
CS738: Advanced Compiler Optimizations

Overview of Optimizations

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738

Department of CSE, IIT Kanpur

karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738


Recap

◮ Optimizations



Recap

◮ Optimizations
◮ To improve efficiency of generated executable (time, space,

resources, . . . )



Recap

◮ Optimizations
◮ To improve efficiency of generated executable (time, space,

resources, . . . )
◮ Maintain semantic equivalence



Recap

◮ Optimizations
◮ To improve efficiency of generated executable (time, space,

resources, . . . )
◮ Maintain semantic equivalence

◮ Two levels



Recap

◮ Optimizations
◮ To improve efficiency of generated executable (time, space,

resources, . . . )
◮ Maintain semantic equivalence

◮ Two levels
◮ Machine Independent



Recap

◮ Optimizations
◮ To improve efficiency of generated executable (time, space,

resources, . . . )
◮ Maintain semantic equivalence

◮ Two levels
◮ Machine Independent
◮ Machine Dependent



Machine Independent

Code Optimizations



Machine Independent Optimizations

◮ Scope of optimizations



Machine Independent Optimizations

◮ Scope of optimizations
◮ Intraprocedural



Machine Independent Optimizations

◮ Scope of optimizations
◮ Intraprocedural

◮ Local



Machine Independent Optimizations

◮ Scope of optimizations
◮ Intraprocedural

◮ Local
◮ Global



Machine Independent Optimizations

◮ Scope of optimizations
◮ Intraprocedural

◮ Local
◮ Global

◮ Interprocedural



Local Optimizations

◮ Restricted to a basic block



Local Optimizations

◮ Restricted to a basic block

◮ Simplifies the analysis



Local Optimizations

◮ Restricted to a basic block

◮ Simplifies the analysis

◮ Not all optimizations can be applied locally



Local Optimizations

◮ Restricted to a basic block

◮ Simplifies the analysis

◮ Not all optimizations can be applied locally
◮ E.g. Loop optimizations



Local Optimizations

◮ Restricted to a basic block

◮ Simplifies the analysis

◮ Not all optimizations can be applied locally
◮ E.g. Loop optimizations

◮ Gains are also limited



Local Optimizations

◮ Restricted to a basic block

◮ Simplifies the analysis

◮ Not all optimizations can be applied locally
◮ E.g. Loop optimizations

◮ Gains are also limited

◮ Simplify global/interprocedural optimizations



Global Optimizations

◮ Typically restricted within a procedure/function



Global Optimizations

◮ Typically restricted within a procedure/function
◮ Could be restricted to a smaller scope, e.g. a loop



Global Optimizations

◮ Typically restricted within a procedure/function
◮ Could be restricted to a smaller scope, e.g. a loop

◮ Most compiler implement up to global optimizations



Global Optimizations

◮ Typically restricted within a procedure/function
◮ Could be restricted to a smaller scope, e.g. a loop

◮ Most compiler implement up to global optimizations

◮ Well founded theory



Global Optimizations

◮ Typically restricted within a procedure/function
◮ Could be restricted to a smaller scope, e.g. a loop

◮ Most compiler implement up to global optimizations

◮ Well founded theory

◮ Practical gains



Interprocedural Optimizations

◮ Spans multiple procedures, files



Interprocedural Optimizations

◮ Spans multiple procedures, files
◮ In some cases multiple languages!



Interprocedural Optimizations

◮ Spans multiple procedures, files
◮ In some cases multiple languages!

◮ Not as popular as global optimizations



Interprocedural Optimizations

◮ Spans multiple procedures, files
◮ In some cases multiple languages!

◮ Not as popular as global optimizations
◮ No single theory applicable to all scenarios



Interprocedural Optimizations

◮ Spans multiple procedures, files
◮ In some cases multiple languages!

◮ Not as popular as global optimizations
◮ No single theory applicable to all scenarios
◮ Time consuming



A Catalog of

Code Optimizations



Compile-time Evaluation

◮ Move run-time actions to compile-time



Compile-time Evaluation

◮ Move run-time actions to compile-time

◮ Constant Folding

Volume =

4

3
× π × r × r × r



Compile-time Evaluation

◮ Move run-time actions to compile-time

◮ Constant Folding

Volume =

4

3
× π × r × r × r

◮ Compute 4
3
× π at compile-time



Compile-time Evaluation

◮ Move run-time actions to compile-time

◮ Constant Folding

Volume =

4

3
× π × r × r × r

◮ Compute 4
3
× π at compile-time

◮ Applied frequently for linearizing indices of

multidimensional arrays



Compile-time Evaluation

◮ Move run-time actions to compile-time

◮ Constant Folding

Volume =

4

3
× π × r × r × r

◮ Compute 4
3
× π at compile-time

◮ Applied frequently for linearizing indices of

multidimensional arrays

◮ When should we NOT apply it?



