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Abstract

The new C++ standard has been recently introduced. Along with many other features, the

C++11 standard adds a concurrency model to the language. Many standard optimisations

have now become invalid due to precise definition of the language memory model.

The concurrency model is complicated and its not easy to implement for compiler

developers. Moreover, the current compilers will be used as source to add the notion of

concurrency into them. This can lead to bugs as they were written in absence of any

memory model.

This motivated us to test for the correctness of compiler optimizations with respect

to the C++11 memory model. For that, we have designed and implemented a framework

based on trace comparison of sequential code. The key idea is that, since C/C++ compilers

must support separate compilation, correctness of compilation of concurrent programs can

be tested by analysing which optimizations are applied to sequential code, and then relying

on a general theorem stating if those optimizations are sound when the code runs in a

concurrent environment.

We already found and reported a subtle concurrency bug due to write introduction in

the latest version of GCC, thus validating the relevance of our approach.
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Chapter 1

Introduction

Compilers are complex pieces of software and complex pieces of software are always prone

to bugs: bugs in compilers are inevitable. For instance Regehr et al. [6, 10] reported more

than 400 bugs in widely-used C compilers. Most of these bugs were in the compilers’

middle-ends, where most of the optimizations take place. When it comes to optimiz-

ing potentially concurrent code, compilers must be extremely careful, as even standard

optimizations may be incorrect.

Consider the following shared memory concurrent code:

requestReady = responseReady = data = 0

Thread 1 Thread 2
data = 1;

requestReady = 1;

if (responseReady == 1)

print data

if (requestReady == 1) {

data = 2;

responseReady = 1

}

If all shared locations, i.e. data, requestReady and responseReady, are initialised to 0

then this program cannot output 1 in any execution. However, an optimizing compiler will

propagate the constant 1 from the data:=1 statement and replace the print data state-

ment with print 1. While this optimization is correct for sequential code, it introduces

a new, unexpected behaviour in the original concurrent program.

To enable a compiler to implement aggressive optimization without introducing un-

expected behaviours, language designers specify the language memory model, that define

which memory writes each memory read is allowed to see. The language memory model

1



can be seen as a contract between what programmers can expect from their code and the

ways in which a compiler/hardware can reorder or eliminate memory accesses.

The recent C++11 standard precisely defines a concurrency and memory model for

the C++ language, and the next revision of the C language will adopt the same memory

model to preserve interoperability. The C/C++11 memory model guarantees that the

programmer can expect an interleaved semantics for “well-synchronized” programs, also

referred to as data-race free programs [5]. This model, as shown by Sevcik [9], enables

most compiler optimizations as they can be observed only by programs with races. At the

same time, the C/C++11 model provides escape mechanisms called low-level atomics to

write high-performance code, with a complex semantics [1].

The latest version of GCC, the forthcoming version of CLang/LLVM, and other com-

mercial compilers, claim to implement the C/C++11 memory model. In this thesis we

investigate if and how the random-testing approach of Regehr et al. [10] can be extended to

find concurrency bugs in the optimizers of two modern compilers, GCC and CLang/LLVM.

1.1 Random Testing for Compiler Bugs

Currently GCC and LLVM adopt regression testing for finding bugs. Regression testing

involves testing against known code-snippets that used to trigger bugs in past revisions,

and is effective in guaranteeing that known bugs are not reintroduced by work on the

codebase. However it is ineffective in finding unknown bugs.

Regehr et al. successful approach to compiler testing is based on the following three

steps:

• generate a random well-defined C program (using a tool called CSmith), that at the

end of the execution prints a checksum of its computation;

• compile it with a variety of compilers at different optimization levels;

• compare the output of the executions of the compiled programs: if one compiler/op-

timization combination ends up with a surprising checksum, then it has a bug.

The naive approach to test the compilation of the memory model, would require to generate

randomly interesting concurrent programs, compile them and capture all the outcomes (as
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concurrent programs are often non-deterministic), and then compare the set of outcomes.

However generating interesting concurrent program is non trivial, as the invariants must be

subtle to trigger behaviours allowed by corner cases of the specifications. Also, capturing

all the behaviours of a concurrent program is a difficult task, as it requires having a precise

understanding of (and control over) the interesting schedules of the program.

Our Approach Our approach is based on two observations. First, C and C++ compilers

must support separate compilation, and the concurrency model states that basically any

function can be spawned as an independent thread. As a consequence, compilers must

always assume that the sequential code they are optimizing can be run in a concurrent

context, and can only apply optimizations which are sound with respect to the concurrency

model. Second, it is possible to characterise which optimizations are correct in a concurrent

setting by observing how they eliminate or reorder memory accesses in the traces of the

sequential code with respect to a reference trace. If combined, these remarks imply that

testing the correctness of compilation of concurrent code can be reduced to validating the

traces generated by running optimized sequential code against a reference (unoptimized)

trace for the same code.

Concretely, we modify the Regehr et al. testing strategy as follows:

• we use a modified version of Csmith to generate a random well-defined sequential

program that includes low-level atomic memory accesses and lock/unlock statements;

• we compile the generated program without and with optimizations, and we use

binary instrumentation to record the execution traces of the two binaries;

• we compare the two sequential traces and decide if the optimized one can be ob-

tained from the unoptimized by a combination of valid eliminations and reordering

of memory accesses;

• if this is not possible, we conclude that the optimizer performed an unsound opti-

mization, and we attempt to perform testcase reduction.

The most interesting and original contribution of this work is the comparison of the opti-

mized trace against the reference trace. For this we extended the theory of safe optimiza-
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tions of Sevcik [9] to take into account the peculiarities of the C/C++11 memory model

(in particular low-level atomic accesses), and we design an algorithm that puts this theory

at work and can be used to match traces captured by running realistic programs.

At the time of writing, using our tool we have been able to find and report a subtle

concurrency bug in GCC, thus validating the relevance of this approach.

1.2 Example

In this section, we present a basic overview of how our trace matching algorithm works

using an example. Consider the following C program.

const unsigned int g_3 = 0UL;

long long g_4 = 0x1;

int g_6 = 6L;

volatile unsigned int g_5 = 1UL;

void func_1(void){

int *l_8 = &g_6;

int l_36 = 0x5E9D070FL;

unsigned int l_107 = 0xAA37C3ACL;

g_4 &= g_3;

g_5++;

int *l_102 = &l_36;

for (g_6 = 4; g_6 < (-3); g_6 += 1);

l_102 = &g_6;

*l_102 = ((*l_8) && (l_107 << 7)*(*l_102));

}

int main (int argc, char* argv[]){

func_1();

return 0;

}

The above program is compiled with and without optimizations, and then we trace all

the memory events which take place. The left side represents the unoptimized memory
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accesses while the right side represents the memory accesses in the optimized code.

Init g 6 1

Init g 4 1

Init g 5 1

RaW* Load g 4 1

Store g 4 0

RaW* Load g 5 1

Store g 5 2

OW* Store g 6 4

RaW* Load g 6 4

RaR* Load g 6 4

RaR* Load g 6 4

Store g 6 1

RaW* Load g 4 0

Load g 5 1

Store g 4 0

Store g 6 1

Store g 5 2

Load g 4 0

We try to map all the events in the optimized trace by finding a corresponding equivalent

event in the unoptimized trace. We perform valid transformations (eliminations and re-

orderings) in the unoptimized trace to obtain the mapping. We discuss the validity of such

transformations in Chapter 3. In the above example, the eliminated events are struck-off

while the reorderings are represented with the help of arrows.

