CS738: Advanced Compiler Optimizations

Interprocedural Data Flow Analysis

Amey Karkare
karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur



karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738

Interprocedural Analysis: WHY?

main

n

read a, b
r=axb

cq| call p

m

t=axb
print ¢

€4

EXIT

Is a = b available at IN of ny?

p

rp

if (@a==0)

by

co| call p

no

t=axb

€

return




Challenges

> Infeasible paths



Challenges

> Infeasible paths
» Recursion



Challenges

> Infeasible paths
» Recursion
» Function pointers and virtual functions



Challenges

> Infeasible paths

» Recursion

» Function pointers and virtual functions
» Dynamic functions (functional programs)



Infeasible Paths

How to avoid data flowing along invalid paths?
rH — C4 —>I’2—>b2—)02—)f2—)82—>n1

main

read a, b

,
N"r=axb

cq| call p -

M| orint t

t=axb

e| EXIT

Mo\ e return

P

-7~
e LY

£ if (a==0)

| F

Wbl a=a—1

\
&2l call p

~nol t=axb




Recursion

How to handle Infinite paths?
o>l —>C— I —C — ...

main

read a, b

,
"r=axb

cq| call p -

m

print ¢

t=axb

o] EXIT

&2l call p

t=axb

return




Function Variables

» Target of a function can not be determined statically



Function Variables

» Target of a function can not be determined statically
» Function Pointers (including virtual functions)
double (*xfun) (double argqg);

if (cond)
fun

sqgrt;
else
fun = fabs;

fun(x);



Function Variables

» Target of a function can not be determined statically
» Function Pointers (including virtual functions)
double (*xfun) (double argqg);

if (cond)

fun = sqrt;
else

fun = fabs;
fun(x);

» Dynamically created functions (in functional languages)



Function Variables

» Target of a function can not be determined statically
» Function Pointers (including virtual functions)
double (*xfun) (double argqg);

if (cond)

fun = sqrt;
else

fun = fabs;
fun(x);

» Dynamically created functions (in functional languages)
» No static control flow graph!



Two Approaches

» Functional approach



Two Approaches

» Functional approach
> procedures as structured blocks



Two Approaches

» Functional approach

» procedures as structured blocks
> input-output relation (functions) for each block



Two Approaches

» Functional approach

» procedures as structured blocks
> input-output relation (functions) for each block

» function used at call site to compute the effect of procedure
on program state



Two Approaches

» Functional approach
» procedures as structured blocks
> input-output relation (functions) for each block
» function used at call site to compute the effect of procedure
on program state

» Call-strings approach



Two Approaches

» Functional approach
» procedures as structured blocks
» input-output relation (functions) for each block
» function used at call site to compute the effect of procedure
on program state
» Call-strings approach
> single flow graph for whole program



Two Approaches

» Functional approach
» procedures as structured blocks
> input-output relation (functions) for each block
» function used at call site to compute the effect of procedure
on program state
» Call-strings approach
> single flow graph for whole program
» value of interest tagged with the history of unfinished
procedure calls



Two Approaches

» Functional approach
» procedures as structured blocks
> input-output relation (functions) for each block
» function used at call site to compute the effect of procedure
on program state
» Call-strings approach
> single flow graph for whole program
» value of interest tagged with the history of unfinished
procedure calls



Two Approaches

» Functional approach
» procedures as structured blocks
> input-output relation (functions) for each block
» function used at call site to compute the effect of procedure
on program state
» Call-strings approach
> single flow graph for whole program
» value of interest tagged with the history of unfinished
procedure calls

M. Sharir, and A. Pnueli. Two Approaches to Inter-Procedural Data-Flow Analysis.
In Jones and Muchnik, editors, Program Flow Analysis: Theory and Applications.
Prentice-Hall, 1981.



