
CS738: Advanced Compiler Optimizations

Static Single Assignment (SSA)

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738

Department of CSE, IIT Kanpur

karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738


Agenda

◮ SSA Form

◮ Constructing SSA form

◮ Properties and Applications



SSA Form

◮ Developed by Ron Cytron, Jeanne Ferrante, Barry K.
Rosen, Mark N. Wegman, and F. Kenneth Zadeck,



SSA Form

◮ Developed by Ron Cytron, Jeanne Ferrante, Barry K.
Rosen, Mark N. Wegman, and F. Kenneth Zadeck,
◮ in 1980s while at IBM.



SSA Form

◮ Developed by Ron Cytron, Jeanne Ferrante, Barry K.
Rosen, Mark N. Wegman, and F. Kenneth Zadeck,
◮ in 1980s while at IBM.

◮ Static Single Assignment – A variable is assigned only
once in program text



SSA Form

◮ Developed by Ron Cytron, Jeanne Ferrante, Barry K.
Rosen, Mark N. Wegman, and F. Kenneth Zadeck,
◮ in 1980s while at IBM.

◮ Static Single Assignment – A variable is assigned only
once in program text
◮ May be assigned multiple times if program is executed



What is SSA Form?

◮ An Intermediate Representation



What is SSA Form?

◮ An Intermediate Representation

◮ Sparse representation



What is SSA Form?

◮ An Intermediate Representation

◮ Sparse representation
◮ Definitions sites are directly associated with use sites



What is SSA Form?

◮ An Intermediate Representation

◮ Sparse representation
◮ Definitions sites are directly associated with use sites

◮ Advantage



What is SSA Form?

◮ An Intermediate Representation

◮ Sparse representation
◮ Definitions sites are directly associated with use sites

◮ Advantage
◮ Directly access points where relevant data flow information

is available



SSA IR

◮ In SSA Form



SSA IR

◮ In SSA Form
◮ Each variable has exactly one definition



SSA IR

◮ In SSA Form
◮ Each variable has exactly one definition

⇒ A use of a variable is reached by exactly one definition



SSA IR

◮ In SSA Form
◮ Each variable has exactly one definition

⇒ A use of a variable is reached by exactly one definition

◮ Control flow like traditional programs



SSA IR

◮ In SSA Form
◮ Each variable has exactly one definition

⇒ A use of a variable is reached by exactly one definition

◮ Control flow like traditional programs

◮ Some magic is needed at join nodes



Example

i = 0;

...

i = i + 1;

...

j = i * 5;

...



Example

i = 0;

...

i = i + 1;

...

j = i * 5;

...

SSA⇒

i1 = 0;

...

i2 = i1 + 1;

...

j1 = i2 * 5;

...



SSA Example

i = ...;

j = ...;

if (i < 20)

i = i + j;

else

j = j + 2;

print i, j;

i = . . . ;

j = . . . ;

if (i < 20)

i = i + j; j = j + 2;

print i, j;



SSA Example

i = . . . ;

j = . . . ;

if (i < 20)

i = i + j; j = j + 2;

print i, j;



SSA Example

i = . . . ;

j = . . . ;

if (i < 20)

i = i + j; j = j + 2;

print i, j;

SSA⇒

i1 = . . . ;

j1 = . . . ;

if (i1 < 20)

i2 = i1 + j1; j2 = j1 + 2;

print i , j ;



SSA Example

i = . . . ;

j = . . . ;

if (i < 20)

i = i + j; j = j + 2;

print i, j;

SSA⇒

i1 = . . . ;

j1 = . . . ;

if (i1 < 20)

i2 = i1 + j1; j2 = j1 + 2;

i3 = φ(i2, i1);

j3 = φ(j1, j2);

print i , j ;



SSA Example

i = . . . ;

j = . . . ;

if (i < 20)

i = i + j; j = j + 2;

print i, j;

SSA⇒

i1 = . . . ;

j1 = . . . ;

if (i1 < 20)

i2 = i1 + j1; j2 = j1 + 2;

i3 = φ(i2, i1);

j3 = φ(j1, j2);

print i3, j3;



SSA Example

i = ...;

j = ...;

if (i < 20)

i = i + j;

else

j = j + 2;

print i, j;

SSA⇒

i1 = ...;

j1 = ...;

if (i1 < 20)

i2 = i1 + j1;

else

j2 = j1 + 2;

i3 = φ(i2, i1);

j3 = φ(j1, j2);

print i3, j3;



The magic: φ function

◮ φ is used for selection



The magic: φ function

◮ φ is used for selection
◮ One out of multiple values at join nodes



The magic: φ function

◮ φ is used for selection
◮ One out of multiple values at join nodes

◮ Not every join node needs a φ



The magic: φ function

◮ φ is used for selection
◮ One out of multiple values at join nodes

◮ Not every join node needs a φ

◮ Needed only if multiple definitions reach the node



The magic: φ function

◮ φ is used for selection
◮ One out of multiple values at join nodes

◮ Not every join node needs a φ

◮ Needed only if multiple definitions reach the node

◮ Examples?