1.3 Organization of the Thesis

In Chapter 2 we recall the technology we use, including binary instrumentation and parsing

debugging in information, and we review the C/C++ memory model and the effect of

optimizations on concurrent programs. In Chapter 3 we describe the testing infrastructure,

the CPPTEST tool, and we explain the trace matching algorithm. In Chapter 4 we report

the bug we found in GCC and we discuss the future directions for this research project.
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Chapter 2

Background

In this chapter we describe the technology used to record the execution traces, and how

we parse the relevant debugging information from a binary. We discuss the Csmith and

Delta tools, as our testing framework relies on extensions of this third-party software. We

briefly review the new C/C++11 Memory Model and we end with some remarks about

the x86 instruction set which are relevant for our work.

2.1 Binary Instrumentation

We built two different tools to record the execution traces. The former is based on the

Valgrind [8] binary instrumentation framework, the latter on the Pin [7]. Dynamic binary

instrumentation (DBI) is a technique that enables injecting code into an executable to

collect run-time information. DBI is not just limited to collecting information but can

also perform certain actions (analysis calls) such as to modify the behaviour or outcome

of the program execution. Examples of actions include deleting an instruction, modifying

the return value of a load instruction, log certain type of instructions (e.g. calls to specific

functions, global memory accesses).

There are two major approaches in DBI when adding the instrumentation code. One

approach is known as a ‘Disassembly and Resynthesise’, in which the executable is first

disassembled and analysed, then an IR is built, on top of which the instrumentation code

is added, and finally the complete code containing both the original application and the

instrumentation code is compiled back to the machine level. The other approach is known
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as ‘Copy and Annotate’, in which the incoming instructions of the executable are copied.

Each incoming instruction is annotated with its effects by an instruction querying API,

as in Pin. Instrumentation tools use the annotations to guide the instrumentation, and

instrumentation code is inter-leaved with the original application binary.

Valgrind uses the D&R approach, whereas Pin uses the C&A approach. Each approach

has its own advantages and disadvantages. D&R is heavy-weight, and can add to runtime

execution overhead. C&A is lightweight, and can be faster. However the instrumentation

granularity in D&R approach is much finer (IR level) giving more control to the user while

in C&A approach the instrumentation granularity is at the assembly instruction level.

However, Pin provides various useful levels at which instrumentation can be inserted.

These include, but not limited to, instruction level, routine level, Basic Block level.

2.2 Extracting Information from Binary

Our testing framework is specific to the x86 architecture, and in some cases the binary

instrumentation does not give us enough information. In these cases, we extract the

required information directly from the ELF binary.

2.2.1 Initialization values

Initialization values of all variables are stored in the .data section of the executable,

except those which are declared as constants or are zero-initialized. To save space zero-

initialized variables are stored in the .bss section while the constant variables are stored

in the .rodata section. Variables declared as static are harder to trace as they can have

namespace clashes, because they are valid only in their scope and cannot be destroyed even

if they go out of scope during execution. Compilers usually convert the static variables in

a token called stab which stores the namespace where the actual variables belongs. GCC

and Clang both have an option (-fno-zero-initialized-in-bss) which prevent the zero

initialized variables to be stored in the .bss section which makes parsing easier.
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2.2.2 Type Information

We parse the debugging information stored in binaries to extract certain information

such as variable names, variable size, array type, struct information. The debugging

information is stored in the .debug info section of the executable. The original source

must be compiled with the -g attribute to tell the compiler to add the debug information.

There are several debugging formats namely stabs, COFF, PE-COFF, OMF, IEEE-

695 and DWARF, to name some of the common ones. GCC and Clang by default use

DWARF version 2 format. DWARF uses a series of debugging information entries to

define a low-level representation of a source program. Each debugging information entry

is identified by a tag and contains a series of attributes. The tag specifies the class to

which an entry belongs, and the attributes define the specific characteristics of the entry.

Some example tags are :

• DW_TAG_base_type: A base type is a data type that is not defined in terms of other

data types.

• DW_TAG_variable : Program variables are represented using this tag. Its attributes

include DW_AT_name, which contains the string name as defined in the source pro-

gram. It has other attributes like DW_AT_type which contains the type of the variable,

DW_AT_external flag which tells whether the variable is a global or a local variable.

All this information is stored in a tree format with each entry assigned an id. For

example:

const int g_1[4];

DW TAG const type

DW TAG array type

DW TAG base type

int

DW TAG subrange type

3

8



We critically rely on the debugging information for the proper tracing of array variables

and structs. This is mainly because it is not possible to infer the addresses of struct fields

by parsing the source file. It becomes even more difficult when compiling bitfields as they

might be packed differently by different compilers. We can also extract the offset and

padding of various fields of the structs.

The debugging information is stored in a highly complex and optimized way, hence

decoding it is non trivial. There are several tools which are able to dump the debug

information and certain sections of the executable which we can parse to get the required

output.

Parsing the .debug info section is much harder that parsing the .data, .rodata, or

.bss sections. For these we use objdump and readelf to dump the symbol table and

sections of the executable to obtain the initialization values. Both come as a part of

standard binutils library. For the .debug info section, at the time of writing, we rely on

a naive tool that dumps the section in a human readable format, which we then re-parse.

However the naive tool is not adapted to dump information on bitfield structures, and we

are now writing our own dwarf parser.

2.3 Csmith

Csmith (http://embed.cs.utah.edu/csmith/) is a tool that generates random C pro-

grams that statically and dynamically conform to the C99 standard. In particular, pro-

grams generated by Csmith do not have any undefined or compiler dependent behaviour.

Csmith proved useful for stress-testing compilers, static analyzers and other tools that

process C code. It generates C programs with thousands of lines and complex expressions.

The programs generated by Csmith follow these conventions:

• global variables begin with g [id];

• atomic variables begin with a [id];

• local variables begin with l [id];

• function names begin with func [id].

9
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2.4 Delta

Delta (http://delta.tigris.org/) is a test-case reducer: given a program and a predi-

cate on the program, it attempts to find the smallest sub-program of the input that does

not satisfy the predicate. As such it is extremely useful when attempting to isolate a

small failure-inducing snippet in a large program: in our case, the predicate tests for the

failure (usually the presence or absence of a given bug). In our case, our testing frame-

work is the predicate: whenever a Csmith generated program does not pass the testing,

we run it within Delta, looking for the smallest subprogram that still does not pass the

testing. Technically, Delta simply tries to remove out chunks of code from the testcase;

it is not guaranteed to find the smallest sub-program, and in some cases it can introduce

undefined behaviours. However it was fundamental to make sense of testing failures, as

directly making sense of the large traces of the programs generated by Csmith is simply

not possible.

2.5 The C/C++11 Memory Model

Originally C and C++ were designed without thread support; threads were available

through a separate library. This turned out to be a bad design [4]. The latest revision of

the C++ standard explicitly defines a concurrency model [2] [3]. The model is basically a

so-called DRF model: programs that do not exhibit data-races (that is, programs which

are well-synchronized) are guaranteed to expose only sequentially consistent executions

(that is, executions obtained by interleaving the actions of each thread). A data race

occurs when two or more threads in a single process access the same memory location

concurrently and at least one of the accesses is a write. For instance, in the program

below

int x = 0;

void foo(){ x = 2;}

void bar(){print x;}

int main() {

thread t1(foo);

thread t2(bar);

t1.join();t2.join();

10
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return 0;

}

thread t1 performs a write to x while thread t2 performs a read of x, and these two accesses

are not synchronized (for instance with lock/unlock or other mechanism). According to

the standard, data-races make the program behaviour undefined.

The C++11 standard also features a complex escape mechanism, called low-level atom-

ics for expert use; this escape mechanism is useful for high-performance low-level program-

ming. Atomic objects are of integral type (byte, int, long, etc) and operations on atomics

(reads, writes and read-writes) do not race with each other, so in the above program chang-

ing x to be atomic int would make the program race-free. By default, the behaviour of

atomic operations is as one would expect in a sequentially consistent semantics. However,

to allow high performance code, the atomic operations include weaker variants and are

parametrised by a memory order which specifies how much synchronization and ordering

is required.

