
CS738: Advanced Compiler Optimizations

Welcome & Introduction

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738

Department of CSE, IIT Kanpur

karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738

About the Course

◮ Program Analysis

1“Democracy is the government of the people, by the people, for the people” -
Abraham Lincoln

About the Course

◮ Program Analysis

◮ Analysis of a Program, by a Program, for a Program1

1“Democracy is the government of the people, by the people, for the people” -
Abraham Lincoln

About the Course

◮ Program Analysis

◮ Analysis of a Program, by a Program, for a Program1

◮ Of a Program – User Program

1“Democracy is the government of the people, by the people, for the people” -
Abraham Lincoln

About the Course

◮ Program Analysis

◮ Analysis of a Program, by a Program, for a Program1

◮ Of a Program – User Program
◮ By a Program – Analyzer (Compiler, Runtime)

1“Democracy is the government of the people, by the people, for the people” -
Abraham Lincoln

About the Course

◮ Program Analysis

◮ Analysis of a Program, by a Program, for a Program1

◮ Of a Program – User Program
◮ By a Program – Analyzer (Compiler, Runtime)
◮ For a Program – Optimizer, Verifier

1“Democracy is the government of the people, by the people, for the people” -
Abraham Lincoln

About the Course

◮ Program Analysis

◮ Analysis of a Program, by a Program, for a Program1

◮ Of a Program – User Program
◮ By a Program – Analyzer (Compiler, Runtime)
◮ For a Program – Optimizer, Verifier

◮ Transforming user program based on the results of the

analysis

1“Democracy is the government of the people, by the people, for the people” -
Abraham Lincoln

Expectations from You

◮ Basic Compiler Knowledge

Expectations from You

◮ Basic Compiler Knowledge

◮ Write Code

Expectations from You

◮ Basic Compiler Knowledge

◮ Write Code

◮ Willingness to understand and modify large code bases

Expectations from You

◮ Basic Compiler Knowledge

◮ Write Code

◮ Willingness to understand and modify large code bases

◮ Read and present state-of-the-art research papers

Your Expectations

? Share through the Google
Form

Quick Quizzes (QQs)

◮ There will be small quizzes (10-15 min duration) during the

class.

Quick Quizzes (QQs)

◮ There will be small quizzes (10-15 min duration) during the

class.

◮ Always keep a pen and some loose papers handy.

QQ #1 (Ungraded)

◮ What are the various phases of a typical compiler? (5

minutes)

file.c → → → · · · → → file.asm

Assignments

◮ Short assignments to apply the lecture material.

Assignments

◮ Short assignments to apply the lecture material.

◮ Assignments will have some written and some

programming tasks.

Assignments

◮ Short assignments to apply the lecture material.

◮ Assignments will have some written and some

programming tasks.

◮ 4–5 Assignments for the semester

Using Program Analysis

◮ Compiler Code Optimizations

Using Program Analysis

◮ Compiler Code Optimizations

◮ Why are optimizations important?

Using Program Analysis

◮ Compiler Code Optimizations

◮ Why are optimizations important?

◮ Why not write optimized code to begin with?

Using Program Analysis

◮ Compiler Code Optimizations

◮ Why are optimizations important?

◮ Why not write optimized code to begin with?

◮ Where do optimizations fit in the compiler flow?

Code Optimization

◮ Machine Independent

Code Optimization

◮ Machine Independent
◮ Remove redundancy introduced by the Programmer

Code Optimization

◮ Machine Independent
◮ Remove redundancy introduced by the Programmer
◮ Remove redundancy not required by later phases of

compiler

Code Optimization

◮ Machine Independent
◮ Remove redundancy introduced by the Programmer
◮ Remove redundancy not required by later phases of

compiler
◮ Take advantage of algebraic properties of operators

Code Optimization

◮ Machine Independent
◮ Remove redundancy introduced by the Programmer
◮ Remove redundancy not required by later phases of

compiler
◮ Take advantage of algebraic properties of operators

◮ Machine dependent

Code Optimization

◮ Machine Independent
◮ Remove redundancy introduced by the Programmer
◮ Remove redundancy not required by later phases of

compiler
◮ Take advantage of algebraic properties of operators

◮ Machine dependent
◮ Take advantage of the properties of target machine

Code Optimization

◮ Machine Independent
◮ Remove redundancy introduced by the Programmer
◮ Remove redundancy not required by later phases of

compiler
◮ Take advantage of algebraic properties of operators

◮ Machine dependent
◮ Take advantage of the properties of target machine

◮ Optimization must preserve the semantics of the original

program!

