
CS738: Advanced Compiler Optimizations

Data Flow Analysis

Amey Karkare
karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur

Agenda

◮ Static analysis and compile-time optimizations
◮ For the next few lectures
◮ Intraprocedural Data Flow Analysis

◮ Classical Examples
◮ Components

Assumptions

◮ Intraprocedural: Restricted to a single function
◮ Input in 3-address format
◮ Unless otherwise specified

3-address Code Format

◮ Assignments
x = y op z
x = op y
x = y

◮ Jump/control transfer
goto L
if x relop y goto L

◮ Statements can have label(s)
L: . . .

◮ Arrays, Pointers and Functions to be added later when
needed



Data Flow Analysis

◮ Class of techniques to derive information about flow of
data
◮ along program execution paths

◮ Used to answer questions such as:
◮ whether two identical expressions evaluate to same value

◮ used in common subexpression elimination
◮ whether the result of an assignment is used later

◮ used by dead code elimination

Data Flow Abstraction

◮ Basic Blocks (BB)
◮ sequence of 3-address code stmts
◮ single entry at the first statement
◮ single exit at the last statement
◮ Typically we use “maximal” basic block (maximal sequence

of such instructions)

Identifying Basic Blocks

◮ Leader: The first statement of a basic block
◮ The first instruction of the program (procedure)
◮ Target of a branch (conditional and unconditional goto)
◮ Instruction immediately following a branch

Special Basic Blocks

◮ Two special BBs are added to simplify the analysis
◮ empty (?) blocks!

◮ Entry: The first block to be executed for the procedure
analyzed

◮ Exit: The last block to be executed



Data Flow Abstraction

◮ Control Flow Graph (CFG)
◮ A rooted directed graph G = (N,E)
◮ N = set of BBs

◮ including Entry, Exit
◮ E = set of edges

CFG Edges

◮ Edge B1 → B2 ∈ E if control can transfer from B1 to B2
◮ Fall through
◮ Through jump (goto)
◮ Edge from Entry to (all?) real first BB(s)
◮ Edge to Exit from all last BBs

◮ BBs containing return
◮ Last real BB

Data Flow Abstraction: Control Flow Graph

◮ Graph representation of paths that program may exercise
during execution

◮ Typically one graph per procedure
◮ Graphs for separate procedures have to be

combined/connected for interprocedural analysis
◮ Later!
◮ Single procedure, single flow graph for now.

Data Flow Abstraction: Program Points

◮ Input state/Output state for Stmt
◮ Program point before/after a stmt
◮ Denoted IN[s] and OUT[s]
◮ Within a basic block:

◮ Program point after a stmt is same as the program point
before the next stmt



Data Flow Abstraction: Program Points

◮ Input state/Output state for BBs
◮ Program point before/after a bb
◮ Denoted IN[B] and OUT[B]
◮ For B1 and B2:

◮ if there is an edge from B1 to B2 in CFG, then the program
point after the last stmt of B1 may be followed immediately by
the program point before the first stmt of B2.

Data Flow Abstraction: Execution Paths

◮ An execution path is of the form

p1, p2, p3, . . . , pn

where pi → pi+1 are adjacent program points in the CFG.
◮ Infinite number of possible execution paths in practical

programs.
◮ Paths having no finite upper bound on the length.
◮ Need to summarize the information at a program point with

a finite set of facts.

Data Flow Schema

◮ Data flow values associated with each program point
◮ Summarize all possible states at that point

◮ Domain: set of all possible data flow values
◮ Different domains for different analyses/optimizations

Data Flow Problem

◮ Constraints on data flow values
◮ Transfer constraints
◮ Control flow constraints

◮ Aim: To find a solution to the constraints
◮ Multiple solutions possible
◮ Trivial solutions, . . . , Exact solutions

◮ We typically compute approximate solution
◮ Close to the exact solution (as close as possible!)
◮ Why not exact solution?