The strongest ordering is memory order seq cst, which provides a sequentially con-

sistent semantics, and the weakest is memory order relaxed, which is usually compiled

as a hardware memory access and as such provides weak ordering guarantees; these are

defined for both loads and stores. In between there are memory order release and mem-

ory order acquire semantics for stores and loads respectively. To understand the semantics

of these attributes, consider the following implementation of a common message passing

pattern. Here one thread writes some data into a large object x and then sets a flag y

while the other spins until the flag is set and then reads the data.

atomic_int y = 0

// sender // receiver

x = ... while (0 == y.load(memory_order_acquire);

y.store(1,memory_order_release); r = x;

The memory order release semantics ensures that all the writes before it are propagated

to the memory before the store of [y = 1] is visible. The memory order acquire acts as

a barrier that prevents other memory operations from being moved above it. Hence the

receiver is guaranteed to see the data writes of the sender. Observe that the program

above is not racy, and no expensive lock/unlock synchronization have been required.

11



2.6 Remarks about the x86 instruction set

Our tracing tool support all the x86 instructions targeted by GCC and Clang. For our

purposes, instructions can be classified according to the memory operations they perform.

If we ignore the instructions with string operands and rep prefixes, any given memory

instruction can either perform no memory access, or perform a memory write, a memory

read, or a memory read and write to a single memory address. To the best of our knowl-

edge, no instruction performs a memory read and write to different addresses in the same

instruction.

String instructions are more complicated, as two memory reads of different addresses

can be observed when comparing two strings using string instructions. These instructions

are generally used in conjunction with rep (repeat) prefixes. The repeat prefixes tell the

processor to do a multi-byte string operation. We encountered the x86 string instructions

when manipulating arrays. We observe that if the local array comprises of a few elements,

the compiler puts each element of the array elements sequentially on the stack. However if

the size of local arrays is large, to reduce the code size, the compiler puts the entire array in

the .rodata section and then puts a string instruction with rep prefixes to perform multiple

move instructions on the stack. Some precautions were taken instrument instructions with

rep prefixes using Pin, as the above instructions are reported to perform a memory read

and write at different addresses.
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Chapter 3

The CPPTEST tool

In this chapter we describe the design and implementation of our testing tool. A typical

usage is

$ cpptest -generate c -locks -trace -analyse

which causes cpptest to generate a C program with locks, compile it at different opti-

mization levels, trace the binaries, and then try to match the unoptimized and optimized

traces. The tool returns true if the traces match successfully, and false otherwise.

The tool has a rich interface, for instance, instead of generating a C/C++ program, it

can also perform the analysis on a list of input C/C++ files or traces, it supports several

timeout options, it can invoke the testcase reducer, and can loop until it finds a program

for which the matching fails. For reference, below we report the list of options accepted

by the tool.

usage: cpptest [options] <file1> .. <filen>

-generate <c|cpp> generate a c/cpp file via Csmith

-expr_complexity <n> set Csmith expr_complexity to n

-timeout <n> set timeout for analyse (in sec)

-max_funcs <n> set Csmith max_funcs to n

-atomics generate cpp code with low-level atomics

-locks generate c code with locks

-trace trace the input files

-tool <pin|valgrind> specify how to instrument the binary

-asm generate the optimized and unoptimized assembly

-dump_traces dump traces

13



-baseline compare the reference traces generated by GCC and LLVM

-analyse run the analyser on the generated file

-count_only just compare the no. of atomic actions during analysis

-delta run delta if analyse fails

-timeout_delta consider a timeout as a failing analysis for the purpose of delta

-no_relax_size forbid size relaxation from unopt to opt when matching traces

-debug output some debugging information

-clean clean up if matching returns true

-quiet disable the gcc/llvm warnings and errors

-repeat compatible only with -generate, repeats until the analyse

returns false for the generated program

-unsound ignore loads used in jumps and do not mark as relevant

-no_arrays disable arrays when generating programs using Csmith

-compiler <clang|gcc> specify compiler

-help Display this list of options

In what follows we formalise the execution traces, we describe our tracing algorithm

and program analysis, and then we describe the processing we perform on the traces to

decide if they match or not.

3.1 Setup

Definition 3.1.1. An action can be one of the following :

• a load/store of a memory location, specified by the value and size being read or

written;

• a load/store of an atomic location, specified by the value, size being read or written

and the atomic attribute;

• a lock or unlock specified by the mutex location, or a memory flush.

We refer lock, unlock, flush, and release/acquire events as synchronization actions.

Definition 3.1.2. A trace is a finite sequence of actions. All actions in a trace belong to

the same thread.
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Definition 3.1.3. A traceset is a prefix closed set of traces.

Definition 3.1.4. An interleaving is a sequence of thread id and action pairs. Given an

interleaving we can reconstruct the trace of each thread id. Conversely, given a traceset,

we can build all the interleavings of the traceset.

Definition 3.1.5. An interleaving is sequentially consistent if each read sees the most

recent value written in the interleaving. A sequentially consistent (and well-locked) inter-

leaving is called an execution.

A traceset denotes a program, by enumerating all the traces that can be performed

by each thread. We focus on sequential programs, and ensure that the optimizers apply

only optimizations correct in a potentially concurrent environment, as characterised by

Sevcik [9].

As an example, here is a simple program and a possible trace.

Program Trace

int x , y = 0 ;

void f oo ( ){

for ( int i = 0 ; i < 2 ; i ++){

y = x++;

}

}

Op var size value

Init x 4 0

Init y 4 0

Load x 4 0

Store y 4 0

Store x 4 1

Load x 4 1

Store y 4 1

Store x 4 2

3.2 Capturing the traces

Memory Accesses We use Pin to capture the execution traces of a binary. We instru-

ment each memory load and store, fence instruction, and instruction with lock prefix, as

well as pthread library functions. We are only interested in accesses to potentially shared

global memory, so we must filter out all the stack accesses (although a program might copy
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the address of a local stack-allocated variable into a global location, our generated pro-

grams do not, so we can safely ignore stack accesses). On x86, a stack access can be easily

identified by checking if the stack pointer register (esp) or the base pointer register (ebp)

is used in the address computation. However due to the complexity of x86 instruction set,

this analysis is not complete. For example consider the following example

int g_1 = 0;

void foo(){

int *l_1 = g_1

}

and a common compilation (usually performed by GCC):

1. lea [EAX] <- offset[ESP];

2. mov [EBX] <- g_1;

3. mov (EAX) <- [EBX];

1. lea stands for “load effective address”. It computes the stack address (offset + esp)

and stores them in the eax register;

2. load of g_1 to register ebx;

3. store of ebx into the address contained in register eax.

The last instruction effectively does a stack write but does not directly involve esp or ebp

in the instruction. As such, Pin doesn’t identify it as a stack write, and reports it as a

global store. We add a mask to identify these accesses in our analysis routines.

Fences and Lock Prefix A lock prefix causes the processor’s LOCK signal to be asserted

during execution of the accompanying instruction, i.e it turns the instruction into an

atomic instruction. In a multiprocessor environment, the LOCK signal ensures that the

processor has exclusive use of any shared memory while the signal is asserted.

An x86 instruction can have up to 4 prefixes each 1 byte long, in any order.

