
CS738: Advanced Compiler Optimizations

Flow Graph Theory

Amey Karkare
karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur

Agenda

◮ Speeding up DFA
◮ Depth of a flow graph
◮ Natural Loops

Acknowledgement

Rest of the slides based on the material at
http://infolab.stanford.edu/~ullman/dragon/w06/
w06.html

Speeding up DFA

◮ Proper ordering of nodes of a flow graph speeds up the
iterative algorithms: depth-first ordering.

◮ “Normal” flow graphs have a surprising property —
reducibility — that simplifies several matters.

◮ Outcome: few iterations “normally” needed.



Depth-First Search

◮ Start at entry.
◮ If you can follow an edge to an unvisited node, do so.
◮ If not, backtrack to your parent (node from which you were

visited).

Depth-First Spanning Tree (DFST)

◮ Root = Entry.
◮ Tree edges are the edges along which we first visit the

node at the head.

DFST Example

1

2

3

4

5

Depth-First Node Order

◮ The reverse of the order in which a DFS retreats from the
nodes.

◮ Alternatively, reverse of postorder traversal of the tree.



DF Order Example

1

4

5

2

3

Four Kind of Edges

1. Tree edges.
2. Forward edges: node to proper descendant.
3. Retreating edges: node to ancestor.
4. Cross edges: between two node, neither of which is an

ancestor of the other.

A Little Magic

◮ Of these edges, only retreating edges go from high to low
in DF order.

◮ Most surprising: all cross edges go right to left in the
DFST.
◮ Assuming we add children of any node from the left.

Example: Non-Tree Edges

1

4

5

2

3

Retreating
Forward

Cross



Roadmap

◮ “Normal” flow graphs are “reducible.”
◮ “Dominators” needed to explain reducibility.
◮ In reducible flow graphs, loops are well defined, retreating

edges are unique (and called “back” edges).
◮ Leads to relationship between DF order and efficient

iterative algorithm.

Dominators

◮ Node d dominates node n if every path from the Entry to
n goes through d .

◮ [Exercise] A forward-intersection iterative algorithm for
finding dominators.

◮ Quick observations:
◮ Every node dominates itself.
◮ The entry dominates every node.

Example: Dominators

1

4

5

2

3

Node Dominators
1 1
2 1, 2
3 1, 2, 3
4 1, 4
5 1, 5

Common Dominator Cases

◮ The test of a while loop dominates all blocks in the loop
body.

◮ The test of an if-then-else dominates all blocks in either
branch.



Back Edges

◮ An edge is a back edge if its head dominates its tail.
◮ Theorem: Every back edge is a retreating edge in every

DFST of every flow graph.
◮ Proof? Discuss/Exercise
◮ Converse almost always true, but not always.

Example: Back Edges

1

4

5

2

3

Node Dominators
1 1
2 1, 2
3 1, 2, 3
4 1, 4
5 1, 5

Reducible Flow Graphs

◮ A flow graph is reducible if every retreating edge in any
DFST for that flow graph is a back edge.

◮ Testing reducibility: Take any DFST for the flow graph,
remove the back edges, and check that the result is
acyclic.

Example: Remove Back Edges

1

4

5

2

3

Node Dominators
1 1
2 1, 2
3 1, 2, 3
4 1, 4
5 1, 5

Remaining graph is acyclic.



Why Reducibility?

◮ Folk theorem: All flow graphs in practice are reducible.
◮ Fact: If you use only while-loops, for-loops, repeat-loops,

if-then(-else), break, and continue, then your flow graph is
reducible.

Example: Nonreducible Graph

A

B C

In any DFST, one of these
edges will be a retreating
edge.

A

B

C

A

C

B

Why Care About Back/Retreating Edges?

◮ Proper ordering of nodes during iterative algorithm assures
number of passes limited by the number of “nested” back
edges.

◮ Depth of nested loops upper-bounds the number of nested
back edges.

DF Order and Retreating Edges

◮ Suppose that for a RD analysis, we visit nodes during each
iteration in DF order.

◮ The fact that a definition d reaches a block will propagate
in one pass along any increasing sequence of blocks.

◮ When d arrives along a retreating edge, it is too late to
propagate d from OUT to IN.



Example: DF Order

1

4

5

2

3

Node 2 generates definition d.
Other nodes “empty” w.r.t. d.
Does d reach node 4?

d
d

d

d

d

d

d
dd

d

Depth of a Flow Graph

◮ The depth of a flow graph is the greatest number of
retreating edges along any acyclic path.

◮ For RD, if we use DF order to visit nodes, we converge in
depth+2 passes.
◮ Depth+1 passes to follow that number of increasing

segments.
◮ 1 more pass to realize we converged.

Example: Depth = 2

increasing

retreating

increasing

retreating

increasing

Similarly . . .

◮ AE also works in depth+2 passes.
◮ Unavailability propagates along retreat-free node

sequences in one pass.
◮ So does LV if we use reverse of DF order.

◮ A use propagates backward along paths that do not use a
retreating edge in one pass.



In General . . .

◮ The depth+2 bound works for any monotone bit-vector
framework, as long as information only needs to propagate
along acyclic paths.
◮ Example: if a definition reaches a point, it does so along an

acyclic path.

Why Depth+2 is Good?

◮ Normal control-flow constructs produce reducible flow
graphs with the number of back edges at most the nesting
depth of loops.
◮ Nesting depth tends to be small.

Example: Nested Loops

3 nested while loops.

depth = 3.

3 nested do-while loops.

depth = 1.

Natural Loops

◮ The natural loop of a back edge a → b is {b} plus the set
of nodes that can reach a without going through b.

◮ Theorem: two natural loops are either disjoint, identical, or
nested.

◮ Proof: Discuss/Exercise



Example: Natural Loops

1

4

5

2

3

1

4

5

2

3

Natural loop 3 → 2
Natural loop 5 → 1

Reading Assignment

◮ New Dragon Book (Aho, Lam, Sethi, Ullman)
◮ Chapter 9


