variable.
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__global__ void select_cu(int *arr , int *size , int *ans)

{

int tid = threadIdx.x + blockIdx.x * blockDim.x;

while(tid <*size)

{

ans[tid] = func(arr[tid]);

tid += blockDim.x * gridDim.x;

}

}

Program 4.2: Equivalent code for select operator in CUDA.

Restriction Operator

Program 4.3 shows a sample code for restriction operator where. In this code we

are restricting the elements by a function func(). This function takes an element of

array as input and returns a boolean value. If returned value is false then we are

restricting that element in result.

/* some code */

int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 };

var Nums = from n in numbers where func(n) select n;

foreach (var x in Nums)

Console.WriteLine(x);

/* some code */

Program 4.3: Code for where operator.

Equivalent code of where operator in CUDA has two parts. In first part we will

take another array of same size of input array, let this array is called restriction

array. This array will be a boolean array, as we have to store a boolean value. In

this array the value of ith index will be returned value of function func() for ith

element of input array. One thread will call function func() for one element of array.

To map one thread on one element we used a variable tid, which represent index of

threads as well as index of elements. In second part we will reduce input array by

using array restriction. We will delete those elements from input array which are

having false in restriction array.
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__global__ void where_cu(int *arr , int *size , int *restriction)

{

int tid = threadIdx.x + blockIdx.x * blockDim.x;

while(tid <*size)

{

restriction[tid] = func(arr[tid]);

tid += blockDim.x * gridDim.x;

}

}

Program 4.4: Equivalent code for where operator in CUDA.

Partitioning Operator

Program 4.5 shows a sample code for partitioning operator Take. We used this op-

erator to take starting k elements from array. Program 4.6 shows equivalent code of

program 4.5. When Take operator is used in code then we will call device function

Take cu() to execute Take operator in CUDA.

/* some code */

int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 };

var Nums = numbers.Take(k);

foreach (var x in Nums)

Console.WriteLine(x);

/* some code */

Program 4.5: Code for Take operator.

To convert LINQ code in CUDA code for a partitioning operator Take, we will

use another array take which will contain the final result. Now we will copy each

element from input array to this output array. Copy operation is performed for

each element which is having index less than k, where k is input of operator Take.

Program 4.6 is the final CUDA code for Take operator.
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__global__ void Take_cu(int *arr , int *size , int *take)

{

int tid = threadIdx.x + blockIdx.x * blockDim.x;

while(tid <*size)

{

if(tid <k)

take[tid] = arr[tid];

tid += blockDim.x * gridDim.x;

}

}

Program 4.6: Equivalent code for Take operator in CUDA.

Aggregate Operator

Program 4.7 shows a code for aggregate operator Sum, which is used to calculate

sum of all the elements of input array. Program 4.8 shows equivalent CUDA code

of program 4.7, in place of Sum operator we will call a device function sum cu().

/* some code */

int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 };

double numSum = numbers.Sum();

Console.WriteLine("The sum of the numbers is {0}.", numSum)

;

/* some code */

Program 4.7: Code for Sum operator.

Now we will explain CUDA code for LINQ operator Sum. While we add all

the elements of an array we usually take elements from array one by one and add

the value of current element in result variable which stores sum of all elements till

current element. In this process we are updating value of result variable in each

step, so if we run it parallel and one thread will update value for result variable for

one element then at same time result variable might be updated for all elements,

then we might loose some data. So by this method we can not get correct result.

For aggregate operator Sum we used a different technique. In which initially

we will divide given array in two equal parts from mid of the array, then we will

add (mid+i)th element in ith element for each value of i from 0 to mid. After this

step we need to add only half array. And for remaining array we will apply same
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technique recursively till remaining array size is 1. This method will take O(logn)

time to compute result.

const int threadsPerBlock = 32;

__global__ void agg_cu_(int *arr , int *size , int *ans)

{

__shared__ int cache[threadsPerBlock ];

int tid = threadIdx.x + blockIdx.x * blockDim.x;

int cacheIndex = threadIdx.x;

int temp = 0;

while(tid <*size)

{

temp += arr[tid];

tid += blockDim.x * gridDim.x;

}

cache[cacheIndex] = temp;

__syncthreads ();

int i = blockDim.x/2;

while(i!=0)

{

if(cacheIndex <i)

cache[cacheIndex ]+= cache[cacheIndex+i];

__syncthreads ();

i/=2;

}

if(cacheIndex == 0)

ans[blockIdx.x] = cache [0];

}

Program 4.8: Equivalent code for Sum operator in CUDA.

4.2 Issues in Implementation

As we told earlier, we made some observation when coded Barnes-Hut algorithm

in CUDA, and then applied those observation to code LINQ operators in CUDA

individually. We also faced some problems at that time now we will discuss those

problems in details.

