CS738: Advanced Compiler Optimizations

Pointer Analysis

Amey Karkare
karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur

Why Pointer Analysis?

» Static analysis of pointers & references

S1. .
S2. g=p; ;-=:===-_::—_ ——————— -

S3. while(...){ @_5\\ ‘~~q\\\ g7~ ~~

S4. q = g.next; AN . . \

S5. \V \V \ |Y
S6. p.data=r1; :

S7. q.data= q.data+ r2; P P @ next @ next @ e :)
S8. p.data=r1; :

S9. r3=p.data+rz, Stack: Heap

S10. .. Superimposition of memory graphs after while loop

p and g may be aliases statement S6 onwards.
Statement S8 is not redundant.

Why Pointer Analysis?

X = &a;

a=>5; X =15;

\ é Which defs
c=a+1; of a reach
here?

Reaching definitions analysis

Flow Sensitivity in Data Flow Analysis

» Flow Sensitive Analysis

» Order of execution: Determined by the semantics of
language

» Point-specific information computed at each program point
within a procedure

> A statement can “override” information computed by a
previous statement

> Kill component in the flow function

Flow Sensitivity in Data Flow Analysis

» Flow Insensitive Analysis

» Order of execution: Statements are assumed to execute in
any order

> As aresult, all the program points in a procedure receive
identical data flow information.

> “Summary” for the procedure

> Safe approximation of flow-sensitive point-specific
information for any point, for any given execution order

» A statement can not “override” information computed by
another statement

> NOKIill component in the flow function

> If statement s kills some data flow information, there is an
alternate path that excludes s

Examples of Flow Insensitive Analyses

» Type checking, Type inferencing
> Compute/Verify type of a variable/expression
» Address taken analysis
» Which variables have their addresses taken?
> A very simple form of pointer analysis
» Side effects analysis

» Does a procedure modify address / global variable /
reference parameter/...?

Realizing Flow Insensitivity

In practice, dependent constraints are collected in a global
repository in one pass and solved independently

Alias Analysis vs. Points-to Analysis

Points-to Analysis Alias Analysis

X = &a X=a
X points-to a x and a are aliases
X —a X=a
Reflexive? No Yes
Symmetric? No Yes
Transitive? No Must alias: Yes,

May alias: No

Andersen’s Flow Insensitive Points-to Analysis

» Subset based analysis
» Pips 2 Prys

Program

Constraints Points-to Graph

1la=&b

Constraint

P, D {b}
Pc 2 Pa
P2 D {d}
P, D {e}
PbQPa

OO~ WD = H®

Steensgaard’s Flow Insensitive Points-to Analysis

» Equality based analysis: Pjps = Prs

» Only one Points-to successor at any time, merge
(potential) multiple successors

Program Constraints Points-to Graph

1la=8&b

Constraint

P, 2 {b}
MERGE(P,, Pa)
P, 2 {d}

P, 2 {e}
MERGE(Pp, P.)

O WD =

Comparing Anderson’s and Steensgaard’s Analyses

Program

Subset based Equality based
Points-to Graph Points-to Graph

Comparing Anderson’s and Steensgaard’s Analyses

a=&b;

@—®

b = &c;

d = &e; @
O&—0O—©
= &d; @
- SL;bset based

OO,
(a) 2)—(bd)—(ce
D@ @—(bd)—(c2)

Equality based

Pointer Indirection Constraints

| Stmt | Subsetbased | Equality based

|

a="b | P32 P;,Vce P, | MERGE(P4, P¢), Ve € Py

*a=b | P 2 Pp,Vc € Py | MERGE(Py, P¢), Ve € Pg

Must Points-to Analysis

AN
N

» x definitely points-to a at various points in the program
> x> a

May Points-to Analysis

2l x = &b; 3
4

» At OUT of 2, x definitely points-to b

» At OUT of 3, x definitely points-to a

» At IN of 4, x possibly points-to a (or b)
> x5 {a b}

Must Alias Analysis

» x and a always refer to same memory location
> x=a

» X,y and a refer to same location at OUT of 4.
> xZy=a

May Alias Analysis

» At OUT of 2, x and b are must aliases

» At OUT of 3, x and a are must aliases
» At IN of 4, x can possibly be aliased with either a (or b)
> (x,a),(x,b)

> If we say: (x, a,b), Isit Precise? Safe?

Must Pointer Analysis

Makes sense only for Flow Sensitive analysis
Why?

Must analysis = Flow sensitive analysis
Flow insensitive analysis = May analysis
Why?

vVvYyyVvyy

Updating Information: When Can We Kill?

1-x = &ag;
» Never if flow insensitive analysis *

» For flow sensitive o ¥=2&b;
w = &c;
s
5 xZz = NULL;
sw = NULL;
> x, y may or may not get modified in 5: Weak update
» c definitely gets modified in 5: Strong update
» Must information is killed by Strong and Weak updates
» May information is killed only by Strong updates

Flow Functions for Points-to Analysis

» Basic statements for pointer manipulation
> X = y
> x=4&y
> X = *y
> *x = y
» Other statements can be rewritten in terms of above
> *x="y=>t="y, *x=t
> x = NULL = treat NULL as a special variable
» OUT = IN — kill U gen
> with a twist!

Flow Function: x =y Flow Function: x = &y
MaYQen = {x—=ply—peMayy} MaYQen = {x—vy}
Mayy = U {x = p} Mayy = U {x — p}
pe Vars pe Vars
Mustgen = {Xx —p|y — p € Mustpy} Mustgen = {x — y}
Mustey = | J {x—p} Mustiy = | J {x—p}
pe Vars pe Vars
Flow Function: x ="y Flow Function: *x =y
May,, = {x—=ply—p €Mayyandp — pecMayy} Mayge, = {p—p | x—peMayy,y—p €Mayy}
May,; = U {x — p} May,;, = U {p—p | x— peMusty} Strong update!!
pe Vars p’'€Vars
Mustgen = {Xx = p|y — p € Mustyand p’ — p € Musty} Mustgen = {p—p' | x — p € Musty,y — p’ € Must)y}
Mustiy = | J {x—p} Mustiy = | J {p— P | x— peMayy} Weak update!!
pe Vars p'€ Vars

Summarizing Flow Functions

» May Points-To analysis
> A points-to pair should be removed only if it must be
removed along all paths
» = should remove only strong updates
» = should kill using Must Points-To information

» Must Points-To analysis

> A points-to pair should be removed if it can be removed
along some path

» = should remove all weak updates

» = should kill using May Points-To information

» Must Points-To C May Points-To

Safe Approximations for May and Must Points-to

» A pointer variable

| | May | Must |
Points-to || points to every possible | points to nothing
location
Alias aliased to every other | only to itself
pointer variable

Non-Distributivity of Points-to Analysis

May Information Must Information

1 [x=a]

b=&c b=&e
2| x = &z| QY =&w| |2 ey 3 e—&d

77 {a=tb

Z — W is spurious a — d is missing

