
CS738: Advanced Compiler Optimizations

Foundations of Data Flow Analysis

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738

Department of CSE, IIT Kanpur

karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738


Agenda

◮ Intraprocedural Data Flow Analysis
◮ We looked at 4 classic examples
◮ Today: Mathematical foundations



Taxonomy of Dataflow Problems

◮ Categorized along several dimensions



Taxonomy of Dataflow Problems

◮ Categorized along several dimensions
◮ the information they are designed to provide



Taxonomy of Dataflow Problems

◮ Categorized along several dimensions
◮ the information they are designed to provide
◮ the direction of flow



Taxonomy of Dataflow Problems

◮ Categorized along several dimensions
◮ the information they are designed to provide
◮ the direction of flow
◮ confluence operator



Taxonomy of Dataflow Problems

◮ Categorized along several dimensions
◮ the information they are designed to provide
◮ the direction of flow
◮ confluence operator

◮ Four kinds of dataflow problems, distinguished by



Taxonomy of Dataflow Problems

◮ Categorized along several dimensions
◮ the information they are designed to provide
◮ the direction of flow
◮ confluence operator

◮ Four kinds of dataflow problems, distinguished by
◮ the operator used for confluence or divergence



Taxonomy of Dataflow Problems

◮ Categorized along several dimensions
◮ the information they are designed to provide
◮ the direction of flow
◮ confluence operator

◮ Four kinds of dataflow problems, distinguished by
◮ the operator used for confluence or divergence
◮ data flows backward or forward



Taxonomy of Dataflow Problems

Confluence →
⋃ ⋂

Direction ↓

Forward

Backward



Taxonomy of Dataflow Problems

Confluence →
⋃ ⋂

Direction ↓

Forward R D

Backward



Taxonomy of Dataflow Problems

Confluence →
⋃ ⋂

Direction ↓

Forward R D Av E

Backward



Taxonomy of Dataflow Problems

Confluence →
⋃ ⋂

Direction ↓

Forward R D Av E

Backward L V



Taxonomy of Dataflow Problems

Confluence →
⋃ ⋂

Direction ↓

Forward R D Av E

Backward L V V B E



Why Data Flow Analysis Works?

◮ Suitable initial values and boundary conditions

◮ Suitable domain of values
◮ Bounded, Finite

◮ Suitable meet operator

◮ Suitable flow functions
◮ monotonic, closed under composition

◮ But what is SUITABLE ?



Lattice Theory



Partially Ordered Sets

◮ Posets



Partially Ordered Sets

◮ Posets

S: a set



Partially Ordered Sets

◮ Posets

S: a set

≤: a relation



Partially Ordered Sets

◮ Posets

S: a set

≤: a relation

(S,≤) is a poset if for x , y , z ∈ S



Partially Ordered Sets

◮ Posets

S: a set

≤: a relation

(S,≤) is a poset if for x , y , z ∈ S
◮ x ≤ x (reflexive)



Partially Ordered Sets

◮ Posets

S: a set

≤: a relation

(S,≤) is a poset if for x , y , z ∈ S
◮ x ≤ x (reflexive)
◮ x ≤ y and y ≤ x ⇒ x = y (antisymmetric)



Partially Ordered Sets

◮ Posets

S: a set

≤: a relation

(S,≤) is a poset if for x , y , z ∈ S
◮ x ≤ x (reflexive)
◮ x ≤ y and y ≤ x ⇒ x = y (antisymmetric)
◮ x ≤ y and y ≤ z ⇒ x ≤ z (transitive)



Chain

◮ Linear Ordering



Chain

◮ Linear Ordering

◮ Poset where every pair of elements is comparable



Chain

◮ Linear Ordering

◮ Poset where every pair of elements is comparable

◮ x1 ≤ x2 ≤ . . . ≤ xk is a chain of length k



Chain

◮ Linear Ordering

◮ Poset where every pair of elements is comparable

◮ x1 ≤ x2 ≤ . . . ≤ xk is a chain of length k

◮ We are interested in chains of finite length



Observation

◮ Any finite nonempty subset of a poset has minimal and

maximal elements



Observation

◮ Any finite nonempty subset of a poset has minimal and

maximal elements

◮ Any finite nonempty chain has unique minimum and

maximum elements



Semilattice

◮ Set S and meet
∧



Semilattice

◮ Set S and meet
∧

◮ x , y , z ∈ S



Semilattice

◮ Set S and meet
∧

◮ x , y , z ∈ S
◮ x

∧
x = x (idempotent)



