
CS738: Advanced Compiler Optimizations

Typed Arithmetic Expressions

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738

Department of CSE, IIT Kanpur

karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738


Reference Book

Types and Programming Languages by Benjamin C. Pierce



Recap: Untyped Arithmetic Expression Language

t := – terms

true – constant true

false – constant false

if t then t else t – conditional

0 – constant zero

succ t – successor

pred t – predecessor

iszero t – zero test



Recap: The Set of Values

v := – values

true – value true

false – value false

0 – value zero

succ v – successor value



Let’s add Types to the Language

T := – Types



Let’s add Types to the Language

T := – Types

Bool – Booleans



Let’s add Types to the Language

T := – Types

Bool – Booleans

Nat – Natural Numbers



The Typing Relation

◮ A set of rules assigning types to terms



The Typing Relation

◮ A set of rules assigning types to terms

◮ ⊢ t : T denotes “term t has type T ”



The Typing Relation

◮ A set of rules assigning types to terms

◮ ⊢ t : T denotes “term t has type T ”



The Typing Relation

◮ A set of rules assigning types to terms

◮ ⊢ t : T denotes “term t has type T ”

0 : Nat



The Typing Relation

◮ A set of rules assigning types to terms

◮ ⊢ t : T denotes “term t has type T ”

0 : Nat

t1 : Nat

succ t1 : Nat



The Typing Relation

◮ A set of rules assigning types to terms

◮ ⊢ t : T denotes “term t has type T ”

0 : Nat

t1 : Nat

succ t1 : Nat

t1 : Nat

pred t1 : Nat



The Typing Relation

◮ A set of rules assigning types to terms

◮ ⊢ t : T denotes “term t has type T ”

0 : Nat

t1 : Nat

succ t1 : Nat

t1 : Nat

pred t1 : Nat

t1 : Nat

iszero t1 : Bool



The Typing Relation (contd. . . )

◮ A set of rules assigning types to terms

◮ ⊢ t : T denotes “term t has type T ”

true : Bool



The Typing Relation (contd. . . )

◮ A set of rules assigning types to terms

◮ ⊢ t : T denotes “term t has type T ”

true : Bool

false : Bool



The Typing Relation (contd. . . )

◮ A set of rules assigning types to terms

◮ ⊢ t : T denotes “term t has type T ”

true : Bool

false : Bool

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T



The Typing Relation: Definition

◮ The typing relation for arithmetic expressions is the

smallest binary relation between terms and types

satisfying all instances of the rules defined earlier.



The Typing Relation: Definition

◮ The typing relation for arithmetic expressions is the

smallest binary relation between terms and types

satisfying all instances of the rules defined earlier.

◮ A term t is typeable (or well typed) if there is some T such

that t : T .



Inversion of the Typing Relation

◮ If ⊢ 0 : R, then R = Nat.



Inversion of the Typing Relation

◮ If ⊢ 0 : R, then R = Nat.

◮ If ⊢ succ t1 : R, then R = Nat and ⊢ t1 : Nat.



Inversion of the Typing Relation

◮ If ⊢ 0 : R, then R = Nat.

◮ If ⊢ succ t1 : R, then R = Nat and ⊢ t1 : Nat.

◮ If ⊢ pred t1 : R, then R = Nat and ⊢ t1 : Nat.



Inversion of the Typing Relation

◮ If ⊢ 0 : R, then R = Nat.

◮ If ⊢ succ t1 : R, then R = Nat and ⊢ t1 : Nat.

◮ If ⊢ pred t1 : R, then R = Nat and ⊢ t1 : Nat.

◮ If ⊢ iszero t1 : R, then R = Bool and ⊢ t1 : Nat.



Inversion of the Typing Relation

◮ If ⊢ 0 : R, then R = Nat.

◮ If ⊢ succ t1 : R, then R = Nat and ⊢ t1 : Nat.

◮ If ⊢ pred t1 : R, then R = Nat and ⊢ t1 : Nat.

◮ If ⊢ iszero t1 : R, then R = Bool and ⊢ t1 : Nat.

◮ If ⊢ true : R, then R = Bool.



Inversion of the Typing Relation

◮ If ⊢ 0 : R, then R = Nat.

◮ If ⊢ succ t1 : R, then R = Nat and ⊢ t1 : Nat.

◮ If ⊢ pred t1 : R, then R = Nat and ⊢ t1 : Nat.

◮ If ⊢ iszero t1 : R, then R = Bool and ⊢ t1 : Nat.

◮ If ⊢ true : R, then R = Bool.

◮ If ⊢ false : R, then R = Bool.



