
CS738: Advanced Compiler Optimizations

SSAPRE: SSA based Partial
Redundancy Elimination

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738

Department of CSE, IIT Kanpur

karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738


PRE without SSA

◮ Based on well known DF analyses



PRE without SSA

◮ Based on well known DF analyses
◮ Availability



PRE without SSA

◮ Based on well known DF analyses
◮ Availability
◮ Anticipability



PRE without SSA

◮ Based on well known DF analyses
◮ Availability
◮ Anticipability
◮ Partial Availability



PRE without SSA

◮ Based on well known DF analyses
◮ Availability
◮ Anticipability
◮ Partial Availability
◮ Partial Anticipability



PRE without SSA

◮ Based on well known DF analyses
◮ Availability
◮ Anticipability
◮ Partial Availability
◮ Partial Anticipability

◮ Identifies partially redundant computations, make them

totally redundant by inserting new computations



PRE without SSA

◮ Based on well known DF analyses
◮ Availability
◮ Anticipability
◮ Partial Availability
◮ Partial Anticipability

◮ Identifies partially redundant computations, make them

totally redundant by inserting new computations

◮ Remove totally redundant computations (CSE)



PRE without SSA

◮ Iterative data flow analysis



PRE without SSA

◮ Iterative data flow analysis

◮ Operates on control flow graph



PRE without SSA

◮ Iterative data flow analysis

◮ Operates on control flow graph

◮ Computes global and local versions of data flow

information



SSAPRE

◮ Information flow along SSA edges



SSAPRE

◮ Information flow along SSA edges

◮ No distinction between global and local information



SSAPRE: Challenge

◮ SSA form defined for variables



SSAPRE: Challenge

◮ SSA form defined for variables

◮ How to identify potentially redundant expressions



SSAPRE: Challenge

◮ SSA form defined for variables

◮ How to identify potentially redundant expressions
◮ Expressions having different variable versions as operands



SSAPRE: Challenge

◮ SSA form defined for variables

◮ How to identify potentially redundant expressions
◮ Expressions having different variable versions as operands

a1 + b1 a2 = · · ·

a3 = φ(a1,a2)

a3 + b1

◮ Here a1 + b1 is same as a3 + b1 when control follows the

left branch. Lexically different, but computationally identical



SSAPRE: Key Idea

◮ Redundancy Class Variables (RCVs)



SSAPRE: Key Idea

◮ Redundancy Class Variables (RCVs)
◮ variable (say h) to represent computation of an expression

(say E)



SSAPRE: Key Idea

◮ Redundancy Class Variables (RCVs)
◮ variable (say h) to represent computation of an expression

(say E)

◮ Computation of expression could represent either a def or
a use



SSAPRE: Key Idea

◮ Redundancy Class Variables (RCVs)
◮ variable (say h) to represent computation of an expression

(say E)

◮ Computation of expression could represent either a def or
a use
◮ definition of E ⇒ store into h



SSAPRE: Key Idea

◮ Redundancy Class Variables (RCVs)
◮ variable (say h) to represent computation of an expression

(say E)

◮ Computation of expression could represent either a def or
a use
◮ definition of E ⇒ store into h
◮ use of E ⇒ load from h



SSAPRE: Key Idea

◮ Redundancy Class Variables (RCVs)
◮ variable (say h) to represent computation of an expression

(say E)

◮ Computation of expression could represent either a def or
a use
◮ definition of E ⇒ store into h
◮ use of E ⇒ load from h

◮ PRE on SSA form of RCVs (h) to remove redundancies



SSAPRE: Key Idea

◮ Redundancy Class Variables (RCVs)
◮ variable (say h) to represent computation of an expression

(say E)

◮ Computation of expression could represent either a def or
a use
◮ definition of E ⇒ store into h
◮ use of E ⇒ load from h

◮ PRE on SSA form of RCVs (h) to remove redundancies

◮ Final program will be in SSA form



SSAPRE: Preparations

◮ Split all the critical edges in the flow graph



SSAPRE: Preparations

◮ Split all the critical edges in the flow graph
◮ Edge from a node with more than one successor to a node

with more than one predecessor



SSAPRE: Preparations

◮ Split all the critical edges in the flow graph
◮ Edge from a node with more than one successor to a node

with more than one predecessor
◮ WHY is this important?