Machine Independent

Optimizations

Motivational Example

void quicksort(int m, int n)

/* recursively sort a[m] through a[n] */

{

int i, j;

int v, x;

if(n <= m) return;

i = m-1; j = n; v = a[n];

while (1) {

do i = i+1; while (a[i] < v);

do j = j-1; while (a[j] > v);

if (i > j) break;

x = a[i]; a[i] = a[j]; a[j] = x;

}

x = a[i]; a[i] = a[n]; a[n] = x;

quicksort(m,j); quicksort(i+1,n);

}

Motivational Example

void quicksort(int m, int n)

/* recursively sort a[m] through a[n] */

{

int i, j;

int v, x;

if(n <= m) return;

i = m-1; j = n; v = a[n];

while (1) {

do i = i+1; while (a[i] < v);

do j = j-1; while (a[j] > v);

if (i > j) break;

x = a[i]; a[i] = a[j]; a[j] = x;

}

x = a[i]; a[i] = a[n]; a[n] = x;

quicksort(m,j); quicksort(i+1,n);

}

(1) i = m-1

(2) j = n

(3) t1 = 4*n

(4) v = a[t1]

(5) i = i+1

(6) t2 = 4*i

(7) t3 = a[t2]

(8) if t3 < v goto(5)

(9) j = j-1

(10) t4 = 4*j

(11) t5 = a[t4]

(12) if t5 > v goto(9)

(13) if i >= j goto(23)

(14) t6 = 4*i

(15) x = a[t6]

(16) t7 = 4*i

(17) t8 = 4*j

(18) t9 = a[t8]

(19) a[t7] = t9

(20) t10 = 4*j

(21) a[t10] = x

(22) goto(5)

(23) t11 = 4*i

(24) x = a[t11]

(25) t12 = 4*i

(26) t13 = 4*n

(27) t14 = a[t13]

(28) a[t12] = t14

(29) t15 = 4*n

(30) a[t15] = x

(1) i = m-1

(2) j = n

(3) t1 = 4*n

(4) v = a[t1]

(5) i = i+1

(6) t2 = 4*i

(7) t3 = a[t2]

(8) if t3 < v goto(5)

(9) j = j-1

(10) t4 = 4*j

(11) t5 = a[t4]

(12) if t5 > v goto(9)

(13) if i >= j goto(23)

(14) t6 = 4*i

(15) x = a[t6]

(16) t7 = 4*i

(17) t8 = 4*j

(18) t9 = a[t8]

(19) a[t7] = t9

(20) t10 = 4*j

(21) a[t10] = x

(22) goto(5)

(23) t11 = 4*i

(24) x = a[t11]

(25) t12 = 4*i

(26) t13 = 4*n

(27) t14 = a[t13]

(28) a[t12] = t14

(29) t15 = 4*n

(30) a[t15] = x

Common Subexpression Elimination

B1 i = m-1

j = n

t1 = 4*n

v = a[t1]

B2 i = i+1

t2 = 4*i

t3 = a[t2]

if t3 < v gotoB2

B3 j = j-1

t4 = 4*j

t5 = a[t4]

if t5 > v gotoB3

B4 if i >= j gotoB6

B5 t6 = 4*i

x = a[t6]

t7 = 4*i

t8 = 4*j

t9 = a[t8]

a[t7] = t9

t10 = 4*j

a[t10] = x

gotoB2

B6 t11 = 4*i

x = a[t11]

t12 = 4*i

t13 = 4*n

t14 = a[t13]

a[t12] = t14

t15 = 4*n

a[t15] = x

Common Subexpression Elimination

B1 i = m-1

j = n

t1 = 4*n

v = a[t1]

B2 i = i+1

t2 = 4*i

t3 = a[t2]

if t3 < v gotoB2

B3 j = j-1

t4 = 4*j

t5 = a[t4]

if t5 > v gotoB3

B4 if i >= j gotoB6

B5 t6 = 4*i

x = a[t6]

t7 = 4*i

t8 = 4*j

t9 = a[t8]

a[t7] = t9

t10 = 4*j

a[t10] = x

gotoB2

B6 t11 = 4*i

x = a[t11]

t12 = 4*i

t13 = 4*n

t14 = a[t13]

a[t12] = t14

t15 = 4*n

a[t15] = x

Common Subexpression Elimination

B1 i = m-1

j = n

t1 = 4*n

v = a[t1]