Semilattice

◮ Set S and meet
∧

◮ x , y , z ∈ S
◮ x

∧
x = x (idempotent)

◮ x
∧

y = y
∧

x (commutative)



Semilattice

◮ Set S and meet
∧

◮ x , y , z ∈ S
◮ x

∧
x = x (idempotent)

◮ x
∧

y = y
∧

x (commutative)
◮ x

∧
(y

∧
z) = (x

∧
y)

∧
z (associative)



Semilattice

◮ Set S and meet
∧

◮ x , y , z ∈ S
◮ x

∧
x = x (idempotent)

◮ x
∧

y = y
∧

x (commutative)
◮ x

∧
(y

∧
z) = (x

∧
y)

∧
z (associative)

◮ Partial order for semilattice



Semilattice

◮ Set S and meet
∧

◮ x , y , z ∈ S
◮ x

∧
x = x (idempotent)

◮ x
∧

y = y
∧

x (commutative)
◮ x

∧
(y

∧
z) = (x

∧
y)

∧
z (associative)

◮ Partial order for semilattice
◮ x ≤ y if and only if x

∧
y = x



Semilattice

◮ Set S and meet
∧

◮ x , y , z ∈ S
◮ x

∧
x = x (idempotent)

◮ x
∧

y = y
∧

x (commutative)
◮ x

∧
(y

∧
z) = (x

∧
y)

∧
z (associative)

◮ Partial order for semilattice
◮ x ≤ y if and only if x

∧
y = x

◮ Reflexive, antisymmetric, transitive



Border Elements

◮ Top Element (⊤)



Border Elements

◮ Top Element (⊤)
◮ ∀x ∈ S, x

∧
⊤ = ⊤

∧
x = x



Border Elements

◮ Top Element (⊤)
◮ ∀x ∈ S, x

∧
⊤ = ⊤

∧
x = x

◮ (Optional) Bottom Element (⊥)



Border Elements

◮ Top Element (⊤)
◮ ∀x ∈ S, x

∧
⊤ = ⊤

∧
x = x

◮ (Optional) Bottom Element (⊥)
◮ ∀x ∈ S, x

∧
⊥ = ⊥

∧
x = ⊥



Familiar (Semi)Lattices

◮ Powerset for a set S, 2S



Familiar (Semi)Lattices

◮ Powerset for a set S, 2S

◮ Meet
∧

is ∩



Familiar (Semi)Lattices

◮ Powerset for a set S, 2S

◮ Meet
∧

is ∩

◮ Partial Order is ⊆



Familiar (Semi)Lattices

◮ Powerset for a set S, 2S

◮ Meet
∧

is ∩

◮ Partial Order is ⊆

◮ Top element is S



Familiar (Semi)Lattices

◮ Powerset for a set S, 2S

◮ Meet
∧

is ∩

◮ Partial Order is ⊆

◮ Top element is S

◮ Bottom element is ∅



Familiar (Semi)Lattices

◮ Powerset for a set S, 2S



Familiar (Semi)Lattices

◮ Powerset for a set S, 2S

◮ Meet
∧

is ∪



Familiar (Semi)Lattices

◮ Powerset for a set S, 2S

◮ Meet
∧

is ∪

◮ Partial Order is ⊇



Familiar (Semi)Lattices

◮ Powerset for a set S, 2S

◮ Meet
∧

is ∪

◮ Partial Order is ⊇

◮ Top element is ∅



Familiar (Semi)Lattices

◮ Powerset for a set S, 2S

◮ Meet
∧

is ∪

◮ Partial Order is ⊇

◮ Top element is ∅

◮ Bottom element is S



Greatest Lower Bound (glb)

◮ x , y , z ∈ S



Greatest Lower Bound (glb)

