CS738: Advanced Compiler Optimizations

Data Flow Analysis

Amey Karkare
karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur

karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738

Agenda

» Intraprocedural Data Flow Analysis: Classical Examples

Agenda

» Intraprocedural Data Flow Analysis: Classical Examples
> Last lecture: Reaching Definitions

Agenda

» Intraprocedural Data Flow Analysis: Classical Examples

> Last lecture: Reaching Definitions
»> Today: Available Expressions

Agenda

» Intraprocedural Data Flow Analysis: Classical Examples
> Last lecture: Reaching Definitions
»> Today: Available Expressions
» Discussion about the similarities/differences

Available Expressions Analysis

> An expression e is available at a point p if

Available Expressions Analysis

> An expression e is available at a point p if

» Every path from the Entry to p has at least one evaluation
of e

Available Expressions Analysis

> An expression e is available at a point p if
» Every path from the Entry to p has at least one evaluation

of e
» There is no assignment to any component variable of e

after the last evaluation of e prior to p

Available Expressions Analysis

> An expression e is available at a point p if
» Every path from the Entry to p has at least one evaluation

of e
» There is no assignment to any component variable of e

after the last evaluation of e prior to p
» Expression e is generated by its evaluation

Available Expressions Analysis

> An expression e is available at a point p if

» Every path from the Entry to p has at least one evaluation
of e

» There is no assignment to any component variable of e
after the last evaluation of e prior to p

» Expression e is generated by its evaluation

» Expression e is killed by assignment to its component
variables

AVE Analysis of a Structured Program

IN(s1)

OUT(s)

AVE Analysis of a Structured Program

IN(s1)

OUT(s)

OUT(s1) = IN(s1) — KILL(s1) U GEN(s1)

AVE Analysis of a Structured Program

IN(s1)

OUT(s)

OUT(s1) = IN(s1) — KILL(s) UGEN(s1)
GEN(sy) =

AVE Analysis of a Structured Program

IN(s1)

OUT(s)

OUT(s;) = IN(sy) — KILL(s1) U GEN(s;)
GEN(sy) = {y+2z}

AVE Analysis of a Structured Program

IN(s1)

OUT(s)

OUT(s1) = IN(s1)— KILL(s) UGEN(s;)
GEN(s;) = {y+2z}
KILL(s;) =

g

AVE Analysis of a Structured Program

IN(s1)

OUT(s)

OUT(sy) = IN(sy) —KILL(s1) UGEN(sy)
GEN(sy) = {y+2z}
KILL(sy) = Ex
where E,: set of all expression having x as a component

g
~—

AVE Analysis of a Structured Program

IN(s1)

OUT(s)

OUT(sy) = IN(sy) —KILL(s1) UGEN(sy)
GEN(s1) = {y+2z}
KILL(sy) = Ex
where E,: set of all expression having x as a component
This may not work in general - WHY?

g
~—

AVE Analysis of a Structured Program

|N(S1)
OUT(s1)
OUT(s;) = IN(s;)— KILL(s1)UGEN(s;)
GEN(s;) = {x+2z}
KILL(s;) = Eq

Incorrectly marks x + z as available after sy

AVE Analysis of a Structured Program

|N(S1)
OUT(s1)
OUT(s;) = IN(s;)— KILL(s1)UGEN(s;)
GEN(s;) = {x+2z}
KILL(s;) = Eq

Incorrectly marks x + z as available after sy
GEN(s;) = 0 for this case

AVE Analysis of a Structured Program

IN(s+)

OUT(s)

OUT(s1) = IN(s1)—KILL(s1) UGEN(sy)
GEN(sy) = {rhs|Ihsis not part of rhs}
K|LL(S1) = Elhs

AVE Analysis of a Structured Program

AVE Analysis of a Structured Program

AVE Analysis of a Structured Program
IN(S)
©

louT(s)

GEN(S) = GEN(s;) — KILL(s5) U GEN(sy)

AVE Analysis of a Structured Program
IN(S)
©

louT(s)

GEN(S) = GEN(s;) — KILL(s5) U GEN(sy)
KILL(S) =

AVE Analysis of a Structured Program
IN(S)
©

louT(s)

