
CS738: Advanced Compiler Optimizations

Data Flow Analysis

Amey Karkare
karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur

Agenda

◮ Intraprocedural Data Flow Analysis: Classical Examples
◮ Last lecture: Reaching Definitions
◮ Today: Available Expressions
◮ Discussion about the similarities/differences

Available Expressions Analysis

◮ An expression e is available at a point p if
◮ Every path from the Entry to p has at least one evaluation

of e
◮ There is no assignment to any component variable of e

after the last evaluation of e prior to p
◮ Expression e is generated by its evaluation
◮ Expression e is killed by assignment to its component

variables

AvE Analysis of a Structured Program

d : x = y + z s1

IN(s1)

OUT(s1)

OUT(s1) = IN(s1)− KILL(s1) ∪ GEN(s1)

GEN(s1) = {y + z}
KILL(s1) = Ex

where Ex : set of all expression having x as a component

This may not work in general – WHY?



AvE Analysis of a Structured Program

x = x + z s1

IN(s1)

OUT(s1)

OUT(s1) = IN(s1)− KILL(s1) ∪ GEN(s1)

GEN(s1) = {x + z}
KILL(s1) = Ex

Incorrectly marks x + z as available after s1

GEN(s1) = ∅ for this case

AvE Analysis of a Structured Program

lhs = rhs s1

IN(s1)

OUT(s1)

OUT(s1) = IN(s1)− KILL(s1) ∪ GEN(s1)

GEN(s1) = {rhs | lhs is not part of rhs}
KILL(s1) = Elhs

AvE Analysis of a Structured Program

s1

s2

S
IN(S)

OUT(S)

GEN(S) = GEN(s1)− KILL(s2) ∪ GEN(s2)

KILL(S) = KILL(s1)− GEN(s2) ∪ KILL(s2)

IN(s1) = IN(S)

IN(s2) = OUT(s1)

OUT(S) = OUT(s2)

AvE Analysis of a Structured Program

s1 s2

S
IN(S)

OUT(S)

GEN(S) = GEN(s1) ∩ GEN(s2)

KILL(S) = KILL(s1) ∪ KILL(s2)

IN(s1) = IN(s2) = IN(S)

OUT(S) = OUT(s1) ∩ OUT(s2)



AvE Analysis of a Structured Program

s1

S
IN(S)

OUT(S)

GEN(S) = GEN(s1)

KILL(S) = KILL(s1)

OUT(S) = OUT(s1)

IN(s1) = IN(S) ∩ GEN(s1) ?

IN(s1) = IN(S) ∩ OUT(s1)??

AvE Analysis of a Structured Program

s1 : nop

S
IN(S) = {x + y}

OUT(S) =?

Is x + y available at OUT(S)?

AvE Analysis is Approximate

s1 s2

S
IN(S)

OUT(S)

◮ Assumption: All paths are feasible.
◮ Example:

if (true) s1;
else s2;

Fact Computed Actual
GEN(S) = GEN(s1) ∩ GEN(s2) ⊆ GEN(s1)
KILL(S) = KILL(s1) ∪ KILL(s2) ⊇ KILL(s1)

AvE Analysis is Approximate

s1 s2

S
IN(S)

OUT(S)

◮ Thus,
true GEN(S) ⊇ analysis GEN(S)
true KILL(S) ⊆ analysis KILL(S)

◮ Fewer expressions marked available than actually do!
◮ Later we shall see that this is SAFE approximation

◮ prevents optimizations
◮ but NO wrong optimization



AvE for Basic Blocks

◮ Expr e is available at the start of a block if
◮ It is available at the end of all predecessors

IN(B) =
⋂

P∈PRED(B)

OUT(P)

◮ Expr e is available at the end of a block if
◮ Either it is generated by the block
◮ Or it is available at the start of the block and not killed by

the block

OUT(B) = IN(B)− KILL(B) ∪ GEN(B)

Solving AvE Constraints

◮ KILL & GEN known for each BB.
◮ A program with N BBs has 2N equations with 2N

unknowns.
◮ Solution is possible.
◮ Iterative approach (on the next slide).

for each block B {
OUT(B) = U ; U = “universal” set of all exprs

}
OUT(Entry) = ∅; // remember reaching defs?
change = true;
while (change) {

change = false;
for each block B other than Entry {

IN(B) =
⋂

P∈PRED(B) OUT(P);

oldOut = OUT(B);
OUT(B) = IN(B)− KILL(B) ∪ GEN(B);
if (OUT(B) 6=oldOut) then {

change = true;
}

}
}

Some Issues

◮ What is U – the set of all expressions?
◮ How to compute it efficiently?
◮ Why Entry block is initialized differently?



