
CS738: Advanced Compiler Optimizations

Constant Propagation

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738

Department of CSE, IIT Kanpur

karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738


Agenda

◮ Using data flow analysis to identify “constant expressions”

in a program

◮ Identify similarity/differences with bit-vector data flow

analyses discussed earlier

◮ Other properties of constant propagation



Constant Propagation

◮ CP: Replace expressions that evaluate to same constant

“c” every time they are executed, by the value “c”



DF Framework for CP

◮ Domain



DF Framework for CP

◮ Domain
◮ For a single variable v of type τ , all possible constants of

type τ



DF Framework for CP

◮ Domain
◮ For a single variable v of type τ , all possible constants of

type τ

◮ Semilattice



DF Framework for CP

◮ Domain
◮ For a single variable v of type τ , all possible constants of

type τ

◮ Semilattice
◮ What is

∧
?



DF Framework for CP

◮ Domain
◮ For a single variable v of type τ , all possible constants of

type τ

◮ Semilattice
◮ What is

∧
?

◮ What is ⊤?



DF Framework for CP

◮ Domain
◮ For a single variable v of type τ , all possible constants of

type τ

◮ Semilattice
◮ What is

∧
?

◮ What is ⊤?
◮ What is ⊥?



Special Values for CP

◮ NAC: not a constant



Special Values for CP

◮ NAC: not a constant
◮ If variable is inferred not to be a constant



Special Values for CP

◮ NAC: not a constant
◮ If variable is inferred not to be a constant
◮ Multiple (different valued) defs, non-const defs, assigned an

“un-interpreted” value, . . .



Special Values for CP

◮ NAC: not a constant
◮ If variable is inferred not to be a constant
◮ Multiple (different valued) defs, non-const defs, assigned an

“un-interpreted” value, . . .

◮ Undef: No definition of the variable is seen yet - nothing

known!



NAC vs Undef

◮ NAC ⇒ too many definitions seen for a variable v to

declare v is NOT a constant



NAC vs Undef

◮ NAC ⇒ too many definitions seen for a variable v to

declare v is NOT a constant

◮ Undef ⇒ too few definitions seen to declare anything about

the variable



NAC vs Undef

◮ NAC ⇒ too many definitions seen for a variable v to

declare v is NOT a constant

◮ Undef ⇒ too few definitions seen to declare anything about

the variable

◮ ⊤ is Undef; ⊥ is NAC



CP Meet
∧

◮ Recall the requirement

⊤
∧

x = x

⊥
∧

x = ⊥



CP Meet
∧

◮ Recall the requirement

⊤
∧

x = x

⊥
∧

x = ⊥

Undef
∧

c = c



CP Meet
∧

◮ Recall the requirement

⊤
∧

x = x

⊥
∧

x = ⊥

Undef
∧

c = c

NAC
∧

c = NAC



CP Meet
∧

◮ Recall the requirement

⊤
∧

x = x

⊥
∧

x = ⊥

Undef
∧

c = c

NAC
∧

c = NAC

c1

∧
c2 = NAC when c1 6= c2



CP Meet
∧

◮ Recall the requirement

⊤
∧

x = x

⊥
∧

x = ⊥

Undef
∧

c = c

NAC
∧

c = NAC

c1

∧
c2 = NAC when c1 6= c2

c
∧

c = c



CP Semilattice for an integer variable

Undef

NAC

0-1-2-3· · · 1 2 3 · · ·

◮ Infinite domain, but finite height



CP Semilattice

◮ Previous figure was semilattice for one variable of one type



CP Semilattice

◮ Previous figure was semilattice for one variable of one type

◮ CP Semilattice = Product of such lattices for all variables

(of all types)



CP Semilattice

◮ Previous figure was semilattice for one variable of one type

◮ CP Semilattice = Product of such lattices for all variables

(of all types)

◮ Each semilattice has a finite height



Computing GEN

◮ Informal representation

Statement GEN

x = c // const

x = y + z

x = complicated

expr



Computing GEN

◮ Informal representation

Statement GEN

x = c // const {x → c}

x = y + z

x = complicated

expr



Computing GEN

◮ Informal representation

Statement GEN

x = c // const {x → c}

x = y + z

if {y → c1, z → c2} in IN then {x → c1 + c2}

x = complicated

expr



Computing GEN

◮ Informal representation

Statement GEN

x = c // const {x → c}

x = y + z

if {y → c1, z → c2} in IN then {x → c1 + c2}
else if {y → NAC} in IN then {x → NAC}

