
CS738: Advanced Compiler Optimizations

The Untyped Lambda Calculus

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738

Department of CSE, IIT Kanpur

karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738

Reference Book

Types and Programming Languages by Benjamin C. Pierce

The Abstract Syntax

t := x – Variable

The Abstract Syntax

t := x – Variable

| λx .t – Abstraction

The Abstract Syntax

t := x – Variable

| λx .t – Abstraction

| t t – Application

The Abstract Syntax

t := x – Variable

| λx .t – Abstraction

| t t – Application

Parenthesis, (. . .), can be used for grouping and scoping.

Conventions

◮ λx .t1t2t3 is an abbreviation for λx .(t1t2t3), i.e., the scope of
x is as far to the right as possible until it is

Conventions

◮ λx .t1t2t3 is an abbreviation for λx .(t1t2t3), i.e., the scope of
x is as far to the right as possible until it is
◮ terminated by a) whose matching (occurs to the left of λ,

OR

Conventions

◮ λx .t1t2t3 is an abbreviation for λx .(t1t2t3), i.e., the scope of
x is as far to the right as possible until it is
◮ terminated by a) whose matching (occurs to the left of λ,

OR
◮ terminated by the end of the term.

Conventions

◮ λx .t1t2t3 is an abbreviation for λx .(t1t2t3), i.e., the scope of
x is as far to the right as possible until it is
◮ terminated by a) whose matching (occurs to the left of λ,

OR
◮ terminated by the end of the term.

◮ Applications associate to the left: t1t2t3 to be read as

(t1t2)t3 and not as t1(t2t3)

Conventions

◮ λx .t1t2t3 is an abbreviation for λx .(t1t2t3), i.e., the scope of
x is as far to the right as possible until it is
◮ terminated by a) whose matching (occurs to the left of λ,

OR
◮ terminated by the end of the term.

◮ Applications associate to the left: t1t2t3 to be read as

(t1t2)t3 and not as t1(t2t3)

◮ λxyz.t is an abbreviation for λxλyλz.t which in turn is

abbreviation for λx .(λy .(λz.t)).

α-renaming

◮ The name of a bound variable has no meaning except for

its use to identify the bounding λ.

α-renaming

◮ The name of a bound variable has no meaning except for

its use to identify the bounding λ.

◮ Renaming a λ variable, including all its bound occurrences,

does not change the meaning of an expression. For

example, λx .x x y is equivalent to λu.u u y

α-renaming

◮ The name of a bound variable has no meaning except for

its use to identify the bounding λ.

◮ Renaming a λ variable, including all its bound occurrences,

does not change the meaning of an expression. For

example, λx .x x y is equivalent to λu.u u y
◮ But it is not same as λx .x x w

α-renaming

◮ The name of a bound variable has no meaning except for

its use to identify the bounding λ.

◮ Renaming a λ variable, including all its bound occurrences,

does not change the meaning of an expression. For

example, λx .x x y is equivalent to λu.u u y
◮ But it is not same as λx .x x w
◮ Can not change free variables!

β-reduction (Execution Semantics)

◮ if an abstraction λx .t1 is applied to a term t2 then the result
of the application is

β-reduction (Execution Semantics)

◮ if an abstraction λx .t1 is applied to a term t2 then the result
of the application is
◮ the body of the abstraction t1 with all free occurrences of

the formal parameter x replaced with t2.

β-reduction (Execution Semantics)

◮ if an abstraction λx .t1 is applied to a term t2 then the result
of the application is
◮ the body of the abstraction t1 with all free occurrences of

the formal parameter x replaced with t2.

◮ For example,

(λfλx .f (f x)) g
β

−→ λx .g (g x)

Caution

◮ During β-reduction, make sure a free variable is not

captured inadvertently.

Caution

◮ During β-reduction, make sure a free variable is not

captured inadvertently.

◮ The following reduction is WRONG

(λxλy .x)(λx .y)
β

−→ λy .λx .y

Caution

◮ During β-reduction, make sure a free variable is not

captured inadvertently.