B2 i = i+1

t2 = 4*i

t3 = a[t2]

if t3 < v gotoB2

B3 j = j-1

t4 = 4*j

t5 = a[t4]

if t5 > v gotoB3

B4 if i >= j gotoB6

B5
x = a[t2]

t9 = a[t4]

a[t2] = t9

a[t4] = x

gotoB2

B6
x = a[t2]

t14 = a[t1]

a[t2] = t14

a[t1] = x

Common Subexpression Elimination

B1 i = m-1

j = n

t1 = 4*n

v = a[t1]

B2 i = i+1

t2 = 4*i

t3 = a[t2]

if t3 < v gotoB2

B3 j = j-1

t4 = 4*j

t5 = a[t4]

if t5 > v gotoB3

B4 if i >= j gotoB6

B5
x = a[t2]

t9 = a[t4]

a[t2] = t9

a[t4] = x

gotoB2

B6
x = a[t2]

t14 = a[t1]

a[t2] = t14

a[t1] = x

Common Subexpression Elimination

B1 i = m-1

j = n

t1 = 4*n

v = a[t1]

B2 i = i+1

t2 = 4*i

t3 = a[t2]

if t3 < v gotoB2

B3 j = j-1

t4 = 4*j

t5 = a[t4]

if t5 > v gotoB3

B4 if i >= j gotoB6

B5
x = t3

a[t2] = t5

a[t4] = x

gotoB2

B6
x = t3

t14 = a[t1]

a[t2] = t14

a[t1] = x

Common Subexpression Elimination

B1 i = m-1

j = n

t1 = 4*n

v = a[t1]

B2 i = i+1

t2 = 4*i

t3 = a[t2]

if t3 < v gotoB2

B3 j = j-1

t4 = 4*j

t5 = a[t4]

if t5 > v gotoB3

B4 if i >= j gotoB6

B5
x = t3

a[t2] = t5

a[t4] = x

gotoB2

B6
x = t3

t14 = a[t1]

a[t2] = t14

a[t1] = x

Did we miss one expression?

Common Subexpression Elimination

B1 i = m-1

j = n

t1 = 4*n

v = a[t1]

B2 i = i+1

t2 = 4*i

t3 = a[t2]

if t3 < v gotoB2

B3 j = j-1

t4 = 4*j

t5 = a[t4]

if t5 > v gotoB3

B4 if i >= j gotoB6

B5
x = t3

a[t2] = t5

a[t4] = x

gotoB2

B6
x = t3

t14 = a[t1]

a[t2] = t14

a[t1] = x

Did we miss one expression?

Elimination not safe as a[] is modified on path

B1→B2→B3→B4→B5→B2→B3→B4→B6

Copy Propagation

B1 i = m-1

j = n

t1 = 4*n

v = a[t1]

B2 i = i+1

t2 = 4*i

t3 = a[t2]

if t3 < v gotoB2

B3 j = j-1

t4 = 4*j

t5 = a[t4]

if t5 > v gotoB3

B4 if i >= j gotoB6

B5
x = t3

a[t2] = t5

a[t4] = x

gotoB2

B6
x = t3

t14 = a[t1]

a[t2] = t14

a[t1] = x

Copy Propagation

B1 i = m-1

j = n

t1 = 4*n

v = a[t1]

B2 i = i+1

t2 = 4*i

t3 = a[t2]

if t3 < v gotoB2

B3 j = j-1

t4 = 4*j

t5 = a[t4]

if t5 > v gotoB3

B4 if i >= j gotoB6

B5
x = t3

a[t2] = t5

a[t4] = t3

gotoB2

B6
x = t3

t14 = a[t1]

a[t2] = t14

a[t1] = t3

Copy Propagation

B1 i = m-1

j = n

t1 = 4*n

v = a[t1]

B2 i = i+1

t2 = 4*i

t3 = a[t2]

if t3 < v gotoB2

B3 j = j-1

t4 = 4*j

t5 = a[t4]

if t5 > v gotoB3

B4 if i >= j gotoB6

B5
x = t3

a[t2] = t5

a[t4] = t3

gotoB2

B6
x = t3

t14 = a[t1]

a[t2] = t14

a[t1] = t3Created Dead Assignments

Apply Dead Code Elimination

Copy Propagation

B1 i = m-1

j = n

t1 = 4*n

v = a[t1]