But. . . What is φ?

◮ What does φ operation mean in a machine code?



But. . . What is φ?

◮ What does φ operation mean in a machine code?

◮ φ is a conceptual entity



But. . . What is φ?

◮ What does φ operation mean in a machine code?

◮ φ is a conceptual entity

◮ Statically equivalent to choosing one of the arguments

“non-deterministicly”



But. . . What is φ?

◮ What does φ operation mean in a machine code?

◮ φ is a conceptual entity

◮ Statically equivalent to choosing one of the arguments

“non-deterministicly”

◮ No direct translation to machine code



But. . . What is φ?

◮ What does φ operation mean in a machine code?

◮ φ is a conceptual entity

◮ Statically equivalent to choosing one of the arguments

“non-deterministicly”

◮ No direct translation to machine code
◮ typically mimicked using “copy” in predecessors



But. . . What is φ?

◮ What does φ operation mean in a machine code?

◮ φ is a conceptual entity

◮ Statically equivalent to choosing one of the arguments

“non-deterministicly”

◮ No direct translation to machine code
◮ typically mimicked using “copy” in predecessors
◮ Inefficient



But. . . What is φ?

◮ What does φ operation mean in a machine code?

◮ φ is a conceptual entity

◮ Statically equivalent to choosing one of the arguments

“non-deterministicly”

◮ No direct translation to machine code
◮ typically mimicked using “copy” in predecessors
◮ Inefficient
◮ Practically, the inefficiency is compensated by dead code

elimination and register allocation passes



Properties of φ

◮ Placed only at the entry of a join node



Properties of φ

◮ Placed only at the entry of a join node

◮ Multiple φ-functions could be placed



Properties of φ

◮ Placed only at the entry of a join node

◮ Multiple φ-functions could be placed
◮ for multiple variables



Properties of φ

◮ Placed only at the entry of a join node

◮ Multiple φ-functions could be placed
◮ for multiple variables
◮ all such φ functions execute concurrently



Properties of φ

◮ Placed only at the entry of a join node

◮ Multiple φ-functions could be placed
◮ for multiple variables
◮ all such φ functions execute concurrently

◮ n-ary φ function at n-way join node



Properties of φ

◮ Placed only at the entry of a join node

◮ Multiple φ-functions could be placed
◮ for multiple variables
◮ all such φ functions execute concurrently

◮ n-ary φ function at n-way join node

◮ gets the value of i-th argument if control enters through i-th
edge



Properties of φ

◮ Placed only at the entry of a join node

◮ Multiple φ-functions could be placed
◮ for multiple variables
◮ all such φ functions execute concurrently

◮ n-ary φ function at n-way join node

◮ gets the value of i-th argument if control enters through i-th
edge
◮ Ordering of φ arguments according to the edge ordering is

important



SSA Example (revisit)

i = . . . ;

j = . . . ;

if (i < 20)

i = i + j; j = j + 2;

print i, j;

SSA⇒

i1 = . . . ;

j1 = . . . ;

if (i1 < 20)

i2 = i1 + j1; j2 = j1 + 2;

i3 = φ(i2, i1);

j3 = φ(j1, j2);

print i3, j3;



Construction of SSA Form



Assumptions

◮ Only scalar variables



Assumptions

◮ Only scalar variables
◮ Structures, pointers, arrays could be handled



Assumptions

◮ Only scalar variables
◮ Structures, pointers, arrays could be handled
◮ Refer to publications



Dominators

◮ Nodes x and y in flow graph



Dominators

◮ Nodes x and y in flow graph

◮ x dominates y if every path from Entry to y goes through
x



Dominators

◮ Nodes x and y in flow graph

◮ x dominates y if every path from Entry to y goes through
x
◮ x dom y



Dominators

◮ Nodes x and y in flow graph

◮ x dominates y if every path from Entry to y goes through
x
◮ x dom y
◮ partial order?