◮ The following reduction is WRONG

(λxλy .x)(λx .y)
β

−→ λy .λx .y

◮ Use α-renaming to avoid variable capture

(λxλy .x)(λx .y)
α

−→ (λuλv .u)(λx .y)
β

−→ λv .λx .y

Exercise

◮ Apply β-reduction as far as possible

1. (λx y z. x z (y z)) (λx y . x) (λy .y)

2. (λx . x x)(λx . x x)

3. (λx y z. x z (y z)) (λx y . x) ((λx . x x)(λx . x x))

Church-Rosser Theorem

◮ Multiple ways to apply β-reduction

Church-Rosser Theorem

◮ Multiple ways to apply β-reduction

◮ Some may not terminate

Church-Rosser Theorem

◮ Multiple ways to apply β-reduction

◮ Some may not terminate

◮ However, if two different reduction sequences terminate
then they always terminate in the same term

Church-Rosser Theorem

◮ Multiple ways to apply β-reduction

◮ Some may not terminate

◮ However, if two different reduction sequences terminate
then they always terminate in the same term
◮ Also called the Diamond Property

Church-Rosser Theorem

◮ Multiple ways to apply β-reduction

◮ Some may not terminate

◮ However, if two different reduction sequences terminate
then they always terminate in the same term
◮ Also called the Diamond Property

◮ Leftmost, outermost reduction will find the normal form if it

exists

Programming in λ Calculus

◮ Where is the other stuff?

Programming in λ Calculus

◮ Where is the other stuff?

◮ Constants?

Programming in λ Calculus

◮ Where is the other stuff?

◮ Constants?
◮ Numbers

Programming in λ Calculus

◮ Where is the other stuff?

◮ Constants?
◮ Numbers
◮ Booleans

Programming in λ Calculus

◮ Where is the other stuff?

◮ Constants?
◮ Numbers
◮ Booleans

◮ Complex Types?

Programming in λ Calculus

◮ Where is the other stuff?

◮ Constants?
◮ Numbers
◮ Booleans

◮ Complex Types?
◮ Lists

Programming in λ Calculus

◮ Where is the other stuff?

◮ Constants?
◮ Numbers
◮ Booleans

◮ Complex Types?
◮ Lists
◮ Arrays

Programming in λ Calculus

◮ Where is the other stuff?

◮ Constants?
◮ Numbers
◮ Booleans

◮ Complex Types?
◮ Lists
◮ Arrays

◮ Don’t we need data?

Programming in λ Calculus

◮ Where is the other stuff?

◮ Constants?
◮ Numbers
◮ Booleans

◮ Complex Types?
◮ Lists
◮ Arrays

◮ Don’t we need data?

Programming in λ Calculus

◮ Where is the other stuff?

◮ Constants?
◮ Numbers
◮ Booleans

◮ Complex Types?
◮ Lists
◮ Arrays

◮ Don’t we need data?

Abstractions act as functions as well as data!

Numbers: Church Numerals

◮ We need a “Zero”

Numbers: Church Numerals

◮ We need a “Zero”
◮ “Absence of item”

Numbers: Church Numerals

◮ We need a “Zero”
◮ “Absence of item”

◮ And something to count

Numbers: Church Numerals

◮ We need a “Zero”
◮ “Absence of item”

◮ And something to count
◮ “Presence of item”

Numbers: Church Numerals

◮ We need a “Zero”
◮ “Absence of item”

◮ And something to count
◮ “Presence of item”

◮ Intuition: Whiteboard and Marker

Numbers: Church Numerals

◮ We need a “Zero”
◮ “Absence of item”

◮ And something to count
◮ “Presence of item”

◮ Intuition: Whiteboard and Marker
◮ Blank board represents Zero

Numbers: Church Numerals

◮ We need a “Zero”
◮ “Absence of item”

◮ And something to count
◮ “Presence of item”

◮ Intuition: Whiteboard and Marker
◮ Blank board represents Zero
◮ Each mark by marker represents a count.

