CS738: Advanced Compiler Optimizations
Simply Typed Lambda Calculus

Amey Karkare
karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur

karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738

Reference Book

Types and Programming Languages by Benjamin C. Pierce

Simple Types over Bool

T = — Types

Simple Types over Bool

T = — Types
Bool — Boolean Type

Simple Types over Bool

T = —Types
Bool — Boolean Type
T— T — Function Type

Simple Types over Bool

T = —Types
Bool — Boolean Type
T— T — Function Type

type constructor — is right-associative, i.e., Ty — To — T3
stands for Ty — (T2 — T3)

Examples

For each of the type below, write a function (in your favorite
programming language) that has the required type:

» Bool — Bool

Examples

For each of the type below, write a function (in your favorite
programming language) that has the required type:

» Bool — Bool
» Bool — Bool — Bool

Examples

For each of the type below, write a function (in your favorite
programming language) that has the required type:

» Bool — Bool
» Bool — Bool — Bool
» (Bool — Bool) — Bool

Examples

For each of the type below, write a function (in your favorite
programming language) that has the required type:

» Bool — Bool

» Bool — Bool — Bool

» (Bool — Bool) — Bool

» (Bool — Bool) — Bool — Bool

Examples

For each of the type below, write a function (in your favorite
programming language) that has the required type:

» Bool — Bool

» Bool — Bool — Bool

» (Bool — Bool) — Bool

» (Bool — Bool) — Bool — Bool
» (Bool — Bool — Bool) — Bool

Examples

For each of the type below, write a function (in your favorite
programming language) that has the required type:

» Bool — Bool

» Bool — Bool — Bool

» (Bool — Bool) — Bool

» (Bool — Bool) — Bool — Bool
» (Bool — Bool — Bool) — Bool
» (Bool — Bool — Bool) — Bool

Examples

For each of the type below, write a function (in your favorite
programming language) that has the required type:
» Bool — Bool
» Bool — Bool — Bool
» (Bool — Bool) — Bool
» (Bool — Bool) — Bool — Bool
» (Bool — Bool — Bool) — Bool
» (Bool — Bool — Bool) — Bool
> (

(Bool — Bool) — Bool) — Bool

The Abstract Syntax

Simply Typed A-terms with conditions and Booleans
t = x — Variable

The Abstract Syntax

Simply Typed A-terms with conditions and Booleans
t = x — Variable
| Ax:T.t — Abstraction

The Abstract Syntax

S|mply Typed \-terms with conditions and Booleans
t = x — Variable
| Ax:T.t — Abstraction
| tt — Application

The Abstract Syntax

Simply Typed A-terms with conditions and Booleans

t = x — Variable
| Ax:T.t — Abstraction
| tt — Application
|

true — constant true

The Abstract Syntax

S|mply Typed \-terms with conditions and Booleans

t = x — Variable
| Ax:T.t — Abstraction
| tt — Application
| true — constant true
|

false — constant false

The Abstract Syntax

S|mply Typed \-terms with conditions and Booleans

t = x — Variable
| Ax:T.t — Abstraction
| tt — Application
| true — constant true
| false — constant false
|

iftthentelset — conditional

Recap: The Set of Values

v = — values
Mx : T.t — Abstraction Value

Recap: The Set of Values

v = — values
Mx: T.t — Abstraction Value
| true — value true

Recap: The Set of Values

v = — values
Mx: T.t — Abstraction Value
| true — value true

| false —value false

Evaluation

14 —>t/1

ot (E-APP1)
1 I ;b

Evaluation

t/
b=t (E-APP1)
tto — ’[q to
t t’
270 (E-APP2)

/
vio - vi;

Evaluation

14 —>t/1
tto — ’[q to

t2—>t’2
Vip —» v i

(Ax: Ti.t)ve = [x — vty

(E-APP1)

(E-APP2)

(E-APPABS)

The Typing Relation

» A Typing Context or Type Environment, T, is a sequence of
variables with their types

The Typing Relation

» A Typing Context or Type Environment, T, is a sequence of
variables with their types

» I, x : T denotes extending I with a new variable x having
type T

The Typing Relation

» A Typing Context or Type Environment, T, is a sequence of
variables with their types
» I, x : T denotes extending I with a new variable x having
type T
» The name x is assumed to be distinct from any existing
names in I

The Typing Relation

F,x: T1|—t22T2

(T-ABS)
M= Ax: T1.t2:T1 — T2

The Typing Relation

Mx:TikHt: T
A L (T-ABS)
rl—)\X:T1.t2:T1—>T2
x:Terl
(T-VAR)

NM-x:T

The Typing Relation

Mx: Tyt T
A L (T-ABS)
rl—)\X:T1.t2:T1—)T2

x:Terl
T (T-VAR)

NM-x:T

M=ty : T T M=t T

1: =12 2 19 (T-APP)

Fl—t1 tQZTg

Inversion of the Typing Relation

» Iffr'-x:R,thenx:ReT.

Inversion of the Typing Relation

» Iffr'-x:R,thenx:ReT.

> Ifr'-Xx:Ty.12: R then R = Ty — R, for some R, with
Mx: T1 |—t2:R2.

Inversion of the Typing Relation

» Iffr'-x:R,thenx:ReT.

> Ifr'-Xx:Ty.12: R then R = Ty — R, for some R, with
Mx: T1 |—t2:R2.
> IfFi—t1 t2:H,thGﬂE|T1 s.t.THi: T1 —>F?andrl—t2:T1.