SSAPRE: Preparations

◮ Split all the critical edges in the flow graph
◮ Edge from a node with more than one successor to a node

with more than one predecessor
◮ WHY is this important?

◮ Single pass to identify identical expressions



SSAPRE: Preparations

◮ Split all the critical edges in the flow graph
◮ Edge from a node with more than one successor to a node

with more than one predecessor
◮ WHY is this important?

◮ Single pass to identify identical expressions
◮ Ignoring the version number of the operands



SSAPRE: Preparations

◮ Split all the critical edges in the flow graph
◮ Edge from a node with more than one successor to a node

with more than one predecessor
◮ WHY is this important?

◮ Single pass to identify identical expressions
◮ Ignoring the version number of the operands
◮ In the earlier example, a3 +b1 and a1 +b1 could be identical



SSAPRE Steps

◮ Six step algorithm



SSAPRE Steps

◮ Six step algorithm

1. Φ-insertion



SSAPRE Steps

◮ Six step algorithm

1. Φ-insertion

2. Renaming



SSAPRE Steps

◮ Six step algorithm

1. Φ-insertion

2. Renaming

3. Down-safety computation



SSAPRE Steps

◮ Six step algorithm

1. Φ-insertion

2. Renaming

3. Down-safety computation

4. WillBeAvail computation



SSAPRE Steps

◮ Six step algorithm

1. Φ-insertion

2. Renaming

3. Down-safety computation

4. WillBeAvail computation

5. Finalization



SSAPRE Steps

◮ Six step algorithm

1. Φ-insertion

2. Renaming

3. Down-safety computation

4. WillBeAvail computation

5. Finalization

6. Code Motion



Running Example

a1 = · · ·

a2 = φ(a4, a1)

a2 + b1

a3=· · ·

a4=φ(a2, a3)
a4 + b1

EXIT



Φ-insertion

◮ Φ for an expression E is required where two potentially

different values of an expression merge



Φ-insertion

◮ Φ for an expression E is required where two potentially

different values of an expression merge

◮ At iterated dominance frontiers of occurrences of E



Φ-insertion

◮ Φ for an expression E is required where two potentially

different values of an expression merge

◮ At iterated dominance frontiers of occurrences of E

◮ At each block having a φ for some argument of E



Φ-insertion

◮ Φ for an expression E is required where two potentially

different values of an expression merge

◮ At iterated dominance frontiers of occurrences of E

◮ At each block having a φ for some argument of E
◮ Potential change in the expression’s value



Φ-insertion

a1 = · · ·

Φ(· · · )
a2=φ(a4, a1)

a2 + b1

a3=· · ·

Φ(· · · )
a4=φ(a2, a3)

a4 + b1

EXIT



Rename

◮ Similar to SSA variable renaming



Rename

◮ Similar to SSA variable renaming

◮ Stack of every expression is maintained



Rename

◮ Similar to SSA variable renaming

◮ Stack of every expression is maintained

◮ Three kinds of occurrences of E



Rename

◮ Similar to SSA variable renaming

◮ Stack of every expression is maintained

◮ Three kinds of occurrences of E
◮ Real occurrences (present in original program)



Rename

◮ Similar to SSA variable renaming

◮ Stack of every expression is maintained

◮ Three kinds of occurrences of E
◮ Real occurrences (present in original program)
◮ Results of Φ operators inserted



Rename

◮ Similar to SSA variable renaming

◮ Stack of every expression is maintained

◮ Three kinds of occurrences of E
◮ Real occurrences (present in original program)
◮ Results of Φ operators inserted
◮ Operands of inserted Φ



Rename

◮ Similar to SSA variable renaming

◮ Stack of every expression is maintained

◮ Three kinds of occurrences of E
◮ Real occurrences (present in original program)
◮ Results of Φ operators inserted
◮ Operands of inserted Φ

◮ After renaming



Rename

◮ Similar to SSA variable renaming

◮ Stack of every expression is maintained

◮ Three kinds of occurrences of E
◮ Real occurrences (present in original program)
◮ Results of Φ operators inserted
◮ Operands of inserted Φ

◮ After renaming
◮ Identical SSA instances of h represent identical values of E



Rename

◮ Similar to SSA variable renaming

◮ Stack of every expression is maintained

◮ Three kinds of occurrences of E
◮ Real occurrences (present in original program)
◮ Results of Φ operators inserted
◮ Operands of inserted Φ