GEN(S) = GEN(s;) — KILL(s5) U GEN(sy)
KILL(S) = KILL(s) — GEN(s2) UKILL(sp)

AVE Analysis of a Structured Program
IN(S)
©

louT(s)

GEN(S) = GEN(s;) — KILL(s2) UGEN(s»)
KILL(S) = KILL(s;) — GEN(sp) UKILL(sy)
|N(S1) =

AVE Analysis of a Structured Program
IN(S)
©

louT(s)

GEN(S) = GEN(s;) — KILL(s5) U GEN(sy)
KILL(S) = KILL(s) — GEN(sp) UKILL(S»)
IN(sy) = IN(S)

AVE Analysis of a Structured Program
IN(S)
©

©

louT(s)
GEN(S) = GEN(s;) — KILL(s2) UGEN(s»)
KILL(S) = KILL(s) — GEN(sp) UKILL(S»)
IN(s1) = IN(S)
)

|N(32

AVE Analysis of a Structured Program
IN(S)
©

©

louT(s)
GEN(S) = GEN(s;) — KILL(s2) UGEN(s»)
KILL(S) = KILL(s) — GEN(sp) UKILL(S»)
IN(s1) = IN(S)
IN(s;) = OUT(sy)

AVE Analysis of a Structured Program
IN(S)
©

©

louT(s)
GEN(S) = GEN(s;) — KILL(s2) UGEN(s»)
KILL(S) = KILL(s) — GEN(sp) UKILL(S»)
IN(s1) = IN(S)
IN(s;) = OUT(sy)
)

AVE Analysis of a Structured Program
IN(S)
©

©

louT(s)
GEN(S) = GEN(s;) — KILL(s2) UGEN(s»)
KILL(S) = KILL(s1)—GEN(sg)UKILL(sg)
IN(sy) = IN(S)
IN(s;) = OUT(sy)
OUT(S) = OUT(s)

AVE Analysis of a Structured Program

AVE Analysis of a Structured Program

AVE Analysis of a Structured Program

AVE Analysis of a Structured Program

GEN(S) = GEN(s;) N GEN(s)
KILL(S) =

AVE Analysis of a Structured Program

GEN(S) = GEN(s;) N GEN(sy)
KILL(S) = KILL(s;) UKILL(sp)

AVE Analysis of a Structured Program

GEN(S) — GEN(s;) N GEN(sp)
KILL(S) = KILL(s) UKILL(S,)
IN(s1) =

AVE Analysis of a Structured Program

GEN(S) = GEN(s;) N GEN(sy)
KILL(S) = KILL(s;) UKILL(sp)
IN(s;) = IN(s;) = IN(S)

AVE Analysis of a Structured Program

|IN
e‘e
OUT
GEN(S) = GEN(s)N GEN(sy)
KILL(S) = KILL(s;) UKILL(sp)
IN(s;) = IN(ss) = IN(S)
)

AVE Analysis of a Structured Program

|IN
e‘e
OUT
GEN(S) = GEN(s)N GEN(sy)
KILL(S) = KILL(s;) UKILL(sp)
IN(s;) = IN(ss) = IN(S)
)

— OUT(s{) N OUT(sy)

AVE Analysis of a Structured Program

AVE Analysis of a Structured Program

AVE Analysis of a Structured Program

GEN(S) = GEN(sy)

AVE Analysis of a Structured Program

GEN(S) = GEN(sy)
KILL(S) =

AVE Analysis of a Structured Program

GEN(S) = GEN(sy)
KILL(S) = KILL(s)

AVE Analysis of a Structured Program

GEN(S)
KILL(S)
OUT(S)

AVE Analysis of a Structured Program

GEN(S) = GEN(sy)
KILL(S) = KILL(s)
OUT(S) = OUT(s)

AVE Analysis of a Structured Program

IN(S)
S
o)
OUT(S)
GEN(S) = GEN(sy)
KILL(S) = KILL(s)
OUT(S) = OUT(s;)
)

AVE Analysis of a Structured Program

IN(S)
S
o)
OUT(S)
GEN(S) = GEN(sy)
KILL(S) = KILL(s)
OUT(S) = OUT(s;)
IN(s;) = IN(S)NGEN(sy)

AVE Analysis of a Structured Program

IN(S)
S
o)
OUT(S)
GEN(S) = GEN(sy)
KILL(S) = KILL(s)
OUT(S) = OUT(s;)
IN(s;) = IN(S)NGEN(s{)?
IN(s;) = IN(S)NOUT(s;)??