• Prefix Group 1
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– 0xF0: LOCK prefix

– 0xF2: REPNE/REPNZ prefix

– 0xF3: REP or REPE/REPZ prefix

• Prefix group 2

– 0x2E: CS segment override

– 0x36: SS segment override

– 0x3E: DS segment override

– 0x26: ES segment override

– 0x64: FS segment override

– 0x65: GS segment override

• Prefix group 3

– 0x66: Operand-size override prefix

• Prefix group 4

– 0x67: Address-size override prefix

The lock prefix can occur in any of the 4 bytes. Note that the size of x86 instructions are

not fixed, nor is the prefix length. Also since xchg instructions are locked by default, we

also treat them as locked instructions. They are relatively easy to detect as their first byte

is always 0x87. In our traces and trace matching, we do not yet support natively locked

actions, so we log these as the accesses they perform followed by a mfence.

We explicitly trace the mfence instructions as they act as synchronization operations.

They always begin with 0xAE0F as their prefix.

Pthread Calls We also trace the pthread_mutex_lock/unlock calls. This is straight-

forward except that certain .so files used when linking the executable might also contain

calls to these functions: we have to be careful not to instrument them except which are

present in the user code. We thus instrument all the pthread library calls but maintain

a dedicated flag (RUN_ANALYSIS), and the analysis logs the function calls only if the flag
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is set. The flag is set when we first enter the main function and is unset when we leave

main. This ensures that none of the library specific calls are traced.

To obtain the mutex location, we simply log the argument which is being passed at the

called function (following the x86 64 ABI, this can be done by reading a specific register).

3.3 Computing the IR Set

3.3.1 Introduction

We will formalise irrelevant reads in Section 3.4, but, intuitively, a read is irrelevant if the

returned value is not used by the program to perform an observable action. Equivalently,

the value read does not influence the behaviour of the program. Compilers try hard to

remove irrelevant reads. For instance, consider the following example:

int g_1 = 0;

{

int l_1 = g_1;

... //no use of l_1 after this

}

The load of g_1 is irrelevant and it is sound to remove such an access while optimizing.

Interestingly, in some cases, irrelevant reads are introduced (rather than removed) by the

optimizer as it attempts to pre-fetch some values that are possibly never used.

Irrelevant reads cannot be characterised by looking only at one execution trace, so

we must implement a program analysis to identify them. More in detail, we perform a

liveness analysis on the loads performed and we (attempt to) check whether the load is

actually affecting the global memory state.

The idea behind finding irrelevant reads is to find those reads which do not change the

state of global memory. This can be performed by tracing each load and recording the

destination registers of each load. We keep tracking each target register until either it is

overwritten, which implies that the previous load was not used (and thus irrelevant), or

the register is stored into some global memory location (and thus the read is relevant).

The above analysis performs well on a simple instruction set, but the complex nature of

x86 instructions requires accounting for all the possible ways in which a value being read
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can be propagated.

3.3.2 Information Flow

The information from an instruction can propagate through registers, stack or both.

Registers We extract all the operands involved in any given instruction. We then

separate out the registers involved from the set of operands. An operand can be (but are

not limited to) an immediate operand or a memory address (stack or global). For x86

instruction set, we can also have certain implicit registers involved which are not encoded

in the instruction itself but through which the effect of load can be propagated forward.

For example:

mov [EAX] <- g_1

xor [EAX], [EAX] //flags are affected

cmove [EBX] -> g_2

In the above example, the load of g_1 is used to decide whether we can write to g_2 (if

the flag ZF is non zero) and hence is relevant.

Also we must be careful with instructions in which an address is computed. For exam-

ple in x86, while calculating performing operations involving array indexes, we generally

have a base and an index register which are implicitly used in the address computation

when performing an operation on an array index.

Stack Operations It is also necessary to trace stack operations because a register can

be spilled to the stack, which is then reloaded and used to perform some operation which

writes to global memory. The simplest example is

int g_1 = 0;

int g_2 = 0;

{

...

int l_1 = g_1;

g_2 = l_1;

...

}
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A naive compilation would be

MOV [EAX] <- g_1

MOV offset(ESP) <- [EAX] //stack write

MOV [EBX] <- offset(ESP) //stack read

MOV g_2 <- [EBX]

and the read of g_1 is propagated to g_2 using stack write followed by a stack read.

3.3.3 Data Structures

The algorithm performs IR analysis on the executable and returns a list of integers which

are indices of irrelevant loads in the generated trace. We explain the various data structures

used for performing the analysis.

• indexCount maintains the index of the current event. The analysis return a list of

indexes of load events which are irrelevant.

• usedIndexSet is a set of indexes of load events which affect the global memory state.

• loadIndexSet is the set of indexes of all loads events.

• dependenceTable maps a register and a stack address to the list of load events on

which the current value depends.

• loads2Stores maps a load event to the set of store events for which the load was

used.

• ReadSet stores the registers read by an instruction. This can be computed during

instrumentation i.e. before the instruction is executed.

• WriteSet stores the registers written by an instruction. It can also be computed

during instrumentation. A register can appear in both the sets.

• AddressGenerated stores the memory address (stack or global) which will be accessed

by an instruction. This cannot be pre-computed as stack operations depends on the

esp register.
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3.3.4 Analysis

In this section we discuss the analysis for computing the irrelevant reads and provide

pseudo code for the various cases which need to be handled.

Depending on the type of each instruction and the way (registers and/or stack) informa-

tion can flow, we compute all the loads used in it. We call this set to be dependentLoads

(see Algorithm 3.3.1). Once the analysis is complete for the instruction, we propa-

gate the loads forward by setting every register in the write set to be dependent on the

dependentLoads in the dependenceTable (see Algorithm 3.3.2).

Algorithm 3.3.1: GenDependentLoads()

dependentLoads← ∅
for all reg ∈ readSet do

for all i ∈ dependenceTable[reg] do
dependentLoads← dependentLoads

⋃
i

end for
end for
if stackRead then

for all i ∈ dependenceTable[stackAddress] do
dependentLoads← dependentLoads

⋃
i

end for
end if

Algorithm 3.3.2: PropagateLoads()

for all index ∈ writeSet do
if |dependentLoads| > 0 then
dependenceTable[index]← dependentLoads

else
dependenceTable.erase(index)

end if
end for

We now discuss the algorithms for handling different classes of instructions based on

the type of memory operation they perform.

Memory Read & Memory Write We consider two cases. If the memory is a stack

address, then it is added to the dependenceTable and the loads are propagated. Else, if it

is a read-write to a global location, then all the indices in dependentLoads are relevant.
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Also we add the store event to all the corresponding loads in the loads2Stores.

Algorithm 3.3.3: MemoryRW ()

if not stackWrite then
loadIndexSet← loadIndexSet ∪ indexCount
dependentLoads← dependentLoads ∪ indexCount
for all index ∈ dependentLoads do
usedIndexSet← usedIndexSet ∪ index
loads2Stores[index]← loads2Stores[index] ∪ (indexCount+ 1)

end for
else
dependenceTable[stackAddress]← dependentLoads

end if
PropagateLoads()

Memory Write If it’s a stack write, then we propagate the address in the dependenceTable

else we include this store event in loads2Stores for each load event in dependentLoads.

Algorithm 3.3.4: MemoryW ()

if not stackWrite then
for all index ∈ dependentLoads do
usedIndexSet← usedIndexSet ∪ index
loads2Stores[index]← loads2Stores[index] ∪ (indexCount)

end for
else

if |dependentLoads| > 0 then
dependenceTable[stackAddress]← dependentLoads

else
dependenceTable.erase(stackAddress)

end if
end if
PropagateLoads()

Memory Read If we have a stack read then we just propagate the loads. Otherwise,

we add indexCount to the dependentLoads.

Algorithm 3.3.5: MemoryR()

if not stackRead then
loadIndexSet← loadIndexSet ∪ indexCount
dependentLoads← dependentLoads ∪ indexCount

end if
PropagateLoads()

22



The main analysis function, called IRAnalysis, combines all the routines discussed

above. This function is called for each x86 instruction during the instrumented execution.

In the end, (loadIndexSet \ usedIndexSet) gives the set of irrelevant reads.