Inversion of the Typing Relation

◮ If ⊢ 0 : R, then R = Nat.

◮ If ⊢ succ t1 : R, then R = Nat and ⊢ t1 : Nat.

◮ If ⊢ pred t1 : R, then R = Nat and ⊢ t1 : Nat.

◮ If ⊢ iszero t1 : R, then R = Bool and ⊢ t1 : Nat.

◮ If ⊢ true : R, then R = Bool.

◮ If ⊢ false : R, then R = Bool.

◮ If Γ ⊢ if t1 then t2 else t3 : R, then



Inversion of the Typing Relation

◮ If ⊢ 0 : R, then R = Nat.

◮ If ⊢ succ t1 : R, then R = Nat and ⊢ t1 : Nat.

◮ If ⊢ pred t1 : R, then R = Nat and ⊢ t1 : Nat.

◮ If ⊢ iszero t1 : R, then R = Bool and ⊢ t1 : Nat.

◮ If ⊢ true : R, then R = Bool.

◮ If ⊢ false : R, then R = Bool.

◮ If Γ ⊢ if t1 then t2 else t3 : R, then
◮ Γ ⊢ t1 : Bool



Inversion of the Typing Relation

◮ If ⊢ 0 : R, then R = Nat.

◮ If ⊢ succ t1 : R, then R = Nat and ⊢ t1 : Nat.

◮ If ⊢ pred t1 : R, then R = Nat and ⊢ t1 : Nat.

◮ If ⊢ iszero t1 : R, then R = Bool and ⊢ t1 : Nat.

◮ If ⊢ true : R, then R = Bool.

◮ If ⊢ false : R, then R = Bool.

◮ If Γ ⊢ if t1 then t2 else t3 : R, then
◮ Γ ⊢ t1 : Bool
◮ Γ ⊢ t2 : R



Inversion of the Typing Relation

◮ If ⊢ 0 : R, then R = Nat.

◮ If ⊢ succ t1 : R, then R = Nat and ⊢ t1 : Nat.

◮ If ⊢ pred t1 : R, then R = Nat and ⊢ t1 : Nat.

◮ If ⊢ iszero t1 : R, then R = Bool and ⊢ t1 : Nat.

◮ If ⊢ true : R, then R = Bool.

◮ If ⊢ false : R, then R = Bool.

◮ If Γ ⊢ if t1 then t2 else t3 : R, then
◮ Γ ⊢ t1 : Bool
◮ Γ ⊢ t2 : R
◮ Γ ⊢ t3 : R



Uniqueness of Types

◮ Every term t has at most one type.



Uniqueness of Types

◮ Every term t has at most one type.

◮ If t is typeable, then its type is unique.



Uniqueness of Types

◮ Every term t has at most one type.

◮ If t is typeable, then its type is unique.

◮ Moreover, there is just one derivation of this typing built

from the inference rules.



Safety = Preservation + Progress

◮ The type system is safe (also called sound)



Safety = Preservation + Progress

◮ The type system is safe (also called sound)

◮ Well-typed programs do not “go wrong.”



Safety = Preservation + Progress

◮ The type system is safe (also called sound)

◮ Well-typed programs do not “go wrong.”
◮ Do not reach a “stuck state.”



Safety = Preservation + Progress

◮ The type system is safe (also called sound)

◮ Well-typed programs do not “go wrong.”
◮ Do not reach a “stuck state.”

◮ Progress: A well-typed term is not stuck.



Safety = Preservation + Progress

◮ The type system is safe (also called sound)

◮ Well-typed programs do not “go wrong.”
◮ Do not reach a “stuck state.”

◮ Progress: A well-typed term is not stuck.
◮ If ⊢ t : T , then t is either a value or there exists some t ′

such that t → t ′.



Safety = Preservation + Progress

◮ The type system is safe (also called sound)

◮ Well-typed programs do not “go wrong.”
◮ Do not reach a “stuck state.”

◮ Progress: A well-typed term is not stuck.
◮ If ⊢ t : T , then t is either a value or there exists some t ′

such that t → t ′.

◮ Preservation: If a well-typed term takes a step of
evaluation, then the resulting term is also well-typed.



Safety = Preservation + Progress

◮ The type system is safe (also called sound)

◮ Well-typed programs do not “go wrong.”
◮ Do not reach a “stuck state.”

◮ Progress: A well-typed term is not stuck.
◮ If ⊢ t : T , then t is either a value or there exists some t ′

such that t → t ′.

◮ Preservation: If a well-typed term takes a step of
evaluation, then the resulting term is also well-typed.
◮ If ⊢ t : T and t → t ′, then ⊢ t ′ : T .


