CS738: Advanced Compiler Optimizations

Data Flow Analysis

Amey Karkare
karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur

Agenda

» Intraprocedural Data Flow Analysis: Classical Examples

> Last lecture: Reaching Definitions
> Today: Available Expressions
» Discussion about the similarities/differences

Available Expressions Analysis

» An expression e is available at a point p if

»> Every path from the Entry to p has at least one evaluation
of e

» There is no assignment to any component variable of e
after the last evaluation of e prior to p

» Expression e is generated by its evaluation

» Expression e is killed by assignment to its component
variables

AvE Analysis of a Structured Program

IN(s1)
OUT(s1)
OUT(si) = IN(s1)— KILL(s1) UGEN(s:)
GEN(sy) = {y+2z}
KILL(s;) = Ex

where E,: set of all expression having x as a component

This may not work in general - WHY?

AvE Analysis of a Structured Program

OUT(sy) =
GEN(S1) =
KILL(s{) =

GEN(S1) =

IN(s1)

OUT(sy)

IN(s1) — KILL(s1) U GEN(sy)
{x+ 2z}

Ex

Incorrectly marks x + z as available after s;
() for this case

AvE Analysis of a Structured Program

OUT(sy) =
GEN(S1) =
KILL(S) =

IN(s+)

OUT(s)

IN(s1) — KILL(s1) U GEN(s¢)
{rhs | Ihs is not part of rhs}
Eins

AvE Analysis of a Structured Program

GEN(S)
KILL(S)
IN(s1)
IN(s2)
OUT(S)

31) — K”_L(Sg) U GEN(SQ)
31) - GEN(SZ) @) K|LL(82)

=
—
)
—_~ o~ — =

AvE Analysis of a Structured Program

||N(S)

GEN(S)
KILL(S)

IN(s1)
OUT(S)

S
(1) (&)
lout(s)
= GEN(s1) N GEN(s,)
KILL(s1) U KILL(sp)
= IN(s2) = IN(S)
— OUT(s1) NOUT(s,)

AvE Analysis of a Structured Program

IN(S)
S
(T
OUT(S)
GEN(S) = GEN(s;)
KILL(S) KILL(s¢)
OUT(S) = OUT(sy)
IN(s4) IN(S) N GEN(s¢) ?
IN(s1) = IN(S)NOUT(s;)??

AvE Analysis of a Structured Program

IN(S) = {x+y}
S
(g S1: nop
OUT(S) =?

Is x + y available at OUT(S)?

AVE Analysis is Approximate

|IN(S)
S
louT(s)
» Assumption: All paths are feasible.
» Example:
if (true) sl;
else s2;
Fact Computed Actual
GEN(S) = GEN(s1) NGEN(sp) C
KILL(S) = KILL(sy)UKILL(s2) 2

GEN(S1)
KILL(s)

AVE Analysis is Approximate

IN(S)

S
OWS O,

lout(s)

» Thus,

true GEN(S) D analysis GEN(S)
true KILL(S) C analysis KILL(S)

» Fewer expressions marked available than actually do!
» Later we shall see that this is SAFE approximation

> prevents optimizations
> but NO wrong optimization

AVE for Basic Blocks

» Expr e is available at the start of a block if
> It is available at the end of all predecessors
IN(B)= () OUT(P)
PcPRED(B)

» Expr e is available at the end of a block if

» Either it is generated by the block
» Or it is available at the start of the block and not killed by
the block

OUT(B) = IN(B) — KILL(B) U GEN(B)

Solving AvE Constraints

» KILL & GEN known for each BB.
» A program with N BBs has 2N equations with 2N
unknowns.

> Solution is possible.
> lterative approach (on the next slide).

for each block B {
OUT(B) =U; U = “universal” set of all exprs
}
OUT(Entry) =0; // remember reaching defs?
change = true;
while (change) {
change = false;
for each block B other than Entry {
IN(B) = Npeprens) OUT(P);
oldout = OUT(B);
OUT(B) = IN(B) — KILL(B) U GEN(B);
if (OUT(B) #01dout) then {
change = true;

}

Some Issues

» What is U — the set of all expressions?
» How to compute it efficiently?
» Why Entry block is initialized differently?

Available Expressions: Example

_ENTRY |
B1],—
o 2b o [BB] GEN [KILL |
71 B1 | {ab, c+d} | {}
2 e B2 | {c+d] | {a'b}
e — B3 | {a'b) 0
- 7 B4 | {a'b] | {c+d}
‘;:E’T,‘
i - U= {a*b, c+d}
E)\(/IT |

Available Expressions: Example

_ ENTRY |
= l— Pass# Pt | BI | B2 [B3 | B4
‘ .=a'b ‘ Init [IN][- B - B
.mod | oUuT|[U 7] 7] U
'ﬂﬁ 1 [IN |0 a*b, c+d c+d
a2 | c+d
;-::jg OUT|| a'b, c+d a'b, a’b
L) c+d c+d
B 7 2 [IN [0 ab ctd | c+d
Pl OUT|| a*b, c+d a*b, a’b
o Sarhi c+d c+d
Y 3 |IN 1] a*b c+d c+d
c=ab OUT || a*b, c+d a*b, a’b
h i c+d c+d
"
EXIT |

__ENTRY |
s X a bit for each expression:
Cos— [@]o+d
e —C
N Pass# Pt |[B1]B2[B3[B4]
T Mt [INJ[-]-1-]-
a=a’b OUT|[11 [11[11] 11

1 IN |[00|11]01 |01

Ba 7 OUT[[11[07[11[10
e 2 [N |[00]10]07 01

_— . OUT[[77 (07 11|10
x 7 3 [IN |[00[1007 01
cca | OUT[[77 (07 11|10
v
EXIT |

Available Expressions: Bitvectors

» Set-theoretic definitions:

IN(BB)= () OUT(P)
PcPRED(B)

OUT(B) = IN(B) — KILL(B) UGEN(B)
» Bitvector definitions:

INBB)= /\ OUT(P)
PcPRED(B)

OUT(B) = IN(B) A —KILL(B) v GEN(B)

» Bitwise Vv, A, - operators

Available Expressions: Application

» Common subexpression elimination in a block B

> Expression e available at the entry of B
> eis also computed at a point pin B
» Components of e are not modified from entry of Bto p

» eis “‘upward exposed” in B
» Expressions generated in B are “downward exposed”

Comparison of RD and AvE

Some vs. All path property

Meet operator: U vs. N
Initialization of Entry: ()
Initialization of other BBs: () vs. U
Safety: “More” RD vs. “Fewer” AvE

vVvYyyVvyy

AVE: alternate Initialization

» What if we Initialize:
OUT(B) = 0, VB including Entry

» Would we find “extra” available expressions?
» More opportunity to optimize?

» OR would we miss some expressions that are available?
> Loose on opportunity to optimize?

Live Variables

» A variable x is live at a point p if

» There is a point p’ along some path in the flow graph
starting at p to the Exit

» Value of x could be used at p’

» There is no definition of x between p and p’ along this path

» Otherwise x is dead at p

Live Variables: GEN

» GEN(B): Set of variables whose values may be used in
block B prior to any definition

> Also called “use(B)”
» “upward exposed use” of a variable in B

Live Variables: KILL

» KILL(B): Set of variables defined in block B prior to any
use

> Also called “def(B)”
» “upward exposed definition” of a variable in B

Live Variables: Equations

» Set-theoretic definitions:

outB)= |J IN(S)
SeSUCC(B)

IN(B) = OUT(B) — KILL(B) U GEN(B)
» Bitvector definitions:

out(B)= \/ OuUT(S)
SeSUCC(B)

IN(B) = OUT(B) A —KILL(B) v GEN(B)

» Bitwise Vv, A, - operators

Very Busy Expressions

» Expression e is very busy at a point p if
» Every path from p to Exit has at least one evaluation of e
> On every path, there is no assignment to any component
variable of e before the first evaluation of e following p

» Also called Anticipable expression

QQ

Expression e is very busy at a point p if
» Every path from p to Exit has at least one evaluation of e
and there is no assignment to any component variable of e
before the first evaluation of e following p on these paths.
Set up the data flow equations for Very Busy Expressions
(VBE). You have to give equations for GEN, KILL, IN, and
OUT.

Think of an optimization/transformation that uses VBE
analysis. Briefly describe it (2-3 lines only)

Will your optimization be safe if we replace “Every” by
“Some” in the definition of VBE?