x = complicated

expr



Computing GEN

◮ Informal representation

Statement GEN

x = c // const {x → c}

x = y + z

if {y → c1, z → c2} in IN then {x → c1 + c2}
else if {y → NAC} in IN then {x → NAC}
else if {z → NAC} in IN then {x → NAC}

x = complicated

expr



Computing GEN

◮ Informal representation

Statement GEN

x = c // const {x → c}

x = y + z

if {y → c1, z → c2} in IN then {x → c1 + c2}
else if {y → NAC} in IN then {x → NAC}
else if {z → NAC} in IN then {x → NAC}
else {x → Undef}

x = complicated

expr



Computing GEN

◮ Informal representation

Statement GEN

x = c // const {x → c}

x = y + z

if {y → c1, z → c2} in IN then {x → c1 + c2}
else if {y → NAC} in IN then {x → NAC}
else if {z → NAC} in IN then {x → NAC}
else {x → Undef}

x = complicated {x → NAC}
expr



Monotonicity of CP

◮ Case analysis on transfer function f



Monotonicity of CP

◮ Case analysis on transfer function f

◮ NAC ≤ c ≤ Undef



Monotonicity of CP

◮ Case analysis on transfer function f

◮ NAC ≤ c ≤ Undef

◮ x = c has constant transfer function.



Monotonicity of CP

◮ Case analysis on transfer function f

◮ NAC ≤ c ≤ Undef

◮ x = c has constant transfer function.

◮ x = complicated expr also has constant transfer function



Monotonicity of CP

◮ Case analysis on transfer function f

◮ NAC ≤ c ≤ Undef

◮ x = c has constant transfer function.

◮ x = complicated expr also has constant transfer function

◮ See the next slide for x = y + z (and similar statements)



Monotonicity of CP: x = y + z

◮ Fix z to be one of Undef, c2, NAC



Monotonicity of CP: x = y + z

◮ Fix z to be one of Undef, c2, NAC

◮ Vary y over Undef, c1, NAC



Monotonicity of CP: x = y + z

◮ Fix z to be one of Undef, c2, NAC

◮ Vary y over Undef, c1, NAC

◮ Confirm that x does not “increase”



Monotonicity of CP: x = y + z

◮ Fix z to be one of Undef, c2, NAC

◮ Vary y over Undef, c1, NAC

◮ Confirm that x does not “increase”

◮ Do this for all z choices.



Monotonicity of CP: x = y + z

◮ Fix z to be one of Undef, c2, NAC

◮ Vary y over Undef, c1, NAC

◮ Confirm that x does not “increase”

◮ Do this for all z choices.

◮ Similarly, fix y and vary z.



Nondistributivity of CP

B0

B1
x = 2;

y = 3;
B2

x = 3;

y = 2;

B3 z = x + y;

◮ All paths:



Nondistributivity of CP

B0

B1
x = 2;

y = 3;
B2

x = 3;

y = 2;

B3 z = x + y;

◮ All paths:
◮ B0 → B1 → B3



Nondistributivity of CP

B0

B1
x = 2;

y = 3;
B2

x = 3;

y = 2;

B3 z = x + y;

◮ All paths:
◮ B0 → B1 → B3

◮ B0 → B2 → B3



Nondistributivity of CP

B0

B1
x = 2;

y = 3;
B2

x = 3;

y = 2;

B3 z = x + y;

◮ All paths:
◮ B0 → B1 → B3

◮ B0 → B2 → B3

◮ Value of z is 5 along both

the paths.



Nondistributivity of CP

B0

B1
x = 2;

y = 3;
B2

x = 3;

y = 2;

B3 z = x + y;

◮ All paths:
◮ B0 → B1 → B3

◮ B0 → B2 → B3

◮ Value of z is 5 along both

the paths.

◮ MOP value for z is 5.



Nondistributivity of CP

B0

B1
x = 2;

y = 3;
B2

x = 3;

y = 2;

B3 z = x + y;

◮ All paths:
◮ B0 → B1 → B3

◮ B0 → B2 → B3

◮ Value of z is 5 along both

the paths.

◮ MOP value for z is 5.

◮ MFP value for z is NAC.

(Exercise)



Nondistributivity of CP

B0

B1
x = 2;

y = 3;
B2

x = 3;

y = 2;

B3 z = x + y;

◮ All paths:
◮ B0 → B1 → B3

◮ B0 → B2 → B3

◮ Value of z is 5 along both

the paths.

◮ MOP value for z is 5.

◮ MFP value for z is NAC.

(Exercise)

◮ MFP value 6= MOP value

(MFP < MOP)


