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» Intraprocedural Data Flow Analysis: Classical Examples
> Last lecture: Reaching Definitions
»> Today: Available Expressions
» Discussion about the similarities/differences
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Available Expressions Analysis

> An expression e is available at a point p if

» Every path from the Entry to p has at least one evaluation
of e

» There is no assignment to any component variable of e
after the last evaluation of e prior to p

» Expression e is generated by its evaluation

» Expression e is killed by assignment to its component
variables
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|N(S1)
OUT(s1)
OUT(s;) = IN(s;)— KILL(s1)UGEN(s;)
GEN(s;) = {x+2z}
KILL(s;) = Eq

Incorrectly marks x + z as available after sy
GEN(s;) = 0 for this case



AVE Analysis of a Structured Program

IN(s+)

OUT(s)

OUT(s1) = IN(s1)—KILL(s1) UGEN(sy)
GEN(sy) = {rhs|Ihsis not part of rhs}
K|LL(S1) = Elhs
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AVE Analysis of a Structured Program
IN(S)
©

©

louT(s)
GEN(S) = GEN(s;) — KILL(s2) UGEN(s»)
KILL(S) = KILL(s1)—GEN(sg)UKILL(sg)
IN(sy) = IN(S)
IN(s;) = OUT(sy)
OUT(S) = OUT(s)
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|IN
e‘e
OUT
GEN(S) = GEN(s)N GEN(sy)
KILL(S) = KILL(s;) UKILL(sp)
IN(s;) = IN(ss) = IN(S)
)

— OUT(s{) N OUT(sy)
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AVE Analysis of a Structured Program

IN(S)
S
o)
OUT(S)
GEN(S) = GEN(sy)
KILL(S) = KILL(s)
OUT(S) = OUT(s;)
IN(s;) = IN(S)NGEN(s{)?
IN(s;) = IN(S)NOUT(s;)??
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AVE Analysis of a Structured Program

IN(S) = {x + ¥}

S
'g Sy : nop

OUT(S) =7

Is x +y available at OUT(S)?
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AVE Analysis is Approximate

IN(S)
S
louT(s)
» Assumption: All paths are feasible.
» Example:
if (true) sl1;
else s2;
Fact Computed Actual
GEN(S) = GEN(sy)NGEN(s;) < GEN(sy)
KILL(S) = KILL(s1) UKILL(s2) 2 KILL(sq)
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AVE Analysis is Approximate

IN(S)

OWSS,

louT(s)

S

» Thus,

true GEN(S) 2 analysis GEN(S)

true KILL(S) C analysis KILL(S)
» Fewer expressions marked available than actually do!
» Later we shall see that this is SAFE approximation

» prevents optimizations
> but NO wrong optimization
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AVE for Basic Blocks

» Expr e is available at the start of a block if
> It is available at the end of all predecessors
INBB)= (] OUT(P)
PcPRED(B)
> Expr e is available at the end of a block if

» Either it is generated by the block
» Or it is available at the start of the block and not killed by
the block

OUT(B) = IN(B) — KILL(B) U GEN(B)
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Solving AvE Constraints

» KILL & GEN known for each BB.
» A program with N BBs has 2N equations with 2N
unknowns.

» Solution is possible.
> [terative approach (on the next slide).
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for each block B {

OUT(B) =U; U = “universal” set of all exprs
}
OUT(Entry) =0; // remember reaching defs?
change = true;
while (change) ({

change = false;

for each block B other than Entry {

IN(B) = nPePRED(B) OUT(P);



for each block B {
OUT(B) =U; U = “universal” set of all exprs
}
OUT(Entry) =0; // remember reaching defs?
change = true;
while (change) {
change = false;
for each block B other than Entry {
IN(B) = nPePRED(B) OUT(P);
oldout = OUT(B);
OUT(B) = IN(B) — KILL(B) U GEN(B);



for each block B {
OUT(B) =U; U = “universal” set of all exprs
}
OUT(Entry) =0; // remember reaching defs?
change = true;
while (change) {
change false;
for each block B other than Entry {
IN(B) = nPePRED(B) OUT(P);
oldout = OUT(B);
OUT(B) = IN(B) — KILL(B) U GEN(B);
if (OUT(B) #01dout) then {
change = true;