Algorithm 3.3.6: IRAnalysis()

GenDependentLoads()
if memoryRead & memoryWrite then
MemoryRW ()

else if memoryRead then
MemoryR()

else if memoryWrite then
MemoryW ()

else
PropagateLoads()

end if

3.4 Eliminable Actions

An eliminable event is an event that can be removed without introducing any new visible

behaviour in any concurrent context with respect to the reference trace. In this section

we describe a list of sound rules to detect eliminable events.

Read after Read (RAR) A read of a variable is a redundant read after read if it follows

a read of the same variable with the same value , and provided that there is no write to the

variable and/or no synchronization occurs in between the two reads. This transformation

is often performed as a part of common sub-expression elimination or constant propagation

optimizations in compilers.

Load g_1 42

... //no access to g_1 and no synchronization

Load g_1 42 (*RAR*)

Read after Write (RAW) A read of a variable is a redundant read after write if it

follows a write of the same variable and reads the same value as the previous write, and

provided that there is no other access to the same variable and/or no synchronization

occurs between the two events.

23



Store g_1 42

... //no access to g_1 and no synchronization

Load g_1 42 (*RAW*)

Write after Read (WAR) A write of a variable is a redundant write after read if it

follows a read of the same variable and writes the same value as the previous read, and

provided that there is no other access to the same variable and/or no synchronization

between the two events.

Load g_1 42

... //no access to g_1 and no synchronization

Store g_1 42 (*WAR*)

Overwritten Write (OW) A write of a variable is an overwritten write if it precedes

a write to the same variable, provided all accesses in between to the same variable are

eliminable and/or there are no synchronization between the two events. If an event is

marked as OW then it also carries with it a list of eliminable events which when eliminated,

makes the write as OW. Two snippets of traces illustrate these two cases:

• Case 1:

Store g_1 42 (*OW*)

... //no access to g_1 and no synchronization

Store g_1 47

• Case 2:

Store g_1 42 (*OW*)

Load g_1 42 (*RAW*)

... //all accesses to g_1 are eliminable and no synchronization

Store g_1 47
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Irrelevant Read (IR) To understand irrelevant reads, consider the example:

int x = 0;

int y = 0;

void foo (){

y = x+1;

}

A naive compilation would look somewhat like

mov [EAX] <- x;

add $1, [EAX];

mov [EAX] -> y;

The trace generated by the above compilation is:

Load x 0

Store y 1

and more in general, for an arbitrary value v:

Load x v

Store y (v+1)

Now we see that on changing the value of the read value the trace after the load event

gets changed: the first load is not irrelevant as it directly effects the value being stored at

a global location.

Consider now another example:

int x = 0;

int y = 0;

void foo (){

int l = x;

y = x+1;

}

A naive compilation would look somewhat like

mov [EAX] <- x;

mov offset(ESP) <- [EAX]; //stack write of the local l

mov [EAX] <- x;
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add $1, [EAX];

mov [EAX] -> y;

The trace generated by the above compilation :

Load x 0

Load x 0

Store y 1

and more in general, if the first load reads an arbitrary value v, we get:

Load x v

Load x 0

Store y 1

In this case, the remaining trace remains unchanged even after modifying the value read

by the first load: the first load is irrelevant. IR reads are treated as eliminable events as

they do not affect the global state of memory.

This can be formalised as follows: given a trace, we define a read event Ai(R[x = α])

as an irrelevant read provided that if Ai is replaced by Aj(R[x = β]) s.t α ! = β, the

remaining trace does not get affected.

3.5 Reorderings

A transformation that changes the order of occurrence of some actions is known as reorder-

ing. While optimizing, compilers reorder lots of actions but must do so without affecting

the semantics of the programs. Hence compilers can reorder only certain actions with each

other.

Next, we define reorderable actions in a trace. The notion of reordering does not

imply that the two actions in the trace get swapped. Also this definition of reordering

differs slightly with the general notion about reordering as swapping of two events used

by Sevcik[9].

Definition 3.5.1. Two actions Ai and Aj are said to be conflicting if :

• Ai and Aj both access the same location and either of Ai or Aj is a store;
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• Either Ai or Aj is an atomic operation;

• either Ai or Aj is a synchronization operation (we ignore the so-called roach motel

reorderings).

Definition 3.5.2. An action Aj can be moved before Ai in the trace if it satisfies the

following properties:

• Ai and Aj are both non atomic accesses.

• ∀ k s.t i ≤ k < j, Aj does not conflict with Ak.

Reorderings interact with eliminations; the following examples illustrate sound reorder-

ings and highlight how reordering and eliminations spice up things. Consider for instance

***unopt*** ***opt***

Load x 1 Load y 1

Store x 2 ==> Load x 1

Load y 1 Store x 2

The above reordering is correct. However note that the two elements being reordered are

not swapped, instead the load of y now precedes the load of x. Clearly swapping the two

loads would be incorrect as it violates sequential consistency:

***unopt*** ***opt***

Load x 1 Load y 1

Store x 2 =/=> Store x 2

Load y 1 Load x 1

Consider now

Init g_6 0

***unopt*** ***opt***

OW * Store g_6 1

RaW* Load g_6 1

RaR* Load g_6 1 ==> Store g_6 2

RaR* Load g_6 1

Store g_6 2
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Clearly the above eliminations are sound. Note that the first store of g_6 is marked as OW

only because all memory accesses until the next store of g_6 are eliminable. Hence all store

action marked as OW also carries with itself the list of possible eliminable actions, which

make it an over-written write. In this example the first store to g_6 is an overwritten write

once the redundant reads in the middle have been removed (and should not be considered

an overwritten write if the reads are not removed by the optimizer).

A more complex example:

Init g_6 0

Init g_11 0

***unopt*** ***opt***

RaW* Load g_11 0 Load g_11 0

Store g_11 1 ==> Store g_6 2

OW * Store g_6 1 Store g_11 1

RaW* Load g_6 1

RaR* Load g_6 1

RaR* Load g_6 1

Store g_6 2

The last store of g_6 must be reordered with the store g_11, but this is correct only if all

the intermediate accesses to g_6 are removed.

3.6 Irrelevant Action Introduction

We observed irrelevant actions being introduced by the optimizers. Consider the following

C program and associated traces generated by Clang:

int g_2 = 0;

int g_7 = 0;

int g_90 = 0;

void func_1(void) {

for (g_2 = 15; (g_2 != 14); g_2--) {

if (g_7){}

else

if (g_90)
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break;

}

}

Init g_2 0

Init g_7 0

Init g_90 0

***unopt*** ***opt***

OW * g_2 F 4 Store IR * g_90 0 4 Load

RaW* g_2 F 4 Load ==> IR * g_7 1 4 Load

RaW* g_7 1 4 Load g_2 E 4 Store

RaR* g_2 F 4 Load

g_2 E 4 Store

RaW* g_2 E 4 Load

Observe the load of g_90 introduced by the compiler in the optimized trace. Observing

such read introductions are quite common and compiler try to pre-fetch the loads for faster

processing. Although, introducing such loads is safe in general, they are simply irrelevant

(marked as IR). We will take this into account in the matching algorithm.