Dominators

◮ Nodes x and y in flow graph

◮ x dominates y if every path from Entry to y goes through
x
◮ x dom y
◮ partial order?

◮ x strictly dominates y if x dom y and x 6= y



Dominators

◮ Nodes x and y in flow graph

◮ x dominates y if every path from Entry to y goes through
x
◮ x dom y
◮ partial order?

◮ x strictly dominates y if x dom y and x 6= y
◮ x sdom y



Computing Dominators

◮ Equation

DOM(n) = {n} ∪




⋂

m∈PRED(n)

DOM(m)



 ,

∀n ∈ N



Computing Dominators

◮ Equation

DOM(n) = {n} ∪




⋂

m∈PRED(n)

DOM(m)



 ,

∀n ∈ N

◮ Initial Conditions:

DOM(nEntry ) = {nEntry}

DOM(n) = N, ∀n ∈ N − {nEntry}

where N is the set of all nodes, nEntry is the node

corresponding to the Entry block.



Computing Dominators

◮ Equation

DOM(n) = {n} ∪




⋂

m∈PRED(n)

DOM(m)



 ,

∀n ∈ N

◮ Initial Conditions:

DOM(nEntry ) = {nEntry}

DOM(n) = N, ∀n ∈ N − {nEntry}

where N is the set of all nodes, nEntry is the node

corresponding to the Entry block.

◮ Note that efficient methods exist for computing dominators



Immediate Dominators and Dominator Tree

◮ x is immediate dominator of y if x is the closest strict
dominator of y



Immediate Dominators and Dominator Tree

◮ x is immediate dominator of y if x is the closest strict
dominator of y
◮ unique, if it exists



Immediate Dominators and Dominator Tree

◮ x is immediate dominator of y if x is the closest strict
dominator of y
◮ unique, if it exists
◮ denoted idom[y ]



Immediate Dominators and Dominator Tree

◮ x is immediate dominator of y if x is the closest strict
dominator of y
◮ unique, if it exists
◮ denoted idom[y ]

◮ Dominator Tree



Immediate Dominators and Dominator Tree

◮ x is immediate dominator of y if x is the closest strict
dominator of y
◮ unique, if it exists
◮ denoted idom[y ]

◮ Dominator Tree
◮ A tree showing all immediate dominator relationships



Dominator Tree Example

B0

B1

B2 B3

B4 B5

B6

B7

B0

B1

B2 B3

B4 B5

B6

B7



Dominator Tree Example

B0

B1

B2 B3

B4 B5

B6

B7

B0

B1

B2 B3

B4 B5

B6

B7



Dominator Tree Example

B0

B1

B2 B3

B4 B5

B6

B7

B0

B1

B2 B3

B4 B5

B6

B7



Dominator Tree Example

B0

B1

B2 B3

B4 B5

B6

B7

B0

B1

B2 B3

B4 B5

B6

B7



Dominator Tree Example

B0

B1

B2 B3

B4 B5

B6

B7

B0

B1

B2 B3

B4 B5

B6

B7



Dominator Tree Example

B0

B1

B2 B3

B4 B5

B6

B7

B0

B1

B2 B3

B4 B5

B6

B7



Dominator Tree Example

B0

B1

B2 B3

B4 B5

B6

B7

B0

B1

B2 B3

B4 B5

B6

B7



Dominator Tree Example

B0

B1

B2 B3

B4 B5

B6

B7

B0

B1

B2 B3

B4 B5

B6

B7



Dominance Frontier: DF

◮ Dominance Frontier of x is set of all nodes y s.t.



Dominance Frontier: DF

◮ Dominance Frontier of x is set of all nodes y s.t.
◮ x dominates a predecessor of y AND



Dominance Frontier: DF

◮ Dominance Frontier of x is set of all nodes y s.t.
◮ x dominates a predecessor of y AND
◮ x does not strictly dominate y



Dominance Frontier: DF

◮ Dominance Frontier of x is set of all nodes y s.t.
◮ x dominates a predecessor of y AND
◮ x does not strictly dominate y

◮ Denoted DF(x)



Dominance Frontier: DF

◮ Dominance Frontier of x is set of all nodes y s.t.
◮ x dominates a predecessor of y AND
◮ x does not strictly dominate y

◮ Denoted DF(x)

◮ Why do you think DF(x) is important for any x?