AVE Analysis of a Structured Program

IN(S) = {x+y}

'g Sy : nop

OUT(S) =7

AVE Analysis of a Structured Program

IN(S) = {x + ¥}

S
'g Sy : nop

OUT(S) =7

Is x +y available at OUT(S)?

AVE Analysis is Approximate

» Assumption: All paths are feaS|bIe.

AVE Analysis is Approximate

IN(S)

(52)

S

louT(s)

» Assumption: All paths are feasible.

» Example:

if (true)
else

sl;
s2;

AVE Analysis is Approximate

IN(S)

(52)

S

louT(s)

» Assumption: All paths are feasible.

» Example:

if (true)
else

sl;
s2;

AVE Analysis is Approximate

IN(S)

S
OWSS,

louT(s)
» Assumption: All paths are feasible.
» Example:

if (true) sl1;
else s2;

Fact Computed Actual
GEN(S) = GEN(sy)NGEN(s;) < GEN(sy)

AVE Analysis is Approximate

IN(S)
S
louT(s)
» Assumption: All paths are feasible.
» Example:
if (true) sl1;
else s2;
Fact Computed Actual
GEN(S) = GEN(sy)NGEN(s;) < GEN(sy)
KILL(S) = KILL(s1) UKILL(s2) 2 KILL(sq)

AVE Analysis is Approximate

» Thus,

AVE Analysis is Approximate

» Thus,
true GEN(S) 2 analysis GEN(S)

AVE Analysis is Approximate

» Thus,

true GEN(S) 2 analysis GEN(S)
true KILL(S) C analysis KILL(S)

AVE Analysis is Approximate

IN(S)

S
OWSS,

louT(s)

» Thus,

true GEN(S) 2 analysis GEN(S)
true KILL(S) C analysis KILL(S)

» Fewer expressions marked available than actually do!

AVE Analysis is Approximate

IN(S)

OWSS,

louT(s)

S

» Thus,

true GEN(S) 2 analysis GEN(S)

true KILL(S) C analysis KILL(S)
» Fewer expressions marked available than actually do!
» Later we shall see that this is SAFE approximation

AVE Analysis is Approximate

IN(S)

OWSS,

louT(s)

S

» Thus,
true GEN(S) 2 analysis GEN(S)
true KILL(S) C analysis KILL(S)
» Fewer expressions marked available than actually do!
» Later we shall see that this is SAFE approximation
» prevents optimizations

AVE Analysis is Approximate

IN(S)

OWSS,

louT(s)

S

» Thus,

true GEN(S) 2 analysis GEN(S)

true KILL(S) C analysis KILL(S)
» Fewer expressions marked available than actually do!
» Later we shall see that this is SAFE approximation

» prevents optimizations
> but NO wrong optimization

AVE for Basic Blocks

» Expr e is available at the start of a block if

INBB)= (] OUT(P)
PcPRED(B)

AVE for Basic Blocks

» Expr e is available at the start of a block if
> It is available at the end of all predecessors
INBB)= (] OUT(P)
PePRED(B)

AVE for Basic Blocks

» Expr e is available at the start of a block if
> It is available at the end of all predecessors

INBB)= (] OUT(P)
PcPRED(B)

> Expr e is available at the end of a block if

OUT(B) = IN(B) — KILL(B) U GEN(B)

AVE for Basic Blocks

» Expr e is available at the start of a block if
> It is available at the end of all predecessors

INBB)= (] OUT(P)
PcPRED(B)

> Expr e is available at the end of a block if
> Either it is generated by the block

OUT(B) = IN(B) — KILL(B) U GEN(B)

AVE for Basic Blocks

» Expr e is available at the start of a block if
> It is available at the end of all predecessors
INBB)= (] OUT(P)
PcPRED(B)
> Expr e is available at the end of a block if

» Either it is generated by the block
» Or it is available at the start of the block and not killed by
the block

OUT(B) = IN(B) — KILL(B) U GEN(B)

Solving AvE Constraints

» KILL & GEN known for each BB.