Available Expressions: Example

BB GEN KILL
B1 {a*b, c+d} { }
B2 {c+d} {a*b}
B3 {a*b} {}
B4 {a*b} {c+d}

U= {a*b, c+d}

Available Expressions: Example

Pass# Pt B1 B2 B3 B4
Init IN - - - -

OUT U U U U
1 IN ∅ a*b,

c+d
c+d c+d

OUT a*b,
c+d

c+d a*b,
c+d

a*b

2 IN ∅ a*b c+d c+d
OUT a*b,

c+d
c+d a*b,

c+d
a*b

3 IN ∅ a*b c+d c+d
OUT a*b,

c+d
c+d a*b,

c+d
a*b

Available Expressions: Bitvectors

a bit for each expression:
a*b c+d

Pass# Pt B1 B2 B3 B4
Init IN - - - -

OUT 11 11 11 11
1 IN 00 11 01 01

OUT 11 01 11 10
2 IN 00 10 01 01

OUT 11 01 11 10
3 IN 00 10 01 01

OUT 11 01 11 10

Available Expressions: Bitvectors

◮ Set-theoretic definitions:

IN(B) =
⋂

P∈PRED(B)

OUT(P)

OUT(B) = IN(B)− KILL(B) ∪ GEN(B)

◮ Bitvector definitions:

IN(B) =
∧

P∈PRED(B)

OUT(P)

OUT(B) = IN(B) ∧ ¬KILL(B) ∨ GEN(B)

◮ Bitwise ∨,∧,¬ operators



Available Expressions: Application

◮ Common subexpression elimination in a block B
◮ Expression e available at the entry of B
◮ e is also computed at a point p in B
◮ Components of e are not modified from entry of B to p

◮ e is “upward exposed” in B
◮ Expressions generated in B are “downward exposed”

Comparison of RD and AvE

◮ Some vs. All path property
◮ Meet operator: ∪ vs. ∩
◮ Initialization of Entry: ∅
◮ Initialization of other BBs: ∅ vs. U
◮ Safety: “More” RD vs. “Fewer” AvE

AvE: alternate Initialization

◮ What if we Initialize:

OUT(B) = ∅, ∀B including Entry

◮ Would we find “extra” available expressions?
◮ More opportunity to optimize?

◮ OR would we miss some expressions that are available?
◮ Loose on opportunity to optimize?

Live Variables

◮ A variable x is live at a point p if
◮ There is a point p′ along some path in the flow graph

starting at p to the Exit
◮ Value of x could be used at p′

◮ There is no definition of x between p and p′ along this path
◮ Otherwise x is dead at p



Live Variables: GEN

◮ GEN(B): Set of variables whose values may be used in
block B prior to any definition
◮ Also called “use(B)”

◮ “upward exposed use” of a variable in B

Live Variables: KILL

◮ KILL(B): Set of variables defined in block B prior to any
use
◮ Also called “def(B)”

◮ “upward exposed definition” of a variable in B

Live Variables: Equations

◮ Set-theoretic definitions:

OUT(B) =
⋃

S∈SUCC(B)

IN(S)

IN(B) = OUT(B)− KILL(B) ∪ GEN(B)

◮ Bitvector definitions:

OUT(B) =
∨

S∈SUCC(B)

OUT(S)

IN(B) = OUT(B) ∧ ¬KILL(B) ∨ GEN(B)

◮ Bitwise ∨,∧,¬ operators

Very Busy Expressions

◮ Expression e is very busy at a point p if
◮ Every path from p to Exit has at least one evaluation of e
◮ On every path, there is no assignment to any component

variable of e before the first evaluation of e following p
◮ Also called Anticipable expression



QQ

◮ Expression e is very busy at a point p if
◮ Every path from p to Exit has at least one evaluation of e

and there is no assignment to any component variable of e
before the first evaluation of e following p on these paths.

◮ Set up the data flow equations for Very Busy Expressions
(VBE). You have to give equations for GEN, KILL, IN, and
OUT.

◮ Think of an optimization/transformation that uses VBE
analysis. Briefly describe it (2-3 lines only)

◮ Will your optimization be safe if we replace “Every” by
“Some” in the definition of VBE?