Consider the following C program and associated traces generated by GCC 4.7:

int g_22[1] = {0x4L};

int g_167 = 0;

int g_168 = 1;

int g_207 = 2;

char g_244 = 0;

int func_1(void)

{

for (g_167 = 0; (g_167 != 28); g_167++) {

for (g_244 = (-8); g_244 < (-15); g_244 -= 2);

if(g_168 &= g_22[0])

g_12 &= 0L;

else

return g_207;

}

}
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***unopt*** ***opt***

g_167 0 4 Store g_167 0 4 Store

RaW* g_167 0 4 Load g_244 F8 1 Store

g_244 F8 1 Store IR * g_22 4 2 Load

RaW* g_244 F8 1 Load ==> IR * g_168 1 4 Load

RaW* g_22 4 2 Load g_168 0 4 Store

RaW* g_168 1 4 Load g_167 0 4 Store

g_168 0 4 Store g_244 F8 1 Store

RaW* g_168 0 4 Load

RaW* g_207 2 4 Load IR * g_207 2 4 Load

Note the two newly introduced stores of g_167 and g_244 which were not present in the

unoptimized trace. However introducing such stores is valid because any context that we

try to build will always have a data race present. Our tool is currently unable to deal with

this case.

3.7 Trace Processing

In this section we describe the details about the representation of traces in cpptest. We

explain how traces are enriched with initialization values and why and how we identify

pointer variables. We also explain about how eliminable events are identified and marked.

Representation Internally a trace is represented as a list of events.

type loc = int

type size = int

type value = NonPointer of Int64.t | Pointer of loc

type event =

| Init of loc * value * size

| Load of loc * value * size

| Store of loc * value * size

| ALoad of atomic_attribute * loc * value * size

| AStore of atomic_attribute * loc * value * size

30



| Flush

| Lock of loc

| Unlock of loc

type rr =

| IRR

| RAW | RAR

| OW of int list

| WAR

| NotRedundant

type annot_event = {

evt : event;

redundant : rr ref;

deleted : bool ref;

}

Initialization Values The traces generate by Pin do not contain the initialization values

of global variables, which are necessary to mark the eliminable events. We augment the

generated traces to add the initialization values. This information is extracted from the

.data section of the executable using the objdump and readelf tools.

Getting the initialisation values is easy for simple types. We need to know the size of

variable for which we are trying to find the initial value, because the data is dumped in a

compact hex form which can be parsed by taking the address and the size of the variable

into account. We extract the size of simple variables from the symbol table stored in the

executable.

For arrays, we need to know the type of elements of the array. We cannot extract this

from the symbol table because it only stores the total size which is not sufficient for tracing

the individual elements of the array. We get this information by parsing the debugging

information (explained in 2.2.2).

Handling Pointers Pointers contain the address of a variable, which may differ be-

tween the unoptimized and optimized traces as they are compiled separately (and thus
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the memory layout can be different), but they might point to the same variable. Consider,

...

int g_1 = 0;

int* g_2 = &g_1;

...

Now g_2 contains the address of g_1 which might be different in optimized and unopti-

mized compilation. Since we compare values of the variables, this resulted in false positives.

Hence the value a variables can hold is either NonPointer or Pointer type.

type loc = int // entry in the symbol table

type value = NonPointer of Int64.t | Pointer of loc

The pointer variables are identified in the following way. In the first pass, all addresses

are mapped to the corresponding variables. In the second pass, for each variable if the

initialization value corresponds to an address of any variable, the current variable is marked

as Pointer type.

Marking Eliminable Events The events are processed to convert them into annot event:

eliminable events are now annotated with the corresponding redundancy annotation (de-

scribed in Section 3.4), or marked as Not Redundant. For unoptimized traces, we consider

all the eliminable events, while in the optimized traced we mark only the IR as eliminable.

This enables us to take into account irrelevant read introductions.

Annotating IR events is easy, as the analysis in performed in our pintool, which returns

the list of indices of the load events which are irrelevant. We simply mark those events as

IR.

The other eliminable events are marked by performing a simple data-flow analysis: for

each trace point we keep a track of details of the last access made to each location. These

details include last value of the location, type of access (Store, Load or Init), and the size

of the access. This is sufficient for marking all eliminable events except OW.

We store the information about the previous access made to a variable in a map called

info var. It contains the size, value and type of the relevant event mapped to the location.

Init events are handled as normal stores, they are inserted in the info var table with

their initial size and initial value of the variable.
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For a store event, if there is no previous entry for the variable, then it is just added to

info var. Otherwise, there are two outcomes depending on whether the previous entry was

a load event or a store event. If the previous access was a load, then we need to compare

the values from both the accesses. If the values are different, then we just insert the new

entry replacing the old entry. Otherwise, the current store is marked as redundant write

after read (WAR) and the previous access is marked to be a store in info var. Note that

we need to take into account the size of accesses when comparing the values.

Algorithm 3.7.1: Store(S(loc, value, size))

if info var[loc] then
(oldS, op, oldV )← info var[loc]
if op = R then

if oldS ≥ size then
if compare val(value, size, oldV, oldS) then
S ←WAR
info var[loc]← (oldS,W, oldV )

else
info var[loc]← (size,W, value)

end if
else
info var[loc]← (size,W, value)

end if
end if

else
info var[loc]← (size,W, value)

end if

For load events, if we do not find any previous entry for the variable, then we just add

an entry for the event. Else, there are two possibilities. First if the previous event was a

load then the current event is marked as a redundant read after read (RAR) and if it was

a store then the current event is marked as a redundant read after a write (RAW); in both

cases the new event replaces the previous entry for this location. Note that comparison of

values is not required in this case as we test sequential programs and hence if there is any

previous entry the program cannot read any other value. However the size of access must

be taken into account.

Note that while all eliminable events except OW can be marked by a forward processing

of the traces, for marking OW we need a second pass over the trace (for examples see Case

2 of the OW paragraph in Section 3.4). In the first pass we mark all the eliminable events
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Algorithm 3.7.2: Load(L(loc, value, size))

if info var[loc] then
(oldS, op, oldV )← info var[loc]
if oldS ≥ size then

if op = R then
L← RAR

else
l← RAW
info var[loc]← (oldS,R, oldV )

end if
else
info var[loc]← (size,R, value)

end if
else
info var[loc]← (size,R, value)

end if

except overwritten writes. In the second pass we know the eliminable events and hence

mark the special case discussed above. An OW write also contains a list of indices of

the integers which represent the events which need to be eliminated in order to make the

event as OW. To compute this we scan the trace, and whenever we find a store followed

by redundant reads and another store to the same location (and possibly other actions at

different locations), we mark the previous store as OW with the list of indices of redundant

reads in between.

The dataflow can be killed by synchronization actions such lock or unlock or release/ac-

quire pairs; in these cases we simply delete the info var table.

3.8 The Trace Matching Algorithm

After the pre-processing, we get two traces, represented as two lists of annotated events.

One trace is obtained from the unoptimized compilation i.e. with -O0, and the other from

optimized compilation i.e. with -O2 or -O3. Note that while the unoptimized trace is

annotated with all the redundant annotations mentioned in Section 3.4, the optimized

trace is annotated only with irrelevant reads.

We recursively try to match the optimized trace with the unoptimized trace, i.e. finding

the same events in the unoptimized trace as in the optimized trace. After the matching is

complete, no ineliminable events must be left in the unoptimized trace. While perform-
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ing the search for events we also check for valid reorderings across reorderable events as

discussed in Section 3.5.

3.8.1 Comparing Events

Two events are said to be equal if they have the same value, they operate on the same

location and they perform the same operation. However there are cases in which a compiler

may make different size accesses which refer to the same event. For example, consider

int g_1 = 0xB4E1A362;

int g_2 = 0;

char func_1(){

return g_1;

}

int main(){

g_2 = func_1();

return 0;

}

The generated traces1 are as follows:

g_1 B4E1A362 4 Init

g_2 0 4 Init

***unopt*** ***opt***

RaW* g_1 B4E1A362 4 Load RaW* g_1 62 1 Load

g_2 62 4 Store g_2 62 4 Store

Notice the difference in the size of load of g_1: in unoptimized trace, the compiler reads

4 bytes of data but uses only 1 byte (via register manipulation) whereas the optimizers

inlines the code and infers that only 1 byte of data will be used, and hence performs a

load of only 1 byte.

