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◮ Developed by Ron Cytron, Jeanne Ferrante, Barry K.
Rosen, Mark N. Wegman, and F. Kenneth Zadeck,
◮ in 1980s while at IBM.

◮ Static Single Assignment – A variable is assigned only
once in program text
◮ May be assigned multiple times if program is executed
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What is SSA Form?

◮ An Intermediate Representation

◮ Sparse representation
◮ Definitions sites are directly associated with use sites

◮ Advantage
◮ Directly access points where relevant data flow information

is available
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SSA IR

◮ In SSA Form
◮ Each variable has exactly one definition

⇒ A use of a variable is reached by exactly one definition

◮ Control flow like traditional programs

◮ Some magic is needed at join nodes
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i = i + 1;
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...

SSA⇒

i1 = 0;

...

i2 = i1 + 1;

...

j1 = i2 * 5;

...
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SSA Example

i = ...;

j = ...;

if (i < 20)

i = i + j;

else

j = j + 2;

print i, j;

SSA⇒

i1 = ...;

j1 = ...;

if (i1 < 20)

i2 = i1 + j1;

else

j2 = j1 + 2;

i3 = φ(i2, i1);

j3 = φ(j1, j2);

print i3, j3;
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The magic: φ function

◮ φ is used for selection
◮ One out of multiple values at join nodes

◮ Not every join node needs a φ

◮ Needed only if multiple definitions reach the node

◮ Examples?
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But. . . What is φ?

◮ What does φ operation mean in a machine code?

◮ φ is a conceptual entity

◮ Statically equivalent to choosing one of the arguments

“non-deterministicly”

◮ No direct translation to machine code
◮ typically mimicked using “copy” in predecessors
◮ Inefficient
◮ Practically, the inefficiency is compensated by dead code

elimination and register allocation passes
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Properties of φ

◮ Placed only at the entry of a join node

◮ Multiple φ-functions could be placed
◮ for multiple variables
◮ all such φ functions execute concurrently

◮ n-ary φ function at n-way join node

◮ gets the value of i-th argument if control enters through i-th
edge
◮ Ordering of φ arguments according to the edge ordering is

important



SSA Example (revisit)

i = . . . ;

j = . . . ;

if (i < 20)

i = i + j; j = j + 2;

print i, j;

SSA⇒

i1 = . . . ;

j1 = . . . ;

if (i1 < 20)

i2 = i1 + j1; j2 = j1 + 2;

i3 = φ(i2, i1);

j3 = φ(j1, j2);

print i3, j3;



Construction of SSA Form
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Assumptions

◮ Only scalar variables
◮ Structures, pointers, arrays could be handled
◮ Refer to publications
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Dominators

◮ Nodes x and y in flow graph

◮ x dominates y if every path from Entry to y goes through
x
◮ x dom y
◮ partial order?

◮ x strictly dominates y if x dom y and x 6= y
◮ x sdom y
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Computing Dominators

◮ Equation

DOM(n) = {n} ∪




⋂

m∈PRED(n)

DOM(m)



 ,

∀n ∈ N

◮ Initial Conditions:

DOM(nEntry ) = {nEntry}

DOM(n) = N, ∀n ∈ N − {nEntry}

where N is the set of all nodes, nEntry is the node

corresponding to the Entry block.

◮ Note that efficient methods exist for computing dominators
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Immediate Dominators and Dominator Tree

◮ x is immediate dominator of y if x is the closest strict
dominator of y
◮ unique, if it exists
◮ denoted idom[y ]

◮ Dominator Tree
◮ A tree showing all immediate dominator relationships
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Dominance Frontier: DF

◮ Dominance Frontier of x is set of all nodes y s.t.
◮ x dominates a predecessor of y AND
◮ x does not strictly dominate y

◮ Denoted DF(x)

◮ Why do you think DF(x) is important for any x?
◮ Think about the information originated in x .
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Computing DF

◮ PARENT(x) denotes parent of node x in the dominator

tree.

◮ CHILDERN(x) denotes children of node x in the dominator

tree.

◮ PRED and SUCC from CFG.

DF(x) = DFlocal(x) ∪




⋃

z∈CHILDERN(x)

DFup(z)





DFlocal(x) = {y ∈ SUCC(x) | idom[y ] 6= x}

DFup(z) = {y ∈ DF(z) | idom[y ] 6= PARENT(z)}
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Iterated Dominance Frontier

◮ Transitive closure of Dominance frontiers on a set of nodes

◮ Let S be a set of nodes

DF(S) =
⋃

x∈S

DF(x)

DF1(S) = DF(S)

DFi+1(S) = DF(S ∪ DFi(S))

◮ DF+(S) is the fixed point of DFi computation.
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Minimal SSA Form Construction

◮ Compute DF+ set for each flow graph node

◮ Place trivial φ-functions for each variable in the node

◮ trivial φ-function at n-ary join: x = φ(

n-times
︷ ︸︸ ︷
x , x , . . . , x)

◮ Rename variables

◮ Why DF+? Why not only DF?
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Inserting φ-functions

foreach variable v {

S = Entry ∪ {Bn | v defined in Bn}
Compute DF+(S)
foreach n in DF+(S) {

insert φ-function for v at the start of Bn

}

}
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Renaming Variables (Pseudo Code)

◮ Rename from the Entry node recursively
◮ For each variable x , maintain a rename stack of x 7→ xversion

mapping

◮ For node n
◮ For each assignment (x = . . .) in n

◮ If non-φ assignment, rename any use of x with the Top

mapping of x from the rename stack
◮ Push the mapping x 7→ xi on the rename stack
◮ Replace lhs of the assignment by xi

◮ i = i + 1

◮ For the successors of n
◮ Rename φ operands through SUCC edge index

◮ Recursively rename all child nodes in the dominator tree

◮ For each assignment (x = . . .) in n
◮ Pop x 7→ . . . from the rename stack