◮ After renaming
◮ Identical SSA instances of h represent identical values of E
◮ A control flow path with two different instances of h has to

cross either an assignment to an operand of E or a Φ of h



Rename Algorithm

◮ Runs with variable renaming



Rename Algorithm

◮ Runs with variable renaming

◮ When an E is encountered



Rename Algorithm

◮ Runs with variable renaming

◮ When an E is encountered
◮ if E is result of Φ, assign a new version to h and push it on

E stack



Rename Algorithm

◮ Runs with variable renaming

◮ When an E is encountered
◮ if E is result of Φ, assign a new version to h and push it on

E stack
◮ if E is the real occurrence



Rename Algorithm

◮ Runs with variable renaming

◮ When an E is encountered
◮ if E is result of Φ, assign a new version to h and push it on

E stack
◮ if E is the real occurrence

◮ for each operand, compare the version of operand with the

top of the rename stack for operand



Rename Algorithm

◮ Runs with variable renaming

◮ When an E is encountered
◮ if E is result of Φ, assign a new version to h and push it on

E stack
◮ if E is the real occurrence

◮ for each operand, compare the version of operand with the

top of the rename stack for operand
◮ If all match, h gets same version as the top of E stack



Rename Algorithm

◮ Runs with variable renaming

◮ When an E is encountered
◮ if E is result of Φ, assign a new version to h and push it on

E stack
◮ if E is the real occurrence

◮ for each operand, compare the version of operand with the

top of the rename stack for operand
◮ If all match, h gets same version as the top of E stack
◮ If any mismatch, assign a new version to h and push it on E

stack



Rename Algorithm

◮ Runs with variable renaming

◮ When an E is encountered
◮ if E is result of Φ, assign a new version to h and push it on

E stack
◮ if E is the real occurrence

◮ for each operand, compare the version of operand with the

top of the rename stack for operand
◮ If all match, h gets same version as the top of E stack
◮ If any mismatch, assign a new version to h and push it on E

stack

◮ if E is operand of Φ, in the corresponding predecessor
block



Rename Algorithm

◮ Runs with variable renaming

◮ When an E is encountered
◮ if E is result of Φ, assign a new version to h and push it on

E stack
◮ if E is the real occurrence

◮ for each operand, compare the version of operand with the

top of the rename stack for operand
◮ If all match, h gets same version as the top of E stack
◮ If any mismatch, assign a new version to h and push it on E

stack

◮ if E is operand of Φ, in the corresponding predecessor
block

◮ for each operand of E , compare the version of operand with

the top of the rename stack for operand



Rename Algorithm

◮ Runs with variable renaming

◮ When an E is encountered
◮ if E is result of Φ, assign a new version to h and push it on

E stack
◮ if E is the real occurrence

◮ for each operand, compare the version of operand with the

top of the rename stack for operand
◮ If all match, h gets same version as the top of E stack
◮ If any mismatch, assign a new version to h and push it on E

stack

◮ if E is operand of Φ, in the corresponding predecessor
block

◮ for each operand of E , compare the version of operand with

the top of the rename stack for operand
◮ If all match, h gets same version as the top of E stack



Rename Algorithm

◮ Runs with variable renaming

◮ When an E is encountered
◮ if E is result of Φ, assign a new version to h and push it on

E stack
◮ if E is the real occurrence

◮ for each operand, compare the version of operand with the

top of the rename stack for operand
◮ If all match, h gets same version as the top of E stack
◮ If any mismatch, assign a new version to h and push it on E

stack

◮ if E is operand of Φ, in the corresponding predecessor
block

◮ for each operand of E , compare the version of operand with

the top of the rename stack for operand
◮ If all match, h gets same version as the top of E stack
◮ If any mismatch, replace E by ⊥ in the operand push it on E

stack (WHY?)