Dominance Frontier: DF

◮ Dominance Frontier of x is set of all nodes y s.t.
◮ x dominates a predecessor of y AND
◮ x does not strictly dominate y

◮ Denoted DF(x)

◮ Why do you think DF(x) is important for any x?
◮ Think about the information originated in x .



Computing DF

◮ PARENT(x) denotes parent of node x in the dominator

tree.

◮ CHILDERN(x) denotes children of node x in the dominator

tree.

◮ PRED and SUCC from CFG.

DF(x) = DFlocal(x) ∪




⋃

z∈CHILDERN(x)

DFup(z)







Computing DF

◮ PARENT(x) denotes parent of node x in the dominator

tree.

◮ CHILDERN(x) denotes children of node x in the dominator

tree.

◮ PRED and SUCC from CFG.

DF(x) = DFlocal(x) ∪




⋃

z∈CHILDERN(x)

DFup(z)





DFlocal(x) = {y ∈ SUCC(x) | idom[y ] 6= x}



Computing DF

◮ PARENT(x) denotes parent of node x in the dominator

tree.

◮ CHILDERN(x) denotes children of node x in the dominator

tree.

◮ PRED and SUCC from CFG.

DF(x) = DFlocal(x) ∪




⋃

z∈CHILDERN(x)

DFup(z)





DFlocal(x) = {y ∈ SUCC(x) | idom[y ] 6= x}

DFup(z) = {y ∈ DF(z) | idom[y ] 6= PARENT(z)}



Iterated Dominance Frontier

◮ Transitive closure of Dominance frontiers on a set of nodes



Iterated Dominance Frontier

◮ Transitive closure of Dominance frontiers on a set of nodes

◮ Let S be a set of nodes

DF(S) =
⋃

x∈S

DF(x)



Iterated Dominance Frontier

◮ Transitive closure of Dominance frontiers on a set of nodes

◮ Let S be a set of nodes

DF(S) =
⋃

x∈S

DF(x)



Iterated Dominance Frontier

◮ Transitive closure of Dominance frontiers on a set of nodes

◮ Let S be a set of nodes

DF(S) =
⋃

x∈S

DF(x)

DF1(S) = DF(S)

DFi+1(S) = DF(S ∪ DFi(S))

◮ DF+(S) is the fixed point of DFi computation.



Minimal SSA Form Construction

◮ Compute DF+ set for each flow graph node



Minimal SSA Form Construction

◮ Compute DF+ set for each flow graph node

◮ Place trivial φ-functions for each variable in the node



Minimal SSA Form Construction

◮ Compute DF+ set for each flow graph node

◮ Place trivial φ-functions for each variable in the node

◮ trivial φ-function at n-ary join: x = φ(

n-times
︷ ︸︸ ︷
x , x , . . . , x)



Minimal SSA Form Construction

◮ Compute DF+ set for each flow graph node

◮ Place trivial φ-functions for each variable in the node

◮ trivial φ-function at n-ary join: x = φ(

n-times
︷ ︸︸ ︷
x , x , . . . , x)

◮ Rename variables



Minimal SSA Form Construction

◮ Compute DF+ set for each flow graph node

◮ Place trivial φ-functions for each variable in the node

◮ trivial φ-function at n-ary join: x = φ(

n-times
︷ ︸︸ ︷
x , x , . . . , x)

◮ Rename variables

◮ Why DF+? Why not only DF?



Inserting φ-functions

foreach variable v {



Inserting φ-functions

foreach variable v {

S = Entry ∪ {Bn | v defined in Bn}



Inserting φ-functions

foreach variable v {

S = Entry ∪ {Bn | v defined in Bn}
Compute DF+(S)



Inserting φ-functions

foreach variable v {

S = Entry ∪ {Bn | v defined in Bn}
Compute DF+(S)
foreach n in DF+(S) {



Inserting φ-functions

foreach variable v {

S = Entry ∪ {Bn | v defined in Bn}
Compute DF+(S)
foreach n in DF+(S) {

insert φ-function for v at the start of Bn

}

}



Renaming Variables (Pseudo Code)

◮ Rename from the Entry node recursively



Renaming Variables (Pseudo Code)

◮ Rename from the Entry node recursively
◮ For each variable x , maintain a rename stack of x 7→ xversion

mapping



Renaming Variables (Pseudo Code)

◮ Rename from the Entry node recursively
◮ For each variable x , maintain a rename stack of x 7→ xversion

mapping

◮ For node n



Renaming Variables (Pseudo Code)

