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Simple Types over Bool

T := – Types

Bool – Boolean Type

T → T – Function Type

type constructor → is right-associative, i.e., T1 → T2 → T3

stands for T1 → (T2 → T3)
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For each of the type below, write a function (in your favorite

programming language) that has the required type:

◮ Bool → Bool

◮ Bool → Bool → Bool

◮ (Bool → Bool) → Bool

◮ (Bool → Bool) → Bool → Bool

◮ (Bool → Bool → Bool) → Bool

◮ (Bool → Bool → Bool) → Bool

◮ ((Bool → Bool) → Bool) → Bool
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The Abstract Syntax

Simply Typed λ-terms with conditions and Booleans
t := x – Variable

| λx : T . t – Abstraction

| t t – Application

| true – constant true

| false – constant false

| if t then t else t – conditional
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Recap: The Set of Values

v := – values

λx : T . t – Abstraction Value

| true – value true

| false – value false
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Evaluation

t1 → t′1

t1 t2 → t′1 t2
(E-APP1)

t2 → t′2

v t2 → v t′2
(E-APP2)

(λx : T1. t1)v2 → [x 7→ v2]t1 (E-APPABS)
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The Typing Relation

◮ A Typing Context or Type Environment, Γ, is a sequence of

variables with their types

◮ Γ, x : T denotes extending Γ with a new variable x having
type T
◮ The name x is assumed to be distinct from any existing

names in Γ
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The Typing Relation

Γ, x : T1 ⊢ t2 : T2

Γ ⊢ λx : T1. t2 : T1 → T2

(T-ABS)

x : T ∈ Γ

Γ ⊢ x : T
(T-VAR)

Γ ⊢ t1 : T1 → T2 Γ ⊢ t2 : T1

Γ ⊢ t1 t2 : T2

(T-APP)
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◮ If Γ ⊢ x : R, then x : R ∈ Γ.

◮ If Γ ⊢ λx : T1. t2 : R, then R = T1 → R2 for some R2 with

Γ, x : T1 ⊢ t2 : R2.

◮ If Γ ⊢ t1 t2 : R, then ∃T1 s.t . Γ ⊢ t1 : T1 → R and Γ ⊢ t2 : T1.

◮ If Γ ⊢ true : R, then R = Bool.

◮ If Γ ⊢ false : R, then R = Bool.

◮ If Γ ⊢ if t1 then t2 else t3 : R, then
◮ Γ ⊢ t1 : Bool
◮ Γ ⊢ t2 : R
◮ Γ ⊢ t3 : R
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Exercises

◮ For each of the term t below, find context Γ and type T

such that

Γ ⊢ t : T

◮ t is λx . x
◮ t is ( (x z) (y z) )
◮ t is λy . x
◮ t is x x
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Uniqueness of Types

◮ In a given type context Γ, A term t, such that the free

variables of t are in Γ, has at most one type.

◮ If t is typeable, then its type is unique.

◮ Moreover, there is just one derivation of this typing built

from the inference rules.
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Some Properties

◮ Permutation: If Γ ⊢ t : T and ∆ is a permutation of Γ, then
∆ ⊢ t : T .
◮ The derivation with ∆ has the same depth as the derivation

with Γ.

◮ Weakening: If Γ ⊢ t : T and x 6∈ domain(Γ), then
Γ, x : S ⊢ t : T .
◮ The derivation with Γ, x : S has the same depth as the

derivation with Γ.
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◮ Progress: A well-typed term is not stuck.
◮ If ⊢ t : T , then t is either a value or there exists some t′ such

that t → t′.
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Preservation

◮ Preservation of Types under Substitution: If

Γ, x : S ⊢ t : T and Γ ⊢ s : S, then Γ ⊢ [x 7→ s]t : T .

◮ Preservation: If a well-typed term takes a step of
evaluation, then the resulting term is also well-typed.
◮ If Γ ⊢ t : T and t → t′, then Γ ⊢ t′ : T .