Rename

a1 = · · ·

h1=Φ(h2,⊥)
a2=φ(a4, a1)

a2 + b1 : [h1]
a3=· · ·

h2=Φ(h1,⊥)
a4=φ(a2, a3)

a4 + b1 : [h2]

EXIT



Down-safety

◮ Down-safety is same as very-busy (anticipability) property
of expressions



Down-safety

◮ Down-safety is same as very-busy (anticipability) property
of expressions
◮ Do not want to introduce new computation of E



Down-safety

◮ Down-safety is same as very-busy (anticipability) property
of expressions
◮ Do not want to introduce new computation of E

◮ We only need to compute down-safety for inserted

Φ-operators



Down-safety

◮ Down-safety is same as very-busy (anticipability) property
of expressions
◮ Do not want to introduce new computation of E

◮ We only need to compute down-safety for inserted

Φ-operators

◮ A Φ computation is NOT down-safe if



Down-safety

◮ Down-safety is same as very-busy (anticipability) property
of expressions
◮ Do not want to introduce new computation of E

◮ We only need to compute down-safety for inserted

Φ-operators

◮ A Φ computation is NOT down-safe if

◮ there is a path to EXIT from Φ along which the result of Φ
is



Down-safety

◮ Down-safety is same as very-busy (anticipability) property
of expressions
◮ Do not want to introduce new computation of E

◮ We only need to compute down-safety for inserted

Φ-operators

◮ A Φ computation is NOT down-safe if

◮ there is a path to EXIT from Φ along which the result of Φ
is
◮ either not used



Down-safety

◮ Down-safety is same as very-busy (anticipability) property
of expressions
◮ Do not want to introduce new computation of E

◮ We only need to compute down-safety for inserted

Φ-operators

◮ A Φ computation is NOT down-safe if

◮ there is a path to EXIT from Φ along which the result of Φ
is
◮ either not used
◮ used only as an operand of another Φ that itself is NOT

down-safe



Down-safety

◮ Down-safety is same as very-busy (anticipability) property
of expressions
◮ Do not want to introduce new computation of E

◮ We only need to compute down-safety for inserted

Φ-operators

◮ A Φ computation is NOT down-safe if

◮ there is a path to EXIT from Φ along which the result of Φ
is
◮ either not used
◮ used only as an operand of another Φ that itself is NOT

down-safe

◮ HasRealUse: Real occurrence of an expression



Down-safety (ds = · · · )

a1 = · · ·

h1=Φ(h2,⊥) : [ds = 1]
a2=φ(a4, a1)

a2 + b1 : [h1]
a3=· · ·

h2=Φ(h1,⊥) : [ds = 1]
a4=φ(a2, a3)

a4 + b1 : [h2]

EXIT



WillBeAvail

◮ The set of Φs where the expression must be available in

any computationally optimal placement



WillBeAvail

◮ The set of Φs where the expression must be available in

any computationally optimal placement

◮ Computation of two forward properties:



WillBeAvail

◮ The set of Φs where the expression must be available in

any computationally optimal placement

◮ Computation of two forward properties:
◮ CanBeAvail : Φs for which E is either available or

anticipable or both



WillBeAvail

◮ The set of Φs where the expression must be available in

any computationally optimal placement

◮ Computation of two forward properties:
◮ CanBeAvail : Φs for which E is either available or

anticipable or both
◮ Later : Φs beyond which insertion can not be postponed

without introducing new redundancy

WillBeAvail = CanBeAvail ∧ ¬Later



CanBeAvail

◮ Initialized to true for all Φs



CanBeAvail

◮ Initialized to true for all Φs

◮ Boundary Φs:



CanBeAvail

◮ Initialized to true for all Φs

◮ Boundary Φs:
◮ Not Down-safe, and



CanBeAvail

◮ Initialized to true for all Φs

◮ Boundary Φs:
◮ Not Down-safe, and
◮ At least one argument is ⊥



CanBeAvail

◮ Initialized to true for all Φs

◮ Boundary Φs:
◮ Not Down-safe, and
◮ At least one argument is ⊥

◮ Set false for boundary Φs



CanBeAvail

◮ Initialized to true for all Φs

◮ Boundary Φs:
◮ Not Down-safe, and
◮ At least one argument is ⊥

◮ Set false for boundary Φs

◮ Propagate false value along the chain of def-use to other
Φs



CanBeAvail

◮ Initialized to true for all Φs

◮ Boundary Φs:
◮ Not Down-safe, and
◮ At least one argument is ⊥

◮ Set false for boundary Φs

◮ Propagate false value along the chain of def-use to other
Φs
◮ exclude edges along which HasRealUse is true