Numbers: Church Numerals

◮ We need a “Zero”
◮ “Absence of item”

◮ And something to count
◮ “Presence of item”

◮ Intuition: Whiteboard and Marker
◮ Blank board represents Zero
◮ Each mark by marker represents a count.
◮ However, other pairs of objects will work as well

Numbers: Church Numerals

◮ We need a “Zero”
◮ “Absence of item”

◮ And something to count
◮ “Presence of item”

◮ Intuition: Whiteboard and Marker
◮ Blank board represents Zero
◮ Each mark by marker represents a count.
◮ However, other pairs of objects will work as well

◮ Lets translate this intuition into λ-expressions

Numbers

◮ Zero = λm w . w

Numbers

◮ Zero = λm w . w
◮ No mark on the whiteboard

Numbers

◮ Zero = λm w . w
◮ No mark on the whiteboard

◮ One = λm w . m w

Numbers

◮ Zero = λm w . w
◮ No mark on the whiteboard

◮ One = λm w . m w
◮ One mark on the whiteboard

Numbers

◮ Zero = λm w . w
◮ No mark on the whiteboard

◮ One = λm w . m w
◮ One mark on the whiteboard

◮ Two = λm w . m (m w)

Numbers

◮ Zero = λm w . w
◮ No mark on the whiteboard

◮ One = λm w . m w
◮ One mark on the whiteboard

◮ Two = λm w . m (m w)

◮ . . .

Numbers

◮ Zero = λm w . w
◮ No mark on the whiteboard

◮ One = λm w . m w
◮ One mark on the whiteboard

◮ Two = λm w . m (m w)

◮ . . .

◮ What about operations?

Numbers

◮ Zero = λm w . w
◮ No mark on the whiteboard

◮ One = λm w . m w
◮ One mark on the whiteboard

◮ Two = λm w . m (m w)

◮ . . .

◮ What about operations?
◮ add, multiply, subtract, divide, . . . ?

Operations on Numbers

◮ succ = λx m w . m (x m w)

Operations on Numbers

◮ succ = λx m w . m (x m w)
◮ Verify: succ N = N + 1

Operations on Numbers

◮ succ = λx m w . m (x m w)
◮ Verify: succ N = N + 1

◮ add = λx y m w . x m (y m w)

Operations on Numbers

◮ succ = λx m w . m (x m w)
◮ Verify: succ N = N + 1

◮ add = λx y m w . x m (y m w)
◮ Verify: add M N = M + N

Operations on Numbers

◮ succ = λx m w . m (x m w)
◮ Verify: succ N = N + 1

◮ add = λx y m w . x m (y m w)
◮ Verify: add M N = M + N

◮ mult = λx y m w . x (y m) w

Operations on Numbers

◮ succ = λx m w . m (x m w)
◮ Verify: succ N = N + 1

◮ add = λx y m w . x m (y m w)
◮ Verify: add M N = M + N

◮ mult = λx y m w . x (y m) w
◮ Verify: mult M N = M * N

More Operations

◮ pred = λx m w . x (λg h. h (g m))(λu. w)(λu. u)

More Operations

◮ pred = λx m w . x (λg h. h (g m))(λu. w)(λu. u)
◮ Verify: pred N = N - 1

More Operations

◮ pred = λx m w . x (λg h. h (g m))(λu. w)(λu. u)
◮ Verify: pred N = N - 1

◮ nminus = λx y . y pred x

More Operations

◮ pred = λx m w . x (λg h. h (g m))(λu. w)(λu. u)
◮ Verify: pred N = N - 1

◮ nminus = λx y . y pred x
◮ Verify: nminus M N = max(0, M - N) – natural subtraction

Church Booleans

◮ True and False

Church Booleans

◮ True and False

◮ Intuition: Selection of one out of two (complementary)

choices

Church Booleans

◮ True and False

◮ Intuition: Selection of one out of two (complementary)

choices

◮ True = λx y . x

Church Booleans

◮ True and False

◮ Intuition: Selection of one out of two (complementary)

choices

◮ True = λx y . x

◮ False = λx y . y

Church Booleans

◮ True and False

◮ Intuition: Selection of one out of two (complementary)

choices

◮ True = λx y . x

◮ False = λx y . y

◮ Predicate:

Church Booleans

◮ True and False

◮ Intuition: Selection of one out of two (complementary)

choices

◮ True = λx y . x

◮ False = λx y . y

◮ Predicate:
◮ isZero = λx . x (λu.False) True

Operations on Booleans

◮ Logical operations

and = λp q. p q p

or = λp q. p p q

not = λp t f .p f t

Operations on Booleans

◮ Logical operations

and = λp q. p q p

or = λp q. p p q

not = λp t f .p f t

◮ The conditional operator if

if = λc et ef . (c et ef)

Operations on Booleans

◮ Logical operations

and = λp q. p q p

or = λp q. p p q

not = λp t f .p f t

◮ The conditional operator if
◮ if c et ef reduces to et if c is True, and to ef if c is False

if = λc et ef . (c et ef)

More. . .

◮ More such types can be found at

https://en.wikipedia.org/wiki/Church_encoding

https://en.wikipedia.org/wiki/Church_encoding

More. . .

◮ More such types can be found at

https://en.wikipedia.org/wiki/Church_encoding

◮ It is fun to come up with your own definitions for constants

and operations over different types

https://en.wikipedia.org/wiki/Church_encoding

More. . .

◮ More such types can be found at

https://en.wikipedia.org/wiki/Church_encoding

◮ It is fun to come up with your own definitions for constants

and operations over different types

◮ or to develop understanding for existing definitions.

https://en.wikipedia.org/wiki/Church_encoding

We are missing something!!

◮ The machinery described so far does not allow us to define
Recursive functions
◮ Factorial, Fibonacci, . . .

◮ There is no concept of “named” functions
◮ So no way to refer to a function “recursively”!

◮ Fix-point computation comes to rescue

Fix-point and Y -combinator

◮ A fix-point of a function f is a value p such that f p = p

Fix-point and Y -combinator

◮ A fix-point of a function f is a value p such that f p = p

◮ Assume existence of a magic expression, called

Y -combinator, that when applied to a λ-expression, gives

its fixed point

Y f = f (Y f)

Fix-point and Y -combinator

◮ A fix-point of a function f is a value p such that f p = p

◮ Assume existence of a magic expression, called

Y -combinator, that when applied to a λ-expression, gives

its fixed point

Y f = f (Y f)

◮ Y -combinator gives us a way to apply a function

recursively

Recursion Example: Factorial

fact = λn. if (isZero n) One (mult n (fact (pred n)))

= (λf n. if (isZero n) One (mult n (f (pred n)))) fact

Recursion Example: Factorial

fact = λn. if (isZero n) One (mult n (fact (pred n)))

= (λf n. if (isZero n) One (mult n (f (pred n)))) fact

fact = g fact

◮ fact is a fixed point of the function

g = (λf n. if (isZero n)One (mult n (f (pred n))))

Recursion Example: Factorial

fact = λn. if (isZero n) One (mult n (fact (pred n)))

= (λf n. if (isZero n) One (mult n (f (pred n)))) fact

fact = g fact

◮ fact is a fixed point of the function

g = (λf n. if (isZero n)One (mult n (f (pred n))))

◮ Using Y-combinator,

fact = Y g

Factorial: Verify

fact 2 = (Y g) 2

Factorial: Verify

fact 2 = (Y g) 2

= g (Y g) 2 – by definition of Y-combinator

Factorial: Verify

fact 2 = (Y g) 2

= g (Y g) 2 – by definition of Y-combinator

= (λfn. if (isZero n) 1 (mult n (f (pred n)))) (Y g) 2

Factorial: Verify

fact 2 = (Y g) 2

= g (Y g) 2 – by definition of Y-combinator

= (λfn. if (isZero n) 1 (mult n (f (pred n)))) (Y g) 2

= (λn. if (isZero n) 1 (mult n ((Y g) (pred n)))) 2

Factorial: Verify

fact 2 = (Y g) 2

= g (Y g) 2 – by definition of Y-combinator

= (λfn. if (isZero n) 1 (mult n (f (pred n)))) (Y g) 2

= (λn. if (isZero n) 1 (mult n ((Y g) (pred n)))) 2

= if (isZero 2) 1 (mult 2 ((Y g)(pred2)))