B2 i = i+1

t2 = 4*i

t3 = a[t2]

if t3 < v gotoB2

B3 j = j-1

t4 = 4*j

t5 = a[t4]

if t5 > v gotoB3

B4 if i >= j gotoB6

B5

a[t2] = t5

a[t4] = t3

gotoB2

B6

t14 = a[t1]

a[t2] = t14

a[t1] = t3

Strength Reduction

B1 i = m-1

j = n

t1 = 4*n

v = a[t1]

B2 i = i+1

t2 = 4*i

t3 = a[t2]

if t3 < v gotoB2

B3 j = j-1

t4 = 4*j

t5 = a[t4]

if t5 > v gotoB3

B4 if i >= j gotoB6

B5

a[t2] = t5

a[t4] = t3

gotoB2

B6

t14 = a[t1]

a[t2] = t14

a[t1] = t3

Strength Reduction

B1 i = m-1

j = n

t1 = 4*n

v = a[t1]

t2 = 4*i

t4 = 4*j

B2 i = i+1

t2 = t2+4

t3 = a[t2]

if t3 < v gotoB2

B3 j = j-1

t4 = t4-4

t5 = a[t4]

if t5 > v gotoB3

B4 if i >= j gotoB6

B5

a[t2] = t5

a[t4] = t3

gotoB2

B6

t14 = a[t1]

a[t2] = t14

a[t1] = t3

Induction Variable Elimination

B1 i = m-1

j = n

t1 = 4*n

v = a[t1]

t2 = 4*i

t4 = 4*j

B2 i = i+1

t2 = t2+4

t3 = a[t2]

if t3 < v gotoB2

B3 j = j-1

t4 = t4-4

t5 = a[t4]

if t5 > v gotoB3

B4 if i >= j gotoB6

B5

a[t2] = t5

a[t4] = t3

gotoB2

B6

t14 = a[t1]

a[t2] = t14

a[t1] = t3

Induction Variable Elimination

B1 i = m-1

j = n

t1 = 4*n

v = a[t1]

t2 = 4*i

t4 = 4*j

B2 i = i+1

t2 = t2+4

t3 = a[t2]

if t3 < v gotoB2

B3 j = j-1

t4 = t4-4

t5 = a[t4]

if t5 > v gotoB3

B4 if t2 >= t4 gotoB6

B5

a[t2] = t5

a[t4] = t3

gotoB2

B6

t14 = a[t1]

a[t2] = t14

a[t1] = t3

Dead Code Elimination (Again!)

B1 i = m-1

j = n

t1 = 4*n

v = a[t1]

t2 = 4*i

t4 = 4*j

B2
t2 = t2+4

t3 = a[t2]

if t3 < v gotoB2

B3
t4 = t4-4

t5 = a[t4]

if t5 > v gotoB3

B4 if t2 >= t4 gotoB6

B5

a[t2] = t5

a[t4] = t3

gotoB2

B6

t14 = a[t1]

a[t2] = t14

a[t1] = t3

Benefits

B# # Stmts # Stmts
before after
Opts Opts

B1 4 6

B2 4 3

B3 4 3

B4 1 1

B5 9 3

B6 8 3

◮ Assumptions:

Benefits

B# # Stmts # Stmts
before after
Opts Opts

B1 4 6

B2 4 3

B3 4 3

B4 1 1

B5 9 3

B6 8 3

◮ Assumptions:
◮ Unit cost for each stmt

Benefits

B# # Stmts # Stmts
before after
Opts Opts

B1 4 6

B2 4 3

B3 4 3

B4 1 1

B5 9 3

B6 8 3

◮ Assumptions:
◮ Unit cost for each stmt
◮ Outer loop: 10 iterations

Benefits

B# # Stmts # Stmts
before after
Opts Opts

B1 4 6

B2 4 3

B3 4 3

B4 1 1

B5 9 3

B6 8 3

◮ Assumptions:
◮ Unit cost for each stmt
◮ Outer loop: 10 iterations
◮ Inner loops: 100 iterations each

Benefits

B# # Stmts # Stmts
before after
Opts Opts

B1 4 6

B2 4 3

B3 4 3

B4 1 1

B5 9 3

B6 8 3

◮ Assumptions:
◮ Unit cost for each stmt
◮ Outer loop: 10 iterations
◮ Inner loops: 100 iterations each

◮ Cost of Execution:

Benefits

B# # Stmts # Stmts
before after
Opts Opts

B1 4 6

B2 4 3

B3 4 3

B4 1 1

B5 9 3

B6 8 3

◮ Assumptions:
◮ Unit cost for each stmt
◮ Outer loop: 10 iterations
◮ Inner loops: 100 iterations each

◮ Cost of Execution:
◮ Original Program:

1*4 + 100*4 + 100*4 + 10*1 + 10*9 + 1*8 = 912

Benefits

B# # Stmts # Stmts
before after
Opts Opts

B1 4 6

B2 4 3

B3 4 3

B4 1 1

B5 9 3

B6 8 3

◮ Assumptions:
◮ Unit cost for each stmt
◮ Outer loop: 10 iterations
◮ Inner loops: 100 iterations each

◮ Cost of Execution:
◮ Original Program:

1*4 + 100*4 + 100*4 + 10*1 + 10*9 + 1*8 = 912

◮ Optimized Program:

1*6 + 100*3 + 100*3 + 10*1 + 10*3 + 1*3 = 649

Machine Dependent

Optimizations

Peephole Optimizations

◮ Target code often contains redundant instructions and

suboptimal constructs

Peephole Optimizations

◮ Target code often contains redundant instructions and

suboptimal constructs

◮ Examine a short sequence of target instruction (peephole)

and replace by a shorter or faster sequence

Peephole Optimizations

◮ Target code often contains redundant instructions and

suboptimal constructs

◮ Examine a short sequence of target instruction (peephole)

and replace by a shorter or faster sequence

◮ Peephole is a small moving window on the target systems

Peephole Optimizations: Examples

◮ Redundant loads and stores

Peephole Optimizations: Examples

◮ Redundant loads and stores

◮ Consider the code sequence

move R0, a

move a, R0

Peephole Optimizations: Examples

◮ Redundant loads and stores

◮ Consider the code sequence

move R0, a

move a, R0

◮ Is instruction 2 redundant? Can we always remove it?

Peephole Optimizations: Examples

◮ Redundant loads and stores

◮ Consider the code sequence

move R0, a

move a, R0

◮ Is instruction 2 redundant? Can we always remove it?
◮ YES, if it does not have label

Peephole Optimizations: Unreachable code

◮ Consider the following code

int debug = 0;

if (debug) {

print debugging info

}

Peephole Optimizations: Unreachable code

◮ Consider the following code

int debug = 0;

if (debug) {

print debugging info

}

◮ This may be translated as

int debug = 0;

if (debug == 1) goto L1

goto L2

L1: print debugging info

L2:

Peephole Optimizations: Unreachable code

◮ Eliminate Jumps

int debug = 0;

if (debug != 1) goto L2

print debugging info

L2:

Peephole Optimizations: Unreachable code

◮ Eliminate Jumps

int debug = 0;

if (debug != 1) goto L2

print debugging info

L2:

◮ Constant propagation

int debug = 0;

if (0 != 1) goto L2

print debugging info

L2:

Peephole Optimizations: Unreachable code

◮ Constant folding and simplification: Since if condition is

always true, the code becomes:

goto L2

print debugging info

L2:

Peephole Optimizations: Unreachable code

◮ Constant folding and simplification: Since if condition is

always true, the code becomes:

goto L2

print debugging info

L2:

◮ The print statement is now unreachable. Therefore, the

code becomes

L2:

Peephole Optimizations: Jump Optimizations

◮ Replace jump-over-jumps

goto L1
...

L1: goto L2

Peephole Optimizations: Jump Optimizations

◮ Replace jump-over-jumps

goto L1
...

L1: goto L2

can be replaced by

goto L2
...

L1: goto L2

Peephole Optimizations: Simplify Algebraic

Expressions

◮ Remove

x = x + 0;

x = x * 1;

Peephole Optimizations: Strength Reduction

◮ Replace X∧2 by X ∗ X

Peephole Optimizations: Strength Reduction

◮ Replace X∧2 by X ∗ X

◮ Replace multiplication by left shift

Peephole Optimizations: Strength Reduction

◮ Replace X∧2 by X ∗ X

◮ Replace multiplication by left shift

◮ Replace division by right shift

Peephole Optimizations: Use of Faster Instructions

◮ Replace

Add #1, R

by

Inc R

Course Logistics

Evaluation

◮ Assignments

◮ Course project

◮ Mid semester exam (? for online offering)

◮ End semester exam (? for online offering)

◮ Quizzes/Class participation

◮ Refer to course webpage for details.