Later

◮ Determines latest (final) insertion points



Later

◮ Determines latest (final) insertion points

◮ Initialize Later to true wherever CanBeAvail is true,

otherwise false



Later

◮ Determines latest (final) insertion points

◮ Initialize Later to true wherever CanBeAvail is true,

otherwise false

◮ Assign false for Φs with at least one operand with

HasRealUse flag true



Later

◮ Determines latest (final) insertion points

◮ Initialize Later to true wherever CanBeAvail is true,

otherwise false

◮ Assign false for Φs with at least one operand with

HasRealUse flag true

◮ Propagate false value forward to other Φs



Later

◮ Determines latest (final) insertion points

◮ Initialize Later to true wherever CanBeAvail is true,

otherwise false

◮ Assign false for Φs with at least one operand with

HasRealUse flag true

◮ Propagate false value forward to other Φs

◮ Later ⇒ Φs that are CanBeAvail, but do not reach any real

occurrence of E



Insertion Points

◮ Insertions are done for Φ operands



Insertion Points

◮ Insertions are done for Φ operands

◮ Along the corresponding predecessor edges



Insertion Points

◮ Insertions are done for Φ operands

◮ Along the corresponding predecessor edges

◮ Insertion done along i th predecessor of Φ if Insert is true,
i.e.



Insertion Points

◮ Insertions are done for Φ operands

◮ Along the corresponding predecessor edges

◮ Insertion done along i th predecessor of Φ if Insert is true,
i.e.
◮ WillBeAvail(Φ) == true; AND



Insertion Points

◮ Insertions are done for Φ operands

◮ Along the corresponding predecessor edges

◮ Insertion done along i th predecessor of Φ if Insert is true,
i.e.
◮ WillBeAvail(Φ) == true; AND
◮ Argi is ⊥; OR



Insertion Points

◮ Insertions are done for Φ operands

◮ Along the corresponding predecessor edges

◮ Insertion done along i th predecessor of Φ if Insert is true,
i.e.
◮ WillBeAvail(Φ) == true; AND
◮ Argi is ⊥; OR

◮ (HasRealUse(Argi ) == false), AND



Insertion Points

◮ Insertions are done for Φ operands

◮ Along the corresponding predecessor edges

◮ Insertion done along i th predecessor of Φ if Insert is true,
i.e.
◮ WillBeAvail(Φ) == true; AND
◮ Argi is ⊥; OR

◮ (HasRealUse(Argi ) == false), AND
◮ Argi is defined by Φ

′ with WillBeAvail(Φ′) == false



Finalize

◮ Transforms the program with RCVs into a valid SSA form



Finalize

◮ Transforms the program with RCVs into a valid SSA form

◮ For every real occurrence of E , decide whether it is a def

or a use



Finalize

◮ Transforms the program with RCVs into a valid SSA form

◮ For every real occurrence of E , decide whether it is a def

or a use

◮ For every Φ with WillBeAvail being true, insert E along

incoming edges with Insert being true



Finalize

◮ Transforms the program with RCVs into a valid SSA form

◮ For every real occurrence of E , decide whether it is a def

or a use

◮ For every Φ with WillBeAvail being true, insert E along

incoming edges with Insert being true

◮ For each Φ for E



Finalize

◮ Transforms the program with RCVs into a valid SSA form

◮ For every real occurrence of E , decide whether it is a def

or a use

◮ For every Φ with WillBeAvail being true, insert E along

incoming edges with Insert being true

◮ For each Φ for E
◮ If WillBeAvail is true, it is replaced by SSA temporary with

appropriate version (hx )



Finalize

◮ Transforms the program with RCVs into a valid SSA form

◮ For every real occurrence of E , decide whether it is a def

or a use

◮ For every Φ with WillBeAvail being true, insert E along

incoming edges with Insert being true

◮ For each Φ for E
◮ If WillBeAvail is true, it is replaced by SSA temporary with

appropriate version (hx )
◮ If WillBeAvail is false, it is not part of SSA form, and is

removed



Finalize: AvailDef

◮ AvailDef: Table to mark def of expression occurrences



Finalize: AvailDef

◮ AvailDef: Table to mark def of expression occurrences

◮ Computed for each class (say hx ) of E



Finalize: AvailDef

◮ AvailDef: Table to mark def of expression occurrences

◮ Computed for each class (say hx ) of E

◮ Preorder traversal of dominator tree



AvailDef Computation

◮ Initialize: AvailDef[x ] = ⊥ ∀x (all classes of all expressions)