Factorial: Verify

fact 2 = (Y g) 2

= g (Y g) 2 – by definition of Y-combinator

= (λfn. if (isZero n) 1 (mult n (f (pred n)))) (Y g) 2

= (λn. if (isZero n) 1 (mult n ((Y g) (pred n)))) 2

= if (isZero 2) 1 (mult 2 ((Y g)(pred2)))

= (mult 2 ((Y g) 1))

Factorial: Verify

fact 2 = (Y g) 2

= g (Y g) 2 – by definition of Y-combinator

= (λfn. if (isZero n) 1 (mult n (f (pred n)))) (Y g) 2

= (λn. if (isZero n) 1 (mult n ((Y g) (pred n)))) 2

= if (isZero 2) 1 (mult 2 ((Y g)(pred2)))

= (mult 2 ((Y g) 1))

. . .

= (mult 2 (mult 1 (if (isZero 0) 1 (. . .))))

Factorial: Verify

fact 2 = (Y g) 2

= g (Y g) 2 – by definition of Y-combinator

= (λfn. if (isZero n) 1 (mult n (f (pred n)))) (Y g) 2

= (λn. if (isZero n) 1 (mult n ((Y g) (pred n)))) 2

= if (isZero 2) 1 (mult 2 ((Y g)(pred2)))

= (mult 2 ((Y g) 1))

. . .

= (mult 2 (mult 1 (if (isZero 0) 1 (. . .))))

= (mult 2 (mult 1 1))

Factorial: Verify

fact 2 = (Y g) 2

= g (Y g) 2 – by definition of Y-combinator

= (λfn. if (isZero n) 1 (mult n (f (pred n)))) (Y g) 2

= (λn. if (isZero n) 1 (mult n ((Y g) (pred n)))) 2

= if (isZero 2) 1 (mult 2 ((Y g)(pred2)))

= (mult 2 ((Y g) 1))

. . .

= (mult 2 (mult 1 (if (isZero 0) 1 (. . .))))

= (mult 2 (mult 1 1))

= 2

Recursion and Y -combinator

◮ Y-combinator allows to unroll the body of loop

once—similar to one unfolding of recursive call

Recursion and Y -combinator

◮ Y-combinator allows to unroll the body of loop

once—similar to one unfolding of recursive call

◮ Sequence of Y -combinator applications allow complete

unfolding of recursive calls

Recursion and Y -combinator

◮ Y-combinator allows to unroll the body of loop

once—similar to one unfolding of recursive call

◮ Sequence of Y -combinator applications allow complete

unfolding of recursive calls

Recursion and Y -combinator

◮ Y-combinator allows to unroll the body of loop

once—similar to one unfolding of recursive call

◮ Sequence of Y -combinator applications allow complete

unfolding of recursive calls

BUT, what about the existence of Y -combinator?

Y -combinators

◮ Many candidates exist

Y1 = λf . (λx . f (x x)) (λx . f (x x))

Y -combinators

◮ Many candidates exist

Y1 = λf . (λx . f (x x)) (λx . f (x x))

Y = λabcdefghijklmnopqstuvwxwzr .r(thisisafixedpointcombinator)

Y -combinators

◮ Many candidates exist

Y1 = λf . (λx . f (x x)) (λx . f (x x))

Y = λabcdefghijklmnopqstuvwxwzr .r(thisisafixedpointcombinator)

Yfunny = TTTTT TTTTT TTTTT TTTTT TTTTT T

Y -combinators

◮ Many candidates exist

Y1 = λf . (λx . f (x x)) (λx . f (x x))

Y = λabcdefghijklmnopqstuvwxwzr .r(thisisafixedpointcombinator)

Yfunny = TTTTT TTTTT TTTTT TTTTT TTTTT T

◮ Verify that (Y f) = f (Y f) for each

Summary

◮ A cursory look at λ-calculus

Summary

◮ A cursory look at λ-calculus

◮ Functions are data, and Data are functions!

Summary

◮ A cursory look at λ-calculus

◮ Functions are data, and Data are functions!

◮ Not covered but important to know: The power of λ

calculus is equivalent to that of Turing Machine (“Church

Turing Thesis”)