Inversion of the Typing Relation

» Iffr'-x:R,thenx:ReT.

> Ifr'-Xx:Ty.12: R then R = Ty — R, for some R, with
Mx: T1 |—t2:R2.

> IfFi—t1 t2:R,thGﬂE|T1 s.t.FI—t1:T1—>F?andF|—t2:T1.

> If [+ true: R, then R = Bool.

Inversion of the Typing Relation

» Iffr'-x:R,thenx:ReT.

> Ifr'-Xx:Ty.12: R then R = Ty — R, for some R, with
Mx: T1 |—t2:R2.

> IfFi—t1 t2:R,thGﬂE|T1 s.t.THi: T1 —>F?andrl—t2:T1.

> If [+ true: R, then R = Bool.

» If+ false: R, then R = Bool.

Inversion of the Typing Relation

vy

vvyyy

Ifr'-x:R,thenx: Rel.

fr-Xx:Tqy.1o: R, then R= T, — R, for some R, with
Mx: T1 |—t2:R2.

IfFi—t1 tzzFf,thenEIT1 s.t.THi: T1 —>F?andrl—t2:T1.
IfI'F true : R, then R = Bool.

IfT'- false: R, then R = Bool.
Ifr'-ift; thent, elsetz: R, then

Inversion of the Typing Relation

vy

vvyyy

Ifr'-x:R,thenx: Rel.

fr-Xx:Tqy.1o: R, then R= T, — R, for some R, with
Mx: T1 |—t2:R2.

IfFi—t1 tzzFf,thenEIT1 s.t.THi: T1 —>F?andrl—t2:T1.
IfI'F true : R, then R = Bool.

IfT'- false: R, then R = Bool.
Ifr'-ift; thent, elsetz: R, then
> [+t : Bool

Inversion of the Typing Relation

vy

vvyyy

Ifr'-x:R,thenx: Rel.

fr-Xx:Tqy.1o: R, then R= T, — R, for some R, with
Mx: T1 |—t2:R2.

IfFi—t1 tzzFf,thenEIT1 s.t.THi: T1 —>F?andrl—t2:T1.
IfI'F true : R, then R = Bool.

IfT'- false: R, then R = Bool.
Ifr'-ift; thent, elsetz: R, then

> I+t : Bool
>»-t:R

Inversion of the Typing Relation

v

Ifr'-x:R,thenx: Rel.

fr-Xx:Tqy.1o: R, then R= T, — R, for some R, with
Mx: T1 |—t2:R2.

IfFi—t1 tzzFf,thenEIT1 s.t.THi: T1 —>F?andrl—t2: T1.
If I+ true: R, then R = Bool.

IfI' false: R, then R = Bool.

Ifr'-ift; thent, elsetz: R, then

> 't : Bool
>t R
> F-t: R

v

vvyyy

Exercises

» For each of the term t below, find context I' and type T
such that
Fr=t: T

Exercises

» For each of the term t below, find context I' and type T
such that
Fr=t: T

> tis Ax. x

Exercises

» For each of the term t below, find context I' and type T
such that
Fr=t: T

> tis Ax. x
> tis ((x2)(y 2))

Exercises

» For each of the term t below, find context I' and type T
such that
Fr=t: T

> tis Ax. x

> tis((x2)(y2))
> tis A\y. x

Exercises

» For each of the term t below, find context I' and type T
such that
Fr=t: T

> tis \x. x

> tis ((x2)(y 2))
> tis A\y. x

> tisx x

Uniqueness of Types

» In a given type context I', A term t, such that the free
variables of t are in ', has at most one type.

Uniqueness of Types

» In a given type context I', A term t, such that the free
variables of t are in ', has at most one type.

> If tis typeable, then its type is unique.

Uniqueness of Types

» In a given type context I', A term t, such that the free
variables of t are in ', has at most one type.

> If tis typeable, then its type is unique.

» Moreover, there is just one derivation of this typing built
from the inference rules.

Some Properties

» Permutation: If T=1: T and A is a permutation of I', then
AFt:T.

Some Properties

» Permutation: If T=1: T and A is a permutation of I', then
AFt:T.
» The derivation with A has the same depth as the derivation
with T

Some Properties

» Permutation: If T=1: T and A is a permutation of I', then
AFt:T.
» The derivation with A has the same depth as the derivation
with T.
» Weakening: If T F1: T and x ¢ domain(l), then
Mx:SEHt:T.

Some Properties

» Permutation: If T=1: T and A is a permutation of I', then
AFt:T.
» The derivation with A has the same depth as the derivation
with T
» Weakening: If T F1: T and x ¢ domain(l), then
Mx:SEHt:T.
» The derivation with I', x : S has the same depth as the
derivation with I

Progress

» Progress: A well-typed term is not stuck.

Progress

» Progress: A well-typed term is not stuck.

> Ift: T,thentis either a value or there exists some t' such
thatt — t'.

Preservation

» Preservation of Types under Substitution: If
MNx:Skt: Tandlks: S, thenT+ [x+— s]t: T.

Preservation

» Preservation of Types under Substitution: If
MNx:Skt: Tandlks: S, thenT+ [x+— s]t: T.

» Preservation: If a well-typed term takes a step of
evaluation, then the resulting term is also well-typed.

Preservation

» Preservation of Types under Substitution: If
MNx:Skt:TandlN+s:S,thenTF [x — s]t: T.
» Preservation: If a well-typed term takes a step of
evaluation, then the resulting term is also well-typed.
> [fr+t: Tandt—t,thenT -t : T.

