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T = —Types
Bool — Boolean Type
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type constructor — is right-associative, i.e., Ty — To — T3
stands for Ty — (T2 — T3)
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Examples

For each of the type below, write a function (in your favorite
programming language) that has the required type:
» Bool — Bool
» Bool — Bool — Bool
» (Bool — Bool) — Bool
» (Bool — Bool) — Bool — Bool
» (Bool — Bool — Bool) — Bool
» (Bool — Bool — Bool) — Bool
> (

(Bool — Bool) — Bool) — Bool
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The Abstract Syntax

S|mply Typed \-terms with conditions and Booleans

t = x — Variable
| Ax:T.t — Abstraction
| tt — Application
| true — constant true
| false — constant false
|

iftthentelset — conditional
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Recap: The Set of Values

v = — values
Mx: T.t — Abstraction Value
|  true — value true

| false —value false
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Evaluation
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The Typing Relation

» A Typing Context or Type Environment, T, is a sequence of
variables with their types
» I, x : T denotes extending I with a new variable x having
type T
» The name x is assumed to be distinct from any existing
names in I



The Typing Relation

F,x: T1|—t22T2

(T-ABS)
M= Ax: T1.t2:T1 — T2
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The Typing Relation

Mx: Tyt T
A L (T-ABS)
rl—)\X:T1.t2:T1—)T2

x:Terl
T (T-VAR)

NM-x:T

M=ty : T T M=t T

1: =12 2 19 (T-APP)

Fl—t1 tQZTg
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» Iffr'-x:R,thenx:ReT.

> Ifr'-Xx:Ty.12: R then R = Ty — R, for some R, with
Mx: T1 |—t2:R2.

> IfFi—t1 t2:R,thGﬂE|T1 s.t.THi: T1 —>F?andrl—t2:T1.

> If [+ true: R, then R = Bool.

» If+ false: R, then R = Bool.
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Inversion of the Typing Relation
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Ifr'-x:R,thenx: Rel.

fr-Xx:Tqy.1o: R, then R= T, — R, for some R, with
Mx: T1 |—t2:R2.

IfFi—t1 tzzFf,thenEIT1 s.t.THi: T1 —>F?andrl—t2: T1.
If I+ true: R, then R = Bool.

IfI' false: R, then R = Bool.

Ifr'-ift; thent, elsetz: R, then

> 't : Bool
>t R
> F-t: R

v

vvyyy
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Exercises

» For each of the term t below, find context I' and type T
such that
Fr=t: T

> tis \x. x

> tis ((x2)(y 2))
> tis A\y. x

> tisx x
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Uniqueness of Types

» In a given type context I', A term t, such that the free
variables of t are in ', has at most one type.

> If tis typeable, then its type is unique.

» Moreover, there is just one derivation of this typing built
from the inference rules.
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Some Properties

» Permutation: If T=1: T and A is a permutation of I', then
AFt:T.
» The derivation with A has the same depth as the derivation
with T
» Weakening: If T F1: T and x ¢ domain(l), then
Mx:SEHt:T.
» The derivation with I', x : S has the same depth as the
derivation with I
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Progress

» Progress: A well-typed term is not stuck.

> Ift: T,thentis either a value or there exists some t' such
thatt — t'.
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Preservation

» Preservation of Types under Substitution: If
MNx:Skt:TandlN+s:S,thenTF [x — s]t: T.
» Preservation: If a well-typed term takes a step of
evaluation, then the resulting term is also well-typed.
> [fr+t: Tandt—t,thenT -t : T.