}
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Some Issues

» What is U/ — the set of all expressions?
» How to compute it efficiently?
» Why Entry block is initialized differently?
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__ENTRY |
i [BB| GEN |KILL |
N BT | (@b, c+d} | (]
2 B2 | {c+d] |{a'b}
asat B3 | {a'b} 0
W _— ] B4 | (a'D)
1\ ...=:’b
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Available Expressions: Example

ENTRY |
w2 [BB| GEN | KILL |
71 B1 | {a'b, c+d} | {}
B2 | {c+d] | {a'b}
B3 {a*b} {

B4 {a*b} {c+d}

B2 et
a=a*b
B3
vz
L===a’h
B4 T

~ U= {a*b, c+d}

c=a*b |

e

v
EXIT
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Available Expressions: Example

ENTRY
- l [Pass# Pt || Bi B2 B3 B4
.=a'b Init | IN - - - -
=c+d OUT|| U u u u
I 1 [IN [0 a*b, c+d c+d
A2
c+d
OUT]|| a*b, c+d a*b, a*b
c+d c+d
2 |[INJ[© a*b c+d c+d
OUT]|| ab, c+d a*b, a*b
c+d c+d
3 |[INJ[ 0 a*b c+d c+d
OUT]|| a’b, c+d a*b, a*b
c+d c+d
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Available Expressions: Bitvectors

_ENTRY |
B1 v a bit for each expression:
.=a'b
‘ Pass# Pt [[B1[B2[B3[B4]
Init | IN -l -] -] -

OUT([ 11 [11][11]11
1 IN [[00]11|01]|01
OUT|[11[01[11[10
2 |IN ||00|10|01]|01
OUT|[|[11]01[11[10
3 |IN ||00|10|01]|01
OUT|[11[01[11[10
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Available Expressions: Bitvectors

» Set-theoretic definitions:

IN(B)= ()| OUT(P)
PcPRED(B)

OUT(B) = IN(B) — KILL(B) U GEN(B)
» Bitvector definitions:

INB)=/\ OUT(P)
PcPRED(B)

OUT(B) = IN(B) A —KILL(B) v GEN(B)

> Bitwise Vv, A, - operators
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Available Expressions: Application

» Common subexpression elimination in a block B

> Expression e available at the entry of B
> eis also computed at a point pin B
» Components of e are not modified from entry of Bto p

> eis “upward exposed” in B
» Expressions generated in B are “downward exposed”
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Comparison of RD and AvE

» Some vs. All path property

» Meet operator: U vs. N

» Initialization of Entry:

> Initialization of other BBs: () vs. U
» Safety: “More” RD vs. “Fewer” AvE
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AVE: alternate Initialization

» What if we Initialize:
OUT(B) = 0, VB including Entry

» Would we find “extra” available expressions?
» More opportunity to optimize?

» OR would we miss some expressions that are available?
» Loose on opportunity to optimize?
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Live Variables

» A variable x is live at a point p if
» There is a point p’ along some path in the flow graph
starting at p to the Exit
» Value of x could be used at p’
» There is no definition of x between p and p’ along this path

» Otherwise x is dead at p



Live Variables: GEN

» GEN(B): Set of variables whose values may be used in
block B prior to any definition

» Also called “use(B)”

> “upward exposed use” of a variable in B



Live Variables: KILL

> KILL(B): Set of variables defined in block B prior to any
use

» Also called “def(B)”
> “upward exposed definition” of a variable in B
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Live Variables: Equations

» Set-theoretic definitions:

out(B)= |J IN(S)
SeSUCG(B)

IN(B) = OUT(B) — KILL(B) U GEN(B)
» Bitvector definitions:

ouT(B)= \/ OUT(S)
SeSUCC(B)

IN(B) = OUT(B) A —~KILL(B) v GEN(B)

> Bitwise Vv, A, - operators
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Very Busy Expressions

» Expression e is very busy at a point p if
» Every path from p to Exit has at least one evaluation of e
> On every path, there is no assignment to any component
variable of e before the first evaluation of e following p

» Also called Anticipable expression



QQ

Expression e is very busy at a point p if
» Every path from p to Exit has at least one evaluation of e
and there is no assignment to any component variable of e
before the first evaluation of e following p on these paths.
Set up the data flow equations for Very Busy Expressions
(VBE). You have to give equations for GEN, KILL, IN, and
OUT.

Think of an optimization/transformation that uses VBE
analysis. Briefly describe it (2-3 lines only)

Will your optimization be safe if we replace “Every’ by
“Some” in the definition of VBE?



