
CS738: Advanced Compiler Optimizations

Sparse Conditional Constant
Propagation

Amey Karkare
karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur

Sparse Simple Constant Propagation (SSC)

◮ Improved analysis time over Simple Constant Propagation
◮ Finds all simple constant

◮ Same class as Simple Constant Propagation

Motivating Example
Dashed edges denote SSA

def-use chains

ENTRY

a = 2

b = 3

a < b

c1 = 4 c2 = 5

c3 = φ(c1, c2)

EXIT

true false

Preparations for SSC Analysis

◮ Convert the program to SSA form
◮ One statement per basic block
◮ Add connections called SSA edges

◮ Connect (unique) definition point of a variable to its use
points

◮ Same as def-use chains



SSC Algorithm: Initialization

◮ Evaluate expressions involving constants only and assign
the value (c) to variable on LHS

◮ If expression can not be evaluated at compile time, assign
⊥

◮ Else (for expression contains variables) assign ⊤
◮ Initialize worklist WL with SSA edges whose def is not ⊤
◮ Algorithm terminates when WL is empty

SSC Algorithm: Iterative Actions

◮ Take an SSA edge E out of WL
◮ Take meet of the value at def end and the use end of E for

the variable defined at def end
◮ If the meet value is different from use value, replace the

use by the meet
◮ Recompute the def d at the use end of E
◮ If the recomputed value is lower than the stored value, add

all SSA edges originating at d

Meet for φ-function

v = φ(v1, v2, . . . , vk )

⇒ ValueOf(v) = v1 ∧ v2 ∧ . . . ∧ vn

SSC Algorithm: Complexity

◮ Height of CP lattice = 2
◮ Each SSA edge is examined at most twice, for each

lowering
◮ Theoretical size of SSA graph: O(V × E)

◮ Practical size: linear in the program size



SSC: Practice Example ENTRY

a = 2

b = 3

a < b

c1 = 4 c2 = 5

c3 = φ(c1, c2)

EXIT

true false

SSC: Practice Example

What if we change “c1 = 4” to “c1 = 5”?

Sparse Conditional Constant Propagation (SCC)

◮ Constant Propagation with unreachable code elimination
◮ Ignore definitions that reach a use via a non-executable

edge

SCC Algorithm: Key Idea

v = φ(v1, v2, . . . , vk )

⇒ ValueOf(v) =
∧

i∈ExecutablePath

vi

We ignore paths that are not “yet” marked executable



SCC Algorithm: Preparations

◮ Two Worklists
◮ Flow Worklist (FWL)

◮ Worklist of flow graph edges
◮ SSA Worklist (SWL)

◮ Worklist of SSA graph edges

◮ Execution Halts when both worklists are empty
◮ Associate a flag, the ExecutableFlag, with every flow graph

edge to control the evaluation of φ-function in the
destination node

SCC Algorithm: Initialization

◮ Initialize FWL to contain edges leaving ENTRY node
◮ Initialize SWL to empty
◮ Each ExecutableFlag is false initially
◮ Each value is ⊤ initially (Optimistic)

SCC Algorithm: Iterations

◮ Remove an item from either worklist
◮ process the item (described next)

SCC Algorithm: Processing FWL Item

◮ Item is flow graph edge
◮ If ExecutableFlag is true, do nothing
◮ Otherwise

◮ Mark the ExecutableFlag as true
◮ Visit-φ for all φ-functions in the destination
◮ If only one of the ExecutableFlags of incoming flow graph

edges for dest is true (dest visited for the first time), then
VisitExpression for all expressions in dest

◮ If the dest contains only one outgoing flow graph edge, add
that edge to FWL



SCC Algorithm: Processing SWL Item

◮ Item is SSA edge
◮ If dest is a φ-function, Visit-φ
◮ If dest is an expression and any of ExecutableFlags for the

incoming flow graph edges of dest is true, perform
VisitExpression

SCC Algorithm: Visit-φ

v = φ(v1, v2, . . . , vk )

◮ If i th incoming edge’s ExecutableFlag is true,
vali = ValueOf(vi) else vali = ⊤

◮ ValueOf(v) =
∧

i vali

SCC Algorithm: VisitExpression

◮ Evaluate the expression using values of operands and
rules for operators

◮ If the result is same as old, nothing to do
◮ Otherwise

◮ If the expression is part of assignment, add all outgoing
SSA edges to SWL

◮ if the expression controls a conditional branch, then
◮ if the result is ⊥, add all outgoing flow edges to FWL
◮ if the value is constant c, only the corresponding flow graph

edge is added to FWL
◮ Value can not be ⊤ (why?)

SCC Algorithm: Complexity

◮ Each SSA edge is examined twice
◮ Flow graph nodes are visited once for every incoming edge
◮ Complexity = O(# of SSA edges + # of flow graph edges)



SCC Algorithm: Correctness and Precision

◮ SCC is conservative
◮ Never labels a variable value as a constant

◮ SCC is at least as powerful as Conditional Constant
Propagation (CC)
◮ Finds all constants as CC does

◮ PROOFs: In paper Constant propagation with
conditional branches by Mark N. Wegman, F. Kenneth
Zadeck, ACM TOPLAS 1991.

Practice Example ENTRY

a = 2

b = 3

a < b

c1 = 4 c2 = 5

c3 = φ(c1, c2)

EXIT

true false


