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Local Optimizations

◮ Restricted to a basic block

◮ Simplifies the analysis

◮ Not all optimizations can be applied locally
◮ E.g. Loop optimizations

◮ Gains are also limited

◮ Simplify global/interprocedural optimizations
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◮ Typically restricted within a procedure/function
◮ Could be restricted to a smaller scope, e.g. a loop

◮ Most compiler implement up to global optimizations

◮ Well founded theory

◮ Practical gains
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◮ Spans multiple procedures, files
◮ In some cases multiple languages!

◮ Not as popular as global optimizations
◮ No single theory applicable to all scenarios
◮ Time consuming



A Catalog of

Code Optimizations
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Code Movement

Safety of code motion

Profitability of code motion
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Other Optimizations

◮ Dead code elimination
◮ Remove unreachable and/or unused code.
◮ Can we always do it?
◮ Is there ever a need to introduce unused code?

◮ Strength Reduction
◮ Use of low strength operators in place of high strength

ones.
◮ i ∗ i instead of i ∗ ∗ 2, pow(i , 2)
◮ i << 1 instead of i ∗ 2

◮ Typically performed for integers only – Why?
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◮ Static analysis and compile-time optimizations

◮ For the next few lectures

◮ Intraprocedural Data Flow Analysis
◮ Classical Examples
◮ Components
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◮ Intraprocedural: Restricted to a single function

◮ Input in 3-address format

◮ Unless otherwise specified
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3-address Code Format

◮ Assignments

x = y op z

x = op y

x = y

◮ Jump/control transfer

goto L

if x relop y goto L

◮ Statements can have label(s)

L: . . .

◮ Arrays, Pointers and Functions to be added later when

needed