AvailDef Computation

◮ Initialize: AvailDef[x ] = ⊥ ∀x (all classes of all expressions)

◮ During course of traversal, process occurrence x of E



AvailDef Computation

◮ Initialize: AvailDef[x ] = ⊥ ∀x (all classes of all expressions)

◮ During course of traversal, process occurrence x of E
◮ Φ occurrence:



AvailDef Computation

◮ Initialize: AvailDef[x ] = ⊥ ∀x (all classes of all expressions)

◮ During course of traversal, process occurrence x of E
◮ Φ occurrence:

◮ If WillBeAvail is false, ignore.



AvailDef Computation

◮ Initialize: AvailDef[x ] = ⊥ ∀x (all classes of all expressions)

◮ During course of traversal, process occurrence x of E
◮ Φ occurrence:

◮ If WillBeAvail is false, ignore.
◮ Otherwise AvailDef[x ] = this Φ (we must be visiting x for first

time)



AvailDef Computation

◮ Initialize: AvailDef[x ] = ⊥ ∀x (all classes of all expressions)

◮ During course of traversal, process occurrence x of E
◮ Φ occurrence:

◮ If WillBeAvail is false, ignore.
◮ Otherwise AvailDef[x ] = this Φ (we must be visiting x for first

time)



AvailDef Computation

◮ Initialize: AvailDef[x ] = ⊥ ∀x (all classes of all expressions)

◮ During course of traversal, process occurrence x of E
◮ Φ occurrence:

◮ If WillBeAvail is false, ignore.
◮ Otherwise AvailDef[x ] = this Φ (we must be visiting x for first

time) – WHY?

◮ Real occurrence:



AvailDef Computation

◮ Initialize: AvailDef[x ] = ⊥ ∀x (all classes of all expressions)

◮ During course of traversal, process occurrence x of E
◮ Φ occurrence:

◮ If WillBeAvail is false, ignore.
◮ Otherwise AvailDef[x ] = this Φ (we must be visiting x for first

time) – WHY?

◮ Real occurrence:
◮ If AvailDef[x ] is ⊥, mark this occurrence as def



AvailDef Computation

◮ Initialize: AvailDef[x ] = ⊥ ∀x (all classes of all expressions)

◮ During course of traversal, process occurrence x of E
◮ Φ occurrence:

◮ If WillBeAvail is false, ignore.
◮ Otherwise AvailDef[x ] = this Φ (we must be visiting x for first

time) – WHY?

◮ Real occurrence:
◮ If AvailDef[x ] is ⊥, mark this occurrence as def
◮ Else, if AvailDef[x ] does not dominate this occurrence, mark

this occurrence as def



AvailDef Computation

◮ Initialize: AvailDef[x ] = ⊥ ∀x (all classes of all expressions)

◮ During course of traversal, process occurrence x of E
◮ Φ occurrence:

◮ If WillBeAvail is false, ignore.
◮ Otherwise AvailDef[x ] = this Φ (we must be visiting x for first

time) – WHY?

◮ Real occurrence:
◮ If AvailDef[x ] is ⊥, mark this occurrence as def
◮ Else, if AvailDef[x ] does not dominate this occurrence, mark

this occurrence as def
◮ Else, mark this occurrence as use of AvailDef[x ]



AvailDef Computation

◮ Initialize: AvailDef[x ] = ⊥ ∀x (all classes of all expressions)

◮ During course of traversal, process occurrence x of E
◮ Φ occurrence:

◮ If WillBeAvail is false, ignore.
◮ Otherwise AvailDef[x ] = this Φ (we must be visiting x for first

time) – WHY?

◮ Real occurrence:
◮ If AvailDef[x ] is ⊥, mark this occurrence as def
◮ Else, if AvailDef[x ] does not dominate this occurrence, mark

this occurrence as def
◮ Else, mark this occurrence as use of AvailDef[x ]

◮ Φ operand (processed in predecessor block P)



AvailDef Computation

◮ Initialize: AvailDef[x ] = ⊥ ∀x (all classes of all expressions)

◮ During course of traversal, process occurrence x of E
◮ Φ occurrence:

◮ If WillBeAvail is false, ignore.
◮ Otherwise AvailDef[x ] = this Φ (we must be visiting x for first

time) – WHY?