Compile-time Evaluation

◮ Constant Propagation
◮ Replace a variable by its “constant” value

i = 5
...

j = i * 4



Compile-time Evaluation

◮ Constant Propagation
◮ Replace a variable by its “constant” value

i = 5
...

j = i * 4

can be replaced by

i = 5
...

j = 5 * 4



Compile-time Evaluation

◮ Constant Propagation
◮ Replace a variable by its “constant” value

i = 5
...

j = i * 4

can be replaced by

i = 5
...

j = 5 * 4

◮ May result in the application of constant folding



Compile-time Evaluation

◮ Constant Propagation
◮ Replace a variable by its “constant” value

i = 5
...

j = i * 4

can be replaced by

i = 5
...

j = 5 * 4

◮ May result in the application of constant folding

◮ When should we NOT apply it?



Common Subexpression Elimination

◮ Reuse a computation if already “available”

x = u + v
...

y = u + v



Common Subexpression Elimination

◮ Reuse a computation if already “available”

x = u + v
...

y = u + v

can be replaced by

t = u + v

x = t
...

y = t



Common Subexpression Elimination

◮ Reuse a computation if already “available”

x = u + v
...

y = u + v

can be replaced by

t = u + v

x = t
...

y = t

◮ How to check if an expression is already available?



Common Subexpression Elimination

◮ Reuse a computation if already “available”

x = u + v
...

y = u + v

can be replaced by

t = u + v

x = t
...

y = t

◮ How to check if an expression is already available?

◮ When should we NOT apply it?



Copy Propagation

◮ Replace (use of) a variable by another variable
◮ If they are guaranteed to have the “same value”

i = k
...

j = i * 4



Copy Propagation

◮ Replace (use of) a variable by another variable
◮ If they are guaranteed to have the “same value”

i = k
...

j = i * 4

can be replaced by

i = k
...

j = k * 4



Copy Propagation

◮ Replace (use of) a variable by another variable
◮ If they are guaranteed to have the “same value”

i = k
...

j = i * 4

can be replaced by

i = k
...

j = k * 4

◮ May result in dead code, common subexpression



Copy Propagation

◮ Replace (use of) a variable by another variable
◮ If they are guaranteed to have the “same value”

i = k
...

j = i * 4

can be replaced by

i = k
...

j = k * 4

◮ May result in dead code, common subexpression

◮ When should we NOT apply it?



Code Movement

◮ Move the code around in a program



Code Movement

◮ Move the code around in a program

◮ Benefits



Code Movement

◮ Move the code around in a program

◮ Benefits
◮ Code size reduction



Code Movement

◮ Move the code around in a program

◮ Benefits
◮ Code size reduction
◮ Reduction in the frequency of execution



Code Movement

◮ Move the code around in a program

◮ Benefits
◮ Code size reduction
◮ Reduction in the frequency of execution

◮ How to find out which code to move?



Code Movement

◮ Code size reduction
◮ Suppose the operator ⊕ results in the generation of a large

number of machine instructions. Then,

if (a < b)

u = x⊕y

else

v = x⊕y



Code Movement

◮ Code size reduction
◮ Suppose the operator ⊕ results in the generation of a large

number of machine instructions. Then,

if (a < b)

u = x⊕y

else

v = x⊕y

can be replaced by

t = x⊕y

if (a < b)

u = t

else

v = t



Code Movement

◮ Code size reduction
◮ Suppose the operator ⊕ results in the generation of a large

number of machine instructions. Then,

if (a < b)

u = x⊕y

else

v = x⊕y

can be replaced by

t = x⊕y

if (a < b)

u = t

else

v = t

◮ When should we NOT apply it?



Code Movement

◮ Execution frequency reduction

if (a < b)

u = . . .

else

v = x * y

w = x * y



Code Movement

◮ Execution frequency reduction

if (a < b)

u = . . .

else

v = x * y

w = x * y

can be replaced by

if (a < b)

u = . . .

t = x * y

else

t = x * y

v = t

w = t



Code Movement

◮ Execution frequency reduction

if (a < b)

u = . . .

else

v = x * y

w = x * y

can be replaced by

if (a < b)

u = . . .

t = x * y

else

t = x * y

v = t

w = t

◮ When should we NOT apply it?



Loop Invariant Code Movement

◮ Move loop invariant code out of the loop

for (. . . ) {

. . .

u = a + b

. . .

}



Loop Invariant Code Movement

◮ Move loop invariant code out of the loop

for (. . . ) {

. . .

u = a + b

. . .

}

can be replaced by

t = a + b

for (. . . ) {

. . .

u = t

. . .

}



Loop Invariant Code Movement

◮ Move loop invariant code out of the loop

for (. . . ) {

. . .

u = a + b

. . .

}

can be replaced by

t = a + b

for (. . . ) {

. . .

u = t

. . .

}

◮ When should we NOT apply it?



Code Movement

Safety of code motion



Code Movement

Safety of code motion

Profitability of code motion



Other Optimizations

◮ Dead code elimination



Other Optimizations

◮ Dead code elimination
◮ Remove unreachable and/or unused code.



Other Optimizations

◮ Dead code elimination
◮ Remove unreachable and/or unused code.
◮ Can we always do it?



Other Optimizations

◮ Dead code elimination
◮ Remove unreachable and/or unused code.
◮ Can we always do it?
◮ Is there ever a need to introduce unused code?



Other Optimizations

◮ Dead code elimination
◮ Remove unreachable and/or unused code.
◮ Can we always do it?
◮ Is there ever a need to introduce unused code?

◮ Strength Reduction



Other Optimizations

◮ Dead code elimination
◮ Remove unreachable and/or unused code.
◮ Can we always do it?
◮ Is there ever a need to introduce unused code?

◮ Strength Reduction
◮ Use of low strength operators in place of high strength

ones.



Other Optimizations

◮ Dead code elimination
◮ Remove unreachable and/or unused code.
◮ Can we always do it?
◮ Is there ever a need to introduce unused code?

◮ Strength Reduction
◮ Use of low strength operators in place of high strength

ones.
◮ i ∗ i instead of i ∗ ∗ 2, pow(i , 2)



Other Optimizations

◮ Dead code elimination
◮ Remove unreachable and/or unused code.
◮ Can we always do it?
◮ Is there ever a need to introduce unused code?

◮ Strength Reduction
◮ Use of low strength operators in place of high strength

ones.
◮ i ∗ i instead of i ∗ ∗ 2, pow(i , 2)
◮ i << 1 instead of i ∗ 2



Other Optimizations

◮ Dead code elimination
◮ Remove unreachable and/or unused code.
◮ Can we always do it?
◮ Is there ever a need to introduce unused code?

◮ Strength Reduction
◮ Use of low strength operators in place of high strength

ones.
◮ i ∗ i instead of i ∗ ∗ 2, pow(i , 2)
◮ i << 1 instead of i ∗ 2

◮ Typically performed for integers only – Why?



Agenda

◮ Static analysis and compile-time optimizations



Agenda

◮ Static analysis and compile-time optimizations

◮ For the next few lectures



Agenda

◮ Static analysis and compile-time optimizations

◮ For the next few lectures

◮ Intraprocedural Data Flow Analysis



Agenda

◮ Static analysis and compile-time optimizations

◮ For the next few lectures

◮ Intraprocedural Data Flow Analysis
◮ Classical Examples



Agenda

◮ Static analysis and compile-time optimizations

◮ For the next few lectures

◮ Intraprocedural Data Flow Analysis
◮ Classical Examples
◮ Components



Assumptions

◮ Intraprocedural: Restricted to a single function



Assumptions

◮ Intraprocedural: Restricted to a single function

◮ Input in 3-address format



Assumptions

◮ Intraprocedural: Restricted to a single function

◮ Input in 3-address format

◮ Unless otherwise specified



3-address Code Format

◮ Assignments



3-address Code Format

◮ Assignments

x = y op z



3-address Code Format

◮ Assignments

x = y op z

x = op y



3-address Code Format

◮ Assignments

x = y op z

x = op y

x = y



3-address Code Format

◮ Assignments

x = y op z

x = op y

x = y

◮ Jump/control transfer



3-address Code Format

◮ Assignments

x = y op z

x = op y

x = y

◮ Jump/control transfer

goto L



3-address Code Format

◮ Assignments

x = y op z

x = op y

x = y

◮ Jump/control transfer

goto L

if x relop y goto L



3-address Code Format

◮ Assignments

x = y op z

x = op y

x = y

◮ Jump/control transfer

goto L

if x relop y goto L

◮ Statements can have label(s)



3-address Code Format

◮ Assignments

x = y op z

x = op y

x = y

◮ Jump/control transfer

goto L

if x relop y goto L

◮ Statements can have label(s)

L: . . .



3-address Code Format

◮ Assignments

x = y op z

x = op y

x = y

◮ Jump/control transfer

goto L

if x relop y goto L

◮ Statements can have label(s)

L: . . .

◮ Arrays, Pointers and Functions to be added later when

needed