Solving AvE Constraints

» KILL & GEN known for each BB.

» A program with N BBs has 2N equations with 2N
unknowns.

Solving AvE Constraints

» KILL & GEN known for each BB.

» A program with N BBs has 2N equations with 2N
unknowns.

» Solution is possible.

Solving AvE Constraints

» KILL & GEN known for each BB.
» A program with N BBs has 2N equations with 2N
unknowns.

» Solution is possible.
> [terative approach (on the next slide).

for each block B {

for each block B {
ouT(B)=U; U =

“universal” set of all exprs

for each block B {
OUT(B) =U; U = “universal” set of all exprs

}
OUT(Entry) =0; // remember reaching defs?

for each block B {
OUT(B) =U; U = “universal” set of all exprs
}
OUT(Entry) =0; // remember reaching defs?
change = true;
while (change) ({
change = false;

for each block B {
OUT(B) =U; U = “universal” set of all exprs
}
OUT(Entry) =0; // remember reaching defs?
change = true;
while (change) ({
change = false;
for each block B other than Entry {

for each block B {

OUT(B) =U; U = “universal” set of all exprs
}
OUT(Entry) =0; // remember reaching defs?
change = true;
while (change) ({

change = false;

for each block B other than Entry {

IN(B) = nPePRED(B) OUT(P);

for each block B {
OUT(B) =U; U = “universal” set of all exprs
}
OUT(Entry) =0; // remember reaching defs?
change = true;
while (change) {
change = false;
for each block B other than Entry {
IN(B) = nPePRED(B) OUT(P);
oldout = OUT(B);
OUT(B) = IN(B) — KILL(B) U GEN(B);

for each block B {
OUT(B) =U; U = “universal” set of all exprs
}
OUT(Entry) =0; // remember reaching defs?
change = true;
while (change) {
change false;
for each block B other than Entry {
IN(B) = nPePRED(B) OUT(P);
oldout = OUT(B);
OUT(B) = IN(B) — KILL(B) U GEN(B);
if (OUT(B) #01dout) then {
change = true;

}

Some Issues

» What is U/ — the set of all expressions?

Some Issues

» What is U/ — the set of all expressions?
» How to compute it efficiently?

Some Issues

» What is U/ — the set of all expressions?
» How to compute it efficiently?
» Why Entry block is initialized differently?

Available Expressions: Example

Available Expressions: Example

BB | GEN [KILL |
B1
B2
B3
B4

U= {a*b, c+d}

Available Expressions: Example

|BB| GEN |KILL |
B1 | {a*b, c+d}
B2
B3
B4

U= {a*b, c+d}

Available Expressions: Example

[BB| GEN |[KILL |
B [{ab, c+d} | {}
B2
B3
B4

U= {a*b, c+d}

Available Expressions: Example

[BB] GEN |[KILL |

B1 | {a'b, c+d} | {}
B2 | {c+d]

B3

B4

U= {a*b, c+d}

Available Expressions: Example

[BB] GEN |[KILL |
B [{ab, c+d} | {}
B2 | {c+d} |{a'b}
B3
B4

U= {a*b, c+d}

Available Expressions: Example

[BB| GEN | KILL |
B1 | {a'b, c+d} | {}
B2 | {c+d] |{a'b}
B3| {a'b)

B4

U= {a*b, c+d}

Available Expressions: Example

__ENTRY |

[BB] GEN |[KILL |
B1 | {a'b, c+d} | {}
B2 | {c+d] |{a'b}
B3| {a'b) 0
B4

U= {a*b, c+d}

Available Expressions: Example

__ENTRY |
i [BB| GEN |KILL |
N BT | (@b, c+d} | (]
2 B2 | {c+d] |{a'b}
asat B3 | {a'b} 0
W _—] B4 | (a'D)
1\ ...=:’b
Zas St . U= {a*b, c+d}

Available Expressions: Example

ENTRY |
w2 [BB| GEN | KILL |
71 B1 | {a'b, c+d} | {}
B2 | {c+d] | {a'b}
B3 {a*b} {