1using GCC 4.7 with -O0 and -O2
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Traces do not carry enough information to establish if the two loads are both correct,

and we consider such events to be equivalent (at the risk of having an unsound analysis).

When comparing two events which perform the same action and operate on same location

but with different sizes, we compare values only for the minimum of the two sizes. To

reduce the risk of unsound analysis, we allow this size relaxation only when matching the

unoptimized event against the optimized event, not vice versa.

Algorithm 3.8.1: CompareV al(x, size x, y, size y)

if size x = size y then
return x == y

else if size x < size y then
mask ← (1 << (size x ∗ 8))− 1
return (y&mask) == x

else
mask ← (1 << (size y ∗ 8))− 1
return (x&mask) == y

end if

3.8.2 Matching Traces

We try to find a mapping between all the events in Topt to the events in Tunopt. If

a matching exists, the algorithm returns true, else, returns false. After the mapping has

been established, all the events remaining in Tunopt should be eliminable, and the mapping

should only reorder reorderable events. To take into account irrelevant read insertion, the

matching can be partial and ignore the eliminable events in Topt.

The algorithm proceeds in a natural, recursive, way. We describe it here, ignoring

several corner cases, to give an insight of its inner working.

The algorithm picks up the first element from Topt and tries to match it with the

first element of Tunopt. If both events are equal, then it recursively continues to match the

remaining elements from both traces. If this fails, then it backtracks and tries to eliminate

the first element of Tunopt, and to match the remaining elements. Else, the traces cannot

be matched.

If the events being compared initially are different, then again there are two possibilities

to find a matching. If the first event in Tunopt is eliminable then eliminate it and recursively

continue to match the remaining elements in both traces. If this fails, we attempt to reorder
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events in the unoptimized trace. For this, the algorithm searches in Tunopt for an event

equal to the first event of Topt which is reorderable with the first event of Tunopt. Recall

that two events in a trace are said to be reorderable if there are no conflicting events in

between them (see 3.5.1 for details). If a reorderable event exists, we move it to the top

of Tunopt and we continue to match the reordered Tunopt against Topt.

If at the end, all the events in Topt are matched to Tunopt and all remaining elements in

Tunopt are eliminable, then the matching is successful. The pseudo-code for the algorithm

is reported in the figures below, with the main entry point being the matchTrace function.

It outlines only the major cases considered, ignoring some corner cases.

It is not clear which is the best order to search either for an elimination or a reordering.

A simple heuristic we implemented is to prefer elimination when traces differ greatly in

size, and reordering instead.

We also remark that, unlike what happens with other eliminable events, overwritten

writes require a special treatment. Consider the traces:

g_1 0 8 Init

***unopt*** ***opt***

OW* g_1 2 4 Store

OW* g_1 3 4 Store g_1 2 4 Store

g_1 2 4 Store

Intuitively the above traces match. However the first and last events in Tunopt are

not reorderable, so the algorithm described above would fail. Hence when searching for a

store, we return the entire list of stores i.e. until we find the first non redundant store to

that location. This is detailed in findOwList.

The algorithm described above has exponential complexity in the size of the Tunopt

trace. In practice, heuristics allow it to match traces of hundred of events and in some

cases much bigger traces.
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3.9 Other tool support

3.9.1 Extending CSmith

We extended Csmith to generate sequential programs that include atomic variables and

low-level atomic accesses. We also extended Csmith to generate sequential programs with

pthread mutex locks. This is not entirely trivial as we need to ensure that the locks are

well balanced. For example preventing programs which re-acquire the lock on a mutex.

Also this has to be ensured across for loops and the conditional statements. For example,

the operations performed on the mutex within an if statement should be identical to the

operations performed on the same mutex inside the matching else block. Also we must be

careful when propagating locks across loops.

To implement this, we augmented the context information already built inside Csmith

by adding a mutex state . The mutex state contains the current state of the mutex vari-

ables. It also records the operations performed on the mutex variables in the current block,

for example inside an if block. This information should be passed on when generating the

else block and it must be ensured that the final context after the if and else blocks are

the same, as only one of them will execute at any given time.

Algorithm 3.8.2: findOwList(i, T )

Input : trace T with index i of an OW type
Output: a list of redundant store events until we find first non redundant store

which can match instead T i

j ← (i+ 1);
res← i;
while (T (j)) do

if T (j).loc = T (i).loc && T (j).op = Store then
if T (j).redundant = None then

if T (i).val = T (j).val) then
return res ∪ j

else
return res

else
res← res ∪ j

return res
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Algorithm 3.8.3: Search(i, e, T )

Input : trace T with index i and an event e
Output: searches for an event e in T which can be reordered with T i

j ← (i+ 1)
while j ≤ EndT do

if T j 6= e then
j ← (j + 1)

else
if T j .redundant = OW then

owList← findOwList(j,T)
(res, elimSet)← Validate(owList, j, T )

else
(res, elimSet)← Validate(i, j, T )

if res then
return (j, elimSet)

else
return (None, ∅)

Algorithm 3.8.4: Validate(i, j, T )

Input : trace T with indices i and j
Output: checks if T j can be reordered with T i with possible eliminations
deleted← ∅;
for k = i to j − 1 do

if conflicting(T k, T j) then
if T k.redundant = None then

return (False, ∅)
else

deleted← deleted ∪ k
return (True, deleted)

3.9.2 Changes to Delta

Delta performs test-case reduction by removing chunks of lines of the input program. As

such it completely ignores the semantics of the program, and might generate code that

hits one of the many undefined behaviours of the C language, making the reduced test-

case incomprehensible and unusable. Among the most common wrong reductions, there

was the removal of return statements and initialization of arrays. We modified Delta so

that it considers only those subsets of code which contain all the return and initialization

statements.
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Algorithm 3.8.5: matchTrace(i, j)

Input : index i of Tunopt and index j of Topt
Output: matches Tunopt and Topt starting from index i and j respectively
if T i

unopt is deleted then
return matchTrace(i+ 1, j)

if i ≤ EndTunopt&& j ≤ EndTopt then

if T i
unopt = T j

opt then
return matchTrace(i+ 1, j + 1)
∨ (eliminable T i

unopt ∧matchTraces(i+ 1, j))

else
(eliminable T i

unopt ∧matchTrace(i+ 1, j))
∨
((res, elimSet)← search(i, T j

opt, Tunopt)

if res 6= None then
mark T e

unopt as deleted ∀ e ∈ elimSet ∪ res
matchTrace(i, j + 1)

)
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Chapter 4

Assessment and Perspectives

4.1 Assessment

In the last month we have been running CPPTEST continuously on an Intel Xeon work-

station. The tool is robust enough to run unattended for days and leaves the generated

programs for which the trace matching fails in a directory for subsequent manual investi-

gation.

In our testing we could replicate several already known bugs of GCC and clang; for

example our tool was able to detect the bug ( http://llvm.org/bugs/show_bug.cgi?

id=12189) which was already reported by Regehr et al. More interestingly, we found a

previously unknown concurrency bug in GCC 4.7. The trace matching algorithm does not

yet deal with all the complexity and subtleties encountered in trace optimizations, and

in some cases it fails to match equivalent traces. Also, the trace matching algorithm has

exponential complexity in the worst case, and it may fail to match traces with about one

thousand memory accesses.

A GCC 4.7 bug: write introduction is incorrect in the C/C++11 Memory

Model The program below:

int g_1 = 1;

int g_2 = 0;
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int func_1(void) {

int l;

for (l = 0; (l != 4); l++) {

if (g_1)

return l;

for (g_2 = 0; (g_2 >= 26); ++g_2)

;

}

}

int main (int argc, char* argv[]) {

func_1();

}

is miscompiled by GCC version 4.7

Observe that the inner loop of func_1 is never executed, and this program should

never perform any read/write to g_2. This means that func_1 might be executed in a

thread in parallel with another thread that performs:

g_2 = 42;

printf ("%d",g_2)

The resulting system is data-race free and the only value that should be printed is 42.