Data Flow Constraints: Transfer Constraints

◮ Transfer functions
◮ relationship between the data flow values before and after a

stmt
◮ forward functions: Compute facts after a statement s from

the facts available before s.
◮ General form:

OUT[s] = fs(IN[s])

◮ backward functions: Compute facts before a statement s
from the facts available after s.
◮ General form:

IN[s] = fs(OUT[s])

◮ fs depends on the statement and the analysis

Data Flow Constraints: Control Flow Constraints

◮ Relationship between the data flow values of two points
that are related by program execution semantics

◮ For a basic block having n statements:

IN[si+1] = OUT[si ], i = 1, 2, . . . , n − 1

◮ IN[s1], OUT[sn] to come later

Data Flow Constraints: Notations

◮ PRED (B): Set of predecessor BBs of block B in CFG
◮ SUCC (B): Set of successor BBs of block B in CFG
◮ f ◦ g : Composition of functions f and g
◮ ⊕

: An abstract operator denoting some way of combining
facts present in a set .

Data Flow Constraints: Basic Blocks
◮ Forward

◮ For B consisting of s1, s2, . . . , sn

fB = fsn ◦ . . . ◦ fs2 ◦ fs1

OUT[B] = fB(IN[B])

◮ Control flow constraints

IN[B] =
⊕

P∈PRED(B)

OUT[P]

◮ Backward
fB = fs1 ◦ fs2 ◦ . . . ◦ fsn

IN[B] = fB(OUT [B])

OUT[B] =
⊕

S∈SUCC(B)

IN[S]



Data Flow Equations

◮ Typical Equation

OUT[s] = IN[s]− kill[s] ∪ gen[s]

gen(s): information generated
kill(s): information killed

◮ Example:
a = b*c // generates expression b * c
c = 5 // kills expression b*c
d = b*c // is b*c redundant here?

Example Data Flow Analysis

◮ Reaching Definitions Analysis
◮ Definition of a variable x : x = . . . something . . .

◮ Could be more complex (e.g. through pointers, references,
implicit)

Reaching Definitions Analysis

◮ A definition d reaches a point p if
◮ there is a path from the point immediately following d to p
◮ d is not “killed” along that path
◮ “Kill” means redefinition of the left hand side (x in the earlier

example)

RD Analysis of a Structured Program

d : x = y + z s1

IN(s1)

OUT(s1)

OUT(s1) = IN(s1)− KILL(s1) ∪ GEN(s1)

GEN(s1) = {d}
KILL(s1) = Dx − {d},where Dx : set of all definitions of x
KILL(s1) = Dx? will also work here

but may not work in general



RD Analysis of a Structured Program

s1

s2

S
IN(S)

OUT(S)

GEN(S) = GEN(s1)− KILL(s2) ∪ GEN(s2)

KILL(S) = KILL(s1)− GEN(s2) ∪ KILL(s2)

IN(s1) = IN(S)

IN(s2) = OUT(s1)

OUT(S) = OUT(s2)

RD Analysis of a Structured Program

s1 s2

S
IN(S)

OUT(S)

GEN(S) = GEN(s1) ∪ GEN(s2)

KILL(S) = KILL(s1) ∩ KILL(s2)

IN(s1) = IN(s2) = IN(S)

OUT(S) = OUT(s1) ∪ OUT(s2)

RD Analysis of a Structured Program

s1

S
IN(S)

OUT(S)

GEN(S) = GEN(s1)

KILL(S) = KILL(s1)

OUT(S) = OUT(s1)

IN(s1) = IN(S) ∪ GEN(s1)

RD Analysis is Approximate

s1 s2

S
IN(S)

OUT(S)

◮ Assumption: All paths are feasible.
◮ Example:

if (true) s1;
else s2;

Fact Computed Actual
GEN(S) = GEN(s1) ∪ GEN(s2) ⊇ GEN(s1)
KILL(S) = KILL(s1) ∩ KILL(s2) ⊆ KILL(s1)



RD Analysis is Approximate

s1 s2

S
IN(S)

OUT(S)

◮ Thus,
true GEN(S) ⊆ analysis GEN(S)
true KILL(S) ⊇ analysis KILL(S)

◮ More definitions computed to be reaching than actually do!
◮ Later we shall see that this is SAFE approximation

◮ prevents optimizations
◮ but NO wrong optimization

RD at BB level

◮ A definition d can reach the start of a block from any of its
predecessor
◮ if it reaches the end of some predecessor

IN(B) =
⋃

P∈PRED(B)

OUT(P)

◮ A definition d reaches the end of a block if
◮ either it is generated in the block
◮ or it reaches block and not killed

OUT(B) = IN(B)− KILL(B) ∪ GEN(B)

Solving RD Constraints

◮ KILL & GEN known for each BB.
◮ A program with N BBs has 2N equations with 2N

unknowns.
◮ Solution is possible.
◮ Iterative approach (on the next slide).

for each block B {
OUT(B) = ∅;

}
OUT(Entry) = ∅; // note this for later discussion
change = true;
while (change) {

change = false;
for each block B other than Entry {

IN(B) =
⋃

P∈PRED(B) OUT(P);

oldOut = OUT(B);
OUT(B) = IN(B)− KILL(B) ∪ GEN(B);
if (OUT(B) 6=oldOut) then {

change = true;
}

}
}



Reaching Definitions: Example

BB GEN KILL
B1 {d1, d2, d3} {d4, d5, d6, d7}
B2 {d4, d5} {d1, d2, d7}
B3 {d6} {d3}
B4 {d7} {d1, d4}

Reaching Definitions: Example

Pass# Pt B1 B2 B3 B4
Init IN - - - -

OUT ∅ ∅ ∅ ∅
1 IN ∅ d1, d2,

d3
d3,
d4, d5

d3,
d4,
d5, d6

OUT d1,
d2, d3

d3, d4,
d5

d4,
d5, d6

d3,
d5,
d6, d7

2 IN ∅ d1, d2,
d3, d5,
d6, d7

d3,
d4,
d5, d6

d3,
d4,
d5, d6

OUT d1,
d2, d3

d3, d4,
d5, d6

d4,
d5, d6

d3,
d5,
d6, d7

3 IN ∅ d1, d2,
d3, d5,
d6, d7

d3,
d4,
d5, d6

d3,
d4,
d5, d6

OUT d1,
d2, d3

d3, d4,
d5, d6

d4,
d5, d6

d3,
d5,
d6, d7

Reaching Definitions: Bitvectors

a bit for each definition:
d1 d2 d3 d4 d5 d6 d7

Pass# Pt B1 B2 B3 B4
Init IN - - - -

OUT 0000000 0000000 0000000 0000000
1 IN 0000000 1110000 0011100 0011110

OUT 1110000 0011100 0001110 0010111
2 IN 0000000 1110111 0011110 0011110

OUT 1110000 0011110 0001110 0010111
3 IN 0000000 1110111 0011110 0011110

OUT 1110000 0011110 0001110 0010111

Reaching Definitions: Bitvectors

◮ Set-theoretic definitions:

IN(B) =
⋃

P∈PRED(B)

OUT(P)

OUT(B) = IN(B)− KILL(B) ∪ GEN(B)

◮ Bitvector definitions:

IN(B) =
∨

P∈PRED(B)

OUT(P)

OUT(B) = IN(B) ∧ ¬KILL(B) ∨ GEN(B)

◮ Bitwise ∨,∧,¬ operators



Reaching Definitions: Application

Constant Folding

while changes occur {
forall the stmts S of the program {

foreach operand B of S {
if there is a unique definition of B
that reaches S and is a constant C {

replace B by C in S;
if all operands of S are constant {

replace rhs by eval(rhs);
mark definition as constant;

}}}}}

Reaching Definitions: Application

◮ Recall the approximation in reaching definition analysis
true GEN(S) ⊆ analysis GEN(S)
true KILL(S) ⊇ analysis KILL(S)

◮ Can it cause the application to infer
◮ an expression as a constant when it is has different values

for different executions?
◮ an expression as not a constant when it is a constant for all

executions?
◮ Safety? Profitability?

Reaching Definitions: Summary

◮ GEN(B) =

{
dx

dx in B defines variable x and is not
followed by another definition of x in B

}

◮ KILL(B) = {dx | B contains some definition of x }
◮ IN(B) =

⋃
P∈PRED(B) OUT(P)

◮ OUT(B) = IN(B)− KILL(B) ∪ GEN(B)

◮ meet (
∧

) operator: The operator to combine information
coming along different predecessors is ∪

◮ What about the Entry block?

Reaching Definitions: Summary

◮ Entry block has to be initialized specially:

OUT(Entry) = EntryInfo
EntryInfo = ∅

◮ A better entry info could be:

EntryInfo = {x = undefined | x is a variable}

◮ Why?