B4 {a*b} {c+d}

B2 et
a=a*b
B3
vz
L===a’h
B4 T

~ U= {a*b, c+d}

c=a*b |

e

v
EXIT

Available Expressions: Example

Pass# Pt [Bi | B2 | B3 | B4
Init [IN || -

OUT|| U [Z] [Z] [Z

Available Expressions: Example

ENTRY
- [Pass# Pt [Bi | B2 | B3 | B4

‘ .=a'b | Init | IN - - - -
OUT|| U u u u
1 IN [| 0 a*b, c+d c+d
c+d
OUT]|| a*b, c+d a*b, a*b
c+d c+d

Available Expressions: Example

 ENTRY |
- l [Pass# Pt || Bi B2 B3 B4
.=a'b Init | IN - - - -
=cHd ouT|[U u u u
) ! } 1 [INJ 0 a*Db, c+d c+d
c+d
OUT]|| a*b, c+d a*b, a*b
c+d c+d
2 |[INJ[© a*b c+d c+d
OUT]|| ab, c+d a*b, a*b
c+d c+d

Available Expressions: Example

ENTRY
- l [Pass# Pt || Bi B2 B3 B4
.=a'b Init | IN - - - -
=c+d OUT|| U u u u
I 1 [IN [0 a*b, c+d c+d
A2
c+d
OUT]|| a*b, c+d a*b, a*b
c+d c+d
2 |[INJ[© a*b c+d c+d
OUT]|| ab, c+d a*b, a*b
c+d c+d
3 |[INJ[0 a*b c+d c+d
OUT]|| a’b, c+d a*b, a*b
c+d c+d

Available Expressions: Bitvectors

a bit for each expression:

Available Expressions: Bitvectors

_ENTRY |
B1 v a bit for each expression:
.=a'b
‘ Pass# Pt [[B1[B2[B3[B4]
Init | IN -l -] -] -

OUT([11 [11][11]11
1 IN [[00]11|01]|01
OUT|[11[01[11[10
2 |IN ||00|10|01]|01
OUT|[|[11]01[11[10
3 |IN ||00|10|01]|01
OUT|[11[01[11[10

Available Expressions: Bitvectors

» Set-theoretic definitions:

IN(B)= ()| OUT(P)
PcPRED(B)

OUT(B) = IN(B) — KILL(B) U GEN(B)

Available Expressions: Bitvectors

» Set-theoretic definitions:

IN(B)= ()| OUT(P)
PcPRED(B)

OUT(B) = IN(B) — KILL(B) U GEN(B)
» Bitvector definitions:

INB)=/\ OUT(P)
PcPRED(B)

OUT(B) = IN(B) A —KILL(B) v GEN(B)

Available Expressions: Bitvectors

» Set-theoretic definitions:

IN(B)= ()| OUT(P)
PcPRED(B)

OUT(B) = IN(B) — KILL(B) U GEN(B)
» Bitvector definitions:

INB)=/\ OUT(P)
PcPRED(B)

OUT(B) = IN(B) A —KILL(B) v GEN(B)

> Bitwise Vv, A, - operators

Available Expressions: Application

» Common subexpression elimination in a block B

Available Expressions: Application

» Common subexpression elimination in a block B
> Expression e available at the entry of B

Available Expressions: Application

» Common subexpression elimination in a block B

> Expression e available at the entry of B
> eis also computed at a point pin B

Available Expressions: Application

» Common subexpression elimination in a block B
> Expression e available at the entry of B
» eis also computed at a point pin B
» Components of e are not modified from entry of Bto p

Available Expressions: Application

» Common subexpression elimination in a block B

> Expression e available at the entry of B
> eis also computed at a point pin B
» Components of e are not modified from entry of Bto p

> eis “upward exposed” in B

Available Expressions: Application

» Common subexpression elimination in a block B

> Expression e available at the entry of B
> eis also computed at a point pin B
» Components of e are not modified from entry of Bto p

> eis “upward exposed” in B
» Expressions generated in B are “downward exposed”

Comparison of RD and AvE

» Some vs. All path property

Comparison of RD and AvE

» Some vs. All path property
» Meet operator: U vs. N

Comparison of RD and AvE

» Some vs. All path property
» Meet operator: U vs. N
» Initialization of Entry:

Comparison of RD and AvE

» Some vs. All path property

» Meet operator: U vs. N

» Initialization of Entry:

» Initialization of other BBs:) vs. U

Comparison of RD and AvE

» Some vs. All path property

» Meet operator: U vs. N

» Initialization of Entry:

> Initialization of other BBs: () vs. U
» Safety: “More” RD vs. “Fewer” AvE

AVE: alternate Initialization

» What if we Initialize:

OUT(B) = 0,VB including Entry

AVE: alternate Initialization

» What if we Initialize:
OUT(B) = 0, VB including Entry

» Would we find “extra” available expressions?

AVE: alternate Initialization

» What if we Initialize:
OUT(B) = 0, VB including Entry

» Would we find “extra” available expressions?
» More opportunity to optimize?

AVE: alternate Initialization

» What if we Initialize:
OUT(B) = 0, VB including Entry

» Would we find “extra” available expressions?
» More opportunity to optimize?
» OR would we miss some expressions that are available?

AVE: alternate Initialization

» What if we Initialize:
OUT(B) = 0, VB including Entry

» Would we find “extra” available expressions?
» More opportunity to optimize?

» OR would we miss some expressions that are available?
» Loose on opportunity to optimize?

Live Variables

> A variable x is live at a point p if

Live Variables

> A variable x is live at a point p if

» There is a point p’ along some path in the flow graph
starting at p to the Exit

Live Variables

> A variable x is live at a point p if
» There is a point p’ along some path in the flow graph
starting at p to the Exit
» Value of x could be used at p’

Live Variables

» A variable x is live at a point p if
» There is a point p’ along some path in the flow graph
starting at p to the Exit
» Value of x could be used at p’
» There is no definition of x between p and p’ along this path

Live Variables

» A variable x is live at a point p if
» There is a point p’ along some path in the flow graph
starting at p to the Exit
» Value of x could be used at p’
» There is no definition of x between p and p’ along this path

» Otherwise x is dead at p

Live Variables: GEN

» GEN(B): Set of variables whose values may be used in
block B prior to any definition

» Also called “use(B)”

> “upward exposed use” of a variable in B

Live Variables: KILL

> KILL(B): Set of variables defined in block B prior to any
use

» Also called “def(B)”
> “upward exposed definition” of a variable in B

Live Variables: Equations

» Set-theoretic definitions:

out(B)= |J IN(S)
SesSuUcCc(B)

IN(B) = OUT(B) — KILL(B) U GEN(B)

Live Variables: Equations

» Set-theoretic definitions:

out(B)= |J IN(S)
SeSUCG(B)

IN(B) = OUT(B) — KILL(B) U GEN(B)
» Bitvector definitions:

ouT(B)= \/ OUT(S)
SeSUCC(B)

IN(B) = OUT(B) A —~KILL(B) v GEN(B)

Live Variables: Equations

» Set-theoretic definitions:

out(B)= |J IN(S)
SeSUCG(B)

IN(B) = OUT(B) — KILL(B) U GEN(B)
» Bitvector definitions:

ouT(B)= \/ OUT(S)
SeSUCC(B)

IN(B) = OUT(B) A —~KILL(B) v GEN(B)

> Bitwise Vv, A, - operators

Very Busy Expressions

» Expression e is very busy at a point p if

Very Busy Expressions

» Expression e is very busy at a point p if
» Every path from p to Exit has at least one evaluation of e

Very Busy Expressions

» Expression e is very busy at a point p if
» Every path from p to Exit has at least one evaluation of e
> On every path, there is no assignment to any component
variable of e before the first evaluation of e following p

Very Busy Expressions

» Expression e is very busy at a point p if
» Every path from p to Exit has at least one evaluation of e
> On every path, there is no assignment to any component
variable of e before the first evaluation of e following p

» Also called Anticipable expression

QQ

Expression e is very busy at a point p if
» Every path from p to Exit has at least one evaluation of e
and there is no assignment to any component variable of e
before the first evaluation of e following p on these paths.
Set up the data flow equations for Very Busy Expressions
(VBE). You have to give equations for GEN, KILL, IN, and
OUT.

Think of an optimization/transformation that uses VBE
analysis. Briefly describe it (2-3 lines only)

Will your optimization be safe if we replace “Every’ by
“Some” in the definition of VBE?