◮ x , y , z ∈ S

◮ glb of x and y is an element g such that



Greatest Lower Bound (glb)

◮ x , y , z ∈ S

◮ glb of x and y is an element g such that
◮ g ≤ x



Greatest Lower Bound (glb)

◮ x , y , z ∈ S

◮ glb of x and y is an element g such that
◮ g ≤ x
◮ g ≤ y



Greatest Lower Bound (glb)

◮ x , y , z ∈ S

◮ glb of x and y is an element g such that
◮ g ≤ x
◮ g ≤ y
◮ if z ≤ x and z ≤ y then z ≤ g



QQ

◮ x , y ∈ S



QQ

◮ x , y ∈ S

◮ (S,
∧
) is a semilattice



QQ

◮ x , y ∈ S

◮ (S,
∧
) is a semilattice

◮ Prove that x
∧

y is glb of x and y .



Semi(?)-Lattice

◮ We can define symmetric concepts



Semi(?)-Lattice

◮ We can define symmetric concepts
◮ ≥ order



Semi(?)-Lattice

◮ We can define symmetric concepts
◮ ≥ order
◮ Join operation (

∨
)



Semi(?)-Lattice

◮ We can define symmetric concepts
◮ ≥ order
◮ Join operation (

∨
)

◮ Least upper bound (lub)



Lattice

◮ (S,
∧
,
∨
) is a lattice



Lattice

◮ (S,
∧
,
∨
) is a lattice

iff for each non-empty finite subset Y of S



Lattice

◮ (S,
∧
,
∨
) is a lattice

iff for each non-empty finite subset Y of S

both
∧

Y and
∨

Y are in S.



Lattice

◮ (S,
∧
,
∨
) is a lattice

iff for each non-empty finite subset Y of S

both
∧

Y and
∨

Y are in S.

◮ (S,
∧
,
∨
) is a complete lattice



Lattice

◮ (S,
∧
,
∨
) is a lattice

iff for each non-empty finite subset Y of S

both
∧

Y and
∨

Y are in S.

◮ (S,
∧
,
∨
) is a complete lattice

iff for each subset Y of S



Lattice

◮ (S,
∧
,
∨
) is a lattice

iff for each non-empty finite subset Y of S

both
∧

Y and
∨

Y are in S.

◮ (S,
∧
,
∨
) is a complete lattice

iff for each subset Y of S

both
∧

Y and
∨

Y are in S.



Lattice

◮ Complete lattice (S,
∧
,
∨
)



Lattice

◮ Complete lattice (S,
∧
,
∨
)

◮ For every pair of elements x and y , both x
∧

y and x
∨

y

should be in S



Lattice

◮ Complete lattice (S,
∧
,
∨
)

◮ For every pair of elements x and y , both x
∧

y and x
∨

y

should be in S
◮ Example : Powerset lattice



Lattice

◮ Complete lattice (S,
∧
,
∨
)

◮ For every pair of elements x and y , both x
∧

y and x
∨

y

should be in S
◮ Example : Powerset lattice

◮ We will talk about meet semi-lattices only



Lattice

◮ Complete lattice (S,
∧
,
∨
)

◮ For every pair of elements x and y , both x
∧

y and x
∨

y

should be in S
◮ Example : Powerset lattice

◮ We will talk about meet semi-lattices only
◮ except for some proofs



Lattice Diagram

◮ Graphical view of posets



Lattice Diagram

◮ Graphical view of posets

◮ Elements = the nodes in the graph



Lattice Diagram

◮ Graphical view of posets

◮ Elements = the nodes in the graph

◮ If x < y then x is depicted lower than y in the diagram



Lattice Diagram

◮ Graphical view of posets

◮ Elements = the nodes in the graph

◮ If x < y then x is depicted lower than y in the diagram

◮ An edge between x and y (x lower than y ) implies x < y

and no other element z exists s.t. x < z < y (i.e.

transitivity is excluded)



Lattice Diagram

∅

{c}

{b}

{a}{b, c}

{a, b}

{c, a}

{a, b, c}

Lattice Diagram for ({a, b, c},∩)



Lattice Diagram

∅

{c}

{b}

{a}{b, c}

{a, b}

{c, a}

{a, b, c}

Lattice Diagram for ({a, b, c},∩)

x
∧

y = the highest z for which there are paths downward from

both x and y .



What if there is a large number of elements?

◮ Combine simple lattices to build a complex one



What if there is a large number of elements?

◮ Combine simple lattices to build a complex one

◮ Superset lattices for singletons

∅ ∅ ∅

{a} {b} {c}



What if there is a large number of elements?

◮ Combine simple lattices to build a complex one

◮ Superset lattices for singletons

∅ ∅ ∅

{a} {b} {c}

◮ Combine to form superset lattice for multi-element sets



Product Lattice

◮ (S,
∧
) is product lattice of (S1,

∧
1) and (S2,

∧
2) when



Product Lattice

◮ (S,
∧
) is product lattice of (S1,

∧
1) and (S2,

∧
2) when

S = S1 × S2 (domain)



Product Lattice

◮ (S,
∧
) is product lattice of (S1,

∧
1) and (S2,

∧
2) when

S = S1 × S2 (domain)
For (a1,a2) and (b1,b2) ∈ S



Product Lattice

◮ (S,
∧
) is product lattice of (S1,

∧
1) and (S2,

∧
2) when

S = S1 × S2 (domain)
For (a1,a2) and (b1,b2) ∈ S

(a1, a2)
∧
(b1, b2) = (a1

∧
1 b1, a2

∧
2 b2)



Product Lattice

◮ (S,
∧
) is product lattice of (S1,

∧
1) and (S2,

∧
2) when

S = S1 × S2 (domain)
For (a1,a2) and (b1,b2) ∈ S

(a1, a2)
∧
(b1, b2) = (a1

∧
1 b1, a2

∧
2 b2)

(a1, a2) ≤ (b1, b2) iff a1 ≤1 b1 and a2 ≤2 b2



Product Lattice

◮ (S,
∧
) is product lattice of (S1,

∧
1) and (S2,

∧
2) when

S = S1 × S2 (domain)
For (a1,a2) and (b1,b2) ∈ S

(a1, a2)
∧
(b1, b2) = (a1

∧
1 b1, a2

∧
2 b2)

(a1, a2) ≤ (b1, b2) iff a1 ≤1 b1 and a2 ≤2 b2

≤ relation follows from
∧



Product Lattice

◮ (S,
∧
) is product lattice of (S1,

∧
1) and (S2,

∧
2) when

S = S1 × S2 (domain)
For (a1,a2) and (b1,b2) ∈ S

(a1, a2)
∧
(b1, b2) = (a1

∧
1 b1, a2

∧
2 b2)

(a1, a2) ≤ (b1, b2) iff a1 ≤1 b1 and a2 ≤2 b2

≤ relation follows from
∧

◮ Product of lattices is associative



Product Lattice

◮ (S,
∧
) is product lattice of (S1,

∧
1) and (S2,

∧
2) when

S = S1 × S2 (domain)
For (a1,a2) and (b1,b2) ∈ S

(a1, a2)
∧
(b1, b2) = (a1

∧
1 b1, a2

∧
2 b2)

(a1, a2) ≤ (b1, b2) iff a1 ≤1 b1 and a2 ≤2 b2

≤ relation follows from
∧

◮ Product of lattices is associative

◮ Can be generalized to product of N > 2 lattices



Product Lattice

◮ (S,
∧
) is product lattice of (S1,

∧
1) and (S2,

∧
2) when

S = S1 × S2 (domain)
For (a1,a2) and (b1,b2) ∈ S

(a1, a2)
∧
(b1, b2) = (a1

∧
1 b1, a2

∧
2 b2)

(a1, a2) ≤ (b1, b2) iff a1 ≤1 b1 and a2 ≤2 b2

≤ relation follows from
∧

◮ Product of lattices is associative

◮ Can be generalized to product of N > 2 lattices

◮ (S1,
∧

1), (S2,
∧

2), . . . are called component lattices



Product Lattice: Example

∅ ∅ ∅

{a} {b} {c}

× ×



Product Lattice: Example

∅ ∅ ∅

{a} {b} {c}

× × =

∅

{c}

{b}

{a}{b, c}

{a, b}

{c, a}

{a, b, c}



Height of a Semilattice

◮ Length of a chain x1 ≤ x2 ≤ . . . ≤ xk is k



Height of a Semilattice

◮ Length of a chain x1 ≤ x2 ≤ . . . ≤ xk is k

◮ Let K = max over lengths of all the chains in a semilattice



Height of a Semilattice

◮ Length of a chain x1 ≤ x2 ≤ . . . ≤ xk is k

◮ Let K = max over lengths of all the chains in a semilattice

◮ Height of the semilattice = K − 1



Data Flow Analysis Framework

◮ (D,S,

∧
,F )



Data Flow Analysis Framework

◮ (D,S,

∧
,F )

◮ D: direction – Forward or Backward



Data Flow Analysis Framework

◮ (D,S,

∧
,F )

◮ D: direction – Forward or Backward

◮ (S,
∧
): Semilattice – Domain and meet



Data Flow Analysis Framework

◮ (D,S,

∧
,F )

◮ D: direction – Forward or Backward

◮ (S,
∧
): Semilattice – Domain and meet

◮ F : family of transfer functions of type S → S (see next

slide)



Transfer Functions

◮ F : family of functions S → S. Must Include



Transfer Functions

◮ F : family of functions S → S. Must Include
◮ functions suitable for the boundary conditions (constant

transfer functions for Entry and Exit nodes)



Transfer Functions

◮ F : family of functions S → S. Must Include
◮ functions suitable for the boundary conditions (constant

transfer functions for Entry and Exit nodes)
◮ Identity function I:

I(x) = x ∀x ∈ S



Transfer Functions

◮ F : family of functions S → S. Must Include
◮ functions suitable for the boundary conditions (constant

transfer functions for Entry and Exit nodes)
◮ Identity function I:

I(x) = x ∀x ∈ S

◮ Closed under composition:

f ,g ∈ F , f ◦ g ⇒ h ∈ F



Monotonic Functions

◮ (S,≤): a poset



Monotonic Functions

◮ (S,≤): a poset

◮ f : S → S is monotonic iff

∀x , y ∈ S x ≤ y ⇒ f (x) ≤ f (y)



Monotonic Functions

◮ (S,≤): a poset

◮ f : S → S is monotonic iff

∀x , y ∈ S x ≤ y ⇒ f (x) ≤ f (y)

◮ Composition preserves monotonicity



Monotonic Functions

◮ (S,≤): a poset

◮ f : S → S is monotonic iff

∀x , y ∈ S x ≤ y ⇒ f (x) ≤ f (y)

◮ Composition preserves monotonicity
◮ If f and g are monotonic, h = f ◦ g, then h is also monotonic



Monotone Frameworks

◮ (D,S,
∧
,F ) is monotone if the family F consists of

monotonic functions only

f ∈ F , ∀x , y ∈ S x ≤ y ⇒ f (x) ≤ f (y)



Monotone Frameworks

◮ (D,S,
∧
,F ) is monotone if the family F consists of

monotonic functions only

f ∈ F , ∀x , y ∈ S x ≤ y ⇒ f (x) ≤ f (y)

◮ Equivalently

f ∈ F , ∀x , y ∈ S f (x
∧

y) ≤ f (x)
∧

f (y)



Monotone Frameworks

◮ (D,S,
∧
,F ) is monotone if the family F consists of

monotonic functions only

f ∈ F , ∀x , y ∈ S x ≤ y ⇒ f (x) ≤ f (y)

◮ Equivalently

f ∈ F , ∀x , y ∈ S f (x
∧

y) ≤ f (x)
∧

f (y)

◮ Proof? : QQ in class



Knaster-Tarski Fixed Point Theorem

◮ Let f be a monotonic function on a complete lattice
(S,

∧
,
∨
). Define

Then,



Knaster-Tarski Fixed Point Theorem

◮ Let f be a monotonic function on a complete lattice
(S,

∧
,
∨
). Define

◮ red(f ) = {v | v ∈ S, f (v) ≤ v}, pre fix-points

Then,



Knaster-Tarski Fixed Point Theorem

◮ Let f be a monotonic function on a complete lattice
(S,

∧
,
∨
). Define

◮ red(f ) = {v | v ∈ S, f (v) ≤ v}, pre fix-points
◮ ext(f ) = {v | v ∈ S, f (v) ≥ v}, post fix-points

Then,



Knaster-Tarski Fixed Point Theorem

◮ Let f be a monotonic function on a complete lattice
(S,

∧
,
∨
). Define

◮ red(f ) = {v | v ∈ S, f (v) ≤ v}, pre fix-points
◮ ext(f ) = {v | v ∈ S, f (v) ≥ v}, post fix-points
◮ fix(f ) = {v | v ∈ S, f (v) = v}, fix-points

Then,



Knaster-Tarski Fixed Point Theorem

◮ Let f be a monotonic function on a complete lattice
(S,

∧
,
∨
). Define

◮ red(f ) = {v | v ∈ S, f (v) ≤ v}, pre fix-points
◮ ext(f ) = {v | v ∈ S, f (v) ≥ v}, post fix-points
◮ fix(f ) = {v | v ∈ S, f (v) = v}, fix-points

Then,
◮

∧
red(f ) ∈ fix(f ). Further,

∧
red(f ) =

∧
fix(f )



Knaster-Tarski Fixed Point Theorem

◮ Let f be a monotonic function on a complete lattice
(S,

∧
,
∨
). Define

◮ red(f ) = {v | v ∈ S, f (v) ≤ v}, pre fix-points
◮ ext(f ) = {v | v ∈ S, f (v) ≥ v}, post fix-points
◮ fix(f ) = {v | v ∈ S, f (v) = v}, fix-points

Then,
◮

∧
red(f ) ∈ fix(f ). Further,

∧
red(f ) =

∧
fix(f )

◮
∨

ext(f ) ∈ fix(f ). Further,
∨

ext(f ) =
∨

fix(f )



Knaster-Tarski Fixed Point Theorem

◮ Let f be a monotonic function on a complete lattice
(S,

∧
,
∨
). Define

◮ red(f ) = {v | v ∈ S, f (v) ≤ v}, pre fix-points
◮ ext(f ) = {v | v ∈ S, f (v) ≥ v}, post fix-points
◮ fix(f ) = {v | v ∈ S, f (v) = v}, fix-points

Then,
◮

∧
red(f ) ∈ fix(f ). Further,

∧
red(f ) =

∧
fix(f )

◮
∨

ext(f ) ∈ fix(f ). Further,
∨

ext(f ) =
∨

fix(f )
◮ fix(f ) is a complete lattice



Application of Fixed Point Theorem

◮ f : S → S is a monotonic function



Application of Fixed Point Theorem

◮ f : S → S is a monotonic function

◮ (S,
∧
) is a finite height semilattice



Application of Fixed Point Theorem

◮ f : S → S is a monotonic function

◮ (S,
∧
) is a finite height semilattice

◮ ⊤ is the top element of (S,
∧
)



Application of Fixed Point Theorem

◮ f : S → S is a monotonic function

◮ (S,
∧
) is a finite height semilattice

◮ ⊤ is the top element of (S,
∧
)

◮ Notation: f 0(x) = x , f i+1(x) = f (f i(x)), ∀i ≥ 0



Application of Fixed Point Theorem

◮ f : S → S is a monotonic function

◮ (S,
∧
) is a finite height semilattice

◮ ⊤ is the top element of (S,
∧
)

◮ Notation: f 0(x) = x , f i+1(x) = f (f i(x)), ∀i ≥ 0

◮ The greatest fixed point of f is

f k (⊤), where f k+1(⊤) = f k (⊤)



Fixed Point Algorithm

// monotonic function f on a meet semilattice



Fixed Point Algorithm

// monotonic function f on a meet semilattice

x := ⊤;



Fixed Point Algorithm

// monotonic function f on a meet semilattice

x := ⊤;
while (x 6= f(x)) x := f(x);



Fixed Point Algorithm

// monotonic function f on a meet semilattice

x := ⊤;
while (x 6= f(x)) x := f(x);

return x;