4.2.1 NVIDIA Graphic Card Related Issues

In this thesis we implemented Barnes-Hut Algorithm in CUDA. To implement this

algorithm we created quadtree and all the functions of this algorithm is executed
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in this quadtree recursively, so basically most of the function is recursive function.

All NVIDIA GPU dose not support recursion. For recursion we need a GPU with

compute capability atleast 2.0. At time of writing CUDA code for LINQ operators

we want a code which is independent to graphic card, so we did not use recursion

at that time.

4.2.2 Memory Allocation in Recursion

As mentioned earlier, functions of Barnes-Hut algorithm are recursive. While cre-

ating quadtree by function CreateTree() which we discussed in section 3.3.1, we

allocated memory to store particles in each recursive call, but GPU has limited

memory in it’s stack so for large input we did not get result because of lack of stack

memory. That is another reason to avoid recursive code in CUDA.
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Result

We saw implementation of Barnes-Hut algorithm in c# using LINQ operators and in

GPGPU using CUDA. Here in this section we will show running time of CPU version

of code and GPU version of code. Table 5.1 shows the running time difference of

CPU code and GPU code for different inputs.

Number
CPU GPU CPU GPU

Compu- Compu- Memory Number Compu- Compu- Memory
of tation tation copy of tation tation copy

Particles (Sec) (Sec) (Sec) Particles (Sec) (Sec) (Sec)
100 0.08 0.014 4.037 60000 13.553 0.045 4.25
200 0.084 0.003 4.048 70000 15.965 0.052 4.282
300 0.1 0.009 4.044 80000 18.989 0.063 4.316
400 0.11 0.007 4.045 90000 21.293 0.063 4.353
500 0.12 0.009 4.044 100000 24.546 0.073 4.386
600 0.122 0.01 4.045 200000 55.647 0.14 4.727
700 0.124 0.011 4.045 300000 89.33 0.208 5.056
800 0.136 0.011 4.045 400000 123.236 0.299 5.416
900 0.152 0.011 4.047 500000 159.738 0.354 5.606
1000 0.164 0.011 4.047 600000 193.08 0.435 5.902
2000 0.276 0.01 4.049 700000 232.619 0.432 6.228
3000 0.384 0.0073 4.0537 800000 279.92 0.566 6.475
4000 0.536 0.009 4.056 900000 313.99 0.692 6.802
5000 0.692 0.01 4.058 1000000 347.1 0.574 7.146
6000 0.824 0.008 4.063 2000000 755.46 1.126 10.174
7000 1.008 0.011 4.066 3000000 T.O. 2.119 12.889
8000 1.144 0.01 4.07 4000000 T.O. 2.987 15.95
9000 1.324 0.013 4.072 5000000 T.O. 3.44 18.803
10000 1.488 0.016 4.075 6000000 T.O. 3.947 21.663
20000 3.436 0.021 4.111 7000000 T.O. 4.748 24.704
30000 5.68 0.028 4.148 8000000 T.O. 5.394 27.805
40000 8.137 0.032 4.181 9000000 T.O. 6.386 30.3758
50000 10.581 0.039 4.216 10000000 T.O. 7.018 33.374

Table 5.1: Difference in running time of Barnes-Hut algorithm in CPU and GPU

43
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LINQ code is run on CPU and CUDA code is run on GPU. In table 5.1 there is

one column memory copy which shows time taken to copy input data from host to

device and to copy back result from device to host. Program 5.1 shows data type

Particles. One particle takes 48 bytes of memory. If there are ’n’ particles then it

will take n*48 bytes of memory and total 2*n*48 byttes of memory will be copied.

1 Location

2 {

3 double x; // x co-ordinate of Loaction.

4 double y; // y co-ordinate of Loaction.

5 }

6

7 Particles

8 {

9 Location loc; //Data Type Location:

10 //(x,y) co -ordinates.

11 double m; //mass of Particles.

12 double vel; // velocity of Particles

13 double force; // Forces exerted on Particles

14 }

Program 5.1: Data type Particles.

Figure 5.1: Comparison between running time of CPU and GPU including memory
copy time.
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Figure 5.2: Comparison between running time of CPU and GPU excluding memory
copy time.
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Related Work

Here in this chapter we will discuss our work with some other techniques. To par-

allelize a sequential code is a interesting area of research from last many years.

Researcher have worked to reduce the human effort required in this process by ei-

ther completely automatize the process or by encouraging the use of parallel design

patterns. Many tools provides ready made templates to write a parallel code. Many

researches have been done to parallelize some loops of code or some portion of code.