However gcc -O2 generates the following x86-64 assembler for func_1:

func_1:

movl g_1(%rip), %edx

movl g_2(%rip), %eax

testl %edx, %edx

jne .L2

movl $0, g_2(%rip)

ret

.L2:

movl %eax, g_2(%rip)

xorl %eax, %eax

ret
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and this code always performs a write to g_2. If this asm code runs in parallel with

g_2 = 42; print g_2, then the system might also print 0: this behaviour is introduced

by the compiler and should not have happened.

It might be the case that in the C++11 memory model it is safe for the compiler to

introduce a write provided that there is an earlier write to the same location, but this

testcase shows that introducing a write is unsafe whenever there are no previous writes.

We filed a bug report (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=52558),

and GCC developers are working to fix it (see the discussion associated to bug report).

4.1.1 Current False Positives

Some limitations of the current trace-matching algorithm, make it fail to match equivalent

traces. We discuss here the outstanding issues.

Size Issues Related memory accesses can differ in the size of the data being written or

read between the reference and optimized trace. We have already discussed some access

size discrepancies in Section 3.8.1: those are taken into account by the trace matching

algorithm. Some others are not. For instance we frequently observe a store to a long long

(8 bytes) variable being spilt up into two long accesses of 4 bytes each in the unoptimized

trace. As an example, consider:

g_1 0 8 Init

***unopt*** ***opt***

...

g_1 AAAAAAAA 4 Store g_1 BBBBBBBBAAAAAAAA 8 Store

g_1+4 BBBBBBBB 4 Store

...

Recall that g_1+4 represents the word at the address g_1 + 4. Here the optimizer has

coalesced the two 4 byte accesses into a single 8 byte access. This optimization is correct

(one could argue here that the unoptimized trace is not a real reference trace), but we

did not implement this matching in the algorithm as it would drastically slow down the

matching.
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The actual size of the memory accesses can vary with the optimization level. With

GCC, in a few programs we could observe a reduction in the size of load accesses between

the unoptimized trace and the -O2 optimized trace, but the -O3 optimized trace uses the

same size as the unoptimized one (and then perform size conversion in registers).

With Clang we also observe coalesced write accesses for contiguous array locations.

char g_14[8] = 0;

***unopt*** ***opt***

g_14 B1 1 Store

g_14+1 B1 1 Store

g_14+2 B1 1 Store

g_14+3 B1 1 Store

g_14+4 B1 1 Store g_14 B1B1B1B1B1B1B1B1 8 Store

g_14+5 B1 1 Store

g_14+6 B1 1 Store

g_14+7 B1 1 Store

Notice that all the 1 byte array accesses have been merged into a single 8 byte store.

Similar behaviours can be observed with load accesses with Clang.

Irrelevant Load and Store Introductions Quite frequently we have observed irrel-

evant load and store introductions by GCC in optimized traces. We believe it is correct

to introduce a store in a path where there is already a store present, because any context

that attempts to exploit the newly introduced store to generate an unexpected behaviour

must exhibit a data-race with the unoptimized program. Here is a snippet of a trace where

a second store to g_60 is introduced by the optimizer.

***unopt*** ***opt***

g_60 0 1 Store g_60 0 1 Store

RaW* g_60 0 1 Load g_37 FFF 4 Load

g_37 FFF 4 Load g_172 FFF 4 Store

g_172 FFF 4 Store g_60 0 1 Store
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Note that this is different from the bug that was described, where a store was introduced

in a path where there was none. The tool is currently unaware of store introductions

and reports them as errors. We have had some success in dealing with irrelevant read

introductions by running the IR analysis on the optimized trace. However, as for irrelevant

read eliminations, this is subject to the limitations of IR analysis described below.

Irrelevant Read Analysis We perform the analysis of irrelevant reads as part of the

binary instrumentation. This means that the analysis can observe only one execution path.

As a consequence, we cannot implement a correct and complete analysis for memory loads

whose value is used to decide the control flow. For instance, consider:

...

if (g_1){

... //no global store.

}else{

g_2 = 5;

}

Note that in the above example if the value of g_1 is not zero then the if block executes,

and it has no global store. So the analysis might deduce that the load of g_1 is irrelevant.

However this would be incorrect in a concurrent context where some other thread modifies

g_1 to 0, and the else block that is executed; in which case the load of g_1 would be

relevant. If we consider loops, deciding which loads used in the control flow are relevant

becomes even more complicated. We experimented both a sound analysis (which in the

example above consider g_1 as relevant because it cannot test the else branch), which

ends up missing several irrelevant reads, and an unsound analysis (which would deduce

that the g_1 read above is irrelevant), but both end up in false positives.

Test Case Reduction Whenever the trace matching algorithm returns false, we obtain

a fairly complicated program and big traces which are unsuitable not only for filing a

bug report but also to understand why the trace matching failed. We rely on test-case

reduction as performed by delta: remember that delta keeps on removing lines from the

source file until when the trace matching succeeds, and returns the smallest example for

which the trace matching fails. The problem of this approach is that it does not guarantee
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that the source and the reduced case fail for the same reason. It might well be that

programs exhibiting interesting bugs are reduced into programs that exhibit known bugs,

or even false positives. Currently test case reduction is likely to be the bottleneck of our

testing infrastructure.

4.2 Perspectives

The subtle bug we found in GCC validates our approach based on random sequential

program generation and trace matching. However, at the time of writing, this research

project is not yet complete.

We have built most of the infrastructure but our tool should be extended to support

some missing C features, most notably structs, unions and bitfields, where most of the

concurrency bugs are likely to lurk. We recently added support for arrays but we must

yet perform serious testing and analyse the results. Preliminary investigations show lots

of write introduced and/or merged in the optimized trace. Clang does not yet support

the source compilation of C++11 low level atomics so we could not test their compilation

(but the LLVM bytecode already includes special annotations for the atomic attributes,

so it should not take long before low-level atomics are supported by Clang). We do

not support read modify write C/C++11 instructions: these are usually compiled with

locked instructions as XCHG, and our tracing and matching infrastructures ignore that the

read and write performed by locked instructions are guaranteed to execute atomically.

The trace matching algorithm should be extended to support merging of writes, and

clever heuristics must be baked into the algorithm to tackle longer and more complex

traces. We also need a finer analysis of irrelevant reads, and improving the testcase

reduction strategy, so that we minimise the number of false positives, as described in

the previous section. We also believe that CSmith might be tailored to generate more

interesting programs, by sprinkling release/acquire pairs in complex expressions (so that

it is more likely that the optimizer gets confused).

Once the tool will have been extended and polished, the GCC developers have ex-

pressed interest in integrating it in their standard test suite.

Our work could also be used to understand what kind of optimizations a compiler can
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perform and can also be used as a guide to the compiler developers. For example we found

an example were a variable was never read in the source program but we observed a load

of the variable in the optimized trace.

int g_2 = 5L;

int g_13 = 0xFAL;

int g_18 = 0xCDEDL;

int func_1(void) {

for (g_2 = 0; (g_2 >= (-17)); g_2 -= 1) {

if (g_2)

g_13 = g_2;

else

g_18 = 16;

}

return 1;

}

int main (int argc, char* argv[]) {

func_1();

return 0;

}

If we compile the above program, with -O2 using GCC a load of g_13 is (surprisingly)

introduced in the optimized trace. There are several more cases in the compiler introduces

many more unnecessary loads. Our setup can thus be used to provide feedback to the

compiler developers providing insight into what we actually get in the traces and find

better ways to optimize concurrent code.
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