Notations and Terminology




Control Flow Graph

main

read a, b

r-
! r=axb

cy| call p

t=axb
mn

print t

e| EXIT

One per procedure

ra

if (a==0)

bz

¢yl call p

n

t=axb

€2

return




Control Flow Graph for Procedure p

» Single instruction basic blocks



Control Flow Graph for Procedure p

» Single instruction basic blocks
» Unique exit block, denoted e,



Control Flow Graph for Procedure p

» Single instruction basic blocks
» Unique exit block, denoted e,
» Unique entry block, denoted r, (root block)



Control Flow Graph for Procedure p

» Single instruction basic blocks
» Unique exit block, denoted e,
» Unique entry block, denoted r, (root block)

» Edge (m, n) if direct control transfer from (the end of) block
m to (the start of) block n



Control Flow Graph for Procedure p

Single instruction basic blocks
Unique exit block, denoted e,
Unique entry block, denoted r, (root block)

Edge (m, n) if direct control transfer from (the end of) block
m to (the start of) block n
» Path: (nq,no,...,nk)

vvyyypy



Control Flow Graph for Procedure p

Single instruction basic blocks
Unique exit block, denoted e,
Unique entry block, denoted r, (root block)

Edge (m, n) if direct control transfer from (the end of) block
m to (the start of) block n

» Path: (nq,no,...,nk)

» (nj,ni11) € Edge setfor1 <i<k

vvyyypy



Control Flow Graph for Procedure p

Single instruction basic blocks

Unique exit block, denoted e,

Unique entry block, denoted r, (root block)

Edge (m, n) if direct control transfer from (the end of) block

m to (the start of) block n

» Path: (nq,no,...,nk)

» (nj,ni11) € Edge setfor1 <i<k

> paths(m, n): Set of all path in graph G = (N, E) leading
frommton

vvyyypy



Assumptions

» Parameterless procedures, to ignore the problems of



Assumptions

» Parameterless procedures, to ignore the problems of
> aliasing



Assumptions

» Parameterless procedures, to ignore the problems of
> aliasing
» recursion stack for formal parameters



Assumptions

» Parameterless procedures, to ignore the problems of
> aliasing
» recursion stack for formal parameters

» No procedure variables (pointers, virtual functions etc.)



Data Flow Framework

» (L, F): data flow framework



Data Flow Framework

» (L, F): data flow framework
> L: a meet-semilattice



Data Flow Framework

» (L, F): data flow framework
» L: a meet-semilattice
» Largest element Q



Data Flow Framework

» (L, F): data flow framework
» L: a meet-semilattice
» Largest element Q
» F: space of propagation functions



Data Flow Framework

» (L, F): data flow framework
» L: a meet-semilattice
» Largest element Q
» F: space of propagation functions
» Closed under composition and meet



Data Flow Framework

» (L, F): data flow framework
» L: a meet-semilattice
» Largest element Q
» F: space of propagation functions

» Closed under composition and meet
> Contains idi(x) = x and fo(x) = Q



Data Flow Framework

» (L, F): data flow framework
» L: a meet-semilattice
» Largest element Q
» F: space of propagation functions
» Closed under composition and meet
> Contains id (x) = x and fo(x) = Q
> fimny € F represents propagation function for edge (m, n)
of control flow graph G = (N, E)



Data Flow Framework

» (L, F): data flow framework
» L: a meet-semilattice
» Largest element Q
» F: space of propagation functions
» Closed under composition and meet
> Contains id (x) = x and fo(x) = Q
> fimny € F represents propagation function for edge (m, n)
of control flow graph G = (N, E)
» Change of DF values from the start of m, through m, to the
startof n



Data Flow Equations

Xr = Boundarylnfo
X, = /\ fimmy(Xm) neN-—r
(m,n)eE

» MFP solution, approximation of MOP

/\ {fo(Boundaryinfo) : p € pathg(r,n)}

neN



Functional Approach
to
Interprocedural Analysis




Functional Approach

» Procedures treated as structures of blocks



Functional Approach

» Procedures treated as structures of blocks

» Computes relationship between DF value at entry node
and related data at any internal node of procedure



Functional Approach

» Procedures treated as structures of blocks

» Computes relationship between DF value at entry node
and related data at any internal node of procedure

> At call site, DF value propagated directly using the
computed relation



Interprocedural Flow Graph

First Representation:

G = | J{Gy:pisaprocedure in program}
Gp = (Np,Ep,1p)

N, = setof all basic block of p
r, = root block of p
E, = setofedgesofp
= EjUE]
(m,n) e ES < direct control transfer from mto n
(m,n) € Ej < mis acall block, and nimmediately follows m



Interprocedural Flow Graph: 15! Representation

main p
" read a, b | if (a==0)
r=axb ES a
EO
main by a=a—1
cq| call p ES
1
Emai”l - co| call p
t=ax
3
M| orint t Ep
n|t=axb
Er?]ain 2 0
e EXIT Ep

eo| return




Interprocedural Flow Graph

Second representation

G*
n
N*

E*
EO

(m,n) c E

(N*a E*a r1)
root block of main

UNo

p

E°U E

UE

P

(m, n) is either a call edge
or a return edge



Interprocedural Flow Graph

» Call edge (m, n):



Interprocedural Flow Graph

» Call edge (m, n):
» mis a call block, say calling p



Interprocedural Flow Graph

» Call edge (m, n):
» mis a call block, say calling p
» nis root block of p



Interprocedural Flow Graph

» Call edge (m, n):
» mis a call block, say calling p
» nis root block of p

» Return edge (m, n):



Interprocedural Flow Graph

» Call edge (m, n):
» mis a call block, say calling p
» nis root block of p

» Return edge (m, n):
» mis an exit block of p



Interprocedural Flow Graph

» Call edge (m, n):
» mis a call block, say calling p
» nis root block of p
» Return edge (m, n):
» mis an exit block of p
» nis a block immediately following a call to p



Interprocedural Flow Graph

» Call edge (m, n):
» mis a call block, say calling p
» nis root block of p

» Return edge (m, n):
» mis an exit block of p
» nis a block immediately following a call to p

» Call edge (m, rp) corresponds to return edge (eq, n)



Interprocedural Flow Graph

» Call edge (m, n):
» mis a call block, say calling p
» nis root block of p

» Return edge (m, n):
» mis an exit block of p
» nis a block immediately following a call to p

» Call edge (m, rp) corresponds to return edge (eq, n)
» if p=gand



Interprocedural Flow Graph

» Call edge (m, n):
» mis a call block, say calling p
» nis root block of p
» Return edge (m, n):
» mis an exit block of p
» nis a block immediately following a call to p
» Call edge (m, rp) corresponds to return edge (eq, n)
» if p=gand
> (m,n) € E} for some procedure s



Interprocedural Flow Graph: 277 Representation

main p
, read a, b E' | if (a==0)
r=axb
EOF
0
E b|la=a—1
cq| call p £ £0
EOT
co| call p
n t=axb
1 print t
eq| EXIT E°

ETE'

eo| return




Interprocedurally Valid Paths

» G* ignores the special nature of call and return edges



Interprocedurally Valid Paths

» G* ignores the special nature of call and return edges
» Not all paths in G* are feasible



Interprocedurally Valid Paths

» G* ignores the special nature of call and return edges
» Not all paths in G* are feasible
» do not represent potentially valid execution paths



Interprocedurally Valid Paths

» G* ignores the special nature of call and return edges
» Not all paths in G* are feasible
» do not represent potentially valid execution paths
» IVP(ry, n): set of all interprocedurally valid paths from rq to
n



Interprocedurally Valid Paths

» G* ignores the special nature of call and return edges
» Not all paths in G* are feasible
» do not represent potentially valid execution paths
» IVP(ry, n): set of all interprocedurally valid paths from rq to
n
» Path g € pathg.(r1,n) is in IVP(ry, n)



Interprocedurally Valid Paths

» G* ignores the special nature of call and return edges
» Not all paths in G* are feasible
» do not represent potentially valid execution paths
» IVP(ry, n): set of all interprocedurally valid paths from rq to
n
» Path g € pathg.(r1,n) is in IVP(ry, n)
» iff sequence of all E' edges in g (denoted gy )is proper



Proper sequence

» g without any return edge is proper



Proper sequence

» g without any return edge is proper
> let g4 [i] be the first return edge in qy. g1 is proper if



Proper sequence

» g without any return edge is proper
> let g4 [i] be the first return edge in qy. g1 is proper if
> j>1;and



Proper sequence

» g without any return edge is proper

> let g4 [i] be the first return edge in qy. g1 is proper if
> j>1;and
> qi[i — 1] is call edge corresponding to g;[i]; and



Proper sequence

» g without any return edge is proper
> let g4 [i] be the first return edge in qy. g1 is proper if
> j>1;and
> qi[i — 1] is call edge corresponding to g;[i]; and
> q; obtained from deleting g;[i — 1] and g1[i] from gy is
proper



Interprocedurally Valid Complete Paths

» IVPy(rp, n) for procedure p and node n € N,



Interprocedurally Valid Complete Paths

» IVPy(rp, n) for procedure p and node n € N,

» set of all interprocedurally valid paths g in G* from r, to n
s.t.



Interprocedurally Valid Complete Paths

» IVPy(rp, n) for procedure p and node n € N,

» set of all interprocedurally valid paths g in G* from r, to n
s.t.
» Each call edge has corresponding return edge in q
restricted to E'



IVPs

main p

7

p -
read a, b - f2
r=axb e

cfcallp |-~ \
\
\

n t=axb <

" print t BN

N
: S =)
\ I
\
ei| EXIT N
\
N. \ eg return
NSO Mo




IVPs

main p

read a, b PR Lol
r=axb e

|
\\\CQ T

n t=axb|
" print t T~

N !
N
~ |
e| EXIT AN \
Y \ & return
~ \—‘

~ -

nH—C —rn—C —I—€ — N — 62— 1N — €4



IVPs

main P
.|reada b /// £
r=axb e !

e 1
1 -7 by a=a—1
gl -~ bja=a-1|
ci| call p \
! T
\\CQ
n t=axb
" print t T~

N 1
N
N \
eq| EXIT o \\
Sl \ & return
~ N

~ -

nN—0C —rh—>C—rh—>6 —Mh— e —n — e clVP(r,e)



IVPs

main p

read a, b A
r=axb .

cilcallp |-~ \
\
\
co| call p
\

n t=axb \F

. e —
| print ¢ >~

~N
: N e
N [
N \
eq| EXIT AN \
\ \
AN \ &o| return
N o N

rf—Cy—r—Co—rl— € — Ny — €




IVPs

main p

read a, b A
r=axb .

cilcallp |-~ \
\
\
co| call p
\

n t=axb \F

. e —
| print ¢ >~

N
l N ~Mo| t = axb
AN [
\\ \
eq| EXIT AN \
\
Mo \ & return
N o N

n—0C —rh—0C—rh—e—n—e &IVP(r,e)




IVPs

main

read a, b
r=axb

//
cyf callp |-

m

t=axb
print t

|
o [E57)

€ —

~

~

\
\
\
& call p
N
N
AN
\ \
\ \

N \
SO\ 6o return
NSO Mo

fp—C— Tl — 6 — My



IVPs

main p
. read a, b - f2
r=axb e ]
s |
// |
e 1ba
Cyfcallp -~ ‘\
\
\
\
n t=axb ~
. e <
" print t ~o

1 |
ei| EXIT N
\
N\ e return
NSO Mo

N -

ro — Co — o — € — o € IVPy(r2, o)



IVPs

main p

7
read a, b 7t
r=axb .

Cyfcallp -~ |
\
\
\

n t=axb ~

" print t T~

N
1 N =]
N
\
ei| EXIT \
\
SO\ e return
N N

I — Co — I — Co — € — N>




IVPs

main p

7
read a, b 7t
r=axb .

Cyfcallp -~ |
\
\
\

n t=axb ~

" print t T~

N
1 N =]
N
\
ei| EXIT \
\
SO\ e return
N N

fo — Co — o — Co — €2 — No & IVPy(r2, o)




Path Decomposition

g € IVP(rmain, n)
&
g = aqill(er,m)llal-I(g-1,m)lq
where for each i < j, g; € IVPo(rp;, ¢i) and g; € IVPo(rp;, n)