Some tools generate finale executable file which contains parallel constructs. These

tools work well for parallelization and understood semantic of popular benchmarked

code. some of those tools and techniques are discussed below.

6.1 DryadLINQ

DryadLINQ [Dry12] is a system and a set of language extensions that enable a

new programming model for large scale distributed computing. This is a reference

of LINQ model to write massive data parallel programs. DryadLINQ uses LINQ

programming and converts it into data parallel programming using standard .NET

development tools. DryadLINQ runs on Dryad execution engine. A DryadLINQ

system automatically translate a data parallel code into a distributed execution

environment which runs on dryad execution platform.
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6.2 Parallel Database

Parallel Database [PDS92] is a research towards parallel execution of queries. In

this research database is distributed in different disks and query is executed parallel

on those different disks by many processors. This distribution of data is called Data

Partitioning. Data partitioning can be done by many ways like range partition,

round-robin partition, hashing partition. Many projects are implemented on this

research, such as Gamma [Gam90], Bubba [Bub90] and Volcano [Val90]. Some of

commercial products is also developed for data warehousing like Teradata, IBM DB2

Parallel Edition [DPE95] and Tandem SQL/MP [Tan95].

In our work we also used data partition mechanism to parallelize query execution,

but we used CUDA for our work and divided data in different blocks and threads

of CUDA. Our implementation is also similar to hashing data partition because we

mapped each data element to a thread by their index of array.

6.3 Large Scale Data-Parallel Computation Infras-

tructure

In last decade the architecture of database is changed to very large datasets. for fast

execution of this type of datasets we need high performance computing. One of the

earliest commercial generic platforms for distributed computation was the Teoma

Neptune platform [TeNe03], which introduced a MapReduce computation paradigm

inspired by MPIs Reduce operator. In Google MapReduce framework [MR04] com-

putational model is extended to separate the execution layer from storage, and virtu-

alized the execution. The Hadoop open-source port of MapReduce uses this architec-

ture. A grid-based architecture for execution layer is proposed by NetSolve [Net05].

At storage level many very large scale simple database developed such as Google’s

BigTable [BigT06], Amazon’s Simple DB and Microsoft SQL Server Data Services.

Here in our implementation we are copying data from main memory to CUDA
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device memory. So we can use any of these storage for our work which can give

data in simple array form in main memory. After that we can copy data to device

memory and run device code parallel.

6.4 Databases on GPU

There has been lots of research to speed up query languages on GPU. In one re-

search SQL operations are mapped into GPU [SQL10]. In this research, they im-

plemented some of the function of SELECT query in GPU. For which they used

SQLite database to execute queries and to switch data between CPU and GPU.

SQLite virtual machine is reimplemented as CUDA kernel to execute queries on

GPU.

Many other researches are also there in which GPU is used to execute queries.

These researches use preventives such as Sort and Scatter, that can be combined

and run in succession on the same data to produce the results of common database

queries. In one research database queries is divided into predicate evaluation,

boolean combination, and aggregation functions [DBq05]. In another work, bi-

nary searches, p-ary searches [PSea08], tree operations, relational join operations

[RJop07] is included.
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Conclusion and Future Work

7.1 Conclusion

Now a days database is becoming very large. Queries run on terabytes of data. In

this kind of database to run query faster multi-cores are not enough. For better

speed-up researches are moving from multi-cores to GPU. So our idea is also in this

direction which is to present the use of GPU in execution of LINQ and to give some

techniques to implement a compiler which will automatically generate a CUDA code

for given LINQ code.

We took a well know problem Barnes-Hut algorithm for our implementation and

implement it in LINQ and then CUDA. Then by use of this implementation in two

different environment we wrote LINQ operators in CUDA. These CUDA code of

LINQ operators are just to show that LINQ operators can be converted in CUDA.

By use of these CUDA code we told how can we write a compiler to convert a LINQ

Code in CUDA code. So the main aim behind this work is to help to write compiler.
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7.2 Future Work

7.2.1 Development of Tool

As we told earlier our work is in a direction to make a tool which will convert LINQ

code to CUDA code, but tool is not yet built. Here we are giving a knowledge to

build that tool. Whatever we discussed in chapter 4 is basically a starting point

to build this tool. The tool could be semi-automatic or full automatic. In semi-

automatic we can provide a framework which will take LINQ operators as input and

will return CUDA code. We can design this framework for CUDA which will write

most of the code in CUDA but for LINQ operators it will take it direct and give

equivalent CUDA code.

In other way we can directly make full automatic compiler which will take LINQ

code as input and return CUDA code.

7.2.2 Optimization of Tool

The other kind of work which we can do in this tool is to optimize it so that it

will generate efficient number of threads and blocks so that running time will be

efficient. We can also add some features in this tool for multiple GPU cards.
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