
CS738: Advanced Compiler Optimizations

SSA Continued

Amey Karkare
karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur

Agenda

◮ Properties of SSA
◮ SSA to Executable
◮ SSA for Optimizations

Complexity of Construction

◮ R = max(N,E ,A,M)

◮ N: nodes, E : edges in flow graph
◮ A: number of assignments
◮ M: number of uses of variables
◮ Computation of DF: O(R2)

◮ Computation of SSA: O(R3)

◮ In practice, worst case is rare.
◮ Practical complexity: O(R)

Linear Time Algorithm for φ-functions

◮ By Sreedhar and Gao, in POPL’95
◮ Uses a new data structure called DJ-graph
◮ Linear time is achieved by careful ordering of nodes in the

DJ-graph
◮ DF for a node is computed only once an reused later if

required.



Variants of SSA Form: Simple Example

x = . . .
. . . = x
y = . . .
z = . . .

x = . . .
. . . = x
y = . . .
z = . . .

. . . = y . . . = y

. . . = z
Original Program

Variants of SSA Form: Simple Example

x1 = . . .
. . . = x1
y1 = . . .
z1 = . . .

x2 = . . .
. . . = x2
y2 = . . .
z2 = . . .

. . . = y1 . . . = y2

x3 = φ(x1, x2)
y3 = φ(y1, y2)
z3 = φ(z1, z2)
. . . = z3

Minimal SSA form

Variants of SSA Form

◮ Minimal SSA still contains extraneous φ-functions
◮ Inserts some φ-functions where they are dead
◮ Would like to avoid inserting them

◮ Pruned SSA
◮ Semi-Pruned SSA

Pruned SSA

◮ Only insert φ-functions where their value is live
◮ Inserts fewer φ-functions
◮ Costs more to do
◮ Requires global Live variable analysis



Variants of SSA Form: Pruned SSA Example

x1 = . . .
. . . = x1
y1 = . . .
z1 = . . .

x2 = . . .
. . . = x2
y2 = . . .
z2 = . . .

. . . = y1 . . . = y2

z3 = φ(z1, z2)
. . . = z3

Semi-Pruned SSA Form

◮ Discard names used in only one block
◮ Total number of φ-functions between minimal and pruned

SSA
◮ Needs only local Live information
◮ Non-locals can be computed without iteration or elimination

Variants of SSA Form: Semi-pruned SSA Example

x1 = . . .
. . . = x1
y1 = . . .
z1 = . . .

x2 = . . .
. . . = x2
y2 = . . .
z2 = . . .

. . . = y1 . . . = y2

y3 = φ(y1, y2)
z3 = φ(z1, z2)
. . . = z3

Computing Non-locals

foreach block B {
defined = {}
foreach instruction v = x op y {

if x not in defined
non-locals = non-locals ∪ {x}

if y not in defined
non-locals = non-locals ∪ {y}

defined = defined ∪ {v}
}

}



SSA to Executable

◮ At some point, we need executable code
◮ Need to fix up the φ-function

◮ Basic idea
◮ Insert copies in predecessors to mimic φ-function
◮ Simple algorithm

◮ Works in most cases, but not always
◮ Adds lots of copies

◮ Many of them will be optimized by later passes

φ-removal: Example
x0 = . . . x1 = . . .

x2 = φ(x0, x1)
. . . = x2

⇓ φ-removal

x0 = . . .
x2 = x0

x1 = . . .
x2 = x1

. . . = x2

Lost Copy Problem

x = 1

y = x
x = x + 1

print y

x1 = 1

x2 = φ(x1, x3)
x3 = x2 + 1

print x2

x1 = 1
x2 = x1

x3 = x2 + 1
x2 = x3

print x2

Program SSA from with After φ-removal
copy propagation

Lost Copy Problem: Solutions

x1 = 1
x2 = x1

x3 = x2 + 1
t = x2
x2 = x3

print t

x1 = 1
x2 = x1

x3 = x2 + 1

print x2

x2 = x3

1. Use of Temporary 2. Critical Edge Split



Swap Problem

a = 1
b = 2

x = a
a = b
b = x

print b

a1 = 1
b1 = 2

a2 = φ(a1, b2)
b2 = φ(b1, a2)

print a2

a1 = 1
b1 = 2
a2 = a1
b2 = b1

a2 = b2
b2 = a2

print a2

Program SSA form with After φ-removal
copy propagation

Swap Problem: Solution

◮ Fix requires compiler to detect and break dependency from
output of one φ-function to input of another φ-function.

◮ May require temporary if cyclic dependency exists.

SSA Form for Optimizations

◮ SSA form can improve and/or speed up many analyses
and optimizations
◮ (Conditional) Constant propagation
◮ Dead code elimination
◮ Value numbering
◮ PRE
◮ Loop Invariant Code Motion
◮ Strength Reduction