◮ Real occurrence:
◮ If AvailDef[x ] is ⊥, mark this occurrence as def
◮ Else, if AvailDef[x ] does not dominate this occurrence, mark

this occurrence as def
◮ Else, mark this occurrence as use of AvailDef[x ]

◮ Φ operand (processed in predecessor block P)
◮ If WillBeAvail of Φ is false, ignore.



AvailDef Computation

◮ Initialize: AvailDef[x ] = ⊥ ∀x (all classes of all expressions)

◮ During course of traversal, process occurrence x of E
◮ Φ occurrence:

◮ If WillBeAvail is false, ignore.
◮ Otherwise AvailDef[x ] = this Φ (we must be visiting x for first

time) – WHY?

◮ Real occurrence:
◮ If AvailDef[x ] is ⊥, mark this occurrence as def
◮ Else, if AvailDef[x ] does not dominate this occurrence, mark

this occurrence as def
◮ Else, mark this occurrence as use of AvailDef[x ]

◮ Φ operand (processed in predecessor block P)
◮ If WillBeAvail of Φ is false, ignore.
◮ Else, if Insert is true for the operand, insert computation of E

in block P, set it as a def, mark this occurrence as use of

inserted.



AvailDef Computation

◮ Initialize: AvailDef[x ] = ⊥ ∀x (all classes of all expressions)

◮ During course of traversal, process occurrence x of E
◮ Φ occurrence:

◮ If WillBeAvail is false, ignore.
◮ Otherwise AvailDef[x ] = this Φ (we must be visiting x for first

time) – WHY?

◮ Real occurrence:
◮ If AvailDef[x ] is ⊥, mark this occurrence as def
◮ Else, if AvailDef[x ] does not dominate this occurrence, mark

this occurrence as def
◮ Else, mark this occurrence as use of AvailDef[x ]

◮ Φ operand (processed in predecessor block P)
◮ If WillBeAvail of Φ is false, ignore.
◮ Else, if Insert is true for the operand, insert computation of E

in block P, set it as a def, mark this occurrence as use of

inserted.
◮ Else (Insert is false), mark this occurrence as use of

AvailDef[x ]



Finalize

a1 = · · ·

h1=Φ(h2,⊥)
a2=φ(a4, a1)

a2 + b1 : [h1]
a3=· · ·

h2=Φ(h1,⊥)
a4=φ(a2, a3)

a4 + b1 : [h2]

EXIT

⇒

a1=· · ·

h3=· · ·

h1=Φ(h2, h3)
a2=φ(a4, a1)

a2 + b1 : [h1]
a3=· · ·

h4=· · ·

h2=Φ(h1, h4)
a4=φ(a2, a3)

a4 + b1 : [h2]

EXIT



Code Motion

◮ For real def occurrence of E , compute E in a new version

of temporary t



Code Motion

◮ For real def occurrence of E , compute E in a new version

of temporary t

◮ For real use occurrence of E , replace E by current version

of t



Code Motion

◮ For real def occurrence of E , compute E in a new version

of temporary t

◮ For real use occurrence of E , replace E by current version

of t

◮ For inserted occurrence of E , compute E in a new version

of temporary t



Code Motion

◮ For real def occurrence of E , compute E in a new version

of temporary t

◮ For real use occurrence of E , replace E by current version

of t

◮ For inserted occurrence of E , compute E in a new version

of temporary t

◮ For a Φ occurrence, insert appropriate φ for t



Code Motion

a1=· · ·

h3=· · ·

h1=Φ(h2, h3)
a2=φ(a4, a1)

a2 + b1 : [h1]
a3=· · ·

h4=· · ·

h2=Φ(h1, h4)
a4=φ(a2, a3)

a4 + b1 : [h2]

EXIT

⇒

a1=· · ·

t1=a1 + b1

t2=φ(t4, t1)
a2=φ(a4, a1)

t2
a3=· · ·

t3=a3 + b1

t4=φ(t2, t3)
a4=φ(a2, a3)

t4

EXIT