◮ Rename from the Entry node recursively
◮ For each variable x , maintain a rename stack of x 7→ xversion

mapping

◮ For node n
◮ For each assignment (x = . . .) in n



Renaming Variables (Pseudo Code)

◮ Rename from the Entry node recursively
◮ For each variable x , maintain a rename stack of x 7→ xversion

mapping

◮ For node n
◮ For each assignment (x = . . .) in n

◮ If non-φ assignment, rename any use of x with the Top

mapping of x from the rename stack



Renaming Variables (Pseudo Code)

◮ Rename from the Entry node recursively
◮ For each variable x , maintain a rename stack of x 7→ xversion

mapping

◮ For node n
◮ For each assignment (x = . . .) in n

◮ If non-φ assignment, rename any use of x with the Top

mapping of x from the rename stack
◮ Push the mapping x 7→ xi on the rename stack



Renaming Variables (Pseudo Code)

◮ Rename from the Entry node recursively
◮ For each variable x , maintain a rename stack of x 7→ xversion

mapping

◮ For node n
◮ For each assignment (x = . . .) in n

◮ If non-φ assignment, rename any use of x with the Top

mapping of x from the rename stack
◮ Push the mapping x 7→ xi on the rename stack
◮ Replace lhs of the assignment by xi



Renaming Variables (Pseudo Code)

◮ Rename from the Entry node recursively
◮ For each variable x , maintain a rename stack of x 7→ xversion

mapping

◮ For node n
◮ For each assignment (x = . . .) in n

◮ If non-φ assignment, rename any use of x with the Top

mapping of x from the rename stack
◮ Push the mapping x 7→ xi on the rename stack
◮ Replace lhs of the assignment by xi

◮ i = i + 1



Renaming Variables (Pseudo Code)

◮ Rename from the Entry node recursively
◮ For each variable x , maintain a rename stack of x 7→ xversion

mapping

◮ For node n
◮ For each assignment (x = . . .) in n

◮ If non-φ assignment, rename any use of x with the Top

mapping of x from the rename stack
◮ Push the mapping x 7→ xi on the rename stack
◮ Replace lhs of the assignment by xi

◮ i = i + 1

◮ For the successors of n



Renaming Variables (Pseudo Code)

◮ Rename from the Entry node recursively
◮ For each variable x , maintain a rename stack of x 7→ xversion

mapping

◮ For node n
◮ For each assignment (x = . . .) in n

◮ If non-φ assignment, rename any use of x with the Top

mapping of x from the rename stack
◮ Push the mapping x 7→ xi on the rename stack
◮ Replace lhs of the assignment by xi

◮ i = i + 1

◮ For the successors of n
◮ Rename φ operands through SUCC edge index



Renaming Variables (Pseudo Code)

◮ Rename from the Entry node recursively
◮ For each variable x , maintain a rename stack of x 7→ xversion

mapping

◮ For node n
◮ For each assignment (x = . . .) in n

◮ If non-φ assignment, rename any use of x with the Top

mapping of x from the rename stack
◮ Push the mapping x 7→ xi on the rename stack
◮ Replace lhs of the assignment by xi

◮ i = i + 1

◮ For the successors of n
◮ Rename φ operands through SUCC edge index

◮ Recursively rename all child nodes in the dominator tree



Renaming Variables (Pseudo Code)

◮ Rename from the Entry node recursively
◮ For each variable x , maintain a rename stack of x 7→ xversion

mapping

◮ For node n
◮ For each assignment (x = . . .) in n

◮ If non-φ assignment, rename any use of x with the Top

mapping of x from the rename stack
◮ Push the mapping x 7→ xi on the rename stack
◮ Replace lhs of the assignment by xi

◮ i = i + 1

◮ For the successors of n
◮ Rename φ operands through SUCC edge index

◮ Recursively rename all child nodes in the dominator tree

◮ For each assignment (x = . . .) in n



Renaming Variables (Pseudo Code)

◮ Rename from the Entry node recursively
◮ For each variable x , maintain a rename stack of x 7→ xversion

mapping

◮ For node n
◮ For each assignment (x = . . .) in n

◮ If non-φ assignment, rename any use of x with the Top

mapping of x from the rename stack
◮ Push the mapping x 7→ xi on the rename stack
◮ Replace lhs of the assignment by xi

◮ i = i + 1

◮ For the successors of n
◮ Rename φ operands through SUCC edge index

◮ Recursively rename all child nodes in the dominator tree

◮ For each assignment (x = . . .) in n
◮ Pop x 7→ . . . from the rename stack